锁相放大器实验报告剖析

合集下载

近代物理实验报告—锁相放大器

近代物理实验报告—锁相放大器

锁相放大器【摘要】 锁相放大器可以理解为用噪声频带压缩的方法,将微弱信号从噪声中提取出来。

本实验通过测量锁相放大器的工作参数和特性,掌握相关检测原理以及锁相放大器的正确使用方法。

【关键词】锁相放大器、微弱信号放大 一引言随着科学技术的发展,微弱信号的检测越来越重要。

微弱信号检测是利用电子学、信息论、物理学和电子计算机的综合技术。

它是在认识噪声与信号的物理特性和相关性的基础上,把被噪声淹没的有用信号提取出来的一门新兴技术学科。

锁相放大器就是检测淹没在噪声中微弱信号的仪器。

它可用于测量交流信号的幅度和位相,有极强的抑制干扰和噪声的能力,极高的灵敏度,可检测毫微伏量级的微弱信号。

自1962年第一台锁相放大器商品问世以来,锁相放大器有了迅速发展,性能指标有了很大提高,现已被广泛应用于科学技术的很多领域。

二、实验原理 1、噪声在物理学的许多测量中,常常遇到极微弱的信号。

这类信号检测的最终极限将取决于测量设备的噪声,这里所说的噪声是指干扰被测信号的随机涨落的电压或电流。

噪声的来源非常广泛复杂,有的来自测量时的周围环境,如50Hz 市电的干扰,空间的各种电磁波,有的存在于测量仪器内部。

在电子设备中主要有三类噪声:热噪声、散粒噪声和1/f 噪声,这些噪声都是由元器件内部电子运动的涨落现象引起的。

从理论上讲涨落现象永远存在,因此只能设法减少这些噪声,而不能完全消除。

2、相干检测及相敏检波器微弱信号检测的基础是被测信号在时间上具有前后相关性的特点。

相关反映了两个函数有一定的关系,如果两个函数的乘积对时间的积分不为零,则表明这两个函数相关。

相关按概念分为自相关和互相关,微弱信号检测中一般都采用抗干扰能力强的互相关检测。

设信号f 1(t )为被检信号V s (t )和噪声V n (t )的叠加,f 2(t )为与被检信号同步的参考信号V r (t ),二者的相关函数为:()()()()[]()()()d )(21limd 21lim nr sr r n s 2112 τττττR R t t V t V t V T t t f t f T R TT T T T T +=-⋅+=-⋅=⎰⎰-∞→-∞→由于噪声V n (τ)和参考信号V r (τ)不相关,故R nr (τ)=0,所以R 12(τ)=R sr (τ)。

锁相放大实验报告

锁相放大实验报告

【摘要】 微弱信号检测是利用电子学、信息论、物理学和电子计算机的综合技术。

它是在认识噪声与信号的物理特性和相关性的基础上,把被噪声淹没的有用信号提取出来的一门新兴技术学科。

锁相放大器可以理解为用噪声频带压缩的方法,将微弱信号从噪声中提取出来。

【关键词】锁相放大器 / 微弱信号 / 信息论 / 噪声【引言】锁相放大器实际上是一个模拟的傅立叶变换器。

锁相放大器的输出是一个直流电压,正比于是输入信号中某一特定频率(参数输入频率)的信号幅值,而输入信号中的其他频率成分将不能对输出电压构成任何贡献。

这样我们可以利用参考信号把有用信号从待测信号中分离出来。

锁相放大器主要有三大部分组成:信号通道、参考通道、相关器。

如下图所示:信号通道包括低噪声前置放大器、有源滤波器、主放大器,它的作用是把微弱信号放大到足以推动乘法器的工作电平,并兼顾抑制噪声的功能。

参考通道是指从参考信号输入到乘法器输入之前的部分,它的作用是产生于被测信号同步的参考信号,通常参考通道输出的是与被测信号同步的对称方波,用以驱动乘法器工作。

锁相放大器的频率变换是通过乘法运算来进行的。

一般的乘法运算模拟电路,其线性程度和温度稳定性都存在问题。

所以在实际的锁相放大器中,采用开关元件进行同步检波,由此实现频率变换。

由开关元件所进行的同步检波电路,称作PSD (相敏检波器,Phase Sensitive Detector ),这是组成锁相放大器的心脏部分。

实际电路存在各种噪声会影响实验的精确度。

锁相放大器对于噪声的抑制能力,是由上图中低通滤波器(LPF )的截止频率来确定的。

锁相放大器的基本原理是相关接收原理,在相关接收中,可以把两个信号的函数1()f t 和2()f t 的相关函数定义为:121()lim()()2TTT R f t f t dt Tττ-→∞=-⎰它是度量一个随机过程在时间t 和t τ-两时刻线性相关的统计参数,如果1()f t 和2()f t完全没有关系,则相关函数将是一个常数。

锁相放大器实验报告

锁相放大器实验报告

锁相放大器实验报告摘要:本实验利用锁相放大器对信号中的噪声进行抑制并对其进行检测,了解相关检测原理,锁相放大器的基本组成;掌握锁相放大器的正确使用方法及在检波上的应用。

通过实验学会锁相放大器的使用,掌握利用锁相放大器来观察信号输入信号通道前后的幅值以及波形情况,获得相位与电压、放大倍数与电压的关系,并且通过噪声的观察知道如何消除噪声。

关键词:锁相放大器,微弱信号放大,PSD输出波形,谐波响应引言:随着科学技术的发展,微弱信号的检测越来越重要。

微弱信号检测是利用电子学、信息论、物理学和电子计算机的综合技术。

它是在认识噪声与信号的物理特性和相关性的基础上,把被噪声淹没的有用信号提取出来的一门新兴技术学科。

锁相放大器就是检测淹没在噪声中微弱信号的仪器。

它可用于测量交流信号的幅度和位相,有极强的抑制干扰和噪声的能力,极高的灵敏度,可检测毫微伏量级的微弱信号。

锁相放大器可以理解为用噪声频带压缩的。

方法,将微弱信号从噪声中提取出来。

自1962年第一台锁相放大器商品问世以来,锁相放大器有了迅速发展,性能指标有了很大提高,现已被广泛应用于科学技术的很多领域。

一、实验原理:1、噪声在物理学的许多测量中,常常遇到极微弱的信号。

这类信号检测的最终极限将取决于测量设备的噪声,这里所说的噪声是指干扰被测信号的随机涨落的电压或电流。

噪声的来源非常广泛复杂,有的来自测量时的周围环境,如50Hz市电的干扰,空间的各种电磁波,有的存在于测量仪器内部。

在电子设备中主要有三类噪声:热噪声、散粒噪声和1/f噪声,这些噪声都是由元器件内部电子运动的涨落现象引起的。

从理论上讲涨落现象永远存在,因此只能设法减少这些噪声,而不能完全消除。

2、相干检测及相敏检波器微弱信号检测的基础是被测信号在时间上具有前后相关性的特点。

相关反映了两个函数有一定的关系,如果两个函数的乘积对时间的积分不为零,则表明这两个函数相关。

相关按概念分为自相关和互相关,微弱信号检测中一般都采用抗干扰能力强的互相关检测。

锁相放大实验报告

锁相放大实验报告

锁相放大实验预习报告物理072 陈焕07180217摘要:介绍了测量弱信号的一种实验仪器——锁相放大器,以及锁相放大器的基本工作原理,即利用相关检测原理;测量了利用锁相放大器测量弱信号时相关器的参数。

关键字:锁相放大器、相关检测、相关器的参数引言:测量微弱的变化时,先利用传感器将其转化为相应的电信号,然后对这些电信号进行放大,再记录和利用。

但有电信号十分微弱,而且在各种条件下的噪声和干扰很可能将这些微弱信号淹没,因此不能使用单纯的放大器。

解决这个问题的其中一种方法就是采用相关接收的原理,锁相放大器就是一种利用该原理的仪器。

锁相放大器的介绍:典型的锁相放大器由三部分组成:信号通道,参考通道,相关器。

a.信号通道:是相关器前的那一部分,包括低噪声前置放大器,输入电压器,各种功能的有源滤波器,主放大器等组成,作用是把微弱信号放大到足以推动相关器工作的电平,并兼有抑制和滤掉部分干扰和噪声。

b.参考通道:作用是产生与被测信号同步的参考信号输出相关器,主要是触发电路、相移电路、方波形成电路和驱动信号组成。

c.相关器:这是锁相放大器的核心部分,包括乘法器、低通滤波器和直流放大电路。

相关器的介绍:相关器由相敏检波器与低通滤波器组成,是锁相放大器的核心部件。

锁相放大器中的相关器,由一个开关式乘法器与低通滤波器组成。

sin()A A V V t ωϕ=+41(sin sin 3......)3B R R V t t ωωπ=++ 相乘电路采用开关电路,参考电路B V 可以认为是以频率R ω的单位幅度方波。

A V 为输入信号,表示为sin()A A V V t ωϕ=+,当R ωω=为信号,R ωω≠时为噪声或干扰。

,A B V V 之间的相位差ϕ可以由锁相放大器参考通道的相移电路调节,12A V V V =∙0000,1,2.....12121t t R C An R V V e R n π--∞-==-+∑ 式中:12100tan [(21)]]n R Q n R C ωω--+=-+当R ωω=时,0012cos A R V V R ϕπ=-上式表明: 1、 输出不仅与待测信号的幅度A V 有关,也与两信号的相位差ϕ有关。

锁相放大实验 (2)

锁相放大实验 (2)

浙江师范大学实验报告实验名称锁相放大实验班级物理081班姓名王蓓学号08270112同组人翁先祥王聪叶品昭实验日期2010/10/19 室温气温锁相放大实验【摘要】弱信号的测量在当今物理实验中占着很大的地位。

其中锁相放大器是目前最常见的仪器,适用于对淹没在噪声背景中的正弦波或方波信号的检测。

通过本实验及相关知识的了解,了解相关检测原理,锁相放大器(LOOK-IN)的基本组成,掌握锁相放大器的正确使用方法及在检波上的应用。

【关键词】锁相放大器信噪比微小变化传感器放大信号噪声【正文】锁相放大器实际上是一个模拟的傅立叶变换器。

锁相放大器的输出是一个直流电压,正比于是输入信号中某一特定频率(参数输入频率)的信号幅值,而输入信号中的其他频率成分将不能对输出电压构成任何贡献。

这样我们可以利用参考信号把有用信号从待测信号中分离出来。

锁相放大器主要有三大部分组成:信号通道、参考通道、相关器。

如下图所示:信号通道包括低噪声前置放大器、有源滤波器、主放大器,它的作用是把微弱信号放大到足以推动乘法器的工作电平,并兼顾抑制噪声的功能。

参考通道是指从参考信号输入到乘法器输入之前的部分,它的作用是产生于被测信号同步的参考信号,通常参考通道输出的是与被测信号同步的对称方波,用以驱动乘法器工作。

锁相放大器的频率变换是通过乘法运算来进行的。

一般的乘法运算模拟电路,其线性程度和温度稳定性都存在问题。

所以在实际的锁相放大器中,采用开关元件进行同步检波,由此实现频率变换。

由开关元件所进行的同步检波电路,称作PSD (相敏检波器,Phase Sensitive Detector ),这是组成锁相放大器的心脏部分。

实际电路存在各种噪声会影响实验的精确度。

锁相放大器对于噪声的抑制能力,是由上图中低通滤波器(LPF )的截止频率来确定的。

锁相放大器的基本原理是相关接收原理,在相关接收中,可以把两个信号的函数1()f t 和2()f t 的相关函数定义为:121()lim()()2TTT R f t f t dtT ττ-→∞=-⎰它是度量一个随机过程在时间t 和t τ-两时刻线性相关的统计参数,如果1()f t 和2()f t 完全没有关系,则相关函数将是一个常数。

锁相放大器报告

锁相放大器报告

锁相放大器报告1. 引言锁相放大器(Lock-in Amplifier)是一种用于检测和放大微弱信号的仪器。

它的原理是利用参考信号与待测信号进行相位比较,并通过频率调制将待测信号转换成与参考信号频率相同的信号,从而实现信号的放大与解调。

锁相放大器在许多领域都有广泛的应用,例如光学测量、电子学实验、磁学、生物医学等。

本报告将重点介绍锁相放大器的原理、应用以及仪器的使用方法。

2. 原理锁相放大器的核心原理是相位敏感放大技术,它通过与参考信号进行相位比较,实现对待测信号的放大与解调。

具体原理可以分为以下几个步骤:1.信号混频:将待测信号与参考信号进行混频,产生一个电压与参考信号频率相同的交流信号。

2.低通滤波:对混频后的信号进行低通滤波,滤除高频噪声部分。

3.相位移动:通过改变参考信号的相位,实现对待测信号相位的调整。

相位调整后,待测信号与参考信号之间的相位差将被最小化。

4.放大器:对调整后的信号进行放大,增加信号的幅度。

5.解调器:将放大后的信号与参考信号进行相乘,得到待测信号的幅度信息。

锁相放大器将以上步骤组合在一起,能够对微弱信号进行高增益放大和高精度解调,从而提高信号的检测灵敏度和测量精度。

3. 应用锁相放大器在许多领域都有广泛的应用,下面将介绍几个典型的应用场景。

3.1 光学测量在光学测量中,锁相放大器常用于检测光能量、相位差、频率等参数。

例如在光学干涉仪中,通过锁相放大器可以对光的干涉信号进行放大和解调,从而实现对干涉信号的精确测量。

3.2 电子学实验锁相放大器在电子学实验中也有着广泛的应用,可以用于检测微弱信号、分析信号的谐波成分等。

例如在电阻、电容和电感测量中,锁相放大器可以消除噪声的影响,提高测量的精度。

3.3 生物医学在生物医学领域,锁相放大器被广泛应用于生物信号检测和分析。

例如在心电图检测中,锁相放大器可以提取出心电信号的有效部分,并抑制背景噪声干扰,从而实现对心电信号的准确分析和诊断。

锁相放大实验报告

锁相放大实验报告

锁相放大实验报告锁相放大实验报告摘要本实验利用锁相放大器对微弱信号中的噪声进行抑制并对其进行检测,了解相关检测原理,锁相放大器的基本组成;掌握锁相放大器的正确使用方法及在检波上的应用。

通过实验学会锁相放大器的使用,掌握利用锁相放大器来观察信号输入信号通道前后的幅值以及波形情况,获得相位角与电压、放大倍数与电压的关系,并且通过噪声的观察知道如何消除噪声。

关键词锁相放大器,通道,噪声带宽,信噪比正文锁相放大器己成为现代科学技术中必不可少的常备仪器。

国内72年南京大学首先从事这方面的研究工作,1974年研制成了第一台实验室样机,继后物理所等单位相继进行了这一方面的研究工作,1978年才有了工厂生产产品。

现在测量毫微伏量级的信号已是可能。

锁相放大器在涉及到微弱信号检测的各个领域都已得到了广泛的应用。

一、实验原理简析锁相放大器就是用来检测淹没在噪声中的微弱交流信号。

本质上,锁相放大器是一个具有任意窄带宽的滤波器,其频率调谐到信号的频率,排除掉大多数不需要的噪声而只允许被测量信号通过。

除了滤波,锁相放大器也能够提供增益,锁相放大器可以从噪声中提取比噪声小1000倍甚至10000倍的信号,锁相放大器的信噪改善比特别高它可用于测量交流信号的幅度和相位。

有极强的抑制干扰和噪声的能力,有极髙的灵敏度。

1.相关检测原理所谓相关就是指两个函数间有一定的关系,如果他们的乘积对时间求平均(积分)为零,则表明这两个函数不相关(彼此独立);如不为零,则表明两者相关。

由于互相关检测抗干扰能力强,因此在微弱信号检测中大都是采用互相关检测原理。

如果)(ltf和)(2 tf为两个功率有限的信号,则可定义其相关函数为:TTldttftfTR)()(2/llim21)(由于噪声的频率和相位都是随机量,它的偶尔出现可用长时间积分使它不影响信号的输出。

因而可以认为信号和噪声,噪声和噪声之间是互相独立,相关函数为零,通过推导,则:YTrsdttvtTR)()(2/1 lim)(由此可知,对两个混有噪声的功率有限信号进行相乘和积分处理(即相关检测)后,可将信号从噪声中检出,噪声被抑制,不影响输出。

锁相放大实验

锁相放大实验

浙师大近代物理实验报告锁相放大实验任希 物理081 08180123摘要:本实验提供了能够测量微弱信号的方法,即利用待测信号和参考信号的互相关检测原理实现对信号的窄带话处理,抑制噪声,实现了对信号的检测和跟踪。

实验中利用了锁相放大器对微弱信号中的噪生进行抑制并对其进行检测。

通过该实验提升了我们对实验仪器的掌握能力,为以后的实验提供帮助。

关键词: 弱信号的检测 锁定放大 互相关检测原理引言随着科学技术和生产的发展,需要测量许多物理量的微小变化,例如:微弱电压、电流、磁场的变化,微小温度的变化,微小的电感,微小的电容,微小的位移、振动等,通常我们测上述微小的变化,可以用传感器将其转化为相应的电信号,然后对这些电信号进行放大,再被我们显示和记录。

但由于这些微小的变化通过传感器转换的电信号十分微弱,各种条件下的噪声和干扰很可能将这些微弱信号淹没,因此单纯的使用放大器将其放大,而且由于放大器本生的噪声会将我们需要的信号淹没得更深。

锁相放大器就是用来检测淹没在噪声中的微弱交流信号。

本质上,锁相放大器是一个具有任意窄带宽的滤波器,其频率调谐到信号的频率,排除掉大多数不需要的噪声而只允许被测量信号通过。

除了滤波,锁相放大器也能够提供增益,例如:一个100nV 的信号可以被放大而产生一个10V 的信号,增益为108。

锁相放大器可以从噪声中提取比噪声小1000倍甚至10000倍的信号,锁相放大器的信噪改善比特别高它可用于测量交流信号的幅度和相位。

有极强的抑制干扰和噪声的能力,有极高的灵敏度。

实验原理相关检测原理,所谓相关就是指两个函数间有一定的关系,如果他们的乘积对时间求平均(积分)为零,则表明这两个函数不相关(彼此独立);如不为零,则表明两者相关。

相关的概念,按两函数的关系又可分为自相关和互相关两种。

由于互相关检测抗干扰能力强,因此在微弱信号检测中大都是采用互相关检测原理。

如果)(1t f 和)(2τ-t f 为两个功率有限的信号,则可定义其相关函数为:lim 1/2()()12()T R T f t f t dt T l ττ=-⎰-→∞令:()()11()()()22()f t n t s t f t n t r t νν=+=+ 其中)(1t n 和)(2t n 分别代表于待测信号)(t s ν及参考信号)(t r ν混在一起的噪声。

锁相放大器实验报告BY陈群

锁相放大器实验报告BY陈群

锁相放大器实验报告BY陈群浙江师范大学实验报告实验名称锁相放大实验班级物理071姓名陈群学号07180116同组人刘懿钧实验日期09/12/1室温气温锁相放大实验摘要:锁相放大器(Lock-in amplifier, LIA)自问世以来,在微弱信号检测方面显示出优秀的性能,它能够在较强的噪声中提取信号,使测量精度大大提高,在科学研究的各个领域得到了广泛的应用。

它利用待测信号和参考信号的互相关检测原理实现对信号的窄带化处理,能有效地抑制噪声,实现对信号的检测和跟踪。

因此,学生掌握锁相放大技术的原理与应用具有重要的意义。

关键词:锁相放大器微弱信号PSD信号引言:在进展一日千里的现代科技领域中,精密量测技术的发展对于近代工业有关键性的影响。

当我们研究的系统日趋庞大,交互作用复杂,但所欲了解的现象却越来越精细时,如何在一大堆讯号中获得我们真正想要的信息便成为一个重要的课题。

一般的线性放大器可以将微弱的电子讯号放大,但若我们所要的信号中伴随着噪声信号,则两者都会一起放大,亦即此伴随的噪声无法滤除。

尤其当噪声强度远大于所要的信号时,即必须藉助特殊的放大器以同时放大讯号并滤去噪声。

锁相放大器是一种能测量极微弱的连续周期性信号的仪器。

这些微弱信号可以小至数奈伏特(nV),其至隐藏在大它数千倍的噪声当中,亦能精确的测得。

连续周期性信号与噪声不同之处,在于前者具有固定的频率及相位,后者则杂乱无章。

锁相放大器便是利用所谓”相位灵墩侦测(phase-sensitive detection, PSD)”的技术以取得具有特定频率与相位的信号,而不同于此频率的噪声则被抑制下来,使输出讯号不受噪声影响。

实验方案:实验原理锁相放大器的基本结构如图所示,包括信号通道、参考通道、相敬检测器(PSD)和低通滤波器(LPF)等。

信号通道对调制正弦信号输入进行交流放大,将微弱信号放大到足以推动相敬检测器工作的平台,并且要滤除部分干扰和噪声,以提高相敬检测的动态范圉。

锁相放大器实验

锁相放大器实验
本实验通过测量锁相放大器的工作参数和特性,掌握相关检测原理以及锁相放大器的使用方法。
2.原理
2.1理论
2.1.1相关接收
微弱信号检测的基础是被测信号在时间上具有前后相关性的特点。相关是指两个函数间有一定的关系,相关按概念分为自相关和互相关。微弱信号检测中一般采用抗干扰能力强的互相关检测。相关函数是表征线性相关的度量。
3)相关器对不相关信号的抑制
连接实验线路,调节输入信号的信号源的频率为200HZ时,改变干扰信号的频率,观察相关器噪声电压输出,分析相关器对不相关信号的抑制能力。
4)相关器对噪声的抑制及信噪比改善
连接实验线路,先不加干扰信号,在输入信号与输出信号同相的情况下观察相干器“加法器输出”与“PSD输出”的波形,测量直流输出电压;加入白噪声信号后,再用“加法器输出”与“PSD输出”的波形观察信号与噪声相混的波形。测量信号源的输入信号的电压、白噪声输入电压,再测量出相关器输出的信号电压与噪声电压,计算输出信号的信噪比。
3.2相敏检波器的特性研究及信噪比改善测量
1)相敏检波器PSD输出波形和电压测量
连接实验线路,在输入信号与参考信号不同相位下,观察由PSD输出的波形;测量相关器输出直流电压大小与信号、参考信号之间的幅值及相位差 的关系,
2)相关器的谐波响应的测量与观察
连接实验线路,宽带移相器的输入信号接至信号源的“倍频 分频输出”,使得参考信号的频率为信号频率的1/n.在n分别为1,2,3,4,5,6,7的情况下,调节相移,记录直流电压输出最大值。
3)相关器对不相关信号的抑制
相位差为0°时,加法器输出峰峰值为0.32V,PSD输出峰值为0.16V,加法器输出波形和PSD输出波形如图8所示,
图8加法器输出波形和PSD输出波形

锁相放大器原理实验报告

锁相放大器原理实验报告

锁相放大器原理实验报告.docx艾孜买提江111XXXX0226物理112班一、实验目的l、了解相关器的原理,测量相关器的输出特性;2、了解锁定放大器的原理及典型框图;3、根据典型框图,组装锁定放大器;熟悉锁定放大器的使用方法二、实验原理实际测量一个被测量时,无用的噪声和干扰总是伴随着出现,影响了测量的精确性和灵敏度。

特别当噪声功率超过待测信号功率时,就需要用微弱信号检测仪器和设备来恢复或检测原始信号。

这些检测仪器是根据改进信噪比的原则设计和制作的。

可以证明,当信号的频率和相位己知时。

采用相干检测技术能使输出信噪比达到最大,微弱信号检测的著名仪器锁定放大器,就是采用这一技术设计与制造的。

锁定放大器是以相干检测技术为基础,其核心部分是相关器,基本原理框图如图1所示。

而锁定放大器的主要由三部分组成,即:信号通道(相关器前那一部分)、参考通道和相关器(包括直流放大器)。

图1.锁定放大器的基本原理图首先介绍相关器:它是锁定放大器的核心部分,其基本原理如下:1、相关接收原理互相关接收对于已知为周期性的信号的检测十分有用。

图所示,输入乘法器的两路信号中,e1(t)为被检测信号,是VA(t)与背景信号Vn(t)的叠加,e2(t)为在接收设备中设法产生的与被检测信号VA(t)同步的参考信号VB(t)。

将参考信号与杂有噪声的输入信号进行相关,得到被测信号的相关函数,就代表了被测信号。

其相关函数为:由于噪声Vn(t)与参考信号VB(t)的相关性,RNB=0,因此有2、相关器相关器由相敏检波器(PSD)与低通滤波器组成,是锁定放大器的核心部件。

锁定放图3锁定放大器中通常采用的相关器大器中的相关器,通常采用图3所示的形式,由一个开关式乘法器(_)与低通滤波器(LPF)组成。

(1)同步检测器令图3中输入开关乘法器的被测信号VA(t)和参考信号VB(t)分别为则开关乘法器的输出信号为可见开关乘法器的输出由和频(wA+wB)和差频(wA-wB)两部分组成。

锁定放大器实验报告

锁定放大器实验报告

A6 :潘美方、于溪、石汶奇锁定放大器的设计(C题)摘要本系统是基于锁定放大器的微弱信号检测装置,用来检测在强噪声的影响下微弱正弦波的幅值。

本系统由纯电阻分压网络、加法器、交流放大器、带通滤波器、滞回比较器、相敏检波器、低通滤波器和直流放大电路组成。

本系统是以相敏检波器为核心,参考信号经过移相后,通过滞回比较器触发整形产生方波。

移相电路用于调整方波与正弦波相位一致性,开关乘法器CD4053在方波的驱动下对正弦波进行全波整流,最后通过低通滤波器和直流放大器检测出微弱信号,并通过MCU采样,在液晶屏上显示微弱信号的幅度。

经最终的测试,系统能较好的完成微弱信号的检测。

AbstractThis system is a device for weak signal detection based on Lock-in amplifier,which can be used to detect the weak amplitude sine wave under the influence of strong noise.The system consists of a purely resistive divider network,adders,AC amplifier,a bandpass filter,hysteresis comparator,phrase sensitive detector,a low-pass filter and a DC amplifier circuit.The phrase shifter is for adjusting the phase of the square wave and sine wave consistency,with switch multiplier CD4053 driving under the square wave full-wave rectified sine wave.Finally, after go through the low-pass filter and a DC amplifier,we detect the weak signal with sampling by MCU, and display the amplitude of the weak signal on the LCD screen.After the final test, the system can complete the detection of weak signals well.1 系统方案1.1 方案比较与选择1.1.1 触发整形电路方案一:采用单限比较器。

锁相放大器的原理实验报告修订稿

锁相放大器的原理实验报告修订稿

锁相放大器的原理实验报告WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-锁相放大器的原理实验报告摘要:随着科学技术的发展,微弱信号的检测越来越重要。

微弱信号检测是利用电子学、信息论、物理学和电子计算机的综合技术。

它是在认识噪声与信号的物理特性和相关性的基础上,把被噪声淹没的有用信号提取出来的一门新兴技术学科。

锁相放大器就是检测淹没在噪声中微弱信号的仪器。

它可用于测量交流信号的幅度和位相,有极强的抑制干扰和噪声的能力,极高的灵敏度,可检测毫微伏量级的微弱信号。

锁相放大器可以理解为用噪声频带压缩的方法,将微弱信号从噪声中提取出来。

本实验通过测量锁相放大器的工作参数和特性,掌握相关检测原理以及锁相放大器的正确使用方法。

关键词:锁相放大器;微弱信号放大;PSD输出波形;谐波响应一、引言随着科学技术的发展,科学研究领域向宏观和微观不断深入,常常需要检测极微弱的信号,如物理学中的表面物理特性,光学中的拉曼光谱、光声光谱、脉冲瞬态光谱,生物学中的细胞发光特性、生物电的测量等。

在这些测量过程中,待测的微弱信号常常淹没在强大的背景噪声之中,使用常规的检测手段就无法达到目的。

而且随着科学的发展,对实验数据的可靠性、准确性、精确性的要求也越来越高,因此,微弱信号的检测就越来越重要,自60年代初开始,关于信号检测与处理的技术开始产生并迅速发展,现已逐渐形成一专门的边缘科学,在物理、化学、生物、天文、地质、医学、材料等学科领域得到广泛应用。

锁相放大器(Lock-In Amplifier,简写为LIA)就是检测淹没在噪声中微弱信号的仪器。

它可用于测量交流信号的幅度和位相,有极强的抑制干扰和噪声的能力,极高的灵敏度,可检测毫微伏量级的微弱信号,能测量到输入信噪比低至10-5的微弱正弦量。

自1962年第一台锁相放大器商品问世以来,锁相放大器有了迅速发展,性能指标有了很大提高,现已被广泛应用于科学技术的很多领域。

锁相放大实验报告范文-图文

锁相放大实验报告范文-图文

锁相放大实验报告范文-图文(实验报告)锁相放大【摘要】随着科学技术的发展,需要测量许多物理量的微小变化。

其中锁相放大器是目前最常见的仪器,适用于对淹没在噪声背景中的正弦波或方波信号的检测。

通过对本实验的演练以及相关知识的了解,了解相关检测原理、锁相放大器(LOOK-IN)的基本组成,掌握锁相放大器的正确使用方法及在检波上的应用。

【关键词】弱信号检测、相关器、锁相放大、互相关函数、抗干扰【引言】随着科学技术和生产的发展,在很多时候我们需要测量许多物理量的微小变化。

特别是极端条件下的微弱信号的测量,是深化认识自然、开拓新材料、创造新器件的基础。

对上述微小变化的测量,通常我们可以用传感器将其转化为相应的电信号,然后对这些电信号进行发达,然后进行检测。

但是这些微小的变化通过传感器转换成的电信号十分微弱,而且各种条件下的噪声和干扰很可能将这些微弱信号淹没,因此单纯的使用放大器将其放大,并不能将这些信号正确地检测出来,因为一般放大器会将信号与噪声一起放大,被测信号因被噪声覆盖而使放大失去了意义。

因此去掉上述信号中的噪声与干扰成为了解决弱信号测量问题的关键。

一般,去除噪声和干扰有同步积累、相关接受等方法。

【正文】锁相放大器的基本原理是相关接收原理,由互相关函数R某y()lim12TTTT某(t)y(t)dt知道,若某(t),y(t)互相没有关系,互相关函数将是一个常数,等于两个随机函数的平均值的积,由于电噪声函数一般符合高斯正态分布,其平均值为零,因此我们认为信号和噪声的互相关函数为零。

令某(t)V(t)n1(t)y(t)Vr(t)n2(t)Vr(t)其中n1(t)和n2(t)分别代表了待测信号V(t)及参考信号混在一起的噪声,则R某y()lim12TTTTV(t)Vr(t)V(t)n2(t)Vr(t)n1(t)n1(t)n2(t)dtRr()R2()Rr1()R12()其中,Rr(),R2(),Rr1(),R12()分别是两信号之间,信号与噪声,噪声与噪声之间的相关函数,由于信号与噪声不相关,所以R2(),Rr1(),R12()为零。

锁相环倍频器的实训报告

锁相环倍频器的实训报告

一、实训目的通过本次实训,使学生掌握锁相环倍频器的基本原理、设计方法和实验技能,提高学生运用理论知识解决实际问题的能力,培养学生的动手操作能力和团队协作精神。

二、实训内容1. 锁相环倍频器的基本原理锁相环倍频器是一种能够将输入信号频率进行整数倍放大的电路。

它主要由压控振荡器(VCO)、鉴相器(PD)、低通滤波器(LPF)和分频器组成。

当输入信号与VCO的输出信号之间存在相位差时,PD将这个相位差转换为误差电压,通过LPF滤波后,控制VCO的频率,使VCO的输出信号与输入信号保持同步,从而达到倍频的目的。

2. 锁相环倍频器的设计(1)选择合适的VCO:根据输入信号的频率和所需的倍频次数,选择合适的VCO,确保VCO的频率范围满足设计要求。

(2)设计鉴相器:鉴相器的作用是检测输入信号与VCO输出信号的相位差,并将相位差转换为误差电压。

常用的鉴相器有乘法鉴相器和相位比较鉴相器。

(3)设计低通滤波器:低通滤波器的作用是滤除误差电压中的高频分量,使其平滑,以便控制VCO的频率。

常用的低通滤波器有RC滤波器和有源滤波器。

(4)设计分频器:分频器的作用是将VCO的输出信号进行分频,得到所需的倍频信号。

常用的分频器有数字分频器和模拟分频器。

3. 锁相环倍频器的实验(1)搭建实验电路:根据设计好的电路图,搭建锁相环倍频器实验电路。

(2)测试电路性能:使用示波器、频率计等仪器,测试电路的输出信号频率、相位噪声、频率稳定度等性能指标。

(3)分析实验结果:根据实验数据,分析电路性能,找出存在的问题,并提出改进措施。

三、实训过程1. 实验准备(1)查阅相关资料,了解锁相环倍频器的基本原理、设计方法和实验技巧。

(2)熟悉实验设备和仪器,了解其性能和操作方法。

(3)设计实验电路图,列出所需元器件清单。

2. 搭建实验电路(1)按照实验电路图,连接电路元器件。

(2)检查电路连接是否正确,确保电路安全可靠。

3. 测试电路性能(1)使用示波器观察VCO的输出信号波形,记录频率、相位噪声等数据。

近物实验II锁相放大

近物实验II锁相放大

锁相放大器实验一、引言锁相放大器(lock-in amplifier)是检测淹没在噪声中微弱信号的常用仪器。

它利用待测信号和参考信号的互相关检测原理实现对信号的窄带化处理,能有效地抑制噪声,实现对信号的检测和跟踪。

自1962年第一台锁相放大器问世以来,锁相放大器有了迅速发展,性能指标有了很大提高,目前已经能够在强噪声背景下检测出几nV 的交流信号。

锁相放大器已成为现代科学技术中必不可少的常用仪器,已广泛地用于物理、化学、生物、电讯、医学等领域。

锁相放大器不能像光子计数器那样测量极微弱的光信号,但它能测量宽范围的光强度,并且不局限于光信号的测量。

因此,培养学生掌握这种技术的原理和应用,具有重要的现实意义。

本实验通过测量锁相放大器的工作参数和特性,掌握相关检测原理以及锁相放大器的正确使用方法。

二、实验原理1.相关接收微弱信号检测的基础是被测信号在时间上具有前后相关性的特点。

所谓相关,是指两个函数间有一定的关系,相关按概念分为自相关和互相关。

微弱信号检测中一般都采用抗干扰能力强的互相关检测。

相关函数是表征线性相关的度量。

设信号)(1t f 为被检信号)(t V s 和噪声)(t V n 的叠加,)(2t f 为与被检信号同步的参考信号)(t V r , 二者的相关函数为()()()()()()()12121lim d 21lim ()d 2,T TT T s n r T T sr nr R f t f t t T V t V t V t t T R R τττττ-→∞-→∞=⋅-=+⋅-⎡⎤⎣⎦=+⎰⎰ (1) 由于噪声)(τn V 和参考信号)(τr V 不相关, 故0)(=τnr R ,所以)()(12ττsr R R =。

以上分析表明,利用参考信号与有用信号具有相关性,而参考信号与噪声相互独立、互不相关的性质,可以使之通过互相关运算削弱噪声的影响,即对混有噪声的信号和参考信号进行相乘和积分处理,就能够把深埋在任意大噪声中的微弱信号检测出来,根据此原理设计的相干检测器即相关器构成了锁相放大器的核心部分。

锁相放大器实验报告

锁相放大器实验报告

锁相放大器实验报告锁相放大器实验报告引言:锁相放大器是一种用于测量微弱信号的高精度仪器,广泛应用于光电子学、材料科学等领域。

本实验旨在通过锁相放大器的使用,探索其原理和应用,并验证其在信号测量方面的优势。

一、实验目的本实验的主要目的是学习锁相放大器的工作原理和使用方法,并通过实验验证锁相放大器在测量微弱信号时的优越性能。

二、实验装置本实验所使用的实验装置主要包括锁相放大器、信号发生器、光电探测器等。

其中,锁相放大器是实验的核心设备,其通过对输入信号进行相位调制和解调,实现对微弱信号的放大和测量。

三、实验步骤1. 连接实验装置:首先,将信号发生器和光电探测器分别与锁相放大器连接,确保各设备之间的信号传输正常。

2. 设置实验参数:根据实验要求,设置锁相放大器的工作频率、相位等参数,以及信号发生器的频率和幅度等参数。

3. 测量信号:通过调节信号发生器的输出信号,使其与待测信号频率相匹配,然后通过光电探测器将信号转化为电信号输入到锁相放大器中。

4. 数据采集与分析:通过锁相放大器的显示屏或计算机软件,获取测量到的信号数据,并进行分析和处理,得到所需的实验结果。

四、实验结果与讨论通过实验,我们得到了一系列测量结果,并进行了相应的数据分析和讨论。

首先,我们验证了锁相放大器对微弱信号的放大效果。

实验结果表明,锁相放大器能够有效地放大微弱信号,并提供高精度的测量结果。

其次,我们研究了锁相放大器的相位调制和解调原理。

相位调制是通过改变输入信号的相位,使其与参考信号保持一定的相位差,从而实现对信号的放大和测量。

而解调则是将锁相放大器输出的调制信号恢复为原始信号,并进行相应的分析和处理。

另外,我们还探索了锁相放大器在光电子学领域的应用。

通过将锁相放大器与光电探测器相结合,我们可以实现对光信号的高精度测量,这在光通信、光谱分析等领域具有重要的应用价值。

五、实验总结通过本次实验,我们深入了解了锁相放大器的工作原理和使用方法,并验证了其在信号测量方面的优越性能。

锁相放大器实验报告

锁相放大器实验报告

ቤተ መጻሕፍቲ ባይዱ次实验的收获与体会
掌握了锁相放大器的基本原理和操作方法 学会了如何调整锁相放大器的参数以获得最佳性能 提高了实验动手能力和解决问题的能力 认识到团队合作在实验中的重要性,学会了如何与团队成员沟通和协作
对实验中遇到的问题和解决方案的反思与总结
遇到的问题:信号干扰、设备故障、操作失误等 解决方案:调整信号源、更换设备、规范操作等 反思:实验过程中需要注意的细节和可能出现的问题 总结:通过实验,提高了解决问题的能力和团队合作精神
调整锁相放大器参数,进行信号放大处理
调整锁相放大器参 数:设置合适的放 大倍数、相位差和 带宽
输入信号:选择合 适的信号源,如正 弦波、方波等
信号放大处理:将 输入信号通过锁相 放大器进行放大处 理
观察输出信号:使 用示波器等设备观 察输出信号的波形 和幅度,确保满足 实验要求
使用示波器和电脑采集和处理实验数据
Part Two
实验设备
锁相放大器
锁相放大器是一种用于测量微弱信号的电子设备。 锁相放大器的主要功能是提取信号中的频率和相位信息。 锁相放大器通常由一个参考信号和一个输入信号组成。 锁相放大器的性能指标包括灵敏度、动态范围、相位噪声等。
信号发生器
型号:Agilent 33220A 功能:产生正弦波、方波、三角波等信号 频率范围:1Hz-10MHz 精度:±0.01%
对实验教学的建议和改进意见
增加实验操作演示,帮助学生更好地理解和掌握实验步骤。 提供更多的实验案例,让学生通过实践锻炼解决问题的能力。 加强实验过程中的指导,及时发现并纠正学生的错误操作。 鼓励学生进行创新实验,培养学生的创新意识和实践能力。
对后续学习和实践的展望与计划
深入学习锁相放 大器的原理和应 用

锁相放大器的原理实验分析报告

锁相放大器的原理实验分析报告

精心整理锁相放大器的原理实验报告摘要:随着科学技术的发展,微弱信号的检测越来越重要。

微弱信号检测是利用电子学、信息论、物理学和电子计算机的综合技术。

它是在认识噪声与信号的物理特性和相关性的基础上,把被噪声淹没的有用信号提取出来的一门新兴技术学科。

锁相放大器就是检测淹没在噪声中微弱信号的仪器。

它可用于测量交流信号的幅度和一、开始产生并迅速发展,现已逐渐形成一专门的边缘科学,在物理、化学、生物、天文、地质、医学、材料等学科领域得到广泛应用。

锁相放大器(Lock-InAmplifier,简写为LIA)就是检测淹没在噪声中微弱信号的仪器。

它可用于测量交流信号的幅度和位相,有极强的抑制干扰和噪声的能力,极高的灵敏度,可检测毫微伏量级的微弱信号,能测量到输入信噪比低至10-5的微弱正弦量。

自1962年第一台锁相放大器商品问世以来,锁相放大器有了迅速发展,性能指标有了很大提高,现已被广泛应用于科学技术的很多领域。

目前全世界已有多个厂家生产该仪器本实验使用由南京微弱信号检测中心研制的微弱信号综合实验仪来介绍锁相放大器的基本工作原理与使用方法,通过本实验可以了解锁相放大器的基本特点和应用方向。

二、实验(一)(二)1.左右。

调节信号源,使输出波形分别为三角波和方波,重复上述观测。

2.相敏检波器的特性研究及主要参数测量a.相敏检波器PSD输出波形和电压测量按图接线,置交流放大倍数为×1,直流放大倍数为×10,相关器低通滤波时间常数置1秒,调节宽带移相器的相移量,用示波器观察信号、参考信号及PSD的输出波形并分析它们之间的关系,测量相关器输出直流电压大小与信号、参考信号之间幅值及相位差的关系,用相位计测量值大小,在0度~360度范围内作PSD输出直流信号Udc和输入信号Ui的比值Udc/Ui与相位差的关系曲线度与理论公式对比(必须有0度、90度、180度、270度以及直流输出最大和最小的数据)。

其中Udc为相关器输出直流电压,Kac为交流放大倍数,Kdc为直流放大倍数,为输入信号的幅值,为相位差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
改变信号的幅值和频率,观察同相输出信号幅值和频率的变化,并做简要分析。
调节信号源,使输出波形分别为三角波和方波,重复上述观测。
2、相敏检波器的特性研究及主要参数测量
(1)相敏检波器PSD输出波形和电压测量
按图7接线,置交流放大倍数为1,直流放大倍数为10,相关器低通滤波时间常数置1秒,调节宽带移相器的相移量,用示波器观察信号、参考信号及PSD的输出波形并分析它们之间的关系,测量相关器输出直流电压大小与信号、参考信号之间幅值及相位差的关系,用相位计测量值大小,记录参考信号和输入信号的相位差分别为0、90、180、270时,PSD输出直流信号udc在示波器上输出的波形。与图1比较,分析相关器的原理。
改变时间常数T=0.1s和T=10s,从示波器上观察直流输出信号的波形,比较不同时间常数下的信号波形,同时可以利用2V量程档测量不同时间常数下的直流输出信号中的噪声电压,了解相关器对噪声的抑制能力。
实验数据整理与归纳:
1、参考信号通道特性研究
利用多功能信号源输出正弦波,其频率为1000hz,电压大小为100.3mV,调节相移器的0 、90 、180 、270 移相按钮,示波器ch1通道是输入的正弦波形,ch2通道输出的是通过移相器后的信号波形,记录如下:
(3)相关器对不相关信号的抑制
按图8所示接线,多功能信号源的输出正弦信号为相关器的输入信号,低频信号源的输出信号作为相关器的干扰信号,由相关器的“噪声输入”端输入。由示波器观察相关器的“加法器输出”波形与“PSD输出”波形,用电压表测量输入信号,干扰信号,相关器输出信号大小,由频率计测量信号和干扰信号的频率。
实验目的:
锁相放大器可以理解为用噪声频带压缩的方法,将微弱信号从噪声中提取出来。本实验通过测量锁相放大器的工作参数和特性,掌握相关检测原理以及锁相放大器的正确使用方法。
实验使用仪器与材料:
ND-501型微弱信号检测实验综合装置、相敏检波器、示波器、接线及接线口若干。
实验步骤:
(一)、实验仪器
图5是ND-501型微弱信号检测实验综合装置的面板图,该装置把微弱信号检测技术的基本实验部件装在一个插件盒内,由一个能同时插四个插件盒的带电源的机箱,通过插入不同的实验部件盒组成不同类型的微弱信号检测仪器。
(4)相关器对噪声的抑制及等效噪声带宽
白噪声电压与带宽有关,通过高、低通滤波器可以组成一个已知带宽的带通滤波器来确定噪声带宽。对于二阶有源滤波器信号带宽fs与等效噪声带宽fN关系为:fN=(/2)fs
测试方框图如图9所示。白噪声信号源通过高低通滤波器组成的带通滤波器的限制,使高通、低通滤波器的输出为已知等效噪声带宽的噪声源,输给相关器的噪声,白噪声电压的大小由交流、直流、噪声电压表测量,在测量白噪声电压时,给出的是白噪声的均方根电压,注意,只能用2V量程档测量噪声电压。高通,低通滤波器的高通截止频率选在2噪声带宽fN=(/2)fs=(/2)(25000-250)Hz=39kHz。
相关器选KAC=10,KDC=10,T=1秒。输入信号频率fs=1kHz,Vsi=50mV,先不加白噪声干扰信号。调节相移器的相移,使输入信号与参考信号同相,并用示波器观察“加法器输出”“PSD输出”的波形,用电压表测量输出电压。
白噪声信号由相关器“噪声输入”输入,作为干扰信号,用示波器观察“加法器输出”的信号与噪声相混的波形。调节白噪声信号源的输出幅度或与高、低通滤波器的放大倍数相配合调节,使输入白噪声均方根电压为100mV。用示波器观察“加法器输出”信号与噪声相混的波形和“PSD输出”波形。用电压表测量相关器输出的信号电压和噪声电压,计算输出信号的信噪比,根据输入输出信噪比计算SNIR,与公式(12)计算的理论值比较。
广东第二师范学院学生实验报告
院(系)名称
物理系
班别
11物理本四B
姓名
专业名称
物理学(师范)
学号
115506020
实验课程名称
近代物理实验
实验项目名称
锁相放大器实验
实验时间
2014年12月25日
实验地点
物理楼五楼实验室
实验成绩
指导老师签名
内容包含:实验目的、实验使用仪器与材料、实验步骤、实验数据整理与归纳(数据、图表、计算等)、实验结果与分析、实验心得
(二)、锁相放大器的特性和工作参数测定
本实验使用ND-501型微弱信号检测实验综合装置观察锁相放大器的特性并测量其工作参数。
1、参考信号通道特性研究
调节多功能信号源的输出信号为正弦波,用频率计测量其频率,用交流直流噪声电压表测量信号的幅度,调节输出信号的频率为1kHz左右,幅度大小为100mV左右。然后按图6所示接线,按下宽带移相器0移相按钮,调节0~100相位调节按钮,用示波器观察宽带移相器的输入和输出信号的波形的变化,最后使相位差计显示参考信号和输入信号的相位差分别为0、90、180、270对比画出宽带移相器的输入和输出信号的波形。
(2)相关器的谐波响应的测量与观察
将图7中宽带移相器的输入信号接至多功能信号源的“倍频分频输出”,多功能信号源功能“选择”置“分频”,此时,参考信号的频率为信号频率的1/n次倍。
先置分频数为1,调节移相器的相移,使输出直流电压最大,记录输出直流电压的大小。改变n的数值分别为2,3,4,5,进行上述测量,根据测量结果画出相关器对谐波的响应图。
选择相关器的交流放大倍数为1,直流放大倍数为10,时间常数1秒,调节多功能信号源的频率为200Hz(可以任选),电压为100mV,调节低频信号源的输出电压为0(即相关器输入信号不混有干扰信号),调节宽带相移器的相移量,使相关器输出的直流电压最大。记录“加法器输出”,“PSD输出”波形及相关器输出的直流电压(正比于输入信号的有效值)。调节低频信号源的输出电压为300mV,即干扰电压为待测量信号电压的3倍。任选一工作频率(例如为930Hz)。由示波器观察“加法器输出”“PSD输出波形”,观测此时被测信号与干扰信号波形及相关器的输出直流电压变化。改变干扰信号的频率,观察相关器对不相关信号的抑制能力,对实验现象进行总结,分析相关器抑制干扰的能力。
相关文档
最新文档