高三热学计算

合集下载

2020 年高考物理热学计算专题及答案

2020 年高考物理热学计算专题及答案

2020 年高考物理热学计算专题及答案专题简介:1.物体吸收或放出热量的公式①计算物体吸收热量的公式为:Q 吸=cm (t -t 0)=cm ⊿t 。

②计算物体放出热量的公式为:Q 放=cm (t 0-t )=cm ⊿t 。

其中,Q 吸表示吸收热量,单位是J ;c 表示物体比热容,单位是J/(kg·℃);m 表示质量,单位是kg ;t 0表示物体初始温度,单位是℃;t 表示物体后来的温度,单位是℃。

⊿t =t -t 0表示物体升高了的温度。

⊿t =t 0-t ,表示物理降低了的温度。

2.燃料完全燃烧放出热量的公式①燃料完全燃烧释放出的热量公式为:Q 放=mq 。

②气体燃料完全燃烧释放出的热量公式也可为:Q 放=qV 。

推导过程如下: 说明:①中的公式对固体、液体、气体、均适用。

②只对气体适用。

两个公式的得出都是根据热值的定义式得到的。

其中,Q 放表示燃料完全燃烧放出的热量,单位是J ;q 表示燃料的热值,单位是J/kg ;m 表示质量,单位是kg 。

V 表示体积,单位是m3。

3.热效率公式(1)热机的效率:用来做有用功的那部分能量和燃料完全燃烧放出的能量之比。

热机的效率是热机性能的一个重要指标。

汽车发动机的效率、飞机发动机的效率、轮船发动机的效率均属于热机的效率,其公式为:η=放吸Q Q 。

(2)炉具的热效率:天然气燃烧放出的热量是炉具提供的总热量,Q 总=Q 放,水吸收的热量是有用的热量Q 有=Q 吸,则η=总有Q Q 。

(3)电热水器的效率:电热丝所产生热量为Q 总,总=Q 放,水需要吸收热量为Q 有,有=Q 吸,则η=总有Q Q 。

专题例题:【例题1】(2018•济宁)将盛有凉牛奶的瓶子放在热水中(如图所示),通过 方式改变牛奶的内能,图中乙是250g 牛奶与热水的温度随时间变化的图象,则牛奶在加热过程中吸收的热量为 J .[c 牛奶=4.2×103J/(kg•℃)]【答案】热传递;2.1×104。

热学计算题(含答案)

热学计算题(含答案)

类型三:利用热量公式计算在冬天为使房间里保持一定的温度,每小时要供给4.2×106焦的热量,若进入散热器中水的温度是80℃,从散热器流出的水的温度是72℃,问每小时要供给散热器多少80℃的水? 【分析与解答】可利用公式Q 放=Cm(t 0-t)变形为:)(0t t C Q m -=放求出m 。

解:Q 放=Cm( t 0-t))kg ()(..)t t (C Q m 125728010241024360=-⨯⨯⨯=-=放变式1:利用热量公式计算质量为0.5千克的铝壶里装了2千克的水。

初温度为20℃,如果它吸收了265.2×103焦的热量,温度可升高到多少摄氏度?[铝比热容为0.88×103焦/(千克·℃)] 【分析与解答】解此类题目的关键是如何确定容器的初温和末温,只要用容器盛液体加热或冷却,容器的初温和末温与液体的初温和末温相同。

本题参与吸热物体分别为水和铝壶,它们初温相同,末温也相同可利用公式Q 吸=Cm(t-t 0)变形后求末温度。

解:Q=Q 铝+Q 水=C 铝m 铝(t-t 0)+C 水m 水(t-t 0) 得Ct m C m C Qt ︒=+⨯⨯+⨯⨯⨯=++=50205.01088.02102.4102.265333水水铝铝变式2:利用热量公式计算小明家新安装了一台容积为0.5m 3的太阳能热水器,加满水后,经过4h 阳光的照射,水温由原来的20℃升高到了40℃.问:在这4h 内水吸收了多少热量?若这些热量由效率为20%的火炉燃烧焦炭来提供,则需要燃烧多少千克焦炭?[水的比热容c 水=4.2×103J/(kg ·℃)、焦炭的热值g =3.0×107J/kg ]【分析与解答】太阳能热水器内水的质量 m =ρV =1.0×103kg/m 3×0.5m 3=500kg 需要吸收的热量:Q 吸=cm △t =4.2×103J /(kg ·℃)×500m 3×(40℃-20℃)=4.2×107J 焦炭放出的热量 Q 放=m 炭·q 火炉的转化效率:774.2103.010/Q JQ m J k g η⨯==⨯⨯吸放炭774.210720% 3.010/J m kg J kg⨯==⨯⨯炭则需要燃烧7kg 千克焦炭变式3:利用热量公式计算(新加)有一款太阳能热水器,铭牌上的部分参数如右表所示. 将它安装在阳光充足的水平台面上,并送满水.(1)晴天平均每平方米的面积上,每小时接收的太阳能约为2.8×106J. 若该热水器接受太阳能的有效面积为1.5m 2,每天日照时间按8h 计算,则它一天中接收的太阳能(E )约为多少?若这些太阳能有60%被热水器中的水吸收,则可使水温升高多少?[c 水=4.2×103J/(kg ·℃)](2)若该热水器一天中接收的太阳能,由燃烧煤气(热值q =4.2×107J/kg)来获得,则需要完全燃烧多少千克煤气?(3)请你:①从能源和可持续发展的角度,说出提倡开发利用太阳能的两点主要理由;②说出当前在利用太阳能方面所面临的某一主要困难(可从自然因素或技术因素等方面思考). 【分析与解答】本题从新能源、环境保护的现实问题出发,对太阳能、化石燃料(化学能燃烧获得内能)的放热Q =mq 、生活用热水加热Q=cm △t 进行了考查。

小专题一 热学综合计算

小专题一 热学综合计算

专题一 热学综合计算一、专题概述热学计算的主要内容:1.吸热与放热的计算公式: Q 吸=cm(t -t0),Q 放=cm(t0-t)。

在热传递过程中,如不计热量损失,高温物体放出的热量等于低温物体吸收的热量,即Q 吸=Q 放;如考虑热损失,则Q 吸=ηQ 放(η<1)。

2.关于热值的计算公式:Q =qm(适用于固体和液体燃料),Q =qV(适用于某些气体燃料)。

3.关于热机效率的计算公式:η=W 有用Q 总。

类似地,炉子、太阳能热水器等设备利用热量的效率可以用公式η=W 有用Q 总计算。

4.热量、效率的综合计算A 能量转移型:分清吸热物体和放热物体,找到对应的初温和末温,用较高的温度减去较低的温度,算出变化的温度值,并选择吸热或放热的公式计算。

B.能量转化型:(1)化学能转化为内能:不考虑能量损失,有Q 放=Q 吸,Q 放=mq,Q 吸=cm Δt,即mq=cm Δt;如果考虑能量损失,则有Q cm t Q mq ∆η==吸放。

(2)太阳能、电能转化为内能:若不考虑能量损失,物质增加的内能等于吸收的太阳能或消耗的电能,即Q 吸=W 太阳、Q 吸=W 电;若考虑能量损失,有Q 吸=ηW 太阳、Q 吸=ηW 电。

(3)机械能转化为内能:若不考虑能量损失,有Q 吸= W 机械;若考虑能量损失,则有Q 吸=ηW 机械。

二、强化训练类型一 吸热、放热与热值的综合计算1.(2014,常州)阿根廷科学家设计了一款“牛屁屁收集器”,在牛背上装有一个塑料袋,通过导管收集牛体内排出的气体。

从一头成年牛平均每天排放出的气体中可提取0.21 kg 甲烷。

若这些甲烷完全燃烧放出的热量全部被水吸收,可使多少质量的水从20 ℃升高到70 ℃?[q 甲烷=5.6×107 J/kg ,c 水=4.2×103 J/(kg ·℃)]。

2.(2014,临沂)人类正积极开发和利用太阳能,如太阳能热水器、太阳能电池等。

新课标高考全国理综卷物理试题分类--热学计算(含答案)

新课标高考全国理综卷物理试题分类--热学计算(含答案)
解:设玻璃管开口向上时,空气柱压强为:P1=P0+ρgl3① (式中ρ和 g 分别表示水银的密度和重力加速度.) 玻璃管开口向下时,原来上部的水银有一部分会流出,封闭端会有部分真空. 设此时开口端剩下的水银柱长度为 x,则 P2=ρgl1,P2+ρgx=P0 ② (P2 管内空气柱的压强.) 由玻意耳定律得 P1(sl2)=P2(sh) ③ (式中,h 是此时空气柱的长度,S 为玻璃管的横截面积.) 由①②③式和题给条件得 h=12cm ④ 从开始转动一周后,设空气柱的压强为 P3,则 P3=P0+ρgx⑤ 由玻意耳定律得 P1(sl2)=P3(sh′)⑥ (式中,h′是此时空气柱的长度.) 由①②③⑤⑥h′≈9.2cm
活塞与大圆筒底部相距 ,两活塞间封闭气体的温度为 T1=495K,现汽缸内气体温度缓慢下降,活塞缓慢下 移,忽略两活塞与汽缸壁之间的摩擦,重力加速度大小 g 取 10m/s2,求: (1)在大活塞与大圆筒底部接触前的瞬间,缸内封闭气体的温度 (2)缸内封闭的气体与缸外大气达到热平衡时,缸内封闭气体的压强。
…③
解得 h′=
…④
气体最后的体积为 V=h′S…⑤
联立②④⑤可得 V=

2014 新课标 2
如图,两气缸 AB 粗细均匀,等高且内壁光滑,其下部由体积可忽略的细管连通;A 的直径为 B 的 2 倍,A 上端封闭,B 上端与大气连通;两气缸除 A 顶部导热外,其余部分均绝热。两气缸中各有一厚度可忽略的绝 热轻活塞 a、b,活塞下方充有氮气,活塞 a 上方充有氧气;当大气压为 P0,外界和气缸内气体温度均为 7℃
设大气与活塞对气体的总压强为 p,活塞横截面积为 S, 气体末状态的压强 p′=p+ ,体积 V′=(h﹣ h)S= Sh,

物理高中热学公式

物理高中热学公式

物理高中热学公式1. 热力学第一定律:ΔU = Q + W,其中ΔU为内能变化,Q为系统与外界交换的热量,W为系统所做的功。

2. 热力学第二定律:ΔS = Q/T,其中ΔS为系统熵的变化,Q为热量,T为温度。

3. 热容:C = Q/ΔT,其中C为热容,Q为系统吸收或释放的热量,ΔT为温度变化量。

4. 比热容:c = C/m,其中m为物体的质量。

5. 热传导定律:Q = kAΔT/x,其中Q为热量,k为热导率,A为面积,ΔT为温度差,x为导热距离。

6. 热辐射定律:P = σA(T^4 – T0^4),其中P为单位时间内辐射的能量,σ为斯蒂芬—玻尔兹曼常数,A为发射体参考面积,T为发射体温度,T0为参考温度。

7. 热力学循环效率:η = (W净 / Q热) × 100%,其中W净为系统净工作量,Q热为系统吸收的热量。

8. 热力学效率公式:η = (T1 – T2) / T1,其中T1为热源温度,T2为冷源温度。

9. 热平衡方程:m1c1ΔT1 = m2c2ΔT2,其中m为物体的质量,c为比热容,ΔT为温差。

10. 热力学势公式:G = H – TS,其中G为吉布斯自由能,H为焓,T为温度,S为熵。

11. 熵变公式:ΔS = Qrev / T,其中ΔS为系统的熵变,Qrev为可逆过程吸放热量,T为温度。

12. 等温过程:Q = W,即等温过程中外界对系统所做的功等于系统吸收的热量。

13. 等体过程:W = 0,即等体过程中系统不做功,热量全部转化为内能。

14. 等压过程:W = PΔV,即等压过程中外界对系统所做的功等于压力乘以体积的变化量。

15. 等焓过程:Q = ΔH,即等焓过程中外界与系统的热交换量等于系统焓的变化量。

高考选修3-3-热学计算题训练

高考选修3-3-热学计算题训练

高考选修3-3-热学计算题训练1、(10分) 如图所示,一端开口、内壁光滑的玻璃管竖直放置,管中用一段长H o=38cm 的水银柱封闭一段长L1=20cm的空气,此时水银柱上端到管口的距离t=27℃,取0℃为L2=4cm,大气压强恒为P o=76cmHg,开始时封闭气体温度为为273K。

求:(ⅰ) 缓慢升高封闭气体温度至水银开始从管口溢出,此时封闭气体的温度;87 (ⅱ) 保持封闭气体温度不变,在竖直平面内缓慢转动玻璃管至水银开始从管口溢出,玻璃管转过的角度。

602、(10分)如图所示,在长为L=57cm的一端封闭、另一端开口向上的竖直玻璃管内,用4cm高的水银柱封闭着51cm长的理想气体,管内外气体的温度均为33℃,大气压强p0=76cmHg.①若缓慢对玻璃管加热,当水银柱上表面与管口刚好相平时,求管中气体的温度;②若保持管内温度始终为33℃,现将水银缓慢注入管中,直到水银柱上表面与管口相平,求此时管中气体的压强。

3、 (10分)如图所示,两端等高、粗细均匀、导热良好的U 形管竖直放置,右端与大气相通,左端用水银柱封闭着长L 1=40cm 的气柱(可视为理想气体),左管的水银面比右管的水银面高出Δh =12.5cm 。

现从右端管口缓慢注入水银,稳定后右管水银面与管口等高。

若环境温度不变,取大气压强P 0=75C mHg 。

求稳定后加入管中水银柱的长度。

67.5 cm4、(9分)如图所示,粗细均匀、导热良好的U形管竖直放置,右端与大气相通,左端用水银柱封闭着L 1=40cm 的气柱(可视为理想气体),左管的水银面比右管的水银面高出△h 1= 15cm 。

现将U 形管右端与一低压舱(图中未画出)接通,稳定后右管水银面高出左管水银面△h2=5cm。

若环境温度不变,取大气压强P0=75cmHg。

求稳定后低压舱内的压强(用“cmHg”作单位)。

43 cmHg5、(9分)如图所示,粗细均匀内壁光滑的细玻璃管长L=90cm,用长为h=15cm的水银柱封闭一段气柱(可视为理想气体),开始时玻璃管水平放置,气柱长l=30cm,取大气压强P0=75cmHg。

高考物理热学计算方法

高考物理热学计算方法

高考物理热学计算方法高考物理的热血部分内容常常让学生们觉得头疼,因为这是最复杂的题目之一,该怎么应对呢?小编整理了物理学习相关内容,希望能帮助到您。

高中常用物理公式之热学常考的6个热学知识点一、分子运动论1.物质是由大量分子组成的2.分子永不停息地做无规则热运动(1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。

(2)布朗运动布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。

布朗运动不是分子本身的运动,但它间接地反映了液体(气体)分子的无规则运动。

(3)实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。

因为图中的每一段折线,是每隔30s时间观察到的微粒位置的连线,就是在这短短的30s内,小颗粒的运动也是极不规则的。

(4)布朗运动产生的原因大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。

简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。

(5)影响布朗运动激烈程度的因素固体微粒越小,温度越高,固体微粒周围的液体分子运动越不规则,对微粒碰撞的不平衡性越强,布朗运动越激烈。

(6)能在液体(或气体)中做布朗运动的微粒都是很小的,一般数量级在10-6m,这种微粒肉眼是看不到的,必须借助于显微镜。

3.分子间存在着相互作用力(1)分子间的引力和斥力同时存在,实际表现出来的分子力是分子引力和斥力的合力。

分子间的引力和斥力只与分子间距离(相对位置)有关,与分子的运动状态无关。

(2)分子间的引力和斥力都随分子间的距离r的增大而减小,随分子间的距离r的减小而增大,但斥力的变化比引力的变化快。

(3)分子力F和距离r的关系如下图4.物体的内能(1)做热运动的分子具有的动能叫分子动能。

温度是物体分子热运动的平均动能的标志。

(2)由分子间相对位置决定的势能叫分子势能。

分子力做正功时分子势能减小;分子力作负功时分子势能增大。

当r=r0即分子处于平衡位置时分子势能最小。

3-3热学课件(计算题)

3-3热学课件(计算题)

(ⅱ)设缸内气体温度升到 T2 时,活塞恰好会静止在汽缸口。 该过程是等压变化过程,由盖—吕萨克定律得:
VT11=VT22, 其中 T1=(273+27)K=300K, V2=2V1 解得 T2=600K, 气体体积增大,对外做功,同时温度升高内能增大,根据热力学第一定 律透热的汽缸一定从外界吸收热量。
【例 3】 如图所示,劲度系数为 k=100 N/m 的轻质弹簧与完全相同的 导热活塞 A、B 不拴接,一定质量的理想气体被活塞 A、B 分成两部分封闭在 可导热的汽缸内。活塞 A、B 之间的距离与 B 到汽缸底部的距离均为 l=1.2 m, 初始时刻,气体Ⅰ与外界大气压强相同,温度为 T1=300 K,将环境温度缓慢 升高至 T2=440 K,系统再次达到稳定,A 已经与弹簧分离,已知活塞 A、B 的质量均为 m=1.0 kg。横截面积为 S=10 cm2;外界大气压强恒为 p0=1.0×105 Pa。不计活塞与汽缸之间的摩擦且密封良好,g 取 10 m/s2,求活塞 A 相对初 始时刻上升的高度。
联立③④⑤⑥式解得 T2=1+Hh 1+pm0SgT0, 从开始加热到活塞到达 b 处的过程中,汽缸中的气体对外做的功为 W= (p0S+mg)h。
(2)始末状态直接列式:
初:压强 p0 体积 V0 温度 T0 末:压强 P1 体积 V1 温度 T1 期中压强 P1 由末态的活塞受力平衡有:p1S=p0S+mg 体积 V1=S(H+h)
解析(1)分过程列式: 开始时活塞位于 a 处,加热后,汽缸中的气体先 经历等容过程,直至活塞开始运动。设此时汽缸中气体的温度为 T1,压强为 p1,根据查理定律有
Tp00=Tp11,① 根据力的平衡条件有 p1S=p0S+mg,② 联立①②式可得 T1=1+pm0gST0,③ 此后,汽缸中的气体经历等压过程,直至活塞刚好到达 b 处,设此时汽 缸中气体的温度为 T2;活塞位于 a 处和 b 处时气体的体积分别为 V1 和 V2。根 据盖—吕萨克定律有VT11=VT22,④ 式中 V1=SH,⑤ V2=S(H+h),⑥

五 热学计算专题—2021届高三物理一轮复习讲义

五 热学计算专题—2021届高三物理一轮复习讲义

目录专题一 变质量问题 (2)专题二 关联气体 (6)专题三 液柱问题 (9)专题四 加速度类 (14)专题五 气缸类 (16)专题六 图像类 (22)常见名词(1)绝热:与外界不进行热交换,并不是温度不变:Q W U +=∆;(2)容器壁导热:与外界温度相同;关联气体隔板导热:关联气体温度相等。

(3)缓慢加热:活塞可以移动的话,压强不变;活塞被卡在就是等容变化;经常先等压再等容,有时候会用到假设法。

(4)V P W ∆⋅=,注意压强是外界对气体的压强,一般是等于气体压强的;气体向真空膨胀不做功。

(5)求气体压强,一般是对与气体接触的物体进行受力分析。

理想气体只看分子动能,即温度;气枪打气是看压强而不是分子斥力;完全失重也会产生压强,液体不会;根据压强公式变形,压强还等于单位时间单位面积气体冲量有关。

专题一 变质量问题 ①TPV 与气体的量(质量)成正比,打气过程直接当成质量相加; ②对应变质量问题还可以利用密度公式T P 去求解。

③口袋法:气体等温或者等压膨胀,把溢出去的气体假想成用一个口袋收集起来,找到体积之比即为质量之比。

1. 某容积为20L 的氧气瓶装有30atm 的氧气,现把氧气分装到容积为5L 的小钢瓶中,使每个小钢瓶中氧气的压强为5atm 。

若每个小钢瓶中原有氧气压强为1atm ,问能分装多少瓶?(设分装过程中无漏气,且温度不变)N=252. 如图一底面积为S 、内壁光滑的圆柱形容器竖直放置在水平地面上,开口向上,内有两个质量均为m 的相同活塞A 和B ;在A 与B 之间、B 与容器底面之间分别封有一定量的同样的理想气体,平衡时体积均为V .已知容器内气体温度始终不变,重力加速度大小为g ,外界大气压强为p 0.现假设活塞B 发生缓慢漏气,致使B 最终与容器底面接触.求活塞A 移动的距离.mgV P 0S +mgS3. 如图所示,密闭容器有进气口和出气口可以和外部连通,容器的容积为V 0,将进气口和出气口关闭,此时内部封闭的气体的压强为p 0,将气体缓慢加热,使气体的温度由T 0=300 K 升至T 1=350 K.(1)求此时气体的压强.(2)保持T 1=350 K 不变,缓慢由出气口抽出部分气体,使气体的压强再回到p 0.求容器内剩余气体的质量与原来质量的比值.(1)76p 0 (2)674. 如图是一种桶装水装置。

高考总复习-热化学方程式和反应热的计算精品

高考总复习-热化学方程式和反应热的计算精品

高考总复习 热化学方程式和反应热的计算【考试目标】1.了解热化学方程式的含义,能正确书写热化学方程式。

2.理解盖斯定律,并能运用盖斯定律进行有关反应焓变的简洁计算。

【考点梳理】要点一、热化学方程式1.定义:表示参与反应物质的量与反应热关系的化学方程式,叫做热化学方程式。

要点诠释:热化学方程式既体现化学反应的物质改变,同时又体现反应的能量改变,还体现了参与反应的反应物的物质的量与反应热关系。

如: H 2(g)+1/2O 2(g)2O(g);ΔH 1241.8 2H 2(g)+ O 2(g)=2H 2O(g);ΔH 2483.6 H 2(g)+1/2O 2(g)2O(l);ΔH 3285.8 2H 2(g)+ O 2(g)=2H 2O(l);ΔH 4571.6 2.书写热化学方程式的留意事项:(1)需注明反应的温度和压强;因反应的温度和压强不同时,其△H 不同。

不注明的指101和25℃时的数据。

(2) 要注明反应物和生成物的状态(不同状态,物质中贮存的能量不同)。

如:H 2 (g)122 (g)2O (g);Δ-241.8 / H 2 (g)122 (g)2O (1) ;Δ-285.8 / (3)热化学方程式各物质前的化学计量数不表示分子个数,表示物质的量,它可以是整数也可以是分数。

对于相同物质的反应,当化学计量数不同时,其ΔH 成比例改变。

如:H 2 (g)2 (g)2 (g) ;Δ-184.6 / 12H 2 (g)122 (g) (g);Δ-92.3 / (4)△H 的单位,表示每反应所吸放热量,△H 和相应的计量数要对应。

(5)比较△H 大小时要带着“﹢”、“﹣”进行比较。

(6)表示反应已完成的热量,可逆反应N 2(g) +3H 2(g)23 (g);△ 92.4,是指当12(g)和32(g)完全反应,生成2 3(g)时放出的热量92.4;2 3(g)分解生成12(g)和32(g)时汲取热量92.4,即逆反应的△92.4。

高中物理热力学的计算题解题技巧

高中物理热力学的计算题解题技巧

高中物理热力学的计算题解题技巧热力学是物理学中的一个重要分支,涉及到能量转化和传递的规律。

在高中物理学习中,热力学计算题是一个常见的题型,要求学生掌握一定的计算方法和技巧。

本文将为大家介绍一些解决高中物理热力学计算题的技巧,并通过具体的例题进行说明和分析。

一、热容量计算题热容量是物质吸收或释放热量时所需的能量,通常用C表示。

在计算题中,常常需要根据给定条件计算物体的热容量。

计算热容量的关键是利用物体的质量、比热容和温度变化来进行计算。

例如,有一块质量为200g的铁块,其比热容为0.45J/g℃,将其加热至100℃,求所需的能量。

解题思路:首先,根据物体的质量和比热容,可以求得物体的热容量。

公式为 C = m ×c,其中C表示热容量,m表示质量,c表示比热容。

代入数据可得C = 200g × 0.45J/g℃= 90J/℃。

其次,根据温度变化,可以求得所需的能量。

公式为Q = C × ΔT,其中Q表示能量,ΔT表示温度变化。

代入数据可得Q = 90J/℃ × (100℃ - 0℃) = 9000J。

通过这个例题,我们可以看出解决热容量计算题的关键是使用正确的公式,并将已知条件代入计算。

二、热传导计算题热传导是物质内部或不同物体之间热量的传递过程。

在计算题中,常常需要根据给定条件计算热传导的速率或时间。

计算热传导的关键是利用热传导方程和已知条件进行计算。

例如,有一块铝板,其厚度为2cm,面积为100cm²,温度差为50℃,铝的导热系数为0.5W/(m·℃),求热传导的速率。

解题思路:首先,根据热传导方程,可以求得热传导的速率。

公式为Q = k × A × ΔT / d,其中Q表示热传导速率,k表示导热系数,A表示面积,ΔT表示温度差,d表示厚度。

将已知条件代入计算可得Q = 0.5W/(m·℃) × 100cm² × 50℃ / 2cm = 1250W。

(完整word版)高考选修3-3热学训练计算题

(完整word版)高考选修3-3热学训练计算题

热学训练一解答热学计算题的基础知识1、热学计算题考查对象:一定质量的理想气体。

气体的研究对象一般为“一定质量”的“理想气体”。

理想气体具备以下特点:(1)气体分子本身无大小,可以认为是质点;(2)分子间的碰撞看成弹性碰撞,分子间除碰撞外不计分子间的相互作用力;(3)没有分子势能,只有分子动能,气体的热力学能(内能)是分子动能,只与温度有关;(4)满足三个实验定律和理想气体状态方程.2、近几年高考的热学计算题围绕理想气体的状态即体积、温度和压强的变化关系来考查,同时考查理想气体的内能变化与做功和热传递的关系。

3、描述理想气体状态的物理量:(1)体积V :气体没有固定的体积,气体的体积由容器决定,容器的体积就是气体的体积(注意:气体可以充满整个容器,只要容器连通,气体都能扩散到每个空间,所以气体体积是连通的容器的总体积)。

若气体体积不变,那么气体分子密度不变、外界对气体做功为零(或不做功);气体膨胀,体积增大,分子密度变小,对外做功;气体收缩,体积较小,分子密度增大,外界对气体做功。

(2)气体的温度:指气体的热力学温度,是气体平均动能的标志,同时也是内能的唯一决定因素(因为气体没有分子势能),温度越高,分子运动越激烈;(3)气体的压强:容器内气体压强处处相等,都是由于大量气体分子频繁撞击气壁产生的,与气体重力无关;两个容器只要有通道,气体分子可以自由流过,两个容器的压强一定相等;只要气体与大气相通,压强一定为大气压,气体和液体接触表面,压强相等。

液体的压强gh P ρ=,ρ表密度,g 表重力加速度,h 表液体的高度;对于水银来说,0P =76cmHG 代入上式刚好等于一个标准大气压;液体内部同一高度的地方,压强都相等;液体与气体相接触的地方压强也相等。

液体上部与大气相通,深为h 的地方压强gh P P ρ+=0。

固体的压强SF P =,F 表压力,S 表面积。

4、四个过程 指气体状态变化的四个过程:等温过程、等容过程、等压过程、绝热过程。

2020 年高考物理热学计算专题及答案

2020 年高考物理热学计算专题及答案

2020 年高考物理热学计算专题及答案专题简介:1.物体吸收或放出热量的公式①计算物体吸收热量的公式为:Q 吸=cm (t -t 0)=cm ⊿t 。

②计算物体放出热量的公式为:Q 放=cm (t 0-t )=cm ⊿t 。

其中,Q 吸表示吸收热量,单位是J ;c 表示物体比热容,单位是J/(kg·℃);m 表示质量,单位是kg ;t 0表示物体初始温度,单位是℃;t 表示物体后来的温度,单位是℃。

⊿t =t -t 0表示物体升高了的温度。

⊿t =t 0-t ,表示物理降低了的温度。

2.燃料完全燃烧放出热量的公式①燃料完全燃烧释放出的热量公式为:Q 放=mq 。

②气体燃料完全燃烧释放出的热量公式也可为:Q 放=qV 。

推导过程如下: 说明:①中的公式对固体、液体、气体、均适用。

②只对气体适用。

两个公式的得出都是根据热值的定义式得到的。

其中,Q 放表示燃料完全燃烧放出的热量,单位是J ;q 表示燃料的热值,单位是J/kg ;m 表示质量,单位是kg 。

V 表示体积,单位是m3。

3.热效率公式(1)热机的效率:用来做有用功的那部分能量和燃料完全燃烧放出的能量之比。

热机的效率是热机性能的一个重要指标。

汽车发动机的效率、飞机发动机的效率、轮船发动机的效率均属于热机的效率,其公式为:η=放吸Q Q 。

(2)炉具的热效率:天然气燃烧放出的热量是炉具提供的总热量,Q 总=Q 放,水吸收的热量是有用的热量Q 有=Q 吸,则η=总有Q Q 。

(3)电热水器的效率:电热丝所产生热量为Q 总,总=Q 放,水需要吸收热量为Q 有,有=Q 吸,则η=总有Q Q 。

专题例题:【例题1】(2018•济宁)将盛有凉牛奶的瓶子放在热水中(如图所示),通过 方式改变牛奶的内能,图中乙是250g 牛奶与热水的温度随时间变化的图象,则牛奶在加热过程中吸收的热量为 J .[c 牛奶=4.2×103J/(kg•℃)]【答案】热传递;2.1×104。

热学计算

热学计算

有关热量热值的计算题热学中的相关计算公式:(1)燃料燃烧放出热量的多少计算公式:Q=mq(适用于计算固体,液体燃料的燃烧)变形公式Q=qv(适用于计算气体燃料,如煤气、天然气等其中v代表气体的体积,单位是m3)(2)比热容的吸热、放热及通用公式:①Q吸=cm(t末温-t初温)=cm△t升(Q吸是吸收热量,单位是焦耳;c 是物体比热, m是质量;t初温是初始温度;t末温是后来的温度)② Q放=cm(t初温-t末温)=cm△t降通式为:Q= cm△t(3)热效率:燃料在燃烧时放出的热量,只有一部分被有效利用,被加热的物体吸收的热量与燃料燃烧时放出的热量之比。

公式为:h=Q有用Q放´100%(4)热机效率公式为:h=wQ´100%(其中W代表燃气所做的功,Q表示燃料完全燃烧所放出热量)注意:物理学中所有的计算注意单位的统一,不同的单位不能直接利用公式进行计算。

1.一个电热水壶内装有2 kg 的冷水,经过加热后水温从18℃升高到98℃,电热水壶内的水吸收的热量是多少?2.烧杯内80℃的热水放出2.1×104J的热量后,水温降低到55℃,则烧杯内水的质量是多少?3.由实验测量.质量是100g、初温是24℃的实心金属球吸收2.3×103J的热量后,温度升高到74℃,则该小球的比热容是多少?查图表可知这种金属可能是?几种物质的比热[单位:J/(kg·℃)]铝0.88×103钢铁0.46×103水银0.14×103铜0.39×103砂石0.92×103砂石0.92×1034.天然气是一种清洁能源,2m3的天然气完全燃烧能放出多少热量?(天然气的热值取7.1×107J/m3)5.木炭的热值是3.4x107J/kg ,完全然烧500g木炭,能放出多少的热量?6.酒精的热值是3×107J/kg,若要获得9×107J的热量,至少需要燃烧多少千克的酒精?7.吃早饭的时候,妈妈用热水给小雪加热250g的袋装牛奶.为了使这袋牛奶的温度由12℃升高到42℃,妈妈用60℃的热水给牛奶加热.(水的比热容为4.2×103J/(kg•℃),该牛奶的比热容为2.5×103J/(kg•℃)).问:(1)在加热过程中,牛奶吸收了多少热量?(2)如果热水放出的热量有40%被牛奶吸收,问妈妈至少要用多少千克热水给牛奶加热?8.酒精是实验室里常用的燃料,现用酒精灯来加热水,若酒精完全燃烧产生的热量有50%被水吸收,现在把0.5kg 、20℃的水加热到100℃,需要燃烧多少克酒精?(q=3×107J/(kg·℃),c水=4.2×103J/(kg·℃))酒精9.小星家的太阳能热水器,水箱容积是200L.小星进行了一次观察活动:某天早上,他用温度计测得自来水的温度为20℃,然后给热水器水箱送满水,中午时“温度传感器”显示水箱中的水温为45℃.请你求解下列问题:(1)水箱中水的质量;(2)水吸收的热量(3)如果水吸收的这些热量,由燃烧煤气来提供,而煤气灶的效率为40%,求至少需要燃烧多少kg的煤气(煤气的热值为q=4.2×107J/kg)10.某中学为学生供应开水,用锅炉将200kg的水从20℃加热到100℃,燃烧了4kg的无烟煤.[水的比热容是4.2×103J/(kg•℃),无烟煤的热值是3.4×107J/kg]试求:(1)锅炉内200kg的水吸收的热量是多少焦耳?(2)4kg无烟煤完全燃烧放出的热量是多少焦耳?(3)此锅炉的效率是多少?11.已知某型号的载重车在一段平直的高速公路上匀速行驶10.08km,所用时间是8min,消耗燃油3L(假设燃油完全燃烧),汽车发动机在这段时间内的功率为63kW.若燃油的密度是0.8×103kg/m3,热值为3.15×107J/kg,求:(1)汽车行驶速度是多少?(2)汽车行驶过程的牵引力是多大?(3)汽车发动机的效率是多少?12.把质量为200g的铅块加热到98℃,然后投进温度为12℃、质量为80g的水里,最后两者的温度相同,都是18℃.比较铅块放出的热量和水吸收的热量是否相同,并分析原因。

热学计算题

热学计算题

热学计算专题一、热量计算公式: 1Q = c m △t (保证 △t >0)2Q放= mq3、效率:η= Q 吸/ Q 放热量公式与函数图像综合某液体和水的质量相同、初温相同,每分钟吸收的热量均为1260J ,根据图中的图象计算:该液体的比热为多少?该液体的质量为多少?【分析与解答】该图象反映的是液体和水吸热后温度升高的过程,横坐标表示时间,纵坐标表示温度。

由图象可知,水温12分钟升高了30℃,而某种液体温度升高为50℃。

列吸热方程,用比例法求解,具体如下:(1)由图象可知,水和某液体每分钟温度的变化分别为△t 水=2.5℃/min ;△t 液=256℃/min ;水和某液体每分钟吸热为Q 水=c 水m 水△t 水;Q 液= c 液m 液△t 液; 由于Q 水= Q 液 m 水=m 液 ,所以解得(2)液体质量【解题方法归纳与提升】解图像类类型的题目上,首先应弄清图像中横坐标,纵坐标表示的是什么物理量,分析出图像中包含的物理过程,图像的物理意义,物理量间满足什么函数关系,然后才能正确解题。

部分同学由于对相关学科间的知识迁移能力较弱,不能把数学上的有关知识运用到物理解题中来,因此在解题时感到无从下手,找不到恰当的解题方法,出现错误的情况。

热学综合计算先阅读下面材料,然后回答问题:地热资源是目前全球倡导的绿色安全资源,它不受昼夜和季节变化的限制,不仅可为人们生活供热,还可以用于旅游、温泉保健、养殖热带鱼等.(1)李强同学家每天用的热水若全部按50℃的热水计算,若将50kg 的水从10℃加热到,50℃需要吸收多少热量?已知水的比热容是4.2 x103J /(kg ·℃).(2)若李强家用额定功率为1500W 的电热水器烧水,在正常工作状态下烧热(1)问中的这些水需要多长时间?(3)若用效率为50%的煤气炉烧水,烧热(1)问中的这些水需要多少m 3煤气?(煤气的热值是3.9×107J/m 3)【分析与解答】(1)Q=cm(t -t 0)=4.2×103×50×(50-10)J=8.4×106J(2)63W 8.410t =s=5.610s p 1500⨯=⨯ (或93.3min ;或1.56h) (3)Q=qV ×50%所以:637Q 8.410V ==0.43m q 50% 3.91050%⨯=⨯⨯⨯利用热量公式计算小明家新安装了一台容积为0.5m 3的太阳能热水器,加满水后,经过4h 阳光的照射,水温由原来的20℃升高到了40℃.问:在这4h 内水吸收了多少热量?若这些热量由效率为20%的火炉燃烧焦炭来提供,则需要燃烧多少千克焦炭?[水的比热容c 水=4.2×103J/(kg ·℃)、焦炭的热值g =3.0×107J/kg ]【分析与解答】太阳能热水器内水的质量 m =ρV =1.0×103kg/m 3×0.5m 3=500kg 需要吸收的热量:Q 吸=cm △t =4.2×103J /(kg ·℃)×500m 3×(40℃-20℃)=4.2×107J 焦炭放出的热量 Q 放=m 炭·q 火炉的转化效率:774.2103.010/Q JQ m J k g η⨯==⨯⨯吸放炭774.210720% 3.010/J m kg J kg⨯==⨯⨯炭1、质量为2kg、温度为20℃的水,使其温度升高了80℃,需要吸收多少热量?[已知水的比热容等于4.2×103J/(kg⋅℃)]2、质量为2kg、温度为20℃的水,使其温度升高到80℃,需要吸收多少热量?[已知水的比热容等于4.2×103J/(kg⋅℃)]3、一壶水的质量为2.5 kg,在液化石油气炉上从20℃煮至沸腾,在此过程中,共燃烧了液化石油气50g.壶吸热忽略不计.(1)水共吸收了多少热量?(1标准气压下)(2)这些液化石油气完全燃烧共放出多少热量?(3)求炉子的效率.(水的比热容为4.2×103J/(kg·℃), 液化石油气的热值为4.2×107J/kg)4.某中学为学生供应开水,用锅炉将200kg的水从25℃加热到l00℃,燃烧了6kg的无烟煤,试求:(1)锅炉内的水共吸收多少热量?(2)6kg无烟煤完全燃烧共放出的热量是多少?(3)该锅炉的热效率是多少?(4)请你简要说明该锅炉的热效率较低的可能原因。

重难点30 热学计算(原卷版)

重难点30  热学计算(原卷版)

专项七计算题重难点30 热学计算【知识梳理】一、热学综合计算题,主要有:1.比热容与热值综合。

2.热传递的效率。

3.热功转化效率。

二、热学综合主要涉及的公式1.燃料燃烧产生的热量:(1)q值以“J/kg”为单位:Q=mq。

(2)Q值以“J/m3”为单位:Q=Vq。

2.物体吸收或放出热量(1)吸热:Q=cm(t末温-t初温)。

(2)放热:Q=cm(t初温-t末温)。

(3)统一公式:Q=cm△t。

(4)热传递效率公式:η=×100%。

(5)热平衡方程式:Q吸=Q放(条件:在热传递过程中无热量损失)。

通常应用它的展开公式:c1m1(t1末温-t1初温)= c2m2(t2初温-t2末温)。

3.热功转化效率:η=×100%。

【易混淆点】1.“升高”、“升高了”指的是温度变化量△t。

“升高到”指末温。

2.将η= ×100%和η=×100%的变形公式写错。

3.“在一个标准大气压下”隐藏了条件“沸水的温度为100℃”。

【典例分析】【例1】(2020德州25)国家提倡节能减排,各地“煤改气”正在积极进行,某同学计算他家天然气烧水的热效率,将2kg的水倒入烧水壶中,并测出水温为20℃,在一个标准大气压下,把水刚加热到100℃时,测出消耗天然气0.048m3,已知水的比热容c水=4.2×103J/(kg •℃),天然气热值约为q=4.0×107J/m3。

求:(1)将这些水烧开,需吸收多少热量;(2)在这种情况下,燃烧的天然气放出了多少热量;(3)他家天然气灶的效率。

【思路小结】1.在运用公式η= ×100%时,一般用公式计算Q=cm(t末温-t初温)计算Q吸,根据q的单位灵和选用Q=mq 或Q=Vq 求Q放。

2.在运用公式η=×100%时,求Q放与上面的方法一样,求W时,一般有W=FS=fS=Pt.即用机械做功的常用公式进行计算。

3.注意正确对公式进行变形。

高中物理3-3《热学》计算题专项练习题(含答案)

高中物理3-3《热学》计算题专项练习题(含答案)

热学计算题(二)1.如图所示,一根长L=100cm、一端封闭的细玻璃管开口向上竖直放置,管内用h=25cm长的水银柱封闭了一段长L1=30cm的空气柱.已知大气压强为75cmHg,玻璃管周围环境温度为27℃.求:Ⅰ.若将玻璃管缓慢倒转至开口向下,玻璃管中气柱将变成多长?Ⅱ.若使玻璃管开口水平放置,缓慢升高管内气体温度,温度最高升高到多少摄氏度时,管内水银不能溢出.2.如图所示,两端开口、粗细均匀的长直U形玻璃管内由两段水银柱封闭着长度为15cm的空气柱,气体温度为300K时,空气柱在U形管的左侧.(i)若保持气体的温度不变,从左侧开口处缓慢地注入25cm长的水银柱,管内的空气柱长为多少?(ii)为了使空气柱的长度恢复到15cm,且回到原位置,可以向U形管内再注入一些水银,并改变气体的温度,应从哪一侧注入长度为多少的水银柱?气体的温度变为多少?(大气压强P0=75cmHg,图中标注的长度单位均为cm)3.如图所示,U形管两臂粗细不等,开口向上,右端封闭的粗管横截面积是开口的细管的三倍,管中装入水银,大气压为76cmHg。

左端开口管中水银面到管口距离为11cm,且水银面比封闭管内高4cm,封闭管内空气柱长为11cm。

现在开口端用小活塞封住,并缓慢推动活塞,使两管液面相平,推动过程中两管的气体温度始终不变,试求:①粗管中气体的最终压强;②活塞推动的距离。

4.如图所示,内径粗细均匀的U形管竖直放置在温度为7℃的环境中,左侧管上端开口,并用轻质活塞封闭有长l1=14cm,的理想气体,右侧管上端封闭,管上部有长l2=24cm的理想气体,左右两管内水银面高度差h=6cm,若把该装置移至温度恒为27℃的房间中(依然竖直放置),大气压强恒为p0=76cmHg,不计活塞与管壁间的摩擦,分别求活塞再次平衡时左、右两侧管中气体的长度.5.如图所示,开口向上竖直放置的内壁光滑气缸,其侧壁是绝热的,底部导热,内有两个质量均为m的密闭活塞,活塞A导热,活塞B绝热,将缸内理想气体分成Ⅰ、Ⅱ两部分.初状态整个装置静止不动且处于平衡状态,Ⅰ、Ⅱ两部分气体的高度均为l0,温度为T0.设外界大气压强为P0保持不变,活塞横截面积为S,且mg=P0S,环境温度保持不变.求:在活塞A上逐渐添加铁砂,当铁砂质量等于2m时,两活塞在某位置重新处于平衡,活塞B下降的高度.6.如图,在固定的气缸A和B中分别用活塞封闭一定质量的理想气体,活塞面积之比为S A:S B=1:2,两活塞以穿过B的底部的刚性细杆相连,可沿水平方向无摩擦滑动.两个气缸都不漏气.初始时,A、B 中气体的体积皆为V0,温度皆为T0=300K.A中气体压强P A=1.5P0,P0是气缸外的大气压强.现对A加热,使其中气体的体积增大V0/4,,温度升到某一温度T.同时保持B中气体的温度不变.求此时A中气体压强(用P0表示结果)和温度(用热力学温标表达)7.如图所示为一简易火灾报警装置.其原理是:竖直放置的试管中装有水银,当温度升高时,水银柱上升,使电路导通,蜂鸣器发出报警的响声.27℃时,空气柱长度L1为20cm,水银上表面与导线下端的距离L2为10cm,管内水银柱的高度h为13cm,大气压强P0=75cmHg. (1)当温度达到多少摄氏度时,报警器会报警?(2)如果要使该装置在87℃时报警,则应该再往玻璃管内注入多少cm高的水银柱?8.如图所示,导热气缸A与导热气缸B均固定于地面,由刚性杆连接的导热活塞与两气缸间均无摩擦,两活塞面积S A、S B的比值4:1,两气缸都不漏气;初始状态系统处于平衡,两气缸中气体的长度皆为L,温度皆为t0=27℃,A中气体压强P A=7P0/8,P0是气缸外的大气压强;(Ⅰ)求B中气体的压强;(Ⅱ)若使环境温度缓慢升高,并且大气压保持不变,求在活塞移动位移为L/2时环境温度为多少摄氏度?9.如图,两气缸AB粗细均匀,等高且内壁光滑,其下部由体积可忽略的细管连通;A的直径为B的2倍,A上端封闭,B上端与大气连通;两气缸除A顶部导热外,其余部分均绝热.两气缸中各有一厚度可忽略的绝热轻活塞a、b,活塞下方充有氮气,活塞a上方充有氧气;当大气压为P0,外界和气缸内气体温度均为7℃且平衡时,活塞a离气缸顶的距离是气缸高度的1/4,活塞b在气缸的正中央.(ⅰ)现通过电阻丝缓慢加热氮气,当活塞b升至顶部时,求氮气的温度;(ⅱ)继续缓慢加热,使活塞a上升,当活塞a上升的距离是气缸高度的1/16时,求氧气的压强.10.A 、B 汽缸的水平长度均为20 cm 、截面积均为10 cm 2,C 是可在汽缸内无摩擦滑动的、体积不计的活塞,D 为阀门.整个装置均由导热材料制成.起初阀门关闭,A 内有压强A P =4.0×105 Pa 的氮气.B 内有压强=B P 2.0×105 Pa 的氧气.阀门打开后,活塞C 向右移动,最后达到平衡.求活塞C 移动的距离及平衡后B 中气体的压强.11.如图所示,内壁光滑长度为4l 、横截面积为S 的汽缸A 、B ,A 水平、B 竖直固定,之间由一段容积可忽略的细管相连,整个装置置于温度27℃、大气压为p 0的环境中,活塞C 、D 的质量及厚度均忽略不计.原长3l 、劲度系数03p S k l=的轻弹簧,一端连接活塞C 、另一端固定在位于汽缸A 缸口的O 点.开始活塞D 距汽缸B 的底部3l .后在D 上放一质量为0p S m g =的物体.求: (1)稳定后活塞D 下降的距离;(2)改变汽缸内气体的温度使活塞D 再回到初位置,则气体的温度应变为多少?热学计算题(二)答案解析1.解:Ⅰ.以玻璃管内封闭气体为研究对象,设玻璃管横截面积为S,初态压强为:P1=P0+h=75+25=100cmHg,V1=L1S=30S,倒转后压强为:P2=P0﹣h=75﹣25=50cmHg,V2=L2S,由玻意耳定律可得:P1L1=P2L2 ,100×30S=50×L2S,解得:L2=60cm;Ⅱ.T1=273+27=300K,当水银柱与管口相平时,管中气柱长为:L3=L﹣h=100﹣25cm=75cm,体积为:V3=L3S=75S,P3=P0﹣h=75﹣25=50cmHg,由理想气体状态方程可得:代入数据解得:T3=375K,t=102℃2.解:(ⅰ)由于气柱上面的水银柱的长度是25cm,所以右侧水银柱的液面的高度比气柱的下表面高25cm,所以右侧的水银柱的总长度是25+5=30cm,试管的下面与右侧段的水银柱的总长45cm,所以在左侧注入25cm长的水银后,设有长度为x的水银处于底部水平管中,则 50﹣x=45解得 x=5cm即5cm水银处于底部的水平管中,末态压强为75+(25+25)﹣5=120cmHg,由玻意耳定律p1V1=p2V2代入数据,解得:L2=12.5cm(ⅱ)由水银柱的平衡条件可知需要也向右侧注入25cm长的水银柱才能使空气柱回到A、B之间.这时空气柱的压强为:P3=(75+50)cmHg=125cmHg由查理定律,有: =解得T3=375K3.①88cmHg;②4.5cm①设左管横截面积为S,则右管横截面积为3S,以右管封闭气体为研究对象.初状态p1=80 cmHg,V1=11×3S=33S,两管液面相平时,Sh1=3Sh2,h1+h2=4 cm,解得h2=1 cm,此时右端封闭管内空气柱长l=10 cm,V2=10×3S=30S气体做等温变化有p1V1=p2V2即80×33S=p2×30S 解得p2=88cmHg②以左管被活塞封闭气体为研究对象p1′=76 cmHg,V1′=11S,p2=p2′=88 cmHg气体做等温变化有p1′V1′=p2′V2′解得V2′=9.5S活塞推动的距离为L=11 cm+3 cm-9.5 cm=4.5cm4.解:设管的横截面积为S,活塞再次平衡时左侧管中气体的长度为l′,左侧管做等压变化,则有:其中,T=280K,T′=300K,解得:设平衡时右侧管气体长度增加x,则由理想气体状态方程可知:其中,h=6cmHg解得:x=1cm所以活塞平衡时右侧管中气体的长度为25cm.5.解:对I气体,初状态,末状态由玻意耳定律得:所以,对 II气体,初状态,末状态由玻意耳定律得:所以,l2=l0B活塞下降的高度为: =l0;6.解:活塞平衡时,由平衡条件得:P A S A+P B S B=P0(S A+S B)①,P A′S A+P B′S B=P0(S A+S B)②,已知S B =2S A ③,B 中气体初、末态温度相等,设末态体积为V B ,由玻意耳定律得:P B ′V B =P B V 0 ④,设A 中气体末态的体积为V A ,因为两活塞移动的距离相等, 故有=⑤,对A 中气体,由理想气体状态方程得:⑥, 代入数据解得:P B =,P B ′=,P A ′=2P 0,V A =,V B =,T A ==500K ,7.①177℃②8 cm ①封闭气体做等压变化,设试管横截面积为S ,则初态:V 1=20S ,T 1=300K ,末态:V 2=30S ,由盖吕萨克定律可得:1v T =22v T ,解得T 2=450K ,所以t 2=177℃. ②设当有xcm 水银柱注入时会在87℃报警,由理想气体状态方程可得:111p v T =222p v T , 代入数据解得x=8 cm .8.解:(1)设初态汽缸B 内的压强为p B ,对两活塞及刚性杆组成的系统由平衡条件有:p A S A +p 0S B =p B S B +p 0S A …①据已知条件有:S A :S B =4:1…②联立①②有:p B =;(2)设末态汽缸A 内的压强为p A ',汽缸B 内的压强为p B ',环境温度由上升至的过程中活塞向右移动位移为x ,则对汽缸A 中的气体由理想气体状态方程得:…③对汽缸B 中的气体,由理想气体状态方程得:…④对末态两活塞及刚性杆组成的系统由平衡条件有:p A 'S A +p 0S B =p B 'S B +p 0S A …⑤联立③④⑤得:t=402℃.9.解:(ⅰ)活塞b 升至顶部的过程中,活塞a 不动,活塞a 、b 下方的氮气经历等压过程.设气缸A 的容积为V 0,氮气初态体积为V 1,温度为T 1,末态体积为V 2,温度为T 2,按题意,气缸B 的容积为V 0,则得:V 1=V 0+•V 0=V 0,①V 2=V 0+V 0=V 0,②根据盖•吕萨克定律得: =,③由①②③式和题给数据得:T 2=320K ; ④(ⅱ)活塞b 升至顶部后,由于继续缓慢加热,活塞a 开始向上移动,直至活塞上升的距离是气缸高度的时,活塞a 上方的氧气经历等温过程,设氧气初态体积为V 1′,压强为P 1′,末态体积为V 2′,压强为P 2′,由题给数据有,V 1′=V 0,P 1′=P 0,V 2′=V 0,⑤由玻意耳定律得:P 1′V 1′=P 2′V 2′,⑥由⑤⑥式得:P 2′=P 0.⑦ 10.7.6cm 3×105Pa 解析:由玻意耳定律,对A 部分气体有 S x L P LS P A )(+= ① 对B 部分气体有S x L P LS P B )(-= ②代入相关数据解得x =320=7.6cm ,P =3×105 Pa11.解:(1)开始时被封闭气体的压强为,活塞C 距气缸A 的底部为l ,被封气体的体积为4lS ,重物放在活塞D 上稳定后,被封气体的压强为:活塞C 将弹簧向左压缩了距离,则活塞C 受力平衡,有:根据玻意耳定律,得:解得:x=2l活塞D 下降的距离为:(2)升高温度过程中,气体做等压变化,活塞C 的位置不动,最终被封气体的体积为,对最初和最终状态,根据理想气体状态方程得解得:。

高中热学公式

高中热学公式

二、热学:
1、热力学第一定律: W + Q = ∆E
符号法则: 体积增大,气体对外做功,W 为“一”;体积减小,外界对气体做功,W 为“+”。

气体从外界吸热,Q 为“+”;气体对外界放热,Q 为“-”。

温度升高,内能增量∆E 是取“+”;温度降低,内能减少,∆E 取“一”。

三种特殊情况: (1) 等温变化 ∆E=0, 即 W+Q=0
(2) 绝热膨胀或压缩:Q=0即 W=∆E
(3)等容变化:W=0 ,Q=∆E
2 理想气体状态方程:
(1)适用条件:一定质量的理想气体,三个状态参量同时发生变化。

(2) 公式: PV T P V T PV T
111222==或恒量 (3) 含密度式:
P T P T 1112
22ρρ= *3、 克拉白龙方程: PV=n RT=M RT μ (R 为普适气体恒量,n 为摩尔数)
4 、 理想气体三个实验定律:
(1) 玻马—定律:m 一定,T 不变
P 1V 1 = P 2V 2 或 PV = 恒量
(2)查里定律: m 一定,V 不变 P T P T 1122= 或 P T =恒量 或 P t = P 0 (1+t 273) (3) 盖·吕萨克定律:m 一定,T 不变 V T V T V T V t 112===或恒量或V 0 (1+t 273
)
注意:计算时公式两边T必须统一为热力学单位,其它两边单位相同即可。

Welcome !!! 欢迎您的下载,资料仅供参考!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三热学1.(8分)(2011·上海单科)在“用单分子油膜估测分子大小”实验中,(1)某同学操作步骤如下:①取一定量的无水酒精和油酸,制成一定浓度的油酸酒精溶液;②在量筒中滴入一滴该溶液,测出它的体积;③在蒸发皿内盛一定量的水,再滴入一滴油酸酒精溶液,待其散开稳定;④在蒸发皿上覆盖透明玻璃,描出油膜形状,用透明方格纸测量油膜的面积.改正其中的错误:______________________________________________________________________________________________(2)若油酸酒精溶液体积浓度为0.10%,一滴溶液的体积为4.8×10-3 mL,其形成的油膜面积为40 cm2,则估测出油酸分子的直径为________m.2.(8分)(2011·浙江自选)[物理3-3模块]吸盘是由橡胶制成的一种生活用品,其上固定有挂钩用于悬挂物体.如图所示,现有一吸盘,其圆形盘面的半径为2.0×10-2m,当其与天花板轻轻接触时,吸盘与天花板所围容积为1.0×10-5 m3;按下吸盘时,吸盘与天花板所围容积为2.0×10-6 m3,盘内气体可看作与大气相通,大气压强为p0=1.0×105Pa.设在吸盘恢复原状过程中,盘面与天花板之间紧密接触,吸盘内气体初态温度与末态温度相同.不计吸盘的厚度及吸盘与挂钩的重量.(1)吸盘恢复原状时,盘内气体压强为________;(2)在挂钩上最多能悬挂重为________的物体;(3)请判断在吸盘恢复原状过程中盘内气体是吸热还是放热,并简述理由.3(12分)如图1所示,水平放置的汽缸内壁光滑,活塞厚度不计,在A、B两处设有限制装置,使活塞只能在A、B之间运动,B左面汽缸的容积为V0,A、B之间的容积为0.1V0.开始时活塞在B处,缸内气体的压强为0.9p0(p0为大气压强),温度为297 K,现缓慢加热汽缸内气体,直至399.3 K.求:(1)活塞刚离开B处时的温度T B;(2)缸内气体最后的压强p;(3)在图2中画出整个过程的p­V图线.4.(12分)某压力锅的结构如图所示.盖好密封锅盖,将压力阀套在出气孔上,给压力锅加热,当锅内气体压强达到一定值时,气体就把压力阀顶起.假定在压力阀被顶起时,停止加热.(1)若此时锅内气体的体积为V,摩尔体积为V0,阿伏加德罗常数为N A,写出锅内气体分子数的估算表达式.(2)假定在一次放气过程中,锅内气体对压力阀及外界做功1 J,并向外界释放了2 J 的热量.锅内原有气体的内能如何变化?变化了多少?(3)已知大气压强p随海拔高度H的变化满足p=p0(1-αH),其中常数α>0.结合气体定律定性分析在不同的海拔高度使用压力锅,当压力阀被顶起时锅内气体的温度有何不同.5.(13分)(2012·东北三校第一次联考)(1)下列说法中正确的有( )A.第二类永动机和第一类永动机一样,都违背了能量守恒定律B.自然界中的能量虽然是守恒的,但有的能量便于利用,有的不便于利用,故要节约能源C.气体的温度升高时,分子的热运动变得剧烈,分子的平均动能增大,撞击器壁时对器壁的作用力增大,从而气体的压强一定增大D.分子a从远处靠近固定不动的分子b,当a只在b的分子力作用下到达所受的分子力为零的位置时,a的动能一定最大(2)如图所示,用钉子固定的光滑绝热活塞把水平放置的绝热气缸分隔成容积相同的A 和B两部分,A、B缸内分别封闭有一定质量的理想气体.初始时,两部分气体温度都为t0=27℃,A部分气体压强为p A0=2.5×105 Pa,B部分气体压强为p B0=1.5×105 Pa.拔去钉子后,保持A部分气体温度不变,同时对B部分气体加热,直到B内气体温度上升为t=127℃,停止加热,待活塞重新稳定后,(活塞厚度可忽略不计,整个过程无漏气发生)求:①此时A部分气体体积与初始体积之比V A∶V A0②此时B部分气体的压强p B.6.(8分)(1)现代科学技术的发展与材料科学、能源的开发密切相关,下列关于材料、能源的说法正确的是________.(填选项前的编号)①化石能源为清洁能源;②纳米材料的粒度在1 μm~100 μm之间;③半导体材料的导电性能介于金属导体和绝缘体之间;④液晶既有液体的流动性,又有光学性质的各向同性.(2)一定质量的理想气体在某一过程中,外界对气体做功7.0×104J,气体内能减少1.3×105 J,则此过程________.(填选项前的编号)①气体从外界吸收热量2.0×105J②气体向外界放出热量2.0×105J③气体从外界吸收热量6.0×104 J④气体向外界放出热量6.0×104 J7.(10分)(1)空气压缩机在一次压缩过程中,活塞对汽缸中的气体做功为2.0×105J,同时气体的内能增加了1.5×105 J.试问:此压缩过程中,气体________(填“吸收”或“放出”)的热量等于________J.(2)若一定质量的理想气体分别按下图所示的三种不同过程变化,其中表示等压变化的是________(填“A”、“B”或“C”),该过程中气体的内能________(填“增加”、“减少”或“不变”).(3)设想将1 g水均匀分布在地球表面上,估算1 cm2的表面上有多少个水分子?(已知1mol水的质量为18 g,地球的表面积约为5×1014m2,结果保留一位有效数字)8.(10分)一房间长L1=7m,宽L2=5m,高h=3.2m.假设房间内的空气处于标准状况,已知阿伏加德罗常数N A=6.02×1023mol-1.(1)求房间内空气分子数;(2)如果空气的压强不变,温度升高到27℃,求原房间内的空气其体积将变为多少?(3)升温过程中,房间内空气分子的平均动能如何变化?9.(14分)喷雾器内有10L水,上部封闭有1 atm的空气2L.关闭喷雾阀门,用打气筒向喷雾器内再充入1 atm的空气3L(设外界环境温度一定,空气可看作理想气体).(1)当水面上方气体温度与外界温度相等时,求气体压强,并从微观上解释气体压强变化的原因;(2)打开喷雾阀门,喷雾过程中封闭气体可以看成等温膨胀,此过程气体是吸热还是放热?简要说明理由.10.(14分)如图,一根粗细均匀、内壁光滑、竖直放置的玻璃管下端密封,上端封闭但留有一抽气孔.管内下部被活塞封住一定量的气体(可视为理想气体),气体温度为T1.开始时,将活塞上方的气体缓慢抽出,当活塞上方的压强达到p0时,活塞下方气体的体积为V1,活塞上方玻璃管的容积为2.6V1.活塞因重力而产生的压强为0.5p0.继续将活塞上方抽成真空并密封.整个抽气过程中管内气体温度始终保持不变.然后将密封的气体缓慢加热.求:(1)活塞刚碰到玻璃管顶部时气体的温度;(2)当气体温度达到1.8 T1时气体的压强.11(10分)如图所示,封闭有一定质量理想气体的汽缸固定在水平桌面上,开口向右放置,活塞的横截面积为S。

活塞通过轻绳连接了一个质量为m的小物体,(mg<p0s)。

汽缸内气体的温度T0,轻绳处在伸直状态。

不计摩擦,缓慢降低汽缸内温度,最终使得气体体积减半,求:①气体体积减半时的温度T1;②建立P—V坐标系并在该坐标系中画出气体变化的整个过程。

12(6分)(2013天星调研卷)下列说法不正确的是 (填入正确选项前的字母。

选对1个给3分,选对2个给4分,选对3个给6分;每选错1个扣3分,最低得分为0分)。

A .温度高的物体内能可能大,但分子平均动能不一定大B .单晶体和多晶体都有规则的几何外形C .热量可以从低温物体传给高温物体D .夏天将密闭有空气的矿泉水瓶放进低温的冰箱中变扁的原因是矿泉水瓶内的空气压强小于外界压强E .潮湿的天气绝对湿度一定很大13(9分)(2013天星调研卷)如图所示,气缸放置在水平平台上,活塞质量为10kg ,横截面积50cm 2,厚度1cm ,气缸全长21cm ,大气压强为1×105Pa ,当温度为7℃时,活塞封闭的气柱长10cm ,若将气缸倒过来放置时,活塞下方的空气能通过平台上的缺口与大气相通。

g 取10m/s 2,不计活塞与气缸之间的摩擦,保留三位有效数字。

①将气缸倒过来放置,若温度上升到27℃,求此时气柱的长度。

②气缸倒过来放置后,若逐渐升高温度,发现活塞刚好接触平台,求此时气体的温度。

14.(6分)(2013天星调研卷)下列五幅图分别对应五种说法,其中正确的是A .微粒运动就是物质分子的无规则热运动,即布朗运动B .当两个相邻的分子间距离为r 0时,它们间相互作用的引力和斥力大小相等C .食盐晶体的物理性质沿各个方向都是一样的D .小草上的露珠呈球形的主要原因是液体表面张力的作用E .洁净的玻璃板接触水面,要使玻璃板离开水面,拉力必须大于玻璃板的重力,其原因是水分子和玻璃分子之间存在吸引力A.三颗微粒运动C.食盐晶体D.小草上的露珠 B.分子间的作用力E.拉力大于玻璃板的重力15(9分)(2013天星调研卷)如图所示,有一圆柱形绝热气缸,气缸内壁的高度是2L ,一个很薄且质量不计的绝热活塞封闭一定质量的理想气体,开始时活塞处在气缸顶部,外界大气压为1.0×105Pa ,温度为27℃。

现在活塞上放重物,当活塞向下运动到离底部L 高处,活塞静止,气体的温度57℃。

(1)求活塞向下运动到离底部L 高处时气体压强;(2)若活塞横截面积S=0.1m 2,重力加速度g =10m/s 2,求活塞上所放重物的质量。

16(2013江苏常州模拟)下列说法中正确的是A .布朗运动是悬浮在液体中的固体分子所做的无规则运动B .多晶体没有固定的熔点C .液晶的光学性质具有各向异性D .由于液体表面分子间距离小于液体内部分子间的距离,故液体表面存在表面张力 17(2013江苏常州模拟)一定质量的理想气体压强p 与热力学温度T 的关系图象如图所示,AB 、BC 分别与p 轴和T 轴平行,气体在状态A 时的压强为p 0、体积为V 0,在状态B 时的压强为2p 0,则气体在状态B 时的体积为 ;气体从状态A 经状态B 变化到状态C 的过程中,对外做的功为W ,内能增加了ΔU ,则此过程气体(选填“吸收”或“放出”)的热量为 .18(6分)(2013河南三市联考)下列有关物质属性及特征的说法中,正确的是________ (填入正确选项前的字母。

选对一个给3分,选对两个给4分,选对3个给6分,每选错一个扣3 分,最低得分为0分)A. 液体的分子势能与液体的体积有关B. 晶体的物理性质都是各向异性的C. 温度升高,每个分子的动能都增大D. 分子间的引力和斥力同时存在E. 露珠呈球状是由于液体表面张力的作用00p 2p19、(9分)(2013河南三市联考)如图所示,一圆柱形绝热气缸竖直放置,通过绝热活塞封闭着一定质量的理想气体。

相关文档
最新文档