基于遗传机制的蚁群算法求解连续优化问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于遗传机制的蚁群算法求解连续优化问题
朱经纬;蒙陪生;王乘
【期刊名称】《上海大学学报(英文版)》
【年(卷),期】2007(011)006
【摘要】A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of component, trail information and fitness. The ant chooses a seed from the seed set with the possibility determined by trail information and fitness of the seed. The genetic method is used to form new solutions from the solutions got by the ants. Best solutions are selected to update the seeds in the sets and trail information of the seeds. In updating the trail information, a diffusion function is used to achieve the diffuseness of trail information. The new algorithm is tested with 8 different benchmark functions.
【总页数】6页(P597-602)
【作者】朱经纬;蒙陪生;王乘
【作者单位】Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074,P.R.China;Department of Mechanics, Huazhong University of Science and Technology, Wuhan
430074,P.R.China;Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074,P.R.China
【正文语种】中文
【中图分类】O1
因版权原因,仅展示原文概要,查看原文内容请购买。