东大18秋学期《离散数学》在线作业3答案

合集下载

离散数学(本)形考三答案

离散数学(本)形考三答案

形考任务三单项选择题题目1谓词公式(x)(A(x)→B(x)∨C(x,y))中的()。

选择一项:正确答案是:x是约束变元,y都是自由变元题目2表达式的辖域是( ).选择一项:题目3下列公式成立的为( ).选择一项:正确答案是:┐P∧(P∨Q)Q题目4命题公式 (P∨Q)→R的析取范式是 ( ).选择一项:正确答案是:(┐P∧┐Q)∨R题目5设个体域D是整数集合,则命题的真值是().选择一项:正确答案是:T题目6设个体域D={a, b, c},那么谓词公式消去量词后的等值式为( ).选择一项:题目7下列公式 ( )为重言式.选择一项:正确答案是:Q→(P∨(P∧Q))↔Q →P题目8设A(x):x是人,B(x):x是教师,则命题“有人是教师”可符号化为().选择一项:题目9命题公式为( )选择一项:正确答案是:可满足式题目10下列等价公式成立的为( ).选择一项:正确答案是:P→(┐Q→P)┐P→(P→Q)判断题题目11命题公式┐(P→Q)的主析取范式是P∨┐Q.( )选择一项:正确的答案是“错”。

题目12设P:他生病了,Q:他出差了,R:我同意他不参加学习.那么命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为(P∨Q)→┐R.( )选择一项:正确的答案是“错”。

题目13设P:小王来学校, Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.( )选择一项:正确的答案是“对”。

题目14命题公式P→(Q∨P)的真值是T.( )选择一项:正确的答案是“对”。

题目15设个体域D={1,2, 3, 4},A(x)为“x大于5”,则谓词公式(∀x)A(x)的真值为T.( )选择一项:正确的答案是“错”。

题目16设P:我们下午2点去礼堂看电影,Q:我们下午2点去教室看书.那么命题“我们下午2点或者去礼堂看电影或者去教室看书”符号化的结果为P∨Q.( )正确的答案是“错”。

离散数学第3版习题答案

离散数学第3版习题答案

离散数学第3版习题答案【篇一:华东师范大学离散数学章炯民课后习题第3章答案】xt>(1)2是正数吗?(2)x2+x+1=0。

(3)我要上学。

(4)明年2月1日下雨。

(5)如果股票涨了,那么我就赚钱。

解:(1) 不是(2) 不是(3) 不是(4) 是(5) 是2. 判断下列命题的真值:(1)若1+1=3,则2+2=4(2)若鸟会飞,则 1+1=3解:(1) 1(2) 011. 将下列两个命题符号化,并分别用真值表和等值演算的方法证明所得到的那两个命题公式是等值的。

(1)你不会休息所以就不会工作,你没有丰富的知识所以你就不会工作;(2)你会工作所以一定会休息并具有丰富的知识。

解:设p:你会休息,q:你会工作,r:你有丰富的知识。

原命题符号化为(1) (?p??q) ?(?r??q)(2) q?(p?r)12.(1)用等值演算的方法证明命题恒等式p?(q?p)=?p?(p??q)。

13. 构造一个只含命题变量p、q和r的命题公式a,满足:p、q和r的任意一个赋值是a的成真赋值当且仅当p、q和r中恰有两个为真。

解:(p?q??r)?( p??q?r)?(?p?q?r)14. 通过等值演算求p?(p?(q?p))的主析取范式和主合取范式。

解:主析取范式:(?p?q)?(?p??q)?(p??q)?(p?q )主合取范式不存在15. 一教师要从3名学生a、b和c中选派1~2人参加市级科技竞赛,需满足以下条件:(1)若a去,则c同去;(2)若b去,则c不能去;(3)若c不去,则a或b可以去。

问该如何选派?解:为此问题建立数学模型。

有三个方案:仅c去,仅b去,仅a和c去16. 证明{?,?}是功能完备集。

17. (1)证明p?(q?s),q,p??r?r?s。

证明:① p??r 前提引入② r 附加前提引入③ p ①②析取三段④ p?(q?s) 前提引入⑤ q?s ③④假言推理⑥ q 前提引入⑦ s ⑤⑥假言推理19. 构造下列推理的形式证明:“今天下午没有出太阳并且今天比昨天冷。

东大22春《离散数学》在线平时作业3【参考答案】

东大22春《离散数学》在线平时作业3【参考答案】

《离散数学》在线平时作业3【参考答案】
试卷总分:100 得分:100
一、单选题 (共 10 道试题,共 50 分)
1.7.选择题:在一次集会中,与奇数个人握手的人数共有()个。

A.奇数
B.不能确定
C.偶数
D.不知道
标准答案:C
2.选择填空题。

R是A上关系,如果R是自反的,当且仅当()。

A.A中有些元素x,有<x,x>&isin;R ;
B.所有A中元素x,都有<x,x>&isin;R ;
C.所有A中元素x,y,如果有<x,y>&isin;R ,也有< y, x >&isin;R;则x=y 。

标准答案:B
3.单选题。

无向图G中有21条边,3个4度结点,其余都是3度结点。

问G中有()个结点?
A.12;
B.13;
C.16;
D.18。

标准答案:B
4.{图}
A.f是满射,g是入射。

B.f是双射,g是双射
C.f是入射,g是满射。

D.f是入射,g是入射。

标准答案:C
5.单选题。

有n个结点的无向完全图有( )条边。

A.2n;
B.(n(n-1))&divide;2;
C.n(n-1);
D.n2。

标准答案:B
6.X,Y 是有限集合,|X|=m,|Y|=n。

可以构成 ( )个从X到Y的函数。

A.mn
B.mn
C.2mn
D.nm
标准答案:D。

(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案

(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案

(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案 100%通过考试说明:2020年秋期电大把该网络课纳入到“国开平台”进行考核,该课程共有5个形考任务,针对该门课程,本人汇总了该科所有的题,形成一个完整的标准题库,并且以后会不断更新,对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。

做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。

本文库还有其他网核及教学考一体化答案,敬请查看。

课程总成绩 = 形成性考核×30% + 终结性考试×70% 形考任务1 单项选择题题目1 若集合A={ a,{a},{1,2}},则下列表述正确的是().选择一项:题目2 若集合A={2,a,{ a },4},则下列表述正确的是( ).选择一项:题目3 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.选择一项:B. 对称题目4 设集合A={1, 2, 3},B={3, 4, 5},C={5, 6, 7},则A∪B–C=( ).选择一项:D. {1, 2, 3, 4} 题目5 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.选择一项:C. 2 题目6 集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y∈A},则R的性质为().选择一项:D. 传递的题目7 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).选择一项:题目8 设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().选择一项:C. 8 题目9 设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为 ( ).选择一项:B. 无、2、无、2 题目10 设集合A ={1 , 2, 3}上的函数分别为:f = {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>},h = {<1, 3>,<2,1>,<3, 1>},则h =().选择一项:D. f◦g 判断题题目11 设A={1, 2}上的二元关系为R={<x, y>|xA,yA, x+y =10},则R的自反闭包为{<1, 1>, <2, 2>}.()选择一项:对题目12 空集的幂集是空集.()选择一项:错题目13 设A={a, b},B={1, 2},C={a, b},从A到B的函数f={<a, 1>, <b, 2>},从B到C的函数g={<1, b>, <2, a >},则g° f ={<1,2 >, <2,1 >}.()选择一项:错题目14 设集合A={1, 2, 3, 4},B={2, 4, 6, 8},下列关系f = {<1, 8>, <2, 6>,<3, 4>, <4, 2,>}可以构成函数f:.()选择一项:对题目15 设集合A={1, 2, 3},B={2, 3, 4},C={3, 4, 5},则A∩(C-B )= {1, 2, 3, 5}.()选择一项:错题目16 如果R1和R2是A上的自反关系,则、R1∪R2、R1∩R2是自反的.()选择一项:对题目17 设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有反自反性质.()选择一项:对题目18 设集合A={1, 2, 3},B={1, 2},则P(A)-P(B )={{3},{1,3},{2,3},{1,2,3}}.()选择一项:对题目19 若集合A = {1,2,3}上的二元关系R={<1, 1>,<1, 2>,<3, 3>},则R是对称的关系.()选择一项:错题目20 设集合A={1, 2, 3, 4 },B={6, 8, 12}, A到B的二元关系R=那么R-1={<6, 3>,<8,4>}.()选择一项:对形考任务2 单项选择题题目1 无向完全图K4是().选择一项:C. 汉密尔顿图题目2 已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).选择一项:D. 5 题目3 设无向图G的邻接矩阵为则G的边数为( ).选择一项:A. 7 题目4 如图一所示,以下说法正确的是 ( ) .选择一项:C. {(d, e)}是边割集题目5 以下结论正确的是( ).选择一项:C. 树的每条边都是割边题目6 若G是一个欧拉图,则G一定是( ).选择一项:B. 连通图题目7 设图G=<V, E>,v∈V,则下列结论成立的是 ( ) .选择一项:题目8 图G如图三所示,以下说法正确的是 ( ).选择一项:C. {b, c}是点割集题目9 设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).选择一项:A. (a)是强连通的题目10 设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是( ).选择一项:D. (d)只是弱连通的判断题题目11 设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树.( ) 选择一项:对题目12 汉密尔顿图一定是欧拉图.( ) 选择一项:错题目13 设连通平面图G的结点数为5,边数为6,则面数为4.( ) 选择一项:错题目14 设G是一个有7个结点16条边的连通图,则G为平面图.( ) 选择一项:错题目15 如图八所示的图G存在一条欧拉回路.( ) 选择一项:错题目16 设图G如图七所示,则图G的点割集是{f}.( ) 选择一项:错题目17 设G是一个图,结点集合为V,边集合为E,则( ) 选择一项:对题目18 设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.( ) 选择一项:错题目19 如图九所示的图G不是欧拉图而是汉密尔顿图.( ) 选择一项:对题目20 若图G=<V, E>,其中V={ a, b, c, d },E={ (a, b), (a, d),(b, c), (b, d)},则该图中的割边为(b, c).( ) 选择一项:对形考任务3 单项选择题题目1 命题公式的主合取范式是( ).选择一项:题目2 设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为( ).选择一项:题目3 命题公式的主析取范式是( ).选择一项:题目4 下列公式成立的为( ).选择一项:题目5 设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().选择一项:题目6 前提条件的有效结论是( ).选择一项:B. ┐Q 题目7 命题公式(P∨Q)→R的析取范式是 ( ).选择一项:D. (┐P∧┐Q)∨R 题目8 下列等价公式成立的为( ).选择一项:题目9 下列等价公式成立的为( ).选择一项:题目10 下列公式中 ( )为永真式.选择一项:C. ┐A∧┐B ↔ ┐(A∨B) 判断题题目11 设个体域D={1, 2, 3},A(x)为“x小于3”,则谓词公式(∃x)A(x) 的真值为T.( ) 选择一项:对题目12 设P:小王来学校, Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.( ) 选择一项:对题目13 下面的推理是否正确.( ) (1) (∀x)A(x)→B(x) 前提引入(2) A(y)→B(y) US (1) 选择一项:错题目14 含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式(P∧Q∧R)∨(P∧Q∧┐R).( ) 选择一项:对题目15 命题公式P→(Q∨P)的真值是T.( ) 选择一项:对题目16 命题公式┐P∧P的真值是T.( ) 选择一项:错题目17 谓词公式┐(∀x)P(x)(∃x)┐P(x)成立.( ) 选择一项:对题目18 命题公式┐(P→Q)的主析取范式是P∨┐Q.( ) 选择一项:错题目19 设个体域D={a, b},则谓词公式(∀x)(A(x)∧B(x))消去量词后的等值式为(A(a)∧B(a))∧(A(b)∧B(b)).( ) 选择一项:对题目20 设个体域D={a, b},那么谓词公式(∃x)A(x)∨(∀y)B(y)消去量词后的等值式为A(a)∨B(b).( ) 选择一项:错形考任务4 要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅. 2. 在线提交word文档. 3. 自备答题纸张,将答题过程手工书写,并拍照上传形考任务 5 网上学习行为(学生无需提交作业,占形考总分的10%)附:元宇宙(新兴概念、新型虚实相融的互联网应用和社会形态)元宇宙(Metaverse)是整合了多种新技术而产生的新型虚实相融的互联网应用和社会形态,通过利用科技手段进行链接与创造的,与现实世界映射与交互的虚拟世界,具备新型社会体系的数字生活空间。

离散数学答案版(全)

离散数学答案版(全)

1.2.4
0 0 1 1 条件联结词→
P
0 1 0 1
Q
0 1 1 1
P Q
0 0 1 1 1.2.5 双条件联结词
P
0 1 0 1
Q
1 1 0 1
P Q
1.2.6
0 0 1 1 与非联结词↑
P
0 1 0 1
Q
1 0 0 1
PQ
1 1 1 0
0 0 1 1
0 1 0 1
性质: (1) P↑P ﹁(P∧P) ﹁P; (2) (P↑Q)↑(P↑Q) ﹁(P↑Q) P∧Q; (3) (P↑P)↑(Q↑Q) ﹁P↑﹁Q P∨Q。 1.2.7 或非联结词↓
P
Q
PQ
1 0 0 0
0 0 1 1
0 1 0 1
性质: (1)P↓P ﹁(P∨Q) ﹁P; (2) (P↓Q)↓(P↓Q) ﹁(P↓Q) P∨Q; (3) (P↓P)↓(Q↓Q) ﹁P↓﹁Q ﹁(﹁P∨﹁Q) P∧Q。
石材加工 红提采摘 2 金刚石磨头
1.5
对偶与范式
1.5.1 对偶 定义 在仅含有联结词 Ø、∧、∨的命题公式 A 中,将联结词∧换成∨,将 ∨换成∧,如果 A 中含有特殊变元 0 或 1,就将 0 换成 1,1 换成 0,所得的命题 公式 A*称为 A 的对偶式。 例:公式( P∨Q)∧(P∨ Q) 的对偶式为: ( P∧Q)∨(P∧ Q) 定理 设 A 和 A*互为对偶式,P1,P2,…,Pn 是出现在 A 和 A*中的所有原子
P
Q
P Q
( P Q)
( P Q) Q
0 0 1 1
0 1 0 1
1 1 0 1

离散数学答案版(全)

离散数学答案版(全)

1.2.4
0 0 1 11
Q
0 1 1 1
P Q
0 0 1 1 1.2.5 双条件联结词
P
0 1 0 1
Q
1 1 0 1
P Q
1.2.6
0 0 1 1 与非联结词↑
P
0 1 0 1
Q
1 0 0 1
PQ
1 1 1 0
0 0 1 1
0 1 0 1
性质: (1) P↑P ﹁(P∧P) ﹁P; (2) (P↑Q)↑(P↑Q) ﹁(P↑Q) P∧Q; (3) (P↑P)↑(Q↑Q) ﹁P↑﹁Q P∨Q。 1.2.7 或非联结词↓
定义设pq是两个命题公式复合命题pq称为命题pq的条件否定当且仅当p的真值为1q的真值为0时pq的真值为1否则pq的真值为0172最小联结词组定义设s是一些联结词组成的非空集合如果任何的命题公式都可以用仅包含s中的联结词的公式表示则称s是联结词的全功能集
第一章
命题逻辑
内容: 命题及命题联结词、命题公式的基本概念,真值表、基本等价式及永真蕴涵 式,命题演算的推理理论中常用的直接证明、条件证明、反证法等证明方法。 教学目的: 1.熟练掌握命题、联结词、复合命题、命题公式及其解释的概念。 2.熟练掌握常用的基本等价式及其应用。 3.熟练掌握(主)析/合取范式的求法及其应用。 4.熟练掌握常用的永真蕴涵式及其在逻辑推理中的应用。 5.熟练掌握形式演绎的方法。
式中每一个析取项都是 P1,P2,…,Pn 的一个极大项,则称该合取范式为 G 的主 合取范式。通常,主合取范式用↕表示。重言式的主合取范式中不含任何极大项, 用 1 表示。 定理 任意的命题公式都存在一个唯一的与之等价的主合取范式。
1.6
公式的蕴涵

离散数学习题三 含答案

离散数学习题三 含答案

离散数学习题三含答案(总3页) -本页仅作为预览文档封面,使用时请删除本页-离散数学习题三11、填充下面推理证明中没有写出的推理规则。

前提:p∨p→∨,⌝⌝s,rrqq,结论:s证明:① p 前提引入②q⌝p前提引入∨③ q (①②析取三段论)④r⌝前提引入q∨⑤ r (③④析取三段论)r→前提引入⑥s⑦ s (⑤⑥假言推理)12、填充下面推理证明中没有写出的推理规则。

前提:s)→(r→p→→(qqr),结论:s∧q)(p→证明:①q)(p∧(附加前提)② p (①化简规则)③ q (①化简规则)④r)→前提引入p→(q⑤rq→(②④假言推理)⑥ r (③⑤假言推理)⑦s)q→→前提引入(r⑧s)(r→(③⑦假言推理)⑨ s (⑥⑧假言推理)13、前提:s r ,q p q,q)p (→∨∧→⌝结论1:r结论2:s结论3:s ∨r(1)证明从此前提出发,推出结论1,结论2,结论3的推理都是正确的。

(2)证明从此前提出发,推任何结论的推理都是正确的。

证明:(1)①r s))r (q)(p q)q)p (((→→∨∨∨∧→⌝1r s))r (q)p (q)q)p ((⇔∨⌝∧∨⌝∧⌝∨⌝∨∨⌝⇔②s s))r (q)(p q)q)p (((→→∨∨∨∧→⌝1s s))r (q)p (q)q)p ((⇔∨⌝∧∨⌝∧⌝∨⌝∨∨⌝⇔③s)(s))r (q)(p q)q)p (((∨→→∨∨∨∧→⌝r1s s))r (q)p (q)q)p ((⇔∨∨⌝∧∨⌝∧⌝∨⌝∨∨⌝⇔r即结论1,结论2,结论3的推理都是正确的。

(2)s)r (q)(p q)q)p ((→∧∨∧∧→⌝s)r (q)(p q)q p (s)r (q)(p q)q)p ((∨⌝∧∨∧∧⌝∧⇔∨⌝∧∨∧∧∨⌝⌝⇔ 0s)r (q)(p 0⇔∨⌝∧∨∧⇔即推任何结论的推理都是正确的。

14、在自然推理系统P 中构造下面推理的证明:(1)前提:q p,r)(q p ,→→结论:s r →证明:①r)(q p →→ 前提引入② p 前提引入③r)(q→①②假言推理④ q 前提引入⑤r③④假言推理r→⑤附加律⑥s15、在自然推理系统P中用附加前提法证明下面的推理:前提:q→s,p→→p,r)(qs→结论:r证明:① s 附加前提引入②ps前提引入→③ p ①②假言推理④r)→前提引入(qp→⑤rq→③④假言推理⑥ q 前提引入⑦ r ⑤⑥假言推理即根据附加前提证明法,推理正确。

离散数学形考任务03答案

离散数学形考任务03答案

离散数学作业3离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。

本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业。

要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成并上交任课教师(不收电子稿)。

并在03任务界面下方点击“保存”和“交卷”按钮,以便教师评分。

一、单项选择题1.若集合A ={2,a ,{ a },4},则下列表述正确的是( B ). A .{a ,{a }}∈A B .{ a }⊆A C .{2}∈A D .∅∈A 2.设B = { {2}, 3, 4, 2},那么下列命题中错误的是( B ).A .{2}∈B B .{2, {2}, 3, 4}⊂BC .{2}⊂BD .{2, {2}}⊂B 3.若集合A ={a ,b ,{ 1,2 }},B ={ 1,2},则( D ).A .B ⊂ A B .A ⊂ BC .B ∉ AD .B ∈ A 4.设集合A = {1, a },则P (A ) = ( C ).A .{{1}, {a }}B .{∅,{1}, {a }}C .{∅,{1}, {a }, {1, a }}D .{{1}, {a }, {1, a }} 5.设集合A = {1,2,3},R 是A 上的二元关系,R ={<a , b >⎢a ∈A ,b ∈ A 且1=-b a }则R 具有的性质为( B ).A .自反的B .对称的C .传递的D .反对称的 6.设集合A = {1,2,3,4,5,6 }上的二元关系R ={<a , b >⎢a , b ∈A ,且a =b },则R 具有的性质为( D ).A .不是自反的B .不是对称的C .反自反的D .传递的 7.设集合A ={1 , 2 , 3 , 4}上的二元关系R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>}, S = {<1 , 1>,<2 , 2>,<2 , 3>,<3 , 2>,<4 , 4>},则S 是R 的( C )闭包.A .自反B .传递C .对称D .以上都不对 8.设集合A ={a , b },则A 上的二元关系R={<a , a >,<b , b >}是A 上的(C )关系.A .是等价关系但不是偏序关系B .是偏序关系但不是等价关系C .既是等价关系又是偏序关系D .不是等价关系也不是偏序关系 9.设集合A = {1 , 2 , 3 , 4 , 5}上的偏序关系的哈斯图如右图所示,若A 的子集B = {3 , 4 , 5},则元素3为B 的( C ).A .下界B .最大下界C .最小上界D .以上答案都不对10.设集合A ={1 , 2, 3}上的函数分别为:f = {<1 , 2>,<2 , 1>,<3 , 3>},g = {<1 , 3>,<2 , 2>,<3 , 2>},h = {<1 , 3>,<2 , 1>,<3 , 1>},则 h =( B ).(A )f ◦g (B )g ◦f (C )f ◦f (D )g ◦g二、填空题1.设集合{1,2,3},{1,2}A B ==,则A ⋃B = {1,2,3} ,A ⋂B = {1,2} .2.设集合{1,2,3},{1,2}A B ==,则P (A )-P (B )= {{3},{1,3},{2,3},{1,2,3}} ,A ⨯B = {〈1,1〉,〈1,2〉,〈2,1〉,〈2,2〉,〈3,1〉,〈3,2〉} .3.设集合A 有10个元素,那么A 的幂集合P (A )的元素个数为 1024 .4.设集合A = {1,2,3,4,5 },B = {1,2,3},R 从A 到B 的二元关系,R ={<a , b >⎢a ∈A ,b ∈B 且2≤a + b ≤4}则R 的集合表示式为 {〈1,1〉,〈1,2〉,〈1,3〉,〈2,1〉,〈2,2〉,〈3,1〉} .5.设集合A ={1, 2, 3, 4 },B ={6, 8, 12}, A 到B 的二元关系R =},,2,{B y A x x y y x ∈∈=>< 那么R -1= {〈6,3〉,〈8,4〉} 6.设集合A ={a , b , c , d },A 上的二元关系R ={<a , b >, <b , a >, <b , c >, <c , d >},则R 具有的性质是 没有任何性质 .7.设集合A ={a , b , c , d },A 上的二元关系R ={<a , a >, <b , b >, <b , c >, <c , d >},若在R 中再增加两个元素 {< c , b >, < d ,c >} ,则新得到的关系就具有对称性.8.设A ={1, 2}上的二元关系为R ={<x , y >|x ∈A ,y ∈A , x +y =10},则R 的自反闭包为5{〈1,1〉,〈2,2〉}.9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含〈1,1〉,〈2,2〉,〈3,3〉等元素.10.设集合A={1, 2},B={a, b},那么集合A到B的双射函数是σ={〈1,a〉,〈2,b〉}或σ={〈1,b〉,〈2,a〉}.三、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R={<1, 1>,<2, 2>,<1, 2>},则(1) R是自反的关系;(2) R是对称的关系.解:(1)错误。

2018秋离散数学形考3(包含四套随机题)

2018秋离散数学形考3(包含四套随机题)

2018秋离散数学形考3(随机试题1)正确获得10.00分中的10.00分标记题目题干无向图G存在欧拉回路,当且仅当().选择一项:A. G连通且所有结点的度数全为偶数B. G中至多有两个奇数度结点C. G连通且至多有两个奇数度结点D. G中所有结点的度数全为偶数反馈你的回答正确正确答案是:G连通且所有结点的度数全为偶数题目2正确获得10.00分中的10.00分标记题目题干如图二所示,以下说法正确的是 ( ).图二选择一项:A. e是割点B. {a,e}是点割集C. {d}是点割集D. {b, e}是点割集反馈你的回答正确正确答案是:e是割点题目3正确获得10.00分中的10.00分标记题目题干无向树T有8个结点,则T的边数为( ).选择一项:A. 9B. 8C. 7D. 6反馈你的回答正确正确答案是:7题目4正确获得10.00分中的10.00分标记题目题干设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).图五选择一项:A. (a)是强连通的B. (b)是强连通的C. (c)是强连通的D. (d)是强连通的反馈你的回答正确正确答案是:(a)是强连通的题目5正确获得10.00分中的10.00分标记题目题干设图G=<V, E>,v V,则下列结论成立的是 ( ) .选择一项:A.B. deg(v)=2| E |C.D. deg(v)=| E |反馈你的回答正确正确答案是:题目6正确获得10.00分中的10.00分标记题目题干已知无向图G的邻接矩阵为,则G有().选择一项:A. 5点,8边B. 5点,7边C. 6点,8边D. 6点,7边反馈你的回答正确正确答案是:5点,7边题目7正确获得10.00分中的10.00分标记题目题干设无向图G的邻接矩阵为,则G的边数为( ).选择一项:A. 7B. 14C. 1D. 6反馈你的回答正确正确答案是:7题目8正确获得10.00分中的10.00分标记题目题干以下结论正确的是( ).选择一项:A. 有n个结点n-1条边的无向图都是树B. 无向完全图都是欧拉图C. 树的每条边都是割边D. 无向完全图都是平面图反馈你的回答正确正确答案是:树的每条边都是割边题目9正确获得10.00分中的10.00分标记题目题干图G如图三所示,以下说法正确的是 ( ).选择一项:A. {c}是点割集B. {b, d}是点割集C. {b,c}是点割集D. a是割点反馈你的回答正确正确答案是:{b,c}是点割集题目10正确获得10.00分中的10.00分标记题目题干无向简单图G是棵树,当且仅当( ).选择一项:A. G连通且边数比结点数少1B. G中没有回路.C. G的边数比结点数少1D. G连通且结点数比边数少1反馈你的回答正确正确答案是:G连通且边数比结点数少1 2018秋离散数学形考3(随机试题2)题目1正确获得10.00分中的10.00分标记题目题干无向完全图K4是().选择一项:A. 树B. 欧拉图C. 汉密尔顿图D. 非平面图反馈你的回答正确正确答案是:汉密尔顿图题目2正确获得10.00分中的10.00分标记题目题干设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是( ).图六选择一项:A. (c)只是弱连通的B. (b)只是弱连通的C. (d)只是弱连通的D. (a)只是弱连通的反馈你的回答正确正确答案是:(d)只是弱连通的题目3正确获得10.00分中的10.00分标记题目题干若G是一个欧拉图,则G一定是( ).选择一项:A. 汉密尔顿图B. 连通图C. 对偶图D. 平面图反馈你的回答正确正确答案是:连通图题目4正确获得10.00分中的10.00分标记题目题干如图一所示,以下说法正确的是 ( ) .选择一项:A. {(d, e)}是边割集B. {(a, e)}是割边C. {(a, e) ,(b, c)}是边割集D. {(a, e)}是边割集反馈你的回答正确正确答案是:{(d, e)}是边割集题目5正确获得10.00分中的10.00分标记题目题干图G如图四所示,以下说法正确的是 ( ) .选择一项:A. {(a, d)}是割边B. {(a, d)}是边割集C. {(b, d)}是边割集D. {(a, d) ,(b, d)}是边割集反馈你的回答正确正确答案是:{(a, d) ,(b, d)}是边割集题目6正确获得10.00分中的10.00分标记题目题干若G是一个汉密尔顿图,则G一定是( ).选择一项:A. 对偶图B. 连通图C. 欧拉图D. 平面图反馈你的回答正确正确答案是:连通图题目7正确获得10.00分中的10.00分标记题目题干设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G 的一棵生成树.选择一项:A.B.C.D.反馈你的回答正确正确答案是:题目8正确获得10.00分中的10.00分标记题目题干设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).选择一项:A. v+e-2B. e+v+2C. e-v+2D. e-v-2反馈你的回答正确正确答案是:e-v+2题目9正确获得10.00分中的10.00分标记题目题干已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).选择一项:A. 8B. 5C. 3D. 4反馈你的回答正确正确答案是:5题目10正确获得10.00分中的10.00分标记题目题干设无向图G的邻接矩阵为,则G的边数为( ).选择一项:A. 3B. 6C. 5D. 4反馈你的回答正确正确答案是:52018秋离散数学形考3(随机试题3) 题目1正确获得10.00分中的10.00分标记题目题干设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).图五选择一项:A. (b)是强连通的B. (d)是强连通的C. (a)是强连通的D. (c)是强连通的反馈你的回答正确正确答案是:(a)是强连通的题目2正确获得10.00分中的10.00分标记题目题干设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G 的一棵生成树.选择一项:A.B.C.D.反馈你的回答正确正确答案是:题目3正确获得10.00分中的10.00分标记题目题干设无向图G的邻接矩阵为,则G的边数为( ).选择一项:A. 5B. 4C. 6D. 3反馈你的回答正确正确答案是:5题目4正确获得10.00分中的10.00分标记题目题干如图二所示,以下说法正确的是 ( ).图二选择一项:A. {b, e}是点割集B. {a,e}是点割集C. e是割点D. {d}是点割集反馈你的回答正确正确答案是:e是割点题目5正确获得10.00分中的10.00分标记题目题干无向树T有8个结点,则T的边数为( ).选择一项:A. 6B. 7C. 8D. 9反馈你的回答正确正确答案是:7题目6正确获得10.00分中的10.00分标记题目题干无向图G存在欧拉回路,当且仅当().选择一项:A. G中所有结点的度数全为偶数B. G连通且至多有两个奇数度结点C. G连通且所有结点的度数全为偶数D. G中至多有两个奇数度结点反馈你的回答正确正确答案是:G连通且所有结点的度数全为偶数题目7正确获得10.00分中的10.00分标记题目题干设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).选择一项:A. e+v+2B. e-v-2C. e-v+2D. v+e-2反馈你的回答正确正确答案是:e-v+2题目8正确获得10.00分中的10.00分标记题目题干如图一所示,以下说法正确的是 ( ) .选择一项:A. {(a, e)}是割边B. {(d, e)}是边割集C. {(a, e)}是边割集D. {(a, e) ,(b, c)}是边割集反馈你的回答正确正确答案是:{(d, e)}是边割集题目9正确获得10.00分中的10.00分标记题目题干若G是一个欧拉图,则G一定是( ).选择一项:A. 连通图B. 对偶图C. 汉密尔顿图D. 平面图反馈你的回答正确正确答案是:连通图题目10正确获得10.00分中的10.00分标记题目题干无向简单图G是棵树,当且仅当( ).选择一项:A. G的边数比结点数少1B. G中没有回路.C. G连通且结点数比边数少1D. G连通且边数比结点数少1反馈你的回答正确正确答案是:G连通且边数比结点数少1 2018秋离散数学形考3(随机试题4)题目1正确获得10.00分中的10.00分标记题目题干无向完全图K4是().选择一项:A. 树B. 汉密尔顿图C. 非平面图D. 欧拉图反馈你的回答正确正确答案是:汉密尔顿图题目2正确获得10.00分中的10.00分标记题目题干设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是( ).图六选择一项:A. (d)只是弱连通的B. (a)只是弱连通的C. (b)只是弱连通的D. (c)只是弱连通的反馈你的回答正确正确答案是:(d)只是弱连通的题目3正确获得10.00分中的10.00分标记题目题干设图G=<V, E>,v V,则下列结论成立的是 ( ) .选择一项:A.B.C. deg(v)=2| E |D. deg(v)=| E |反馈你的回答正确正确答案是:题目4正确获得10.00分中的10.00分标记题目题干图G如图三所示,以下说法正确的是 ( ).选择一项:A. a是割点B. {b,c}是点割集C. {c}是点割集D. {b, d}是点割集反馈你的回答正确正确答案是:{b,c}是点割集题目5正确获得10.00分中的10.00分标记题目题干已知无向图G的邻接矩阵为,则G有().选择一项:A. 5点,8边B. 6点,8边C. 5点,7边D. 6点,7边反馈你的回答正确正确答案是:5点,7边题目6正确获得10.00分中的10.00分标记题目题干以下结论正确的是( ).选择一项:A. 树的每条边都是割边B. 无向完全图都是欧拉图C. 无向完全图都是平面图D. 有n个结点n-1条边的无向图都是树反馈你的回答正确正确答案是:树的每条边都是割边题目7正确获得10.00分中的10.00分标记题目题干设无向图G的邻接矩阵为,则G的边数为( ).选择一项:A. 7B. 1C. 14D. 6反馈你的回答正确正确答案是:7题目8正确获得10.00分中的10.00分标记题目题干图G如图四所示,以下说法正确的是 ( ) .选择一项:A. {(a, d) ,(b, d)}是边割集B. {(b, d)}是边割集C. {(a, d)}是割边D. {(a, d)}是边割集反馈你的回答正确正确答案是:{(a, d) ,(b, d)}是边割集题目9正确获得10.00分中的10.00分标记题目题干若G是一个汉密尔顿图,则G一定是( ).选择一项:A. 对偶图B. 欧拉图C. 连通图D. 平面图反馈你的回答正确正确答案是:连通图题目10正确获得10.00分中的10.00分标记题目题干已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).选择一项:A. 8B. 3C. 4D. 5反馈你的回答正确正确答案是:5。

东大18秋学期《离散数学》在线作业1答案

东大18秋学期《离散数学》在线作业1答案
A错误
B正确
正确答案是:B
5、
判断题,判断下面说法是否正确。
“对于整数集合I上的减法运算“-”来说, 0是幺元。”
A错误
B正确
正确答案是:A
三、多选题共5题,25分
1、
AA:⑴⑵⑶
BB:⑴⑵⑷
CC:⑵⑶⑷
DD:⑴⑵⑶⑷
正确答案是:AD
2、
多选题。下面哪些序列可能是汉米尔顿图的结点度数序列
A (1,2,3,4,5)
C无法确定
D不知道
正确答案是:B
7、
单选题。一棵根树是m叉树,当且仅当 该图( )。
A每个结点的度数是m;
B 每个结点的出度都是m;
C每个结点的出度小于或等于m;
D恰有一个结点入度为0:其余结点入度为1。
正确答案是:C
8、
单选填空题。E是全集,E={a,b},E的幂集P(E)上的交运算Ç,的零元是
()。
3、
单选题。结点是树的叶结点,当且仅当该结点( )。
A度数不为0;
B度数大于1;
C度是等于1。
正确答案是:C
4、
A等价
B不等价
C无法确定
D不知道
正确答案是:A
5、
单选题。有n个结点的无向完全图有( )条边。
A2n;
B (n(n-1))÷2;
Cn(;
D n2。
正确答案是:B
6、
A矛盾式
B重言式
AΦ;
B{a} ;
C {b};
D {a,b};
E不存在。
正确答案是:A
9、
单选题。一棵根树是完全m叉树,当且仅当 该图( )。
A每个结点的度数是m;
B每个结点的出度都是m;

离散数学形考任务1-7试题及答案完整版

离散数学形考任务1-7试题及答案完整版

2017年11月上交的离散数学形考任务一本课程的教学内容分为三个单元,其中第三单元的名称是(A ).选择一项:A. 数理逻辑B. 集合论C. 图论D. 谓词逻辑题目2答案已保存满分10.00标记题目题干本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是(D ).选择一项:A. 函数B. 关系的概念及其运算C. 关系的性质与闭包运算D. 几个重要关系题目3答案已保存满分10.00标记题目题干本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有(B)讲.选择一项:A. 18B. 20C. 19D. 17题目4答案已保存满分10.00标记题目题干本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是( C).选择一项:A. 集合恒等式与等价关系的判定B. 图论部分书面作业C. 集合论部分书面作业D. 网上学习问答题目5答案已保存满分10.00标记题目题干课程学习平台左侧第1个版块名称是:(C).选择一项:A. 课程导学B. 课程公告C. 课程信息D. 使用帮助题目6答案已保存满分10.00标记题目题干课程学习平台右侧第5个版块名称是:(D).选择一项:A. 典型例题B. 视频课堂C. VOD点播D. 常见问题题目7答案已保存满分10.00标记题目题干“教学活动资料”版块是课程学习平台右侧的第( A )个版块.选择一项:A. 6B. 7C. 8D. 9题目8答案已保存满分10.00标记题目题干课程学习平台中“课程复习”版块下,放有本课程历年考试试卷的栏目名称是:(D ).选择一项:A. 复习指导B. 视频C. 课件D. 自测请您按照课程导学与章节导学中安排学习进度、学习目标和学习方法设计自己的学习计划,学习计划应该包括:课程性质和目标(参考教学大纲)、学习内容、考核方式,以及自己的学习安排,字数要求在100—500字.完成后在下列文本框中提交.解答:学习计划学习离散数学任务目标:其一是通过学习离散数学,使学生了解和掌握在后续课程中要直接用到的一些数学概念和基本原理,掌握计算机中常用的科学论证方法,为后续课程的学习奠定一个良好的数学基础;其二是在离散数学的学习过程中,培养自学能力、抽象思维能力和逻辑推理能力,解决实际问题的能力,以提高专业理论水平。

《离散数学》第三次在线作业

《离散数学》第三次在线作业

第三次第1题不能再分解的命题称为原子命题,至少包含一个联结词的命题称为复合命题您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查原子命题和复合命题的基本概念第2题命题是能够表达判断(分辩其真假)的陈述语句您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查命题的基本概念第3题一个命题可赋予一个值,称为真值您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查命题真值的基本概念第4题复合命题是由连结词、标点符号和原子命题复合构成的命题您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查复合命题的基本概念第5题在条件命题P→Q中,命题P称为P→Q的前件或前提,命题Q称为P→Q的后件或结论您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查条件命题的基本概念第6题给定一个命题,若无论对分量作怎样的指派,其对应的真值永远为T,则称该命题公式为重言式或永真公式您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查永真公式的基本概念第7题给定一个命题,若无论对分量作怎样的指派,其对应的真值永远为F,则称该命题公式为矛盾式或永假公式您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查永假公式的基本概念第8题任何两个重言式的合取或析取仍然是一个重言式您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查重言式的基本概念第9题一个命题称为合取范式,当且仅当它具有如下的形式: A1∧A2∧…∧An,(n≥1)其中A1,A2,…,An都是由命题变元或其否定所组成的析取式您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查合取范式的基本概念第10题一个命题称为析取范式,当且仅当它具有如下的形式: A1∨A2∨… ∨An,(n≥1)其中A1,A2,…,An都是由命题变元或其否定所组成的合取式您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查析取范式的基本概念第11题一个命题的合取范式或析取范式不是唯一的您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查合取范式或析取范式的不唯一性第12题推理理论中的四个推理规则是全称指定规则 (US规则)、全称推广规则 (UG规则)、存在指定规则 (ES规则) 、存在推广规则 (EG规则)您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查推理理论中的四个推理规则第13题如果p表示王强是一名大学生,则¬p表示王强不是一名大学生您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查命题的运算第14题设p:2008年将在北京举办奥运会,q:中国是世界四大文明古国之一,则p∧q:2008年将在北京举办奥运会并且中国是世界四大文明古国之一您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查命题的∧运算第15题设p:小王努力学习,q:小王学习成绩优秀,则:p→q:如果小王努力学习,那么他的学习成绩就优秀您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查条件命题的基本概念第16题设p:张华是三好学生,q:张华德、智、体全优秀,则:p↔q:张华是三好学生当且仅当德、智、体全优秀您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查等价命题的基本概念第17题与一个个体相关联的谓词叫做一元谓词您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查一元谓词的基本概念第18题一般的,把与n个个体相关联的谓词叫做n元谓词您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查n元谓词的基本概念第19题量词分两种:全称量词和存在量词您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查量词的种类第20题设A1是合式公式A的子公式,若A1等价B1,并且将A中的A1用B1 替换得到公式B,则A等价B,称该定理为替换规则您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查替换规则的基本概念第21题对于任何一命题公式,都存在与其等价的析取范式和合取范式您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查命题公式的基本概念第22题“全体立正”不是命题您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查命题的基本概念第23题“禁止吸烟!”不是命题您的答案:正确题目分数:0.5此题得分:0.5批注:本题考查命题的基本概念第24题“我正在说谎。

离散数学第3章答案

离散数学第3章答案

习题3.11.(1) {0,1,2,3,4,5,6,7,8,9}(2) {aa , ab , ba , bb }(3) {-1,1}(4) {11,13,17,19,23,29}(5) {1,2,3, (79)(6) {2}2. 用描述法表示下列集合:(1) 不超过200的自然数的集合;{|N 200}x x x ∈∧≤(2) 被5除余1的正整数的集合;+{|I (N 51)}x x y y x y ∈∧∃∈∧=+(3) 函数y =sin x 的值域;{|R 11}y y y ∈∧-≤≤(4) 72的质因子的集合;{|N |72(N 2|)}x x x y y y x y x ∈∧∧∀∈∧≤<→/(5) 不等式031>-x 的解集; {|R 3}x x x ∈∧>(6) 函数2312+-=x x y 的定义域集. {|R 12}x x x x ∈∧≠∧≠3. 用归纳定义法描述下列集合:(1) 允许有前0的十进制无符号整数的集合;① {0,1,2,3,4,5,6,7,8,9}A ⊆② 如果x A ∈,则{0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9}x x x x x x x x x x x x x x x x x x x x A ⊆(2) 不允许有前0的十进制无符号整数的集合;① {1,2,3,4,5,6,7,8,9}A ⊆② 如果x A ∈,则{0,1,2,3,4,5,6,7,8,9}x x x x x x x x x x A ⊆(3) 不允许有前0的二进制无符号偶数的集合;① 1A ∈② 如果x A ∈,则{0,1}x x A ⊆(4) 5的正整数倍的集合.① 5A ∈② 如果x A ∈,则5x A +∈4. 判断下列命题中,哪些是真的,哪些是假的(A 是任意集合):(1) ;A ∈∅(2) ;A ⊆∅ (3) };{A A ∈ (4) ;A A ⊆ (5) ;A A ∈ (6) };{A A = (7) }.{∅=∅答:(2),(3),(4)为真,(1),(5),(6),(7)为假。

离散数学形成性考核作业三_百度文库

离散数学形成性考核作业三_百度文库

★形成性考核作业★离散数学作业5离散数学图论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。

本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。

要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求本学期第15周末前完成并上交任课教师(不收电子稿)。

并在05任务界面下方点击“保存”和“交卷”按钮,以便教师评分。

一、填空题1.已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边数是 15 .2.设给定图G(如右由图所示),则图G的点割集是.3.设G是一个图,结点集合为V,边集合为E,则G的结点等于边数的两倍.4.无向图G存在欧拉回路,当且仅当G连通且.5.设G=<V,E>是具有n个结点的简单图,若在G中每一对结点度数之和大于等于 n-1 ,则在G中存在一条汉密尔顿路.6.若图G=<V, E>中具有一条汉密尔顿回路,则对于结点集V的每个非空子集S,在G中删除S中的所有结点得到的连通分支数为W,则S中结点数|S|与W 7.设完全图Kn有n个结点(n≥3),m条边,当 n为奇数时,Kn中存在欧拉回路. 8.结点数v与边数e满足9.设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去 10.设正则5叉树的树叶数为17,则分支数为i二、判断说明题(判断下列各题,并说明理由.)1.如果图G是无向图,且其结点度数均为偶数,则图G存在一条欧拉回路..★形成性考核作业★解错误.只有当G是连通图且其结点度数均为偶数时,图G才存在一条欧拉回路.2.如下图所示的图G存在一条欧拉回路.解错误.因为图G是有两个结点b、c的度数均为奇数3,不是偶数,所以不存在欧拉回路.3.如下图所示的图G不是欧拉图而是汉密尔顿图.解正确. G图G有4个3度结点a,b,d,f,所以图G不是欧拉图.图G有汉密尔顿回路abefgdca,所以图G是汉密尔顿图.4.设G是一个有7个结点16条边的连通图,则G为平面图.解错误.因为图G中 v=7, 3v-6=15, e=16>15,不满足“设G是一个有v个结点e条边的连通简单平面图,若v≥3,则e≤3v-6.”这个定理,所以不是平面图.5.设G是一个连通平面图,且有6个结点11条边,则G有7个面.解正确.因为连通平面图G有v=6个结点,e=11条边,那么由欧拉公式:v-e+r=2计算得:r =2+ 11- 6 = 7个面.三、计算题 2★形成性考核作业★1.设G=<V,E>,V={ v1,v2,v3,v4,v5},E={ (v1,v3),(v2,v3),(v2,v4),(v3,v4),(v3,v5),(v4,v5) },试(1) 给出G的图形表示; (2) 写出其邻接矩阵;(3) 求出每个结点的度数; (4) 画出其补图的图形.解(1)G的图形为:(2)图G的邻接矩阵为:⎛0 0A= 1 00⎝0100⎫⎪0110⎪1011⎪⎪1101⎪0110⎪⎭(3)图G的每个结点的度数为:deg(v1)=1,deg(v2)=2,deg(v3)=4,deg(v4)=3,deg(v5)=2.(4)图G的补图为:2.图G=<V, E>,其中V={ a, b, c, d, e},E={ (a, b), (a, c), (a, e), (b, d), (b, e), (c, e), (c, d), (d, e) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G的图形;(2)写出G的邻接矩阵;(3)求出G权最小的生成树及其权值.解:(1)G的图形表示如图3:★形成性考核作业★图3(2)邻接矩阵:⎡0⎢1⎢A(G)=⎢1⎢⎢0⎢⎣11101⎤0011⎥⎥0011⎥⎥1101⎥1110⎥⎦(3)粗线表示最小的生成树,如图4图4最小的生成树的权为:1+1+2+3=7.3.已知带权图G如右图所示.(1) 求图G的最小生成树; (2)计算该生成树的权值.解(1)图G有6个结点,其生成树有5条边,用Kruskal 算法求其权最小的生成树T,做法如下:①选边1;②选边2;③选边3;④选边5;⑤选边7最小生成树为{1,2,3,5,7}.所求最小生成树T如右图.(2)该最小生成树的权为W(T)=1+2+3+5+7=18.4.设有一组权为2, 3, 5, 7, 17, 31,试画出相应的最优二叉树,计算该最优 4★形成性考核作业★二叉树的权.解方法(Huffman算法):(1){2,3,5,7,17,31}(2){5,5,7,17,31}(3){7,10,17,31}(4){17,17,31}(5){}得最优二叉树,如图6所示.该最优二叉树的权为:(2+3)×5+5×4+7×3+17×2+31×1=131.四、证明题1.设G是一个n阶无向简单图,n是大于等于3的奇数.证明图G与它的补图G中的奇数度顶点个数相等.证明设G=<V,E>,G=<V,E'>.则E'是由n阶无向完全图Kn的边删去E所得到的.所以对于任意结点u∈V,u在G和G中的度数之和等于u在Kn中的度数.由于n是大于等于3的奇数,从而Kn的每个结点都是偶数度的(n-1 (≥2)度),于是若u∈V在G中是奇数度结点,则它在G中也是奇数度结点.故图G与它的补图G中的奇数度结点个数相等.2.设连通图G有k个奇数度的结点,证明在图G中至少要添加使其成为欧拉图.证明由定理3.1.2,任何图中度数为奇数的结点必是偶数,可知k是偶数.又根据定理4.1.1的推论,图G是欧拉图的充分必要条件是图G不含奇数度结点.因此只要在每对奇数度结点之间各加一条边,使图G的所有结点的度数变为偶数,成为欧拉图. k故最少要加条边到图G才能使其成为欧拉图. 2k条边才能2。

(完整版)《离散数学》试题及答案解析,推荐文档

(完整版)《离散数学》试题及答案解析,推荐文档

则在解释 I 下取真值为 1 的公式是( ).
(A)xyP(x,y) (B)xyP(x,y) (C)xP(x,x) (D)xyP(x,y). 6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( ).
(A)(1,2,2,3,4,5) (B)(1,2,3,4,5,5) (C)(1,1,1,2,3) (D)(2,3,3,4,5,6). 7. 设 G、H 是一阶逻辑公式,P 是一个谓词,G=xP(x), H=xP(x),则一阶逻辑公式
(A)下界 (B)上界 (C)最小上界
(D)以上答案都不对
6
4 下列语句中,( )是命题。
5
(A)请把门关上 (B)地球外的星球上也有人 (C)x + 5 > 6 (D)下午有会吗?
3
4
2
5 设 I 是如下一个解释:D={a,b}, P(a, a) P(a, b) P(b, a) P(b, b)
1
1010
AB=_________________________;A-B= _____________________ . 7. 设 R 是集合 A 上的等价关系,则 R 所具有的关系的三个特性是______________________,
________________________, _______________________________. 8. 设命题公式 G=(P(QR)),则使公式 G 为真的解释有
(1)
1
4
2
3
1 0 0 0
(2)
MR
1 1
1 1
0 1
0 0
1 1 1 1
3. (1)•=((x))=(x)+3=2x+3=2x+3.

离散数学课后习题答案(第三章)

离散数学课后习题答案(第三章)
(=)∧(=)=
<<x,y>,<w,s>>∈R
故是传递的,于是R是A上的等价关系。
3-10.6设R是集合A上的对称和传递关系,证明如果对于A中的每一个元素a,在A中同时也存在b,使<a,b>在R之中,则R是一个等价关系。
证明:对任意a∈A,必存在一个b∈A,使得<a,b>∈R.
因为R是传递的和对称的,故有:
c)若R1是A上等价关系,则
<a,a>∈R1<a,a>∈R1○R1
所以R12是A上自反的。
若<a,b>∈R12则存在c,使得<a, c>∈R1∧<c,b>∈R1。因R1对称,故有
<b, c>∈R1∧<c,a>∈R1<b, a>∈R12
即R12是对称的。
若<a,b>∈R12∧<b, c>∈R12,则有
若c<0,则a<0u<0au>0
所以(a+bi)R(u+vi),即R在C*上是传递的。
关系R的等价类,就是复数平面上第一、四象限上的点,或第二、三象限上的点,因为在这两种情况下,任意两个点(a,b),(c,d),其横坐标乘积ac>0。
3-10.9设Π和Π是非空集合A上的划分,并设R和R分别为由Π和Π诱导的等价关系,那么Π细分Π的充要条件是RR。
r1和r2分别是ab的两个子集例如r1表示音乐节目播出的时间表r2是戏曲节日的播出时间表则r1r2表示音乐或戏曲节目的播出时间表r1r2表示音乐和戏曲一起播出的时间表r1r2表示音乐节目表以及戏曲节目表但不是音乐和戏曲一起的节日表r1r2表示不是戏曲时间的音乐节目时间麦
证明:设A上定义的二元关系R为:
<a,b>∈R1○R1∧<b, c>∈R1○R1
(e1)(<a, e1>∈R1∧<e1, b>∈R1)∧(e2)(<b, e2>∈R1∧<e2, c>∈R1)
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东大18秋学期《离散数学》在线作业3
1、C
2、C
3、C
4、C
5、B
一、单选题共10题,50分
1、
单选题。

结点是树的叶结点,当且仅当该结点()。

A度数不为0;
B度数大于1;
C度是等于1。

正确答案是:C
2、
单选题。

该图是树,则它的边数e与结点数v之间的关系是()。

Ae=2v-2;
Be=v+1;
Cv=e+1;
D不确定。

正确答案是:C
3、
设论域为{1,2,3},A(x,y)表示x>y。

问有()种指派使得A(x,y为真。

A1;
B2;
C3;
D4 。

正确答案是:C
4、
具有两个命题变元P、Q情况下,在P指派为T,Q指派为F时,真值为假的大项是( )。

AP∨ØQ;
BP∧ØQ;
CØP∨Q;
DØP∧Q 。

正确答案是:C
5、
选择填空题。

R是A上关系,如果R是自反的,当且仅当()。

AA中有些元素x,有<x,x>∈R ;
B所有A中元素x,都有<x,x>∈R ;
C所有A中元素x,y,如果有<x,y>∈R ,也有< y, x >∈R;则x=y 。

正确答案是:B。

相关文档
最新文档