飞机操纵系统ppt课件
合集下载
飞机飞行操纵系统
安全问题
安全标准
01
确保飞行操纵系统符合国际国内安全标准,系统进行严格质量
控制测试。
ቤተ መጻሕፍቲ ባይዱ
冗余设计
02
防止单一故障导致系统失效,采冗余设计,增加系统可靠性安
全性。
紧急备份系统
03
紧急情况提供备份操纵系统,确保飞行员能够控制飞机并采取
必紧急措施。
技术更新问题
持续研发
断投入研发资源,更新改进飞行操纵系统,满足航空工业发展需 求。
电动操纵系统
电动操纵系统通过电动机传动装置将飞行员操作指令传递 舵面,实现飞行姿态航向操纵。
电动操纵系统优点结构简单、可靠性高、维护成本低,且 易实现自动控制远程操控。现代飞机中,电动操纵系统已 经成主流飞行操纵系统之一。
气压操纵系统
气压操纵系统利气压差将飞行员操作指令传递舵面,实现飞行姿态航向操纵。
发展历程
飞机飞行操纵系统经历从简单机械式复杂电传式演变,技术 断升级换代,提高飞机安全性机动性能。
趋势
未飞行操纵系统发展将更加注重智能化、自主化、复合控制 等方面,提高飞机自主飞行能力适应复杂环境能力。随着无 驾驶技术断发展,无机飞行操纵系统也将成研究重方向。
02
飞行操纵系统种类
机械操纵系统
机械操纵系统最早飞行操纵系统,通过钢索、滑轮连杆等机 械部件将飞行员操作指令传递飞机各舵面,实现飞行姿态航 向操纵。
飞机飞行操纵系统
目 录
• 飞机飞行操纵系统概述 • 飞行操纵系统种类 • 飞行操纵系统关键技术 • 飞行操纵系统应 • 飞行操纵系统挑战与解决方案 • 未飞行操纵系统发展趋势
01
飞机飞行操纵系统概述
定与功能
定
飞机飞行操纵系统指控制飞机飞行姿 态轨迹操作系统,包括飞行控制系统 飞行操纵系统。
第五章 飞行操纵系统
第三节 助力机械操纵系统
助力机械操纵系统的提出
舵面铰链力矩是随舵面尺寸和飞行速压的增加而增加! 当舵面铰链力矩变得很大时,即使利用当时的空气动力补偿法,也不能使驾 驶杆(脚蹬)力保持在规定的范围之内:
1. 研究效率更高的空气动力补偿; 2. 研究液压助力器,以实现液压助力操纵!
助力机械操纵系统的分类
钢索承受拉力时,容易伸长。由于操纵系统的弹性变形而产 生的“间隙”称为弹性间隙; 钢索的弹性间隙太大,会降低操纵的灵敏性; 钢索预紧(施加予张力)是减小弹性间隙的措施! 常见故障:断丝与锈蚀,主要部位是滑轮或导索板处。
几个注意问题: 1、为了改善软式操纵系统的灵敏性,钢索在未安 装之前,必须用相当于设计强度50%~60%的力进 行予拉伸处理; 2、装在飞机上的钢索必须根据周围温度的高低而 保持一定的予张力; 3、在飞机主操纵系统中,可以使用的钢索最小直 径是1/8英寸; 4、钢索不可气割,不可焊接,只能用钢索剪剪断 或用錾子錾断; 5、在改变钢索方向不大于 3º的情况下,可以使用 导索板或导索环。
中央操纵机构—手操纵机构
驾驶杆式手操纵机构
推拉驾驶杆操纵升降舵; 左右压杆操纵副翼!
横纵向操纵的独立性
驾驶杆要操纵升降舵和副翼, 但两者不会互相干扰!
独 立 性 分 驾驶杆左右摆时,传动杆沿着以b-b线为中 析 心轴,以c点为顶点的锥面运动;
由于圆锥体的顶点c到底部周缘上任一点的 距离相等,所以当驾驶杆左右摆动时,摇 臂1不会绕其支点前后转动,因而升降舵不 会偏转!
。
操纵系统
主操纵系统
副翼
升降舵
辅助操纵系统
前缘襟翼缝翼
后缘襟翼 扰流板 水平安定面
警告系统
《飞行操纵系统》课件
THANKS
感谢观看
飞行员通过Байду номын сангаас纵杆、脚蹬等输入装置 ,将控制指令传递给飞行操纵系统, 以改变飞机的飞行姿态和轨迹。
它包括主操纵系统和辅助操纵系统, 主操纵系统包括升降舵、方向舵和副 翼,辅助操纵系统包括襟翼、缝翼和 起落架收放机构等。
飞行操纵系统的动力学基础
飞行操纵系统的动力学基础包 括空气动力学和飞行力学。
空气动力学是研究气体流动和 物体在气体中运动的科学,它 为飞行操纵系统的设计和性能 提供了理论基础。
分类
根据飞行器类型和设计需求的不同,飞行操纵系统有多种分类方式。例如,按照传力介质的不同,可以分为机械 式操纵系统、液压式操纵系统和电气式操纵系统等;按照控制方式的不同,可以分为助力操纵系统和主动控制系 统等。
发展历程与趋势
发展历程
飞行操纵系统的发展经历了多个阶段,从早期的机械操纵系统到现代的电传操纵系统和 主动控制系统。随着科技的不断进步,飞行操纵系统的性能和安全性得到了极大的提升
权限管理与安全认证
限制飞行员对系统的操作权限,防止误操作或 恶意干扰。
自适应容错控制
在系统发生故障时,自动调整控制策略,降低故障对飞行安全的影响。
05
飞行操纵系统的应用与案例分析
飞行操纵系统在无人机中的应用
1 2 3
无人机飞行操纵系统概述
无人机飞行操纵系统是无人机控制的重要组成部 分,负责无人机的起飞、巡航、降落等操作。
飞行操纵系统的传感器
01
02
03
04
角位移传感器
检测飞行员的操纵角度,转换 为电信号。
力矩传感器
检测飞行员施加在操纵杆上的 力矩,转换为电信号。
侧杆传感器
飞机操纵系统要点课件
总结词
气压式飞机操纵系统是一种利用气压传动原理的飞机操纵系统,它通过压缩空气传递压力和运动,实现飞机的飞 行控制。
详细描述
气压式飞机操纵系统具有结构简单、重量轻和可靠性高等优点,被广泛应用于小型飞机和无人机中。它通过飞行 员操作气动阀,控制压缩空气的流动,驱动操纵面运动,实现飞机的飞行控制。
04
飞机操纵系统的应用与案 例分析
飞机操纵系统在军事航空中的应用
高机动性
军事飞机需要具备高机动性以应对战斗环境,飞机操纵系统能够 快速响应飞行员的操作,实现各种高难度机动动作。
隐形性能
现代军事飞机通常具备隐形性能,飞机操纵系统的设计也需要考虑 隐形性能的需求,如减少雷达反射面和红外特征等。
作战效能
飞机操纵系统直接影响到军事飞机的作战效能,包括发射武器、实 施侦察、执行战术机动等任务。
成本问题 飞机操纵系统的制造成本较高,需要采取有效的成本控制 措施,以确保产品的经济可行性。
未来飞机操纵系统的市场前景与机遇
市场需求
随着航空运输业的不断发展,飞机操纵系统的市场需求将持续增 长,为相关企业提供了广阔的市场空间。
技术创新
技术创新是推动飞机操纵系统发展的关键因素,相关企业需要加 大研发投纵系统在民用航空中的应用
飞行安全
飞机操纵系统是确保飞行安全的 关键部分,通过精确控制飞机的 姿态和轨迹,保障乘客和机组人
员的安全。
高效运行
民用航空中的飞机操纵系统需要适 应各种气象条件和飞行任务需求, 以确保飞机的高效运行,降低油耗 和维护成本。
舒适性
飞机操纵系统需要提供平稳、舒适 的飞行体验,减少飞行中的颠簸和 不适感,提高乘客的满意度。
01
或液压信号。
02
气压式飞机操纵系统是一种利用气压传动原理的飞机操纵系统,它通过压缩空气传递压力和运动,实现飞机的飞 行控制。
详细描述
气压式飞机操纵系统具有结构简单、重量轻和可靠性高等优点,被广泛应用于小型飞机和无人机中。它通过飞行 员操作气动阀,控制压缩空气的流动,驱动操纵面运动,实现飞机的飞行控制。
04
飞机操纵系统的应用与案 例分析
飞机操纵系统在军事航空中的应用
高机动性
军事飞机需要具备高机动性以应对战斗环境,飞机操纵系统能够 快速响应飞行员的操作,实现各种高难度机动动作。
隐形性能
现代军事飞机通常具备隐形性能,飞机操纵系统的设计也需要考虑 隐形性能的需求,如减少雷达反射面和红外特征等。
作战效能
飞机操纵系统直接影响到军事飞机的作战效能,包括发射武器、实 施侦察、执行战术机动等任务。
成本问题 飞机操纵系统的制造成本较高,需要采取有效的成本控制 措施,以确保产品的经济可行性。
未来飞机操纵系统的市场前景与机遇
市场需求
随着航空运输业的不断发展,飞机操纵系统的市场需求将持续增 长,为相关企业提供了广阔的市场空间。
技术创新
技术创新是推动飞机操纵系统发展的关键因素,相关企业需要加 大研发投纵系统在民用航空中的应用
飞行安全
飞机操纵系统是确保飞行安全的 关键部分,通过精确控制飞机的 姿态和轨迹,保障乘客和机组人
员的安全。
高效运行
民用航空中的飞机操纵系统需要适 应各种气象条件和飞行任务需求, 以确保飞机的高效运行,降低油耗 和维护成本。
舒适性
飞机操纵系统需要提供平稳、舒适 的飞行体验,减少飞行中的颠簸和 不适感,提高乘客的满意度。
01
或液压信号。
02
飞机飞行操纵系统课件
01 02
飞行控制系统计算机功能
飞行控制系统计算机整飞行操纵系统核心,负责接收自传感器飞行员输 入信号,根据预设控制算法计算出控制指令,驱动执行机构完成飞机操 纵。
计算机硬件组成
飞行控制系统计算机由高性能处理器、存储器、输入输出接口等组成, 确保快速、准确处理各种信息指令。
03
软件与算法ห้องสมุดไป่ตู้
飞行控制系统计算机运行着各种软件算法,如控制律设计、传感器融合
导航与制导功能
01
自动导航
接收面导航台信号,自动计算飞 机位置航向,引导飞机沿着预定 航路飞行。
02
雷达与卫星导航
03
任务规划与制导
利雷达卫星信号,提供精确飞机 位置、速度时间信息,支持飞机 自动着陆等功能。
根据飞行任务求,规划飞行轨迹 ,引导飞机按预定路线执行任务 。
飞机状态监测与故障诊断
传感器数据采集
飞机飞行操纵系统工作原理
飞行员通过驾驶舱内操纵器件(如驾驶杆、脚蹬等)发出操作指令,指令通过传动 装置传递给控制机构(如舵机、调整片驱动机构等)。
控制机构进一步将指令转换相应机械或液压动作,驱动执行机构(如升降舵、副翼 、方向舵等)运动。
执行机构根据控制机构动作产生相应力矩位移,改变飞机翼面形状舵面偏转角度, 进而影响空气动力力矩,实现飞机操纵。
法规与标准
未飞行操纵系统需符合更加严格法规标准求,确保飞行安全性可靠性。也需制定完善相 关法规标准体系,适应技术发展变化。
传感器与测量装置检测飞机各种参数,如姿态、速度、高 度等,并将些参数转换可处理信号,供飞行控制系统使。
常见传感器类型
包括陀螺仪、加速度计、空速管、高度表等,它能够提供 飞机姿态、速度、位置等关键信息。
《飞机结构与系统》课件——5-飞行操纵系统—辅助操纵系统
17
扰流板操纵
扰流板分类
➢ 飞行扰流板:飞机飞行和着陆时都可以使用,用来增大迎风面积,增 大气动阻力,机翼上用来迅速增大阻力的板状操纵面称为“减速板” 。一般安装在机翼上表面靠近副翼的部位。
➢ 地面扰流板:飞机着陆后,机翼上用来迅速减少升力的板状操纵面称 为“减升板”或“卸升板”,它是一种只限于在地面使用的扰流板。 减升板一般安装在机翼上表面靠近翼根部位。当飞机降落时,只要机 轮一接触地面(空地感应开关),减升板就迅速打开,机翼升力迅速减 小,防止飞机弹跳,缩短滑跑距离。
12
襟翼操纵系统--指示
襟翼位置指示
➢后缘襟翼位置指示器
➢前缘位置指示器——前 缘襟翼和缝翼位置灯;
➢襟翼有收起和伸出两 个位置;
➢缝翼有收起、伸出、
完全伸出三个位置;
13
襟翼操纵系统--指示
14
襟翼操纵系统--指示
缝翼和襟翼指示
当缝翼或襟翼没有全部收上 时,“FLAP”字样出现。
当到达选择的位置 时为白色。
地面扰流板
➢功用 ➢只能在地面使用起减速作用。
➢位置 ➢立起、放下
➢控制 ➢受减速板手柄和空/地电门控 制,只有飞机在地面时,操纵 减速板手才能使地面扰流板放 出。一般是液压作动,并使用 双向单杆式作动筒。
20
扰流板操纵--操纵
✓飞行扰流板有两个作用:一 是减速;二是配合副翼进行横 侧操纵,即当驾驶盘旋转角度 超过一定值时,副翼上偏一侧 的飞行扰流板打开,配合副翼 进行横侧操纵,而另一侧的飞 行扰流板不作相应的偏转。飞 行扰流板在应急时也可以单独 进行应急横侧操纵。
11
襟翼操纵系统--操纵
襟翼保护措施
✓襟 翼 不 同 步 保 护 : 保 证 后 缘 襟 翼 不 同 步 时 快 速 切断襟翼操纵系统; ✓襟 翼 载 荷 限 制 器 : 保 护 襟 翼 结 构 , 避 免 在 大 的 气动载荷下损伤襟翼结构; ✓自 动 缝 翼 : 在 飞 机 接 近 失 速 时 , 自 动 驱 动 前 缘 缝翼从“部分放出”到“完全放出”位置;
扰流板操纵
扰流板分类
➢ 飞行扰流板:飞机飞行和着陆时都可以使用,用来增大迎风面积,增 大气动阻力,机翼上用来迅速增大阻力的板状操纵面称为“减速板” 。一般安装在机翼上表面靠近副翼的部位。
➢ 地面扰流板:飞机着陆后,机翼上用来迅速减少升力的板状操纵面称 为“减升板”或“卸升板”,它是一种只限于在地面使用的扰流板。 减升板一般安装在机翼上表面靠近翼根部位。当飞机降落时,只要机 轮一接触地面(空地感应开关),减升板就迅速打开,机翼升力迅速减 小,防止飞机弹跳,缩短滑跑距离。
12
襟翼操纵系统--指示
襟翼位置指示
➢后缘襟翼位置指示器
➢前缘位置指示器——前 缘襟翼和缝翼位置灯;
➢襟翼有收起和伸出两 个位置;
➢缝翼有收起、伸出、
完全伸出三个位置;
13
襟翼操纵系统--指示
14
襟翼操纵系统--指示
缝翼和襟翼指示
当缝翼或襟翼没有全部收上 时,“FLAP”字样出现。
当到达选择的位置 时为白色。
地面扰流板
➢功用 ➢只能在地面使用起减速作用。
➢位置 ➢立起、放下
➢控制 ➢受减速板手柄和空/地电门控 制,只有飞机在地面时,操纵 减速板手才能使地面扰流板放 出。一般是液压作动,并使用 双向单杆式作动筒。
20
扰流板操纵--操纵
✓飞行扰流板有两个作用:一 是减速;二是配合副翼进行横 侧操纵,即当驾驶盘旋转角度 超过一定值时,副翼上偏一侧 的飞行扰流板打开,配合副翼 进行横侧操纵,而另一侧的飞 行扰流板不作相应的偏转。飞 行扰流板在应急时也可以单独 进行应急横侧操纵。
11
襟翼操纵系统--操纵
襟翼保护措施
✓襟 翼 不 同 步 保 护 : 保 证 后 缘 襟 翼 不 同 步 时 快 速 切断襟翼操纵系统; ✓襟 翼 载 荷 限 制 器 : 保 护 襟 翼 结 构 , 避 免 在 大 的 气动载荷下损伤襟翼结构; ✓自 动 缝 翼 : 在 飞 机 接 近 失 速 时 , 自 动 驱 动 前 缘 缝翼从“部分放出”到“完全放出”位置;
飞机结构与系统(飞行操纵系统)课件
理方案,提高飞行经济性安全性。
04
飞行操纵系统维护与检修
飞行操纵系统日常维护
01
02
03
每日检查
检查飞行操纵系统外观, 确保没明显损坏或异常情 况。
清洁润滑
飞行操纵系统进行清洁润 滑,保持其良好工作状态 。
校准
飞行操纵系统进行校准, 确保其准确性可靠性。
飞行操纵系统定期检修
定期检查
按照规定周期飞行操纵系 统进行检查,包括内部结 构元件。
飞行管理系统
飞行管理系统现代飞行操纵系统核心组 成部它集成导航、气象、通讯等多种功 能,能够飞行员提供全面飞行信息支持
。
飞行管理系统通过接收处理自各种传感 器数据,飞行员提供实时飞行计划、航 向、速度、高度等信息,帮助飞行员更
好掌握飞行状态决策。
飞行管理系统还可根据气象条件飞行计 划,飞行员提供最佳飞行轨迹发动机管
安全标准与规范
参考相关安全标准规范,如国际民航组织(ICAO)美国联邦航空局(FAA)等发布相关指南标准,飞行操纵系统进 行安全性评估。些标准规范评估提供指导参考框架。
安全改进措施
根据安全性评估结果,制定并实施相应安全改进措施,提高飞行操纵系统安全性可靠性。些措施可能包 括硬件升级、软件修复、操作程序改进等各方面。
飞行操纵系统历史与发展
历史
早期飞机采简单机械式操纵系统,通过钢索、连杆等机械部件实现飞行员翼面舵面直接控制。随着技术发展,液 压式操纵系统电传式操纵系统逐渐取代机械式操纵系统。电传式操纵系统目前最先进飞行操纵系统,具更高可靠 性灵活性。
发展
未飞行操纵系统将朝着更加智能化、自主化协同化方向发展。智能化能够提高系统自主决策能力容错能力;自主 化能够减轻飞行员工作负担提高飞行安全性;协同化则能够实现飞行员与无机之间效协作,提高整体作战效能。
04
飞行操纵系统维护与检修
飞行操纵系统日常维护
01
02
03
每日检查
检查飞行操纵系统外观, 确保没明显损坏或异常情 况。
清洁润滑
飞行操纵系统进行清洁润 滑,保持其良好工作状态 。
校准
飞行操纵系统进行校准, 确保其准确性可靠性。
飞行操纵系统定期检修
定期检查
按照规定周期飞行操纵系 统进行检查,包括内部结 构元件。
飞行管理系统
飞行管理系统现代飞行操纵系统核心组 成部它集成导航、气象、通讯等多种功 能,能够飞行员提供全面飞行信息支持
。
飞行管理系统通过接收处理自各种传感 器数据,飞行员提供实时飞行计划、航 向、速度、高度等信息,帮助飞行员更
好掌握飞行状态决策。
飞行管理系统还可根据气象条件飞行计 划,飞行员提供最佳飞行轨迹发动机管
安全标准与规范
参考相关安全标准规范,如国际民航组织(ICAO)美国联邦航空局(FAA)等发布相关指南标准,飞行操纵系统进 行安全性评估。些标准规范评估提供指导参考框架。
安全改进措施
根据安全性评估结果,制定并实施相应安全改进措施,提高飞行操纵系统安全性可靠性。些措施可能包 括硬件升级、软件修复、操作程序改进等各方面。
飞行操纵系统历史与发展
历史
早期飞机采简单机械式操纵系统,通过钢索、连杆等机械部件实现飞行员翼面舵面直接控制。随着技术发展,液 压式操纵系统电传式操纵系统逐渐取代机械式操纵系统。电传式操纵系统目前最先进飞行操纵系统,具更高可靠 性灵活性。
发展
未飞行操纵系统将朝着更加智能化、自主化协同化方向发展。智能化能够提高系统自主决策能力容错能力;自主 化能够减轻飞行员工作负担提高飞行安全性;协同化则能够实现飞行员与无机之间效协作,提高整体作战效能。
《飞机飞行控制》课件
导航控制
飞行控制系统集成了先进的导航 技术,如惯性导航、卫星导航等 ,能够实时确定飞机位置和航向 ,确保飞机沿着预定航线飞行。
防碰撞警告系统
飞行控制系统通过与空中交通管 制系统的交互,实时监测周围空 域的飞机,当存在碰撞风险时, 及时发出警告,避免空中交通事
故的发生。
飞行控制系统在军事航空领域的应用
飞行控制系统的发展趋势与未来展望
智能化控制
随着人工智能技术的发展,未来的飞行控制系统将更加智能化,能 够自适应地处理各种复杂情况,提高飞行的安全性与效率。
集成化与模块化设计
为了降低成本和提高可靠性,未来的飞行控制系统将采用集成化与 模块化设计,便于维护和升级。
自主可控技术
随着航空工业的发展,未来的飞行控制系统将更加注重自主可控技术 的研发和应用,以提高我国航空工业的竞争力。
融合技术
传感器融合技术是指将多个传感器的信息进行综合处理,以 获得更加准确和可靠的数据。在飞行控制系统中,传感器融 合技术能够提高飞机的导航精度和稳定性。
舵机与舵面
舵机
舵机是飞行控制系统中的执行机构, 能够根据控制系统的指令,精确地调 整舵面的角度,从而控制飞机的姿态 和轨迹。
舵面
舵面是飞机机翼和尾翼上的可动翼面 ,包括副翼、升降舵和方向舵等。通 过调整舵面的角度,可以改变飞机的 气动性能,实现飞机的姿态和轨迹控 制。
飞机飞行控制系统
03
的控制算法
线性控制算法
PID控制算法
通过比例、积分和微分三个环节 ,对飞机飞行过程中的误差进行 调节,以减小误差。
线性回归算法
通过对飞机飞行数据的线性回归 分析,预测飞行状态,为控制算 法提供参考。
非线性控制算法
第五章-飞机飞行操纵系统
液压助力的快速性,还与它的密封性有关。当 进入助力器的一部分油液渗漏以后,实际上用来 推动传动活塞的油液就会减少。因此,传动活塞 的运动速度就减少。
(2)改善和保持助力器快速性的措施
➢ 通油孔的最大开度,在构造上有配油柱塞的游动 间隙来保证,因此,维护工作应当注意保持游动 间隙正常。
➢ 助力器的来油压力和回油压力,主要取决于液压 系统的工作性能。用专门的助力液压系统来保证 助力器工作。
⑵ 机翼重心的位置
机翼重心现象位置对颤振临界速度的大小也有 严重的影响。为了提高颤振临界速度常在机翼翼 尖的前缘部位上加配重。
5、机翼弯曲——副翼偏转颤振
机翼弯曲——副翼偏转颤振又称舵面型颤振。
发生副翼自由偏转的原因可能是由于副翼操纵 系统的弹性变形或系统中有间隙,也可能由于松 杆式机翼发生不对称的弯曲,如下图所示:
⑴ 放大或缩小力的作用,如图所示:
⑵ 放大或缩小位移的作用:主动臂的半径一定,
在相同的主动臂端点位移s1的条件下,从动臂的 半径越大,所得到的从动臂端点位移s2也越大; 从动臂的半径越小,所得到的从动臂端点位移s2 也越小。如图所示:
⑶ 放大或缩小运动速度的作用:由于整体具有相
同的角速度,通过改变从动臂和主动臂的半径关 系从而实现放大或缩小运动速度。如图所示:
⑷ 改变传动杆运动方向原理如图所示:
差动臂:当驾驶杆左右或前后移动的位移相等, 而舵面上下偏转的角度不等,称之为差动操纵。 实现差动操纵最简单的机构是双摇臂,称为差动 摇臂,其工作原理如图所示:
3、导向滑轮
导向滑轮是由三个或四个小滑轮及其支架所组 成。它的功用是:支持传动杆,提高传动杆的受 压时的杆轴临界应力,使传动杆不至于过早地失 去总稳定性。
3、松紧螺套
(2)改善和保持助力器快速性的措施
➢ 通油孔的最大开度,在构造上有配油柱塞的游动 间隙来保证,因此,维护工作应当注意保持游动 间隙正常。
➢ 助力器的来油压力和回油压力,主要取决于液压 系统的工作性能。用专门的助力液压系统来保证 助力器工作。
⑵ 机翼重心的位置
机翼重心现象位置对颤振临界速度的大小也有 严重的影响。为了提高颤振临界速度常在机翼翼 尖的前缘部位上加配重。
5、机翼弯曲——副翼偏转颤振
机翼弯曲——副翼偏转颤振又称舵面型颤振。
发生副翼自由偏转的原因可能是由于副翼操纵 系统的弹性变形或系统中有间隙,也可能由于松 杆式机翼发生不对称的弯曲,如下图所示:
⑴ 放大或缩小力的作用,如图所示:
⑵ 放大或缩小位移的作用:主动臂的半径一定,
在相同的主动臂端点位移s1的条件下,从动臂的 半径越大,所得到的从动臂端点位移s2也越大; 从动臂的半径越小,所得到的从动臂端点位移s2 也越小。如图所示:
⑶ 放大或缩小运动速度的作用:由于整体具有相
同的角速度,通过改变从动臂和主动臂的半径关 系从而实现放大或缩小运动速度。如图所示:
⑷ 改变传动杆运动方向原理如图所示:
差动臂:当驾驶杆左右或前后移动的位移相等, 而舵面上下偏转的角度不等,称之为差动操纵。 实现差动操纵最简单的机构是双摇臂,称为差动 摇臂,其工作原理如图所示:
3、导向滑轮
导向滑轮是由三个或四个小滑轮及其支架所组 成。它的功用是:支持传动杆,提高传动杆的受 压时的杆轴临界应力,使传动杆不至于过早地失 去总稳定性。
3、松紧螺套
飞机操纵系统
第二节 简单机械操纵系统
➢ 简单机械操纵系统是一种人力操纵系 统,由于其构造简单,工作可靠,使 用了30余年,才出现助力操纵系统
➢ 简单机械操纵系统现在仍广泛应用于 低速飞机和一些运输机上
2-01
2.1 对飞行操纵系统的要求
➢ 一般要求
➢ 重量轻、制造简单、维护方便 ➢ 具有足够的强度和刚度
➢ 特殊要求
➢现代民航客机在操纵系统中设置了 专门的非线性传动机构,靠它来改 变整个操纵系统的传动系数,实现:
➢在舵面偏转角较小时,杆行程较 大,便于飞行员准确操纵飞机;
➢在舵面偏转角较大时,杆行程不 至于过大,即灵敏性增加。
第三节 舵面补偿装置
➢作用:减小铰链力矩和杆力 ➢形式:
➢轴式补偿 ➢角式补偿 ➢内封补偿 ➢调整片补偿
连杆及蜗轮螺杆机构
➢平衡调整片
第五节 主操纵系统
➢飞行操纵系统由三个部分组成:主操 纵系统、辅助操纵系统和警告系统。
➢主操纵系统包括 ➢副翼 ➢升降舵 ➢方向舵
5.1 副翼操纵系统
➢驾驶盘柔性互联机构
➢液压助力器
➢现代大中型飞机的重量较重,飞行速度较快, 舵面上的气动载荷较大,因此常采用液压助 力器进行助力操纵。
➢ 实现差动操纵最简单的机构是差动摇臂
2-17
➢弗利兹副翼--平衡两机翼诱导阻力差
3.导向滑轮
➢支持传动杆 ➢提高传动杆的受压时的杆轴临界应力 ➢增大传动杆的固有频率,防止传动杆发生
共振
三、主操纵系统的传动系数和传动比
➢传动系数
➢传动系数 驾驶杆(盘或脚蹬)移动一 个很小的行程ΔX时,舵面的偏转角相 应也会改变一定数值Δδ,操纵系统 的传动系数K就定义作Δδ与ΔX的比 值,即:
第3章 飞行操纵系统
第三章 飞行操纵系统
扰流板的收放
第三章 飞行操纵系统
地面扰流板活门
地面扰流板内锁活门
外地面扰流板 作动筒
内地面扰流板作 动筒
外地面扰流板作 动筒
第三章 飞行操纵系统
(4)水平安定面配平
水平安定面配平系统——提供飞机纵向的俯仰配平。
被操纵的是可调水平安定面 偏转1度相当于升降舵偏转2.5-3.5度
襟翼
开裂式襟翼
后退式襟翼 后退式三开缝襟翼
第三章 飞行操纵系统
飞机襟翼操纵
第三章 飞行操纵系统
襟翼的保护
不同步保护
防止左、右两侧襟翼放出角度不对称
过载保护 用于保护襟翼结构,防止过大的气动载荷损伤襟翼。
襟翼的位置指示
左指针
第三章 飞行操纵系统
(3)扰流板操纵
扰流板是铰链在机翼上表面的一种可活动翼板。升 起扰流板可使飞机的升力减小,阻力增加。 扰流板的功能是: (1)飞行扰流板可以辅助副翼横滚操纵; (2)飞行扰流板对称升起,可使飞机空中减速; (3)飞机落地后,地面扰流板升起,可以增大飞机阻力 使飞机减速,提高刹车效能。
第三章 飞行操纵系统
软 式 传 动 系 统
硬 式 传 动 系 统
第三章 飞行操纵系统
(2)电传操纵系统(Fly-By-Wire) ①电传操纵系统的组成
电传操纵系统主要由驾驶杆或侧杆(含杆力传感器)、前 置放大器、传感器、机载计算机和执行机构组成。
第三章 飞行操纵系统
②工作原理
驾驶员发出操纵指令;经传感器转换为电信号,并与来自飞机 运动参数传感器测得的信号一起,传输给计算机;处理计算机 按预定的控制规律生成舵面操纵信号;控制操纵面作动器动作, 舵面偏转,从而实现对飞机进行操纵。
飞机结构--飞行操纵系统
缺点
刚度较小 弹性间隙 操纵灵敏度差 钢索在滑轮处容易磨损 构造复杂 重量加大 难于“ 难于“绕”过机内设备 易与发动机发生共振
混合 兼有硬式和软式的优点和缺点
钢索
只承受拉力, 只承受拉力,不能承受压力 用两根钢索构成回路, 用两根钢索构成回路,以保证舵面能在两 个相反的方向偏转
钢索构造和规格
规格型号 7×7
特点: 特点:操纵信号由驾驶员发出 组成: 组成:
飞机的俯仰、滚转和偏航操纵系统(主操纵系统) 飞机的俯仰、滚转和偏航操纵系统(主操纵系统) 增升、增阻操纵系统,人工配平系统等(辅助操纵系统) 增升、增阻操纵系统,人工配平系统等(辅助操纵系统)
自动飞行控制系统
特点: 特点:
操纵信号由系统本身产生,对飞机实施自动和半自动控制, 操纵信号由系统本身产生,对飞机实施自动和半自动控制,协 助驾驶员工作或自动控制飞机对扰动的响应
股数
7×19
钢丝数
钢索构造和规格
类型
碳钢、不锈钢
尺寸
1/16到3/8英寸 名义直径相同的钢索,股数越多,它的柔性越好; 名义直径相同,股数相同,钢丝数越多,柔性就 越好。
钢索预紧
∆T M铰
+∆T’
T0
M铰
T0 -∆T’
固有缺陷——弹性间隙 弹性间隙 固有缺陷
弹性间隙
钢索承受拉力时,容易伸长; 钢索承受拉力时,容易伸长;由于操纵系统的弹性变形而产生的 间隙” “间隙”称为弹性间隙 危害:弹性间隙太大, 危害:弹性间隙太大,会降低操纵的灵敏性 解决措施: 解决措施:钢索预紧 常见故障——断丝(滑轮、导向器部位) 断丝( 常见故障 断丝 滑轮、导向器部位)
助力操纵系统
液压助力 电助力
飞行操纵系统概述(空客A320系列)ppt课件
MENU 系统概述
37/42
SFCC 1
FLAP 通道
SLAT 通道
SFCC 2
FLAP 通道
SLAT 通道
每一SFCC有两个通道,一个通道用于襟翼,另 一通道用于缝翼。
每一通道能驱动相应的操纵面。
飞行操纵
MENU 系统概述
38/42
位于中央操纵台右侧的襟翼手柄用来 操纵缝翼和襟翼。 它有下列位置:
飞行操纵
MENU 系统概述
22/42
ELAC 1 ELAC 2
FCDC 1 FCDC 2
SEC 1 SEC 2 SEC 3
飞行操纵
另外,两个飞行控制数据集合计算 机(FCDU)用于从ELAC和SEC获取 数 据 , 然 后 将 数 据 送 给 EIS( 电 子 仪 表系统)。
MENU 系统概述
23/42
飞行操纵
MENU 系统概述
34/42
飞行操纵
在每一机翼前缘有五块缝翼。
MENU 系统概述
35/42
并且每一机翼后缘有两块襟 翼。
飞行操纵
MENU 系统概述
36/42
SFCC 1 SFCC 2
缝翼和襟翼象其它操纵面一样是由液压驱动的 。它们由两个缝翼襟翼控制计算机(SFCC)电动 控制。
飞行操纵
MENU 系统概述
10/42
左副翼
右副翼
俯仰配平
左安定面
方向舵
右安定面
飞行操纵
MENU 系统概述
11/42
左副翼
减速板
右副翼
俯仰配平
左安定面
方向舵
右安定面
飞行操纵系统包括: 副翼, 用于俯仰配平的一个可配平式水平安定面(THS), 一个方向舵, 地面扰流板/减速板。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3 飞行操纵系统组成
操纵系统
主操纵系统
辅助操纵系统 警告系统
副翼 升降舵 方向舵
前缘襟翼缝翼 后缘襟翼 扰流板 水平安定面 1-04
失速警告 起飞警告
1.4 操纵飞机绕三轴运动
➢ 手操纵机构用于操纵副翼和升降舵,转 动驾驶盘可操纵副翼,前推或后拉驾驶 盘可操纵升降舵的偏转。
➢ 方向舵用于操纵飞机绕立轴的转动。
4.2-10
电传操纵
➢ 在有些飞机上采用电传操纵(FLY BY WIRE),实际上它是将传动机构部分或全 部用电缆代替,驾驶员手、脚作动操纵机 构的信号也都转换成了电信号,通过电缆 将此电信号输送到液压助力器,由液压助 力器驱动舵面偏转。因此电传操纵并不是 电动操纵,它仍然要借助液压系统及液压 助力器实现助力操纵。有些电传飞机上仍 然采用部分机械传动机构传递信号。
以当驾驶杆左右摆动时,摇臂1不会绕其支点前后转动, 因而升降舵不会偏转
2-07
➢ 驾驶盘式手操纵机构
➢ 推拉驾驶盘操纵升降舵 ➢ 转动驾驶盘可操纵副翼
➢ 独立性分析
➢ 左右转动驾驶盘时,支 柱不动,升降舵不会偏 转
➢ 前推或后拉驾驶盘时, 由于和横管平行的一段 钢索与轴线a-a是重合 的,钢索不会绷紧或放 松,不会使副翼偏转
第二节 简单机械操纵系统
➢ 简单机械操纵系统是一种人力操纵系 统,由于其构造简单,工作可靠,使 用了30余年,才出现助力操纵系统
➢ 简单机械操纵系统现在仍广泛应用于 低速飞机和一些运输机上
2-01
2.1 对飞行操纵系统的要求
➢ 一般要求
➢ 重量轻、制造简单、维护方便 ➢ 具有足够的强度和刚度
➢ 特殊要求
2-08
中央操纵机构—脚操纵机构
➢ 平放式脚蹬
➢ 由两根横杆和两根脚蹬杆 构成平行四边形机构
➢ 平行四边形机构可 保证飞 行员在操纵脚蹬时,脚蹬 只作平移而不转动
2-10
中央操纵机构—脚操纵机构
➢ 立放式脚蹬
➢ 蹬脚蹬时,通过传动杆和摇臂等构件的传动使 方向舵偏转
➢ 由于传动杆和摇臂等的连接,左右脚蹬的动作 是协调的
➢ 左右脚蹬平齐时,方向舵也处于中立位 置。当向前蹬左脚蹬,右脚蹬向后运动 时,方向舵向左偏转,作用于垂直尾翼 上的空气动力使飞机机头向左偏转。当 向前蹬右脚蹬时,方向舵向右偏转,从 而使机头向右偏转。
1.5 飞机操纵性
➢ 飞机的操纵性是飞机跟随驾驶员操纵驾驶杆、 脚蹬动作而改变其飞行状态的特征。飞机必须 具有可操纵性,能改变原来的平衡状态,实现 起飞、降落、转弯等飞行状态的变化。
➢特点:操纵信号由驾驶员发出 ➢组成:
➢飞机的俯仰、滚转和偏航操纵系统 (主操纵系统) ➢增升、增阻操纵系统,人工配平系 统等(辅助操纵系统)
1-03
➢自动飞行控制系统
➢特点:
➢操纵信号由系统本身产生,对飞 机实施自动和半自动控制,协助 驾驶员工作或自动控制飞机对扰 动的响应
➢组成:
➢自动驾驶仪
➢发动机油门自动控制 ➢结构振动模态抑制系统。
硬式 刚度较大 铰接点用滚珠轴承减小摩
传动 擦力,并消除间隙 机构 具有较佳的操纵灵敏度
缺点
刚度较小 弹性间隙 操纵灵敏度差 钢索在滑轮处容易磨损
构造复杂 重量加大 难于“绕”过机内设备 易与发动机发生共振
混合 兼有硬式和软式的优点和缺点
2-12
1. 钢索
➢ 只承受拉力,不能承受压力 ➢ 用两根钢索构成回路,以保证舵面能在两
➢固有缺陷——弹性间隙
➢钢索承受拉力时,容易伸长;由于操纵 系统的弹性变形而产生的“间隙”称为弹 性间隙。
脚操纵
2-03
2.2 主操纵系统工作原理
➢ 硬式操纵系统 手操纵
脚操纵
2-04
一、主操纵系统组成
➢ 中央操纵机构—由驾驶员直接操纵的部分
➢ 手操纵机构
➢ 驾驶杆/驾驶盘:控制副翼和升降舵 ➢ 独立性
➢ 脚操纵机构
➢ 脚蹬:控制方向舵(转弯/刹车) ➢ 位置调整装置和限动装置
➢ 传动机构—将操纵信号传到舵面
➢ 飞机重心位置的前后移动会影响飞机的纵向操 纵性能。
➢ 一架飞机在稳定飞行时,倘若驾驶员用不大的 力施加在驾驶盘或脚蹬上,改变一个操纵舵面 的偏转角度,飞机很快做出反应,改变了飞行 状态,那么这架飞机的操纵性能是好的;倘若 反应很慢,则就是操纵不灵敏。操纵性好的飞 机,稳定性必然下降,因此飞机的操纵性和稳 定性要达到合理的平衡。
➢ 保证驾驶员手、脚操纵动作与人类运动本能相一致 ➢ 纵向或横向操纵时彼此互不干扰 ➢ 脚操纵机构能够进行适当调节 ➢ 有合适的杆力和杆位移 ➢ 启动力应在合适的范围内 ➢ 系统操纵延迟应小于人的反应时间 ➢ 应有极限偏转角度止动器 ➢ 所有舵面应用“锁”来固定
2-02
2.2 主操纵系统工作原理
➢ 软式操纵系统 手操纵
第一节 飞行操纵系统概述
1-01
1.1 飞行操纵系统定义
➢飞机飞行操纵系统是飞机上用来
传递操纵指令,驱动舵面运动的所 有部件和装置的总合。
➢驾驶员通过操纵飞机的各舵面和
调整片实现飞机绕纵轴、横轴和立 轴旋转,以完成对飞机的飞行状态、 气动外形的控制。
1-02
1.2 飞行操纵系统分类
➢人工飞行操纵系统
辅助操纵机构用于操纵辅助操纵 系统舵面的偏转。
三、传动机构
➢ 硬式传动机构
➢ 传动杆 ➢ 摇臂 ➢ 导向滑轮
➢ 软式传动机构
➢ 钢索 ➢ 滑轮 ➢ 扇型轮/扇型摇臂 ➢ 松紧螺套 ➢ 钢索张力补偿器
2-11
传动机构特点比较
类型 优点
软式 构造简单 传动 尺寸较小
重量较轻 机构 比较容易绕过机内设备
➢ 软式传动机构—钢索、滑轮等 ➢ 硬式传动机构—传动杆、摇臂等 ➢ 混合式传动机构
2-05
二、中央操纵机构 ➢ 驾驶杆式手操纵机构
➢ 推拉驾驶杆操纵升降舵 ➢ 左右压杆操纵副翼
➢ 横、纵向操纵的独立性
2-06
独 立 性 分 析➢ 驾驶杆为
顶点的锥面运动 ➢ 由于圆锥体的顶点c到底部周缘上任一点的距离相等,所
个相反的方向偏转。 ➢ 飞机上的操纵钢索通常是用碳素钢或不锈
钢制成的。 ➢ 钢索的单体结构是钢丝。把一束钢丝按螺
旋形形编织成股,然后以一股为中心,其 余数股绕其编织而成为钢索。最常用的钢 索是7×7和7×19两类。
2-19
➢钢索的直径由钢丝的直径和根数决 定,一般范围是 ( 1/16—3/8 ) 英寸。