内蒙古鄂尔多斯市下册期末精选单元测试卷(含答案解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内蒙古鄂尔多斯市下册期末精选单元测试卷(含答案解析)
一、第五章抛体运动易错题培优(难)
1.一阶梯如图所示,其中每级台阶的高度和宽度都是0.4m,一小球以水平速度v飞出,欲打在第四台阶上,则v的取值范围是()
A6m/s22m/s
v
<<B.22m/s 3.5m/s
v
<≤
C2m/s6m/s
v
<<D6m/s23m/s
v
<<
【答案】A
【解析】
【分析】
【详解】
若小球打在第四级台阶的边缘上高度4
h d
=,根据2
1
1
2
h gt
=,得
1
880.4
s0.32s
10
d
t
g
⨯
===
水平位移14
x d
=则平抛的最大速度
1
1
1
2m/s
0.32
x
v
t
===
若小球打在第三级台阶的边缘上,高度3
h d
=,根据2
2
1
2
h gt
=,得
2
6
0.24s
d
t
g
==
水平位移23
x d
=,则平抛运动的最小速度
2
2
2
6m/s
0.24
x
v
t
===
所以速度范围
6m/s22m/s
v
<<
故A正确。
故选A。
【点睛】
对于平抛运动的临界问题,可以通过画它们的运动草图确定其临界状态及对应的临界条
件。
2.一个半径为R 的空心球固定在水平地面上,球上有两个与球心O 在同一水平面上的小
孔A 、B ,且60AOB ∠=︒设水流出后做平抛运动,重力加速度g ,则两孔流出的水的落地点间距离为( )
A .R
B
C .2R
D .
【答案】C 【解析】 【分析】 【详解】
水做平抛运动,竖直方向上有
212
R gt =
解得运动时间
t =
水平方向上有
02R
x v t R g
==
= 则两落地点距圆心在地面投影点的距离为2R ,与圆心在地面投影点的连线夹角为60︒,两落地点和圆心在地面投影点组成等边三角形,根据几何知识可知,两落地点间距为
2R ,选项C 正确,ABD 错误。
故选C 。
3.一群小孩在山坡上玩投掷游戏时,有一小石块从坡顶水平飞出,恰好击中山坡上的目标物。
若抛出点和击中点的连线与水平面成角α,该小石块在距连线最远处的速度大小为
v ,重力加速度为g ,空气阻力不计,则( )
A .小石块初速度的大小为cos v
α
B .小石块从抛出点到击中点的飞行时间为sin v g
α
C .抛出点与击中点间的位移大小为22sin v g
α
D .小石块击中目标时,小石块的速度的方向与抛出点和击中点的连线的夹角也为α 【答案】A 【解析】 【分析】 【详解】
A .石块做的是平抛运动,当石块与连线的距离最远时,石块的速度与山坡斜面平行,所以把石块的速度沿水平和竖直方向分解,水平方向上可得
0cos v
v α
=
即为平抛运动的初速度的大小,选项A 正确;
BC .设抛出点与击中点间的距离为L ,则由平抛运动的规律得 水平方向上
0cos L v t α=
竖直方向上
21sin 2
L gt α=
由以上两个方程可以解得
23
2sin cos v L g αα= 22sin cos v t g α
α
=
选项BC 错误;
D .小石块击中目标时,竖直分速度
22sin cos y v v gt α
α
==
则击中目标时速度方向与水平方向的夹角
20
2sin tan 2tan cos y v v v α
βαα
=
=
=
所以小石块击中目标时,小石块的速度的方向与抛出点和击中点的连线的夹角不等于α,选项D 错误。
故选A 。
4.一艘小船在静水中的速度为 3 m/s ,渡过一条宽 150 m ,水流速度为 4 m/s 的河流,则该 小船( ) A .能到达正对岸 B .渡河的时间可能少于 50 s
C .以最短位移渡河时,位移大小为 200 m
D .以最短时间渡河时,沿水流方向的位移大小为 240 m 【答案】C 【解析】 【分析】 【详解】
A .因为船在静水中的速度小于河水的流速,由平行四边形法则求合速度不可能垂直河
岸,小船不可能垂直河岸正达对岸,选项A错误;B.船以最短时间渡河时,渡河时间
150
s=50s
3
d
t
v
==
船
所以渡河的时间不可能少于50 s,选项B错误;
D.以最短时间渡河时,沿河岸的位移
min
450m200m
x v t
==⨯=
水
即到对岸时被冲下200m,选项D错误;
C.因为船在静水中的速度小于河水的流速,由平行四边形法则求合速度不可能垂直河岸,小船不可能垂直河岸正达对岸。
所以最短位移时船的速度与合速度的方向垂直,设合速度与河岸之间的夹角θ,有
3
sin
4
v
v
θ船
水
==
设对应的最短位移为s,则
sin
d
s
θ=
所以
150
m200m
3
sin
4
d
s
θ
===
选项C正确。
故选C。
5.一快艇从离岸边100m远的河流中央向岸边行驶.已知快艇在静水中的速度图象如(图甲)所示;河中各处水流速度相同,且速度图象如(图乙)所示.则()
A.快艇的运动轨迹一定为直线
B.快艇的运动轨迹一定为曲线
C.快艇最快到达岸边,所用的时间为20s
D.快艇最快到达岸边,经过的位移为100m
【答案】BC
【解析】
【分析】
【详解】
AB、两分运动为一个做匀加速直线运动,一个做匀速线运动,知合速度的方向与合加速度的方向不在同一直线上,合运动为曲线运动.故A错误、B正确;
CD、当水速垂直于河岸时,时间最短,垂直于河岸方上的加速度a=0.5m/s2,由2
1
2
d at
=,得t=20s,而位移大于100m,故C正确、D错误.
【点睛】
解决本题的关键会将的运动分解为沿河岸方向和垂直河岸方向,知道在垂直于河岸方向上速度越大,时间越短.以及知道分运动和合运动具有等时性.
6.如图所示,船停在平静的河水中,人在岸上拉船,人匀速向左的速度为v,则()
A.船在河中做匀速直线运动,速度也为v
B.船在河中做匀减速直线运动
C.船在河中做加速度增加的加速直线运动
D.斜绳与水平成30时,2
:3
v v=
人船
【答案】CD
【解析】
【分析】
【详解】
AB.由题意知,船的速度方向水平向左。
现在将船的速度分解到两个方向,沿着绳子向上的1v和垂直于绳子向下的2v,其中
1
v v
=
则根据几何关系可知
cos cos
v v
v
θθ
==
人
船
随着人向左拉绳子,船也在水平向左运动,θ角逐渐变大,则可知v船逐渐增大,所以船在河中做加速运动,所以AB错误;
C.由AB选项分析可知,船在河中做加速运动。
设河岸高为h,传到岸边的绳长为l,岸到船的距离为x,则由数学知识推导为
cos
v
v
θ
=
船
2
v lω
=,
2
tan
v vθ
=
由加速度的定义式可得
22
23
d()
d sin sin
cos
d d cos cos
v
v v v
a
t t l
θθ
θω
θθ
===⋅=
又由几何关系可得
sin h
l θ=
,cos x l
θ= 得
223v h a x
=
所以当船在河中向左运动时,x 逐渐减小,a 逐渐增大,则船在河中做加速度增加的加速直线运动,所以C 正确; D .由AB 选项分析可知
cos v v θ
=
人
船 则当
30θ=
时
2:v v =人船
所以D 正确。
故选CD 。
7.静止的城市绿化洒水车,由横截面积为S 的水龙头喷嘴水平喷出水流,水流从射出喷嘴到落地经历的时间为t ,水流落地点与喷嘴连线与水平地面间的夹角为θ,忽略空气阻力,以下说法正确的是( ) A .水流射出喷嘴的速度为2tan θgt
B .空中水柱的水的体积为2
2tan Sgt θ
C .水流落地时位移大小为2
2sin gt θ
D .水流落地时的速度为2cot θgt
【答案】BC 【解析】 【分析】 【详解】
A .水流落地点与喷嘴连线与水平地面间的夹角为θ,则有
200
tan 22y gt gt
x v t v θ===
故
02tan gt
v θ
=
故A 错误; B .空中水柱的水量
2
02tan Sgt Q Sv t θ
==
故B 正确;
C . 水流落地时,竖直方向位移2
12
h gt =
,根据几何关系得,水流落地时位移大小为 2
sin 2sin h gt s θθ
==
故C 正确;
D .水流落地时,竖直方速度v y =gt ,则水流落地时的速度
v ==
故D 错误。
故选BC 。
【点睛】
水从喷嘴喷出后,做平抛运动,水平方向做匀速直线运动,竖直方向做自由落体运动,根据平抛运动的基本规律结合几何关系即可求解。
8.一两岸平行的河流宽为200m ,水流速度为5m/s ,在一次抗洪抢险战斗中,武警战士驾船把受灾群众送到河对岸的安全地方。
船相对静水的速度为4m/s 。
则下列说法正确的是( )
A .该船不能垂直过河
B .该船能够垂直过河
C .渡河的位移可能为200m
D .渡河的位移可能为260m
【答案】AD 【解析】 【分析】 【详解】
AB .由于船相对静水的速度小于水流速度,故船不能垂直过河,选项A 正确,B 错误; CD .要使小船过河的位移最短,当合速度的方向与船在静水中的速度相垂直时,渡河的最
短位移,那么根据v d s v 船
水
=解得最短位移为
5
200m 250m 4
v s d v ==⨯=水
船 故位移是200m 是不可能的,位移是260m 是可能的。
选项C 错误,D 正确。
故选AD 。
9.河水的流速随离河岸的距离的变化关系如图甲所示,船在静水中的速度与时间的关系如图乙所示,经过一段时间该船成功渡河,则下列说法正确的是( )
A.船渡河的航程可能是300m
B.船在河水中的最大速度可能是5m/s
C.船渡河的时间不可能少于100s
D.若船头与河岸垂直渡河,船在河水中航行的轨迹是一条直线
【答案】BC
【解析】
【分析】
【详解】
A.因河流中间部分水流速度大于船在静水中的速度,因此船渡河的合速度不可能垂直河岸,则位移不可能是300m,选项A错误;
B.若船头垂直河岸,则当水流速最大时,船的速度最大
22
34m/s5m/s
m
v=+=
选项B正确;
C.当静水速与河岸垂直时,渡河时间最短
300
s100s
3
C
d
t
v
===
选项C正确;
D.船在沿河岸方向上做变速运动,在垂直于河岸方向上做匀速直线运动,两运动的合运动轨迹是曲线,选项D错误。
故选BC。
10.如图所示,一艘轮船正在以4m/s的速度沿垂直于河岸方向匀速渡河,河中各处水流速度都相同,其大小为v1=3m/s,行驶中,轮船发动机的牵引力与船头朝向的方向相同。
某时刻发动机突然熄火,轮船牵引力随之消失,但轮船受到水大小不变的阻力作用而使轮船相对于水的速度逐渐减小,但船头方向始终未发生变化。
下列判断正确的是()
A.发动机未熄火时,轮船相对于静水行驶的速度大小5m/s
B.发动机从熄火到相对于静水静止的过程中,轮船相对于地面做匀变速直线运动
C.发动机从熄火到相对于静水静止的过程中,轮船相对于静水做匀变速直线运动
D.发动机熄火后,轮船相对于河岸速度的最小值3m/s
【答案】AC 【解析】 【分析】 【详解】
A .发动机未熄火时,轮船实际运动速度v 与水流速度1v 方向垂直,如图所示:
故此时船相对于静水的速度2v 的大小为
22215m/s v v v =+=
设v 与2v 的夹角为θ,则
2
cos 0.8v
v θ=
= A 正确;
B .发动机从熄火到相对于静水静止的过程中,相对于地面初速度为图中的v ,而因受阻力作用,其加速度沿图中2v 的反方向,所以轮船相对于地面做类斜上抛运动,即做匀变速曲线运动,B 错误;
C .发动机从熄火到相对于静水静止的过程中,相对于静水初速度为图中的2v ,而因受阻力作用,其加速度沿图中2v 的反方向,所以轮船相对于静水做匀变速直线运动,C 正确;
D .熄火前,船的牵引力沿2v 的方向,水的阻力与2v 的方向相反,熄火后,牵引力消失,在阻力作用下,2v 逐渐减小,但其方向不变,当2v 与1v 的矢量和与2v 垂直时轮船的合速度最小,如图所示,则
1min cos 2.4m/s v v θ==
D 错误。
故选AC 。
二、第六章 圆周运动易错题培优(难)
11.如图所示,水平圆盘可绕竖直轴转动,圆盘上放有小物体A 、B 、C ,质量分别为m 、2m 、3m ,A 叠放在B 上,C 、B 离圆心O 距离分别为2r 、3r 。
C 、B 之间用细线相连,圆盘静止时细线刚好伸直无张力。
已知C 、B 与圆盘间动摩擦因数为μ,A 、B 间摩擦因数为3μ,设最大静摩擦力等于滑动摩擦力,重力加速度为g ,现让圆盘从静止缓慢加速,则( )
A .当23g
r
μω=时,A 、B 即将开始滑动 B .当2g
r
μω=32
mg
μ C .当g
r
μω=C 受到圆盘的摩擦力为0
D .当25g
r
μω=C 将做离心运动 【答案】BC 【解析】 【详解】
A. 当A 开始滑动时有:
2033A f mg m r μω==⋅⋅
解得:
0g
r
μω=
当23g
g
r
r
μμω=<AB 未发生相对滑动,选项A 错误;
B. 当2g
g
r
r
μμω=
<
时,以AB 为整体,根据2
F mr ω向
=可知 29
332
F m r mg ωμ⋅⋅=
向= B 与转盘之间的最大静摩擦力为:
23Bm f m m g mg μμ=+=()
所以有:
Bm F f >向
此时细线有张力,设细线的拉力为T , 对AB 有:
2333mg T m r μω+=⋅⋅
对C 有:
232C f T m r ω+=⋅⋅
解得
32mg T μ=
,32
C mg
f μ= 选项B 正确; C. 当g
r
μω=
时,
AB 需要的向心力为:
2339AB Bm F m r mg T f ωμ'⋅⋅=+==
解得此时细线的拉力96Bm T mg f mg μμ'-== C 需要的向心力为:
2326C F m r mg ωμ⋅⋅==
C 受到细线的拉力恰好等于需要的向心力,所以圆盘对C 的摩擦力一定等于0,选项C 正确; D. 当25g
r
μω=
时,对C 有: 212
325
C f T m r mg ωμ+=⋅⋅=
剪断细线,则
12
35
C Cm f mg f mg μμ=
<= 所以C 与转盘之间的静摩擦力大于需要的向心力,则C 仍然做匀速圆周运动。
选项D 错误。
故选BC 。
12.两个质量分别为2m 和m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ’的距离为L ,b 与转轴的距离为2L ,a 、b 之间用强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是( )
A .a 、b 所受的摩擦力始终相等
B .b 比a 先达到最大静摩擦力
C .当ω=a 刚要开始滑动
D .当ω=b 所受摩擦力的大小为kmg 【答案】BD 【解析】 【分析】 【详解】
AB .木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律可知,木块受到的静摩擦力f =mω2r ,则当圆盘从静止开始绕转轴缓慢地加速转动时,木块b 的最大静摩擦力先达到最大值;在木块b 的摩擦力没有达到最大值前,静摩擦力提供向心力,由牛顿第二定律可知,f=mω2r ,a 和b 的质量分别是2m 和m ,而a 与转轴OO ′为L ,b 与转轴OO ′为2L ,所以结果a 和b 受到的摩擦力是相等的;当b 受到的静摩擦力达到最大后,b 受到的摩擦力与绳子的拉力合力提供向心力,即
kmg +F =mω2•2L ①
而a 受力为
f′-F =2mω2L ②
联立①②得
f′=4mω2L -kmg
综合得出,a 、b 受到的摩擦力不是始终相等,故A 错误,B 正确; C .当a 刚要滑动时,有
2kmg+kmg =2mω2L +mω2•2L
解得
ω 选项C 错误;
D. 当b 恰好达到最大静摩擦时
2
02kmg m r ω=⋅
解得
0ω=
>>
ω=b 所受摩擦力达到最大值,大小为kmg ,选项D 正确。
故选BD 。
13.如图所示,可视为质点的、质量为m 的小球,在半径为R 的竖直放置的光滑圆形管道内做圆周运动,下列有关说法中正确的是( )
A .小球能够到达最高点时的最小速度为0
B gR
C 5gR 为6mg
D .如果小球在最高点时的速度大小为gR ,则此时小球对管道的外壁的作用力为3mg 【答案】ACD 【解析】 【分析】 【详解】
A .圆形管道内壁能支撑小球,小球能够通过最高点时的最小速度为0,选项A 正确,
B 错误;
C .设最低点时管道对小球的弹力大小为F ,方向竖直向上。
由牛顿第二定律得
2
v F mg m R
-=
将5v gR =代入解得
60F mg =>,方向竖直向上
根据牛顿第三定律得知小球对管道的弹力方向竖直向下,即小球对管道的外壁有作用力为6mg ,选项C 正确;
D .小球在最高点时,重力和支持力的合力提供向心力,根据牛顿第二定律有
2
v F mg m R
'+=
将2v gR =
30F mg '=>,方向竖直向下
根据牛顿第三定律知球对管道的外壁的作用力为3mg ,选项D 正确。
故选ACD 。
14.如图所示,两个可视为质点的、相同的木块A 和B 放在转盘上,两者用长为L 的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K 倍,A 放在距离转轴L 处,整个装置能绕通过转盘中心的转轴O 1O 2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是( )
A .当23Kg
L
ω>
时,A 、B 相对于转盘会滑动 B 223Kg Kg
L L
ω<
C .ω在223Kg Kg
L L ω<<
B 所受摩擦力变大 D .ω223Kg Kg
L L
ω<
A 所受摩擦力不变 【答案】A
B 【解析】 【分析】 【详解】
A .当A 所受的摩擦力达到最大静摩擦力时,A 、
B 相对于转盘会滑动,对A 有
21Kmg T m L ω-=
对B 有
212Kmg T m L ω+=⋅
解得
123Kg
L
ω=
当23Kg
L
ω>
时,A 、B 相对于转盘会滑动,故A 正确; B .当B 达到最大静摩擦力时,绳子开始出现弹力
2
22Kmg m L ω=⋅
解得
22Kg
L
ω=
223Kg Kg
L L
ω<<
B 正确;
C .当ω在02Kg
L
ω<<
B 所受的摩擦力变大;当2Kg
L
ω=时,B 受到的摩擦力达到最大;当ω223Kg Kg
L L
ω<<
B 所受摩擦力不变,故
C 错误;
D .当ω在203Kg
L
ω<<范围内增大时,A 所受摩擦力一直增大,故D 错误。
故选AB 。
15.如图所示,内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,两个质量相同的小球A 和B 紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则( )
A .球A 的周期一定大于球
B 的周期 B .球A 的角速度一定大于球B 的角速度
C .球A 的线速度一定大于球B 的线速度
D .球A 对筒壁的压力一定大于球B 对筒壁的压力 【答案】AC 【解析】 【分析】 【详解】
ABC .对小球受力分析,小球受到重力和支持力,它们的合力提供向心力,如图:
根据牛顿第二定律,有
2
2tan v F mg m mr r
θω===
解得
tan v gr θ=tan g r
θ
ω=
A 的半径大,则A 的线速度大,角速度小
根据2T
π
ω=
知A 球的周期大,选项AC 正确,B 错误; D .因为支持力
cos mg N θ
=
知球A 对筒壁的压力一定等于球B 对筒壁的压力,选项D 错误。
故选AC 。
16.高铁项目的建设加速了国民经济了发展,铁路转弯处的弯道半径r 是根据高速列车的速度决定的。
弯道处要求外轨比内轨高,其内外轨高度差h 的设计与r 和速率v 有关。
下列说法正确的是( )
A .r 一定的情况下,预设列车速度越大,设计的内外轨高度差h 就应该越小
B .h 一定的情况下,预设列车速度越大,设计的转弯半径r 就应该越大
C .r 、h 一定,高速列车在弯道处行驶时,速度越小越安全
D .高速列车在弯道处行驶时,速度太小或太大会对都会对轨道产生很大的侧向压力 【答案】BD 【解析】 【分析】 【详解】
如图所示,两轨道间距离为L 恒定,外轨比内轨高h ,两轨道最高点连线与水平方向的夹角为θ。
当列车在轨道上行驶时,利用自身重力和轨道对列车的支持力的合力来提供向心力,有
2
=tan h v F mg mg m L r
θ==向
A . r 一定的情况下,预设列车速度越大,设计的内外轨高度差h 就应该越大,A 错误;
B .h 一定的情况下,预设列车速度越大,设计的转弯半径r 就应该越大,B 正确;
C .r 、h 一定,高速列车在弯道处行驶时,速度越小时,列车行驶需要的向心力过小,而为列车提供的合力过大,也会造成危险,C 错误;
D .高速列车在弯道处行驶时,向心力刚好有列车自身重力和轨道的支持力提供时,列车对轨道无侧压力,速度太小内轨向外有侧压力,速度太大外轨向内有侧压力,D 正确。
故选BD 。
17.如图所示,一个边长满足3:4:5的斜面体沿半径方向固定在一水平转盘上,一木块静止在斜面上,斜面和木块之间的动摩擦系数μ=0.5。
若木块能保持在离转盘中心的水平距离为40cm 处相对转盘不动,g =10m/s 2,则转盘转动角速度ω的可能值为(设最大静摩擦力等于滑动摩擦力)( )
A .2rad/s
B .3rad/s
C .4rad/s
D .5rad/s
【答案】BCD 【解析】 【分析】 【详解】
根据题意可知斜面体的倾角满足
3
tan 0.54
θμ=
>= 即重力沿斜面的分力大于滑动摩擦力,所以角速度为0时,木块不能够静止在斜面上。
当转动的角速度较小时,木块所受的摩擦力沿斜面向上,则木块恰好向下滑动时
cos sin N f mg θθ+=
2sin cos N f mr θθω-=
滑动摩擦力满足
f N μ=
解得
5
22rad/s 11
ω=
当转动角速度变大,木块恰好向上滑动时
cos sin N f mg θθ=+
2sin cos N f mr θθω+='
滑动摩擦力满足
f N μ=
解得
52rad/s ω'=
所以圆盘转动的角速度满足
05
22rad/s 2rad/s 52rad/s 7rad/s 11
ω≈≤≤≈ A 错误,BCD 正确。
故选BCD 。
18.如图所示,叠放在水平转台上的物体A 、B 、C 能随转台一起以角速度ω匀速转动,A 、B 、C 的质量分别为3m 、2m 、m ,A 与B 、B 和C 与转台间的动摩擦因数都为μ,A 和
B 、
C 离转台中心的距离分别为r 、1.5r 。
设本题中的最大静摩擦力等于滑动摩擦力。
以下说法正确的是( )
A .
B 对A 的摩擦力一定为3μmg B .B 对A 的摩擦力一定为3mω2r
C 3g
r μD g
r
μ【答案】BC 【解析】 【分析】 【详解】
AB .对A 受力分析,受重力、支持力以及B 对A 的静摩擦力,静摩擦力提供向心力,有
2(3)(3)f m r m g ωμ=
故A 错误,B 正确;
CD .由于A 、AB 整体、C 受到的静摩擦力均提供向心力,故对A 有
2(3)(3)m r m g ωμ
对AB 整体有
()()23232m m r m m g ωμ+≤+
对物体C 有
()21.5m r mg ωμ≤
解得
23g
r
μω≤
故C 正确,D 错误。
故选BC 。
19.游乐园里有一种叫“飞椅”的游乐项目,简化后的示意图如图所示.已知飞椅用钢绳系着,钢绳上端的悬点固定在顶部水平转盘上的圆周上.转盘绕穿过其中心的竖直轴匀速转动.稳定后,每根钢绳(含飞椅及游客)与转轴在同一竖直平面内.图中P 、Q 两位游客悬于同一个圆周上,P 所在钢绳的长度大于Q 所在钢绳的长度,钢绳与竖直方向的夹角分别为θ1、θ2.不计钢绳的重力.下列判断正确的是( )
A .P 、Q 两个飞椅的线速度大小相同
B .无论两个游客的质量分别有多大,θ1一定大于θ2
C .如果两个游客的质量相同,则有θ1等于θ2
D .如果两个游客的质量相同,则Q 的向心力一定大于P 的向心力 【答案】B 【解析】 【详解】
BC .设钢绳延长线与转轴交点与游客所在水平面的高度为h ,对游客受力分析,由牛顿第二定律和向心力公式可得:
2tan tan mg m h θωθ=
则:
P Q h h =
设圆盘半径为r ,绳长为L ,据几何关系可得:
cos tan r
h L θθ=
+ 因为:
P Q L L >
所以:
12θθ>
由上分析得:无论两个游客的质量分别有多大,θ1一定大于θ2;故B 项正确,C 项错误。
A .设游客做圆周运动的半径为R ,由几何关系可得:
sin R r L θ=+
所以:
P Q R R >
两游客转动的角速度相等,据v R ω=可得:
P Q v v >
故A 项错误。
D .对游客受力分析,游客所受向心力:
n tan F mg θ=
如果两个游客的质量相同,12θθ>,所以P 的向心力一定大于Q 的向心力,故D 项错误。
20.如图所示,一倾斜的圆筒绕固定轴OO 1以恒定的角速度ω转动,圆筒的半径r =1.5m.
筒壁内有一小物体与圆筒始终保持相对静止,小物体与圆筒间的动摩擦因数为
3
2
(设最大静摩擦力等于滑动摩擦力),转动轴与水平面间的夹角为60°,重力加速度g 取10m/s 2,则ω的最小值是( )
A .1rad/s
B .
30
rad/s C . 10rad/s D .5rad/s
【答案】C 【解析】 【分析】 【详解】
对物体受力分析如图:
受重力G ,弹力N ,静摩擦力f .ω的最小值时,物体在上部将要产生相对滑动.由牛顿第二定律可知,
2cos mg N m r θω+=
在平行于桶壁方向上,达到最大静摩擦力,即
max sin f mg θ=
由于max f N μ=;由以上式子,可得
10rad/s ω=
故选C .
三、第八章 机械能守恒定律易错题培优(难)
21.一足够长的水平传送带上放置质量为m =2kg 小物块(物块与传送带之间动摩擦因数为
0.2μ=),现让传送带从静止开始以恒定的加速度a =4m/s 2开始运动,当其速度达到
v=12m/s后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。
下列说法正确的是()
A.小物块0到4s内做匀加速直线运动,后做匀减速直线运动直至静止
B.小物块0到3s内做匀加速直线运动,之后做匀减速直线运动直至静止
C.物块在传送带上留下划痕长度为12m
D.整个过程中小物块和传送带间因摩擦产生的热量为80J
【答案】
ACD
【解析】
【分析】
【详解】
物块和传送带的运动过程如图所示。
AB.由于物块的加速度
a1=µg=2m/s2
小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间1
2
v
t
a
==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s
物块的位移
x1=
1
2
a1t12=9m
传送带的位移
x2=
1
2
a2t12=18m
两者相对位移为
121
x x x
∆=-=9m
此后传送带减速,但物块仍加速,B错误;
当物块与传送带共速时,由匀变速直线运动规律得
12- a2t2=6+ a1t2
解得t2=1s
因此物块匀加速所用的时间为
t1+ t2=4s
两者相对位移为2x∆= 3m,所以A正确。
C.物块开始减速的速度为
v3=6+ a1t2=8 m/s
物块减速至静止所用时间为
3
3
1
v
t
a
==4s
传送带减速至静止所用时间为
3
4
2
v
t
a
==2s
该过程物块的位移为
x3=
1
2
a1t32=16m
传送带的位移为
x2=
1
2
a2t42=8m
两者相对位移为
3
x∆=8m
回滑不会增加划痕长度,所以划痕长为
12
x x x
∆=∆+∆=9m+3m=12m
C正确;
D.全程相对路程为
L=123
x x x
∆+∆+∆=9m+3m+8m=20m
Q=µmgL=80J
D正确;
故选ACD。
22.如图所示,质量为1kg的物块(可视为质点),由A点以6m/s的速度滑上正沿逆时针转动的水平传送带(不计两转轮半径的大小),传送带上A、B两点间的距离为8m,已知传送带的速度大小为3m/s,物块与传送带间的动摩擦因数为0.2,重力加速度为2
10m/s。
下列说法正确的是()
A.物块在传送带上运动的时间为2s
B.物块在传送带上运动的时间为4s
C.整个运动过程中由于摩擦产生的热量为16J
D.整个运动过程中由于摩擦产生的热量为28J
【答案】BD
【解析】 【分析】 【详解】
AB .滑块先向右匀减速,根据牛顿第二定律有
mg ma μ=
解得
22m/s a g μ==
根据运动学公式有
010v at =-
解得
13s t =
匀减速运动的位移
0106
3m 9m 8m 22
v x t L +=
=⨯==> 物体向左匀加速过程,加速度大小仍为22m/s a =,根据运动学公式得物体速度增大至2m/s v =时通过的位移
2212m 1m 222
v x a ===⨯
用时
22
s 1s 2v t a =
== 向左运动时最后3m 做匀速直线运动,有
233
=
s 1s 3
x t v == 即滑块在传送带上运动的总时间为
1234s t t t t =++=
物块滑离传送带时的速率为2m/s 。
选项A 错误,B 正确;
C .向右减速过程和向左加速过程中,摩擦力为恒力,故摩擦力做功为
110.211041J 6J f W f x x mg x x μ=--=--=-⨯⨯⨯-=-()()()
选项C 错误;
D .整个运动过程中由于摩擦产生的热量等于滑块与传送带之间的一对摩擦力做功的代数和,等于摩擦力与相对路程的乘积;物体向右减速过程,传送带向左移动的距离为
114m l vt ==
物体向左加速过程,传送带运动距离为
222m l vt ==
即
121[]Q fS mg l x l x μ==++-()()
代入数据解得
28J Q =
选项D 正确。
故选BD 。
23.在一水平向右匀速传输的传送带的左端A 点,每隔T 的时间,轻放上一个相同的工件,已知工件与传送带间动摩擦因素为,工件质量均为m ,经测量,发现后面那些已经和传送带达到相同速度的工件之间的距离为x ,下列判断正确的有
A .传送带的速度为
x T
B .传送带的速度为22gx μ
C .每个工件与传送带间因摩擦而产生的热量为
1
2
mgx μ D .在一段较长的时间内,传送带因为传送工件而将多消耗的能量为2
3mtx T
【答案】AD 【解析】 【分析】 【详解】
A .工件在传送带上先做匀加速直线运动,然后做匀速直线运动,每个工件滑上传送带后运动的规律相同,可知x =vT ,解得传送带的速度v =
x
T
.故A 正确; B .设每个工件匀加速运动的位移为x ,根据牛顿第二定律得,工件的加速度为μg ,则传送带的速度2v gx μ=s 与x 的关系.故B 错误; C .工件与传送带相对滑动的路程为
22
2
22v v x x v g g gT μμμ∆=-=
则摩擦产生的热量为
Q =μmg △x =2
2
2mx T
故C 错误;
D .根据能量守恒得,传送带因传送一个工件多消耗的能量
22212mx E mv mg x T
μ=+∆=。