高考物理带电粒子在电场中的运动解题技巧分析及练习题(含答案)含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理带电粒子在电场中的运动解题技巧分析及练习题(含答案)含解析
一、高考物理精讲专题带电粒子在电场中的运动
1.如图,半径为a 的内圆A 是电子发射器,其金属圆周表圆各处可沿纸面内的任意方向发射速率为v 的电子;外圆C 为与A 同心的金属网,半径为3a .不考虑静电感应及电子的重力和电子间的相互作用,已知电子质量为m ,电量为e .
(1)为使从C 射出的电子速率达到3v ,C 、A 间应加多大的电压U ; (2)C 、A 间不加电压,而加垂直于纸面向里的匀强磁场.
①若沿A 径向射出的电子恰好不从C 射出,求该电子第一次回到A 时,在磁场中运动的时间t ;
②为使所有电子都不从C 射出,所加磁场磁感应强度B 应多大.
【答案】(1)24mv e (2)①43a π ②(31)B ae ≥- 【解析】 【详解】
(1)对电子经C 、A 间的电场加速时,由动能定理得
()2
211322
eU m v mv =
- 得2
4mv U e
=
(2)电子在C 、A 间磁场中运动轨迹与金属网相切.轨迹如图所示.
设此轨迹圆的半径为r ,则)
2
223a r
r a -=+
又2r
T v
π=
得tan 3a
r
θ== 故θ=60°
所以电子在磁场中运动的时间2-22t T πθ
π
= 得439a
t v
π=
(3)若沿切线方向射出的电子轨迹恰好与金属网C 相切.则所有电子都不从C 射出,轨迹如图所示:
23r a a '=-
又2
v evB m r ='
得3-1B ae =
()
所以3-1B ae
≥
()
2.如图所示,OO′为正对放置的水平金属板M 、N 的中线.热灯丝逸出的电子(初速度重力均不计)在电压为U 的加速电场中由静止开始运动,从小孔O 射入两板间正交的匀强电场、匀强磁场(图中未画出)后沿OO′做直线运动.已知两板间的电压为2U ,两板长度与两板间的距离均为L ,电子的质量为m 、电荷量为e .
(1)求板间匀强磁场的磁感应强度的大小B 和方向;
(2)若保留两金属板间的匀强磁场不变,使两金属板均不带电,求从小孔O 射入的电子打到N 板上的位置到N 板左端的距离x . 【答案】(1)12mU B L e = 垂直纸面向外;(23
L 【解析】 【分析】
(1)在电场中加速度,在复合场中直线运动,根据动能定理和力的平衡求解即可; (2)洛伦兹力提供向心力同时结合几何关系求解即可; 【详解】
(1)电子通过加速电场的过程中,由动能定理有:21
2
eU m v = 由于电子在两板间做匀速运动,则evB
eE =,其中2U E L
= 联立解得:12mU
B L e
=
根据左手定则可判断磁感应强度方向垂直纸面向外;
(2)洛伦兹力提供电子在磁场中做圆周运动所需要的向心力,有:
2
v evB m r
=,其中由(1)得到2eU
v m
=
设电子打在N 板上时的速度方向与N 板的夹角为θ,由几何关系有:2cos L r r
θ-
=
由几何关系有:sin x r θ= 联立解得:3
x L =. 【点睛】
本题考查了带电粒子的加速问题,主要利用动能定理进行求解;在磁场中圆周运动,主要找出向心力的提供者,根据牛顿第二定律列出方程结合几何关系求解即可.
3.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(23a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;
(2)求粒子束射入电场的纵坐标范围;
(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.
【答案】(1)0v Ba
(2)0≤y≤2a (3)78y a =,94a
【解析】 【详解】
(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得
Bqv 0=m 2
v r
故粒子的比荷
v q m Ba
= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.
由几何关系知
O ′A =r ·
AB
BC
=2a 则
OO ′=OA -O ′A =a
即粒子离开磁场进入电场时,离O 点上方最远距离为
OD =y m =2a
所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有
3a =v 0·t 0
2019
222
qE y t a a m =
=>, 所以,粒子应射出电场后打到荧光屏上
粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有
x =v 0·t
竖直方向有
2
12qE y t m
=
代入数据得
x
=2ay
设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则
002tan y x qE x v m v y v v a
θ⋅
===
有
H =(3a -x )·tan θ=(32)2a y y -
当322a y y -=时,即y =9
8
a 时,H 有最大值 由于
9
8
a <2a ,所以H 的最大值H max =94a ,粒子射入磁场的位置为
y =
98
a -2a =-78a
4.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:
(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】
(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=
1
2
a 1t 12 解得A 在2s 内的位移为x=2m ;
(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;
绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;
由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s
电场力的功率P=Fv ,解得P=60W
5.如图所示,半径r =0.06m 的半圆形无场区的圆心在坐标原点O 处,半径R =0.1m ,磁感应强度大小B =0.075T 的圆形有界磁场区的圆心坐标为(0,0.08m ),平行金属板MN 的极板长L =0.3m 、间距d =0.1m ,极板间所加电压U =6.4x102V ,其中N 极板收集到的粒子全部中和吸收.一位于O 处的粒子源向第一、二象限均匀地发射速度为v 的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x 轴正方向,已知粒子在磁场中的运动半径R 0=0.08m
,若粒子重力不计、比荷q
m
=108C/kg 、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6. (1)求粒子的发射速度v 的大小;
(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,求它打出磁场时的坐标: (3)N 板收集到的粒子占所有发射粒子的比例η.
【答案】(1)6×105m/s ;(2)(0,0.18m );(3)29% 【解析】 【详解】
(1)由洛伦兹力充当向心力,即qvB =m 2
v R
可得:v =6×105m/s ;
(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,作出速度方向的垂线与y 轴交于一点Q ,根据几何关系可得PQ=
0.06
37cos o
=0.08m ,即Q 为轨迹圆心的位置; Q 到圆上y 轴最高点的距离为0.18m-
0.06
37sin o
=0.08m ,故粒子刚好从圆上y 轴最高点离开; 故它打出磁场时的坐标为(0,0.18m );
(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y,由带电粒子在电场中偏转的规律得:
y=1
2
at2…①
a=qE
m
=
qU
md
…②
t=L
v …③
由①②③解得:y=0.08m
设此粒子射入时与x轴的夹角为α,则由几何知识得:y=r sinα+R0-R0cosα
可知tanα=4
3
,即α=53°
比例η=53
180
o
×100%=29%
6.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t0;:当在两板间加最大值为U0、周期为2t0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L,电子的质量为m、电荷量为e,其重力不计.
(1)求电子离开偏转电场时的位置到OO’的最远位置和最近位置之间的距离
(2)要使所有电子都能垂直打在荧光屏上,
①求匀强磁场的磁感应强度B
②求垂直打在荧光屏上的电子束的宽度△y 【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2
010U e y y t dm
∆=∆= 【解析】 【详解】
(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:
2222
000max 00000311222y U e U e U e y at v t t t t dm dm dm
=
+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:
220min 001122U e y at t dm
=
= 最远位置和最近位置之间的距离:1max min y y y ∆=-,
2
010U e y t dm
∆=
(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:
sin L R θ
=
设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1
sin y v v θ=,
式中00y U e
v t dm = 又:1
mv R Be
=
解得:00
U t B dL
=
②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.
由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2
010U e y y t dm
∆=∆=
7.在竖直平面内,一根长为L 的绝缘细线,一端固定在O 点,另一端拴着质量为m 、电荷量为+q 的小球。
小球始终处在场强大小为50、方向竖直向上的匀强电场中,现将小球拉到与O 点等高处,且细线处于拉直状态,由静止释放小球,当小球的速度沿水平方向时,细线被拉断,之后小球继续运动并经过P 点,P 点与O 点间的水平距离为L 。
重力加
速度为g ,不计空气阻力,求
(1)细线被拉断前瞬间,细线的拉力大小; (2)O 、P 两点间的电势差。
【答案】(1)F T = 1.5mg (2)158OP mgL
U q
= 【解析】 【详解】
(1)小球受到竖直向上的电场力F = qE = 1.5mg >mg
所以小球被释放后将向上绕O 点做圆周运动,到达圆周最高点时速度沿水平方向,设此时速度为v ,由动能定理()212
F mg L mv -=
设细线被拉断前瞬间的拉力为F T ,由牛顿第二定律2
T v F mg F m L
+-= 联立解得: F T = 1.5mg
(2)细线断裂后小球做类平抛运动,加速度a 竖直向上,由牛顿第二定律:F - mg = ma 设细线断裂后小球经时间t 到达P 点,则有L = vt 小球在竖直方向上的位移为 2
12
y at =
;解得
O 、P 两点沿电场方向(竖直方向)的距离为d = L + y O 、P 两点间的电势差 U OP = Ed 联立解得 158OP mgL
U q
=
8.如图所示,充电后的平行板电容器水平放置,电容为C ,极板间距离为d ,上极板正中有一小孔。
质量为m 、电荷量为+q 的小球从小孔正上方高h 处由静止开始下落,穿过小孔到达下极板处速度恰为零。
空气阻力忽略不计,极板间电场可视为匀强电场,重力加速度为g 。
求:
(1)小球到达小孔处的速度大小;
(2)极板间电场强度大小和电容器所带电荷量;
(3)小球从开始下落运动到下极板,其所受重力的冲量大小。
【答案】(12gh (2)()Cmg h d q + (3)2h d
h
mg h
g
+【解析】 【详解】
(1) 根据机械能守恒,有201
2
mgh mv =
解得02v gh =
(2)对小球运动的全过程,根据动能定理()0mg h d qEd +-= 解得(
)mg h d E qd
+=
电容器所带电荷量Q CU =,U =Ed 解得()
Cmg h d Q q
+=
(3)小球全程运动的平均速度为02
v ,则小球全程运动的时间为t ,
02
h d
t v +=
解得2h d h t h g
+=
小球所受重力的冲量大小为2h d h I mgt mg
h
g
+==
9.如图所示,AB 是一段长为s 的光滑绝缘水平轨道,BC 是一段竖直墙面。
一带电量为q(q>0)的小球静止在A 点。
某时刻在整个空间加上水平向右、场强E=
的匀强电场,当
小球运动至B 点时,电场立即反向(大小不变),经一段时间后,小球第一次运动至C 点。
重力加速度为g 。
求:
(1)小球由A 运动至B 的时间t ; (2)竖直墙面BC 的高度h ;
(3)小球从B 点抛出后,经多长时间动能最小?最小动能是多少? 【答案】(1)(2)
(3)
【解析】 【分析】
根据“小球在匀强电场中运动至B 点,经一段时间后小球第一次运动至C 点”可知,本题考查带电小球在匀强电场中的曲线运动问题,根据匀变速曲线运动的运动规律,运用动能定理和分运动的运动学公式列式计算.
【详解】
(1)小球由A至B,由牛顿第二定律得:
位移为
联立解得运动时间:
(2)设小球运动至B时速度为v B,则
小球由B运动至C的过程中,在水平方向做加速度为-a的匀变速运动,位移为0,
则:
在竖直方向上做自由落体运动,则
联立解得:
(3)从B点抛出后经时间t,水平方向、竖直方向速度分别为
经时间t合速度v满足
代入得:
由此,当时,最小,最小值,
故小球从B点抛出后,达动能最小需经时间
动能最小值
【点睛】
涉及电场力和重力作用下的匀变速曲线运动,针对运动规律选择牛顿第二定律和运动学公式;针对初末状态选用动能定理截决问题比较容易.
10.如图所示,粗糙的斜槽轨道与半径R=0.5m的光滑半圆形轨道BC连接,B为半圆轨道的最底点,C为最高点.一个质量m=0.5kg的带电体,从高为H=3m的A处由静止开始滑下,当滑到B处时速度v B=4m/s,此时在整个空间加上一个与纸面平行的匀强电场,带电体所受电场力在竖直向上的分力大小与重力相等.带电体沿着圆形轨道运动,脱离C处后运动的加速度是32,经过一段时间后运动到斜槽轨道某处时速度的大小是
v=2m/s .已知重力加速度g=10m/s2,带电体运动过程中电量不变,经过B点时能量损失不计,忽略空气的阻力.求:
(1)带电体从B 到C 的过程中电场力所做的功W (2)带电体运动到C 时对轨道的压力F (3)带电体与斜槽轨道之间的动摩擦因数μ 【答案】(1)5J (2)16N 113
【解析】 【分析】 【详解】
(1)设带电体受到电场力的水平分量为F x ,竖直分量为F y ,带电体由B 到C 的运动过程中,水平分力做功为零,竖直分力做功等于重力做功. 即:W =F y •2R =mg •2R =5J
(2)带电体从B 到C 运动的过程中,重力和电场力的竖直分力相等,电场力的水平分力不做功,所以v C =v B =4m/s
在C 点,由牛顿第二定律得:2
y v F mg F m R
+-=
又mg =F y
联立解得:F =16N
(3)带电体脱离轨道后在水平方向上做匀减速直线运动,由速度位移公式得:
222C v v ax -=
代入数据得:3x π=
设斜面与水平面的夹角为α,则23
tan 3
R x α==
解得:α=30°
带电体从A 到B 的运动过程中,由动能定理的:mgH ﹣μmgcos αsin H α=2
12
B mv 代入数据解得:113
μ=
11.如图所示,在x 轴上方有垂直xOy 平面向里的匀强磁场,磁感应强度为B 1=B 0,在x 轴下方有交替分布的匀强电场和匀强磁场,匀强电场平行于y 轴,匀强磁场B 2=2B 0垂直于xOy 平面,图象如图所示.一质量为m ,电量为-q 的粒子在02
3
t t =
时刻沿着与y 轴正方向
成60°角方向从A 点射入磁场,20t t =时第一次到达x 轴,并且速度垂直于x 轴经过C 点,C 与原点O 的距离为3L .第二次到达x 轴时经过x 轴上的D 点,D 与原点O 的距离为4L .(不计粒子重力,电场和磁场互不影响,结果用B 0、m 、q 、L 表示)
(1)求此粒子从A 点射出时的速度υ0; (2)求电场强度E 0的大小和方向;
(3)粒子在09t t =时到达M 点,求M 点坐标.
【答案】(1)002qB L v m = (2)202πqB L
E m
= (3)(9L ,3π2-L ) 【解析】
试题分析:(1)设粒子在磁场中做圆周运动的半径为R 1,由牛顿第二定律得
①
根据题意由几何关系可得
②
联立①②得
③
(2)粒子在第一象限磁场中运动的周期设为T 1,可得
④
粒子在第四象限磁场中运动的周期设为T 2,可得
⑤
根据题意由几何关系可得⑥ 由④⑤⑥可得
⑦
⑧
综上可以判断3t 0—4 t 0粒子在第四象限的磁场中刚好运动半个周期,半径为
⑨
由牛顿第二定律得
⑩
2 t0—
3 t0,粒子做匀减速直线运动,
qE=ma 11
12
综上解得
13
(3)由题意知,粒子在8 t0时刚在第四象限做完半个圆周运动,
x=9L 14
粒子在电场中减速运动的时间为t0,由运动学公式可得
15
联立③ ⑨⑩1112可解得
16
联立可得M点的坐标为
(9L,) 17
考点:带电粒子在电场及在磁场中的运动.
12.如图(甲)所示,两带等量异号电荷的平行金属板平行于x轴放置,板长为L,两板间距离为2y0,金属板的右侧宽为L的区域内存在如图(乙)所示周期性变化的磁场,磁场的左右边界与x轴垂直.现有一质量为m,带电荷量为+q的带电粒子,从y轴上的A点以速度v0沿x轴正方向射入两板之间,飞出电场后从点(L,0)进入磁场区域,进入时速度方向与x轴夹角为30°,把粒子进入磁场的时刻做为零时刻,以垂直于纸面向里作为磁场正方向,粒子最后从x轴上(2L,0)点与x轴正方向成30°夹角飞出磁场,不计粒子重力.试求:
(1)求粒子在两板间运动时电场力对它所做的功;
(2)计算两板间的电势差并确定A点的位置;
(3)写出磁场区域磁感应强度B 0的大小、磁场变化周期T 应满足的表达式.
【答案】(1)2
016W mv =(2
)2003mv U qL =
,y L =
(3) 003B qL =
, 0
12343L
T n nv =
=⋯⋯(,,,) 【解析】
试题分析:(1)设粒子刚进入磁场时的速度为v
,则:00cos30v v =
=︒ 电场力对粒子所做的功为:222
00111226
W mv mv mv =
-= (2)设粒子刚进入磁场时的竖直分速度为v′,则:
v′=v 0tan30°
=03
v 水平方向:L=v 0t
竖直方向:y =12
v′t
解得:y L =
电场力对粒子所做的功:W=qEy 两板间的电压U=2Ey 0
解得:2
00
3mv U qL
=
(3)由对称性可知,粒子从x=2L 点飞出磁场的速度大小不变,方向与x 轴夹角为α=±30°;
在磁场变化的半个周期内,粒子的偏转角为2α=60°;
故磁场变化的半个周期内,粒子在x 轴上的位移为:x=2Rsin30°=R 粒子到达x=2L 处且速度满足上述要求是: nR=L L
R n
=
(n=1,2,3,…) 由牛顿第二定律,有:2
0v qvB m R
=
解得:0
03B qL
=
(n=1,2,3,…) 粒子在变化磁场的半个周期内恰好转过
1
6
周期,同时在磁场中运动的时间是变化磁场半个周期的整数倍,可使粒子到达x=2L 处且满足速度题设要求;0162T kT k =;02R
T v
π=
解得:0
33L
T v π=
(n=1,2,3,…) 当
026T T >,0
33L T v π 考点:带电粒子在磁场中的运动.。