2020-2021福州市初三数学上期中模拟试卷附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021福州市初三数学上期中模拟试卷附答案
一、选择题
1.若二次函数2y x bx =+的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程25x bx +=的解为( ).
A .10x =,24x =
B .11x =,25x =
C .11x =,25x =-
D .11x =-,25x = 2.函数y =﹣x 2﹣4x ﹣3图象顶点坐标是( )
A .(2,﹣1)
B .(﹣2,1)
C .(﹣2,﹣1)
D .(2,1) 3.如图在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…若点A (32,0),B (0,2),则点B 2018的坐标为( )
A .(6048,0)
B .(6054,0)
C .(6048,2)
D .(6054,2)
4.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪.若草坪的面积为570m 2,道路的宽为xm ,则可列方程为( )
A .32×
20﹣2x 2=570 B .32×20﹣3x 2=570 C .(32﹣x )(20﹣2x )=570
D .(32﹣2x )(20﹣x )=570 5.若α,β是一元二次方程x 2﹣x ﹣2018=0的两个实数根,则α2﹣3α﹣2β+3的值为( )
A .2020
B .2019
C .2018
D .2017 6.已知实数0a <,则下列事件是随机事件的是( )
A .0a ≥
B .10a +>
C .10a -<
D .210a +< 7.若2245a a x -+-=,则不论取何值,一定有( )
A .5x >
B .5x <-
C .3x ≥-
D .3x ≤-
8.如图,Rt AOB V 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )
A .
B .
C .
D .
9.下列图形中,既是轴对称图形又是中心对称图形的是( )
A .
B .
C .
D .
10.如图,在Rt ABC V 中,90ACB ∠=o ,60B ∠=o ,1BC =,''A B C V 由ABC V 绕点C 顺时针旋转得到,其中点'A 与点A 、点'B 与点B 是对应点,连接'AB ,且A 、'B 、'A 在同一条直线上,则'AA 的长为( )
A .3
B .23
C .4
D . 43
11.如图,直线y=kx+c 与抛物线y=ax 2+bx+c 的图象都经过y 轴上的D 点,抛物线与x 轴交于A 、B 两点,其对称轴为直线x=1,且OA=OD .直线y=kx+c 与x 轴交于点C (点C 在点B 的右侧).则下列命题中正确命题的是( )
①abc>0; ②3a+b>0; ③﹣1<k <0; ④4a+2b+c<0; ⑤a+b<k .
A .①②③
B .②③⑤
C .②④⑤
D .②③④⑤ 12.若a ,b 为方程2x 5x 10--=的两个实数根,则22a 3ab 8b 2a ++-的值为( ) A .-41 B .-35
C .39
D .45 二、填空题 13.若关于x 的一元二次方程()22 26k x kx k --+=有实数根,则k 的最小整数值为
__________.
14.已知1x =是关于x 的方程2230ax x -+=的一个根,则a =__________.
15.如图,将边长为12的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.
16.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得10AD cm =,点D 在量角器上的读数为60o ,则该直尺的宽度为____________cm .
17.现有甲、乙两个盒子,甲盒子中有编号为4,5,6的3个球,乙盒子中有编号为7,8,9的3个球.小宇分别从这两个盒子中随机地拿出1个球,则拿出的2个球的编号之和大于12的概率为_____.
18.一元二次方程()22x x x -=-的根是_____.
19.如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE ⊥OA 交»AB 于点E ,以点
O 为圆心,OC 的长为半径作»CD
交OB 于点D ,若OA=2,则阴影部分的面积为 .
20.如图,将ABC V 绕点A 逆时针旋转150︒,得到ADE V ,这时点B C D 、、恰好在同一直线上,则B Ð的度数为______.
三、解答题
21.因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已成为国内外游客最
喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018年五一长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客将达28.8万人次.在磁器口老街,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗.
(1)求出2018至2020年五一长假期间游客人次的年平均增长率;
(2)为了更好地维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?
22.解方程:2220x x +-=.
23.学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如表所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.
24.现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.
(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是 ; (2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用画树状图或列表等方法求解)
25.关于x 的一元二次方程2210x x k ++-=有两个不相等的实数根.
(1)求k 的取值范围;
(2)当k 为正整数时,求此时方程的根.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【详解】
∵二次函数y=x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,
∴抛物线的对称轴为直线x=2,
则−2b a =−2
b =2, 解得:b=−4, ∴x 2+bx=5即为x 2−4x−5=0,
则(x−5)(x+1)=0,
解得:x 1=5,x 2=−1.
故选D.
【点睛】
本题考查了抛物线与x 轴的交点:把二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与x 轴的交点坐标问题转化为关于x 的一元二次方程的问题.
2.B 解析:B
【解析】
【分析】
将函数解析式化为顶点式,即可得到顶点坐标.
【详解】
解:∵y =﹣x 2﹣4x ﹣3=﹣(x 2+4x+4﹣4+3)=﹣(x+2)2+1
∴顶点坐标为(﹣2,1);
故选:B . 【点睛】
本题考查了二次函数,解题关键是能将一般式化为顶点式.
3.D
解析:D
【解析】
【分析】
首先根据已知求出三角形三边长度,然后通过旋转发现,B 、B 2、B 4…每偶数之间的B 相差6个单位长度,根据这个规律可以求得B 2018的坐标.
【详解】
∵A (32
,0),B (0,2), ∴OA =
32,OB =2, ∴Rt △AOB 中,AB 22352()22+=
, ∴OA +AB 1+B 1C 2=32+2+52
=6, ∴B 2的横坐标为:6,且B 2C 2=2,即B 2(6,2),
∴B 4的横坐标为:2×
6=12, ∴点B 2018的横坐标为:2018÷
2×6=6054,点B 2018的纵坐标为:2,
即B2018的坐标是(6054,2).
故选D.
【点睛】
此题考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B点之间的关系是解决本题的关键.
4.D
解析:D
【解析】
【分析】
六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.
【详解】
解:设道路的宽为xm,根据题意得:(32-2x)(20-x)=570,
故选D.
【点睛】
本题考查的知识点是由实际问题抽象出一元二次方程,解题关键是利用平移把不规则的图形变为规则图形,进而即可列出方程.
5.B
解析:B
【解析】
【分析】
根据方程的解的定义及韦达定理得出α+β=1、α2-α=2018,据此代入原式=α2-α-2(α+β)+3计算可得.
【详解】
解:∵α,β是一元二次方程x2﹣x﹣2018=0的两个实数根,
∴α+β=1、α2﹣α=2018,
则原式=α2﹣α﹣2(α+β)+3
=2018﹣2+3
=2019,
故选:B.
【点睛】
考查根与系数的关系,解题的关键是掌握韦达定理及方程的解的定义和整体代入思想的运用.
6.B
解析:B
【解析】
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A 、∵任何数的绝对值都是非负数,∴0a ≥是必然事件,不符合题意; B 、∵0a <,∴1a +的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;
C 、∵0a <,∴a-1<-1<0是必然事件,故C 不符合题意;
D 、∵21a +>0,∴210a +<是不可能事件,故D 不符合题意;
故选:B .
【点睛】
本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
7.D
解析:D
【解析】
【分析】
由﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3可得:x ≤﹣3.
【详解】
∵x =﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3≤﹣3,∴不论a 取何值,x ≤﹣3.
故选D .
【点睛】
本题考查了配方法的应用,熟练运用配方法解答本题的关键.
8.D
解析:D
【解析】
【分析】
Rt △AOB 中,AB ⊥OB ,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A ,即∠AOD=∠OCD=45°,进而证明OD=CD=t ;最后根据三角形的面积公式,解答出S 与t 之间的函数关系式,由函数解析式来选择图象.
【详解】
解:∵Rt △AOB 中,AB ⊥OB ,且AB=OB=3,
∴∠AOB=∠A=45°,
∵CD ⊥OB ,
∴CD ∥AB ,
∴∠OCD=∠A ,
∴∠AOD=∠OCD=45°,
∴OD=CD=t ,
∴S △OCD =12×OD×CD=12t 2(0≤t≤3),即S=12
t 2(0≤t≤3). 故S 与t 之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象;
故选D.
【点睛】
本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.
9.C
解析:C
【解析】
【分析】
根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
【详解】
A、不是轴对称图形,是中心对称图形,故本选项不符合题意;
B、不是轴对称图形,是中心对称图形,故本选项不符合题意;
C、既是轴对称图形,也是中心对称图形,故本选项符合题意;
D、是轴对称图形,不是中心对称图形,故本选项不符合题意.
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10.A
解析:A
【解析】
【分析】
先利用互余计算出∠BAC=30°,再根据含30度的直角三角形三边的关系得到
AB=2BC=2,接着根据旋转的性质得A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠
BAC=30°,∠A′B′C=∠B=60°,于是可判断△CAA′为等腰三角形,所以∠CAA′=∠A′=30°,再利用三角形外角性质计算出∠B′C A=30°,可得B′A=B′C=1,然后利用AA′=AB′+A′B′进行计算.
【详解】
∵∠ACB=90°,∠B=60°,
∴∠BAC=30°,
∴AB=2BC=2×1=2,
∵△ABC绕点C顺时针旋转得到△A′B′C′,
∴A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,
∴△CAA′为等腰三角形,
∴∠CAA′=∠A′=30°,
∵A、B′、A′在同一条直线上,
∴∠A′B′C=∠B′AC+∠B′CA,
∴∠B′CA=60°-30°=30°,
∴B′A=B′C=1,
∴AA′=AB′+A′B′=2+1=3.
故选:A.
【点睛】
考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30度的直角三角形三边的关系.
11.B
解析:B
【解析】
试题解析:∵抛物线开口向上,
∴a>0.
∵抛物线对称轴是x=1,
∴b<0且b=-2a.
∵抛物线与y轴交于正半轴,
∴c>0.
∴①abc>0错误;
∵b=-2a,
∴3a+b=3a-2a=a>0,
∴②3a+b>0正确;
∵b=-2a,
∴4a+2b+c=4a-4a+c=c>0,
∴④4a+2b+c<0错误;
∵直线y=kx+c经过一、二、四象限,
∴k<0.
∵OA=OD,
∴点A的坐标为(c,0).
直线y=kx+c当x=c时,y>0,
∴kc+c>0可得k>-1.
∴③-1<k<0正确;
∵直线y=kx+c与抛物线y=ax2+bx+c的图象有两个交点,
∴ax2+bx+c=kx+c,
得x1=0,x2=k b a -
由图象知x2>1,
∴k b
a
-
>1
∴k>a+b,
∴⑤a+b<k正确,
即正确命题的是②③⑤.故选B.
12.C
解析:C
【解析】
【分析】
根据一元二次方程的解的定义及一元二次方程根与系数的关系可得a 2-5a-1=0,a+b=5,ab=-1,把22a 3ab 8b 2a ++-变形为2(a 2-5a-1)+3ab+8(a+b)+2,即可得答案.
【详解】
∵a ,b 为方程2x 5x 10--=的两个实数根,
∴a 2-5a-1=0,a+b=5,ab=-1,
∴22a 3ab 8b 2a ++-
=2(a 2-5a-1)+3ab+8(a+b)+2
=2×0+3×(-1)+8×
5+2 =39.
故选:C .
【点睛】
本题主要考查一元二次方程的解的定义及一元二次方程根与系数的关系,若一元二次方程ax 2+bx+c=0(a≠0)的两个根为x 1、x 2,则x 1+x 2=b a -
,x 1·x 2=c a
;熟练掌握韦达定理是解题关键. 二、填空题
13.3【解析】【分析】根据二次项系数非零结合根的判别式△≥0即可得出关于k 的一元一次不等式组解之即可得出k 的取值范围【详解】(k-2)x2-2kx+k-6=0∵关于x 的一元二次方程(k-2)x2-2kx
解析:3
【解析】
【分析】
根据二次项系数非零结合根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.
【详解】
(k-2)x 2-2kx+k-6=0,
∵关于x 的一元二次方程(k-2)x 2-2kx+k=6有实数根,
∴220(2)4(2)(6)0k k k k -≠⎧⎨----≥⎩
V = , 解得:k≥32
且k≠2. ∴k 的最小整数值为3.
故答案为:3.
此题考查一元二次方程的定义以及根的判别式,根据一元二次方程的定义结合根的判别式△≥0,列出关于k 的一元一次不等式组是解题的关键.
14.-1【解析】试题解析:把代入得解得:故答案为
解析:-1
【解析】
试题解析:把1x =代入2230ax x -+=,
得,230.a -+=
解得: 1.a =-
故答案为 1.-
15.4或8【解析】【分析】由平移的性质可知阴影部分为平行四边形设A′D=x 根据题意阴影部分的面积为(12−x)×x 即x(12−x)当x(12−x)=32时解得:x=4或x=8所以AA′=8或AA′=4【
解析:4或8
【解析】
【分析】
由平移的性质可知阴影部分为平行四边形,设A ′D=x ,根据题意阴影部分的面积为(12−x)×x ,即x(12−x),当x(12−x)=32时,解得:x=4或x=8,所以AA ′=8或AA ′=4.
【详解】
设AA ′=x,AC 与A ′B ′相交于点E ,
∵△ACD 是正方形ABCD 剪开得到的,
∴△ACD 是等腰直角三角形,
∴∠A=45∘,
∴△AA ′E 是等腰直角三角形,
∴A ′E=AA ′=x ,
A ′D=AD−AA ′=12−x ,
∵两个三角形重叠部分的面积为32,
∴x(12−x)=32,
整理得,x 2−12x+32=0,
解得x 1=4,x 2=8,
即移动的距离AA ′等4或8.
【点睛】
本题考查正方形和图形的平移,熟练掌握计算法则是解题关键·
. 16.【解析】【分析】连接OCODOC 与AD 交于点E 根据圆周角定理有根据垂径定理有:解直角即可【详解】连接OCODOC 与AD 交于点E 直尺的宽度:故答案为【点睛】考查垂径定理熟记垂径定理是解题的关键
【分析】
连接OC ,OD ,OC 与AD 交于点E ,根据圆周角定理有130,2BAD BOD ∠=
∠=︒根据垂径定理有:15,2
AE AD =
= 解直角OAE △即可. 【详解】
连接OC ,OD ,OC 与AD 交于点E ,
130,2BAD BOD ∠=
∠=︒ 10 3.cos303
AE OA ==︒ 5tan 303,3
OE AE =⋅︒= 直尺的宽度:105533 3.333CE OC OE =-=
= 533
【点睛】 考查垂径定理,熟记垂径定理是解题的关键.
17.【解析】【分析】列举出所有情况找出取2个球的编号之和大于12的情况即可求出所求的概率【详解】列树状图得::共有9种等可能的情况其中编号之和大于12的有6种所以概率=故答案为:【点睛】此题主要考查了利
解析:23
【解析】
【分析】
列举出所有情况,找出取2个球的编号之和大于12的情况,即可求出所求的概率.
【详解】
列树状图得::
共有9种等可能的情况,其中编号之和大于12的有6种,
所以概率= 62 93 =,
故答案为:2
3
.
【点睛】
此题主要考查了利用树状图法求概率,利用如果一个事件有n种可能,而且这些事件的可
能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m
n
是解题的关键.
18.x1=1x2=2【解析】【分析】整体移项后利用因式分解法进行求解即可得【详解】x(x-2)-(x-2)=0x-1=0或x-2=0所以x1=1x2=2故答案为x1=1x2=2【点睛】本题考查了解一元二
解析:x1=1, x2=2.
【解析】
【分析】
整体移项后,利用因式分解法进行求解即可得.
【详解】
x(x-2)-(x-2)=0,
()()
120
x x
--=,
x-1=0或x-2=0,
所以x1=1,x2=2,
故答案为x1=1,x2=2.
【点睛】
本题考查了解一元二次方程——因式分解法,根据方程的特点熟练选择恰当的方法进行求解是关键.
19.【解析】试题解析:连接OEAE∵点C为OA的中点∴∠CEO=30°∠EOC=60°∴△AEO为等边三角形∴S扇形AOE=∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-
S△COE)===
解析:
3
212
π
+.
【解析】
试题解析:连接OE、AE,
∵点C为OA的中点,
∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,
∴S扇形AOE=
2
6022 3603
π
π
⨯
=,
∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)
=
22
90290121
13 36036032
ππ
π
⨯⨯
---⨯
()
=323 43
ππ
-+
=
3 122π
+
20.15【解析】分析:先判断出∠BAD=150°AD=AB再判断出△BAD是等腰三角形最后用三角形的内角和定理即可得出结论详解:∵将△ABC绕点A逆时针旋转150°得到△ADE∴∠BAD=150°AD=
解析:15
【解析】
分析:先判断出∠BAD=150°,AD=AB,再判断出△BAD是等腰三角形,最后用三角形的内角和定理即可得出结论.
详解:∵将△ABC绕点A逆时针旋转150°,得到△ADE,
∴∠BAD=150°,AD=AB,
∵点B,C,D恰好在同一直线上,
∴△BAD是顶角为150°的等腰三角形,
∴∠B=∠BDA,
∴∠B=1
2
(180°-∠BAD)=15°,
故答案为15°.
点睛:此题主要考查了旋转的性质,等腰三角形的判定和性质,三角形的内角和定理,判断出三角形ABD是等腰三角形是解本题的关键.
三、解答题
21.(1)年平均增长率为20%;(2)每碗售价定为20元时,每天利润为6300元.
【解析】
【分析】
(1)根据题意设平均增长率为未知数x ,再根据题意建立方程式求解.(2)根据题意设每碗售价为未知数y ,再根据题意建立方程式求解.
【详解】
(1)设平均增长率为x ,则2201)28.8x (+=
解得:10.220%x == 2 2.2x =-(舍)·
答:年平均增长率为20%
(2)设每碗售价定为y 元时,每天利润为6300元
()6y -[300+30(25-y )]=6300·
解得:120y = 221y =·
∵每碗售价不超过20元,所以20y =.
【点睛】
本题考查了在实际生活中对方程式的建立及求解,熟练掌握方程式的实际运用是本题解题关键.
22.11=-x 21=-x .
【解析】
【分析】
把常数项移到右边 ,然后利用配方法进行求解即可.
【详解】
2220x x +-=,
222x x +=,
22121x x ++=+,
()213x +=,
1x +=
11=-x ,21=-x
【点睛】
本题考查了配方法解一元二次方程,熟练掌握配方法的步骤是解题的关键.配方法的步骤:先把常数项移到等号的右边,把二次项系数化1,然后方程两边同时加上一次项系数一半的平方,左边配成完全平方式,两边开平方进行求解.
23.王老师购买该奖品的件数为40件.
【解析】
试题分析:根据题意首先表示出每件商品的价格,进而得出购买商品的总钱数,进而得出等式求出答案.
试题解析:∵30×40=1200<1400,
∴奖品数超过了30件,
设总数为x 件,则每件商品的价格为:[40﹣(x ﹣30)×0.5]元,根据题意可得:
x[40﹣(x ﹣30)×0.5]=1400,
解得:x 1=40,x 2=70,
∵x=70时,40﹣(70﹣30)×0.5=20<30,
∴x=70不合题意舍去,
答:王老师购买该奖品的件数为40件.
考点:一元二次方程的应用.
24.(1)经过第一次传球后,篮球落在丙的手中的概率为12;(2)篮球传到乙的手中的概率为38. 【解析】
【分析】
(1)根据概率公式即可得出答案;
(2)根据题意先画出树状图得出所有等情况数,由树形图可知三次传球有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种,由概率公式即可得出答案.
【详解】
(1)经过第一次传球后,篮球落在丙的手中的概率为
12; 故答案为:12
; (2)画树状图如图所示:由树形图可知三次传球有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种,
∴篮球传到乙的手中的概率为38
.
【点睛】
本题考查用列表法或树状图法求概率以及概率公式.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.
25.(1)k <2(2)120,2x x ==-
【解析】
【分析】
(1)根据一元二次方程根的判别式与根的关系列出不等式即可求出k 的取值范围;
(2)根据(1)中的k 的取值范围和k 为正整数得出k 的值,再解方程即可,
【详解】
(1)∵关于x 的一元二次方程有两个不相等的实数根,
∴()2
2410k ∆=-->, =8-4k >0.,
∴2k <;
(2)∵k 为正整数,
∴k =1,
解方程220x x +=得,
120,2x x ==-.
【点睛】
本题考查了一元二次方程根的判别式、解一元二次方程.利用一元二次方程根的判别式与根的关系列出不等式是解题的关键.。