人教版八年级下册 第十九章《一次函数》能力提升----一次函数与动点问题 同步练习(PDF版无答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数与动点问题练习
例1.如图,一次函数2+-=x y 的图象与两坐标轴分别交于A 、B 两点,点C
是线段AB 上一动点,过点C 分别作CD 、CE 垂直于x 轴、y 轴于点D 、E ,
当点C 从点A 出发向点B 运动时(不与点B 重合),矩形CDOE 的周长()
A.逐渐变大
B.不变
C.逐渐变小
D.先变小后变大
练习1.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿在D C B A →→→路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为()
练习2.如图,点A 的坐标为(−1,0),点B 在直线3-=x y 上运动,当线段AB 最短时,点B 的坐标是.
练习3.如图所示,A 、M 、N 点坐标分别为A (0,1),M (3,2),N (4,4),动点P 从点A 出发,沿y 轴以每秒一个单位长度的速度向上移动,且过点P 的直线l :b x y +-=也随之移动,设移动时间为t 秒,若点n m ,分为位于l 的异侧,则t 的取值范围是(

A.85<<t
B.7
4<<t C.74≤≤t D.84<<t
练习4.如图,一次函数y=kx+b 的图像经过点A (0,4)和点B (3,0),以线段AB 为边在在第一象限内作等腰直角△ABC ,使∠BAC=90°.
(1)求一次函数的解析式.
(2)求出点C 的坐标.
(3)点P 是y 轴上一动点,当PB+PC 最小时,求点P 的坐标.
例2.如图,一次函数643x+y=-
的图象分别与y 轴、x 轴交于点A 、B ,点P 从点B 出发,沿BA 以每秒1个单位的速度向点A 运动,当点P 到达点A 时停止运动,设点P 的运动时间为t 秒。

(1)点P 在运动的过程中,若某一时刻,△OPA 的面积为12,求此时P 点坐标;
(2)在(1)的基础上,设点Q 为y 轴上一动点,当PQ+BQ 的值最小时,求Q 点坐标;
(3)在整个运动过程中,当t 为何值时,△AOP 为等腰三角形?
练习5.如图,在平面直角坐标系y x O 中,一次函数61+=x k y 与x 轴、y 轴分别交于点A 、B 两点,与正比例函数x k y 2=交于点D(2,2)
(1)求一次函数和正比例函数的表达式;
(2)若点P ()m,m 为直线x k y 2=上的一个动点(点P 不与点D 重合),点Q 在一次函数61+=x k y 的图象上,PQ//y
轴,当OA 3
2=PQ 时,求m 的值。

练习6.已知,直线k x y l 23:1-=:与直线k x y l +=:2交点P 的纵坐标为5,直线1l 与直线2l 与y 轴分别交于A ,B 两点.
(1)求出点P 的横坐标及k 的值;
(2)求△PAB 的面积;
(3)点M 为直线1l 上的一个动点,当△MAB 面积与△PAB 面积之比为2:3时,求此时的点M 的坐标.
例3.如图①所示,直线L:k kx+y 5 与x 轴负半轴、y 轴正半轴分别交于A 、B 两点。

(1)当OA=OB 时,试确定直线L 解析式;
(2)在(1)的条件下,如图②所示,设Q 为AB 延长线上一点,连接OQ ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若BN=3,求MN 的长;
(3)当K 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边在第一、第二象限作等腰直角△OBF 和等腰直角△ABE ,连EF 交y 轴于P 点,问当点B 在y 轴上运动时,试猜想△ABP 的面积是否改变,若不改变,请求出其值;若改变,请说明理由。

(4)当K 取不同的值时,点B 在y 轴正半轴上运动,以AB 为边在第二象限作等腰直角△ABE,则动点E 在直线
上运动.(直接写出直线的表达式)。

相关文档
最新文档