经济应用数学复习题
经济数学试题及答案大全
经济数学试题及答案大全一、单项选择题(每题2分,共20分)1. 函数f(x)=x^2-4x+3的零点个数为()。
A. 0B. 1C. 2D. 3答案:C2. 极限lim(x→0) (sin x)/x的值为()。
A. 1B. 0C. -1D. 2答案:A3. 以下哪个函数是奇函数()。
A. y = x^2B. y = x^3C. y = x^4D. y = ln(x)答案:B4. 以下哪个选项是二阶导数()。
A. f'(x)B. f''(x)C. f'''(x)D. f(x)答案:B5. 以下哪个选项是定积分的基本性质()。
A. ∫[a,b] f(x)dx = ∫[a,c] f(x)dx + ∫[c,b] f(x)dxB. ∫[a,b] f(x)dx = ∫[b,a] f(x)dxC. ∫[a,b] f(x)dx = -∫[b,a] f(x)dxD. ∫[a,b] f(x)dx = ∫[a,b] f(-x)dx答案:A6. 以下哪个选项是多元函数的偏导数()。
A. ∂f/∂xB. ∂f/∂yC. ∂f/∂zD. ∂f/∂t答案:A7. 以下哪个选项是线性代数中的矩阵运算()。
A. 矩阵加法B. 矩阵乘法C. 矩阵转置D. 矩阵求逆答案:B8. 以下哪个选项是概率论中的随机变量()。
A. X = 5B. X = {1, 2, 3}C. X = [0, 1]D. X = {x | x ∈ R}答案:B9. 以下哪个选项是统计学中的参数估计()。
A. 点估计B. 区间估计C. 假设检验D. 方差分析答案:A10. 以下哪个选项是计量经济学中的回归分析()。
A. 简单线性回归B. 多元线性回归C. 时间序列分析D. 面板数据分析答案:A二、填空题(每题2分,共20分)11. 函数f(x)=x^3-3x的导数为_________。
答案:f'(x) = 3x^2 - 312. 极限lim(x→∞) (x^2 - 3x + 2)/(x^2 + 4x + 3)的值为_________。
经济应用数学试题及答案
经济应用数学试题及答案一、选择题(每题2分,共20分)1. 下列函数中,哪一个是偶函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = sin(x)答案:C2. 在线性规划问题中,目标函数的最优值可能在:A. 可行域的顶点B. 可行域的边界C. 可行域的内部D. 所有上述情况答案:D3. 假设某公司生产两种产品,产品1的利润为每单位10元,产品2的利润为每单位20元。
如果公司每天只能生产100单位的产品,且生产产品1需要2小时,产品2需要1小时,而公司每天有200小时的生产时间。
该公司应该如何分配生产时间以最大化利润?A. 只生产产品1B. 只生产产品2C. 生产50单位产品1和50单位产品2D. 生产100单位产品2答案:D4. 以下哪个选项不是边际成本的概念?A. 增加一单位产量的成本B. 总成本对产量的导数C. 固定成本D. 总成本的增加量除以产量的增加量答案:C5. 假设某公司的成本函数为C(x) = 3x^2 + 2x + 5,其中x是生产量。
该公司要生产多少单位的产品才能使平均成本最小?A. x = 0B. x = 1C. x = 2D. x = 3答案:B6. 在完全竞争市场中,长期均衡时,市场价格等于:A. 边际成本B. 平均成本C. 总成本D. 固定成本答案:B7. 以下哪个选项是关于消费者剩余的描述?A. 消费者支付的价格与他们愿意支付的价格之间的差额B. 消费者实际支付的价格C. 消费者购买的商品数量D. 消费者购买商品的总成本答案:A8. 如果一个市场的需求曲线是线性的,斜率为-2,那么需求的价格弹性是多少?A. 0.5B. -1C. -2D. 2答案:C9. 以下哪个选项不是经济利润的特点?A. 包括正常利润B. 考虑了机会成本C. 等于会计利润D. 可能为负值答案:C10. 在多阶段生产过程中,以下哪个选项不是生产者面临的决策类型?A. 投入品的选择B. 生产技术的选择C. 产品价格的确定D. 产出水平的确定答案:C二、简答题(每题10分,共20分)1. 解释什么是边际效用递减原理,并给出一个生活中的实例。
经济数学试题及答案
经济数学试题及答案一、选择题1. 假设市场需求曲线为Qd=100-2P,市场供给曲线为Qs=-20+4P,求平衡价格和平衡数量。
答案:平衡价格为20,平衡数量为40。
2. 若某商品的需求弹性为-2,需求量为10时,价格为20,求需求量变化1%时的价格变化百分比。
答案:需求量变化1%时,价格变化百分比为2%。
3. 某企业生产一种商品,已知其总生产成本函数为C(Q)=100+2Q+0.5Q^2,求当产量为10时,平均成本和边际成本。
答案:当产量为10时,平均成本为25,边际成本为13。
二、计算题1. 已知一家工厂的生产函数为Q=10L^0.5K^0.5,其中L为劳动力投入,K为资本投入。
若工厂每年投入的劳动力为100人,资本为400万元,劳动力每人每年工作2000小时,资本的年利率为10%,求工厂的年产量和总成本。
答案:工厂的年产量为2万单位,总成本为500万元。
2. 假设某商品的总收益函数为R(Q)=500Q-0.5Q^2,总成本函数为C(Q)=100+40Q,求当产量为20时,利润最大化的产量和利润。
答案:当产量为20时,利润最大化的产量为10,利润为250。
三、证明题1. 某商品的边际收益递减法则是指随着生产规模的扩大,每增加一单位产量所带来的边际收益递减。
证明边际收益递减法则成立。
证明:当企业的产品产量增加时,企业需要增加投入以提高产量,但边际收益会递减。
假设某企业当前产量为Q,边际收益为MR,增加一单位产量后,产量为Q+1,边际收益为MR+ΔMR。
由于边际收益递减,ΔMR<0。
所以,边际收益递减法则成立。
四、应用题某公司生产A、B两种产品,已知产品A每单位成本为10元,产品B每单位成本为20元。
市场上A、B产品的需求量分别为1000和500,价格分别为15和25。
若公司希望通过调整价格来提高总利润,应如何调整?答案:根据产品的成本和需求量,计算可得产品A的利润为5000元((15-10)*1000),产品B的利润为2500元((25-20)*500)。
经济应用数学(西南财经大学专升本)
参考答案:B
6、
A .解向量
B .基础解系
C .通解
D . A的行向量
参考答案:A
7、t满足( )时, 线性无关。
A . t≠1;
B . t=1;
C . t≠0;
D . t=0.
参考答案:A
二、计算题共4题,完成0题
1、求向量组 的一个极大无关组,并把其余向量用此极大无关组线性表示。
一、单项选择题共7题,完成0题
1、n维向量组α1,α2,…αs(3≤ s≤ n)线性无关的充要条件是α1,α2,…αs中()。
A .任意两个向量都线性无关
B .存在一个向量不能用其余向量线性表示
C .任一个向量都不能用其余向量线性表示
D .不含零向量
参考答案:C
2、如果两个同维的向量组等价,则这两个向量组( )。
因为向量组α1,α2,α3,…αt线性无关,所以:
k1+k2+…+kt=0,
k2+…+kt=0,
……,
kt=0,
所以k1=k2=…=kt=0矛盾。故向量组α1,α1+α2, … ,α1+α2+ …+αt线性无关。
2、设向量组α1,α2,α3线性无关,证明:向量组α1+α2,α2+α3,α3+α1线性无关。
参考答案:B
7、当( )时,A = 是正交阵。
A . a = 1, b = 2, c = 3
B . a = b = c = 1
C .
D .
参考答案:C
8、设A , B均为n阶方阵,下面结论正确的是( )。
A .若A ,B均可逆,则A + B可逆
中央电大经济数学基础应用题和计算题复习资料
五、应用题(本题20分)1.设生产某种产品q 个单位时的成本函数为:q q q C 625.0100)(2++=(万元), 求:(1)当10=q 时的总成本、平均成本和边际成本;(2)当产量q 为多少时,平均成本最小?解:(1)总成本q q q C 625.0100)(2++=,平均成本625.0100)(++=q qq C , 边际成本65.0)(+='q q C .所以,1851061025.0100)10(2=⨯+⨯+=C (万元),5.1861025.010100)10(=+⨯+=C (万元)116105.0)10(=+⨯='C .(万元) (2)令 025.0100)(2=+-='qq C ,得20=q (20-=q 舍去).因为20=q 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当20=q 时,平均成本最小.2..某厂生产某种产品q 件时的总成本函数为201.0420)(q q q C ++=(元),单位销售价格为q p 01.014-=(元/件),问产量为多少时可使利润达到最大?最大利润是多少. 解:成本为:201.0420)(q q q C ++=收益为:201.014)(q q qp q R -==利润为:2002.010)()()(2--=-=q q q C q R q Lq q L 04.010)(-=',令004.010)(=-='q q L 得,250=q 是惟一驻点,利润存在最大值,所以当产量为250个单位时可使利润达到最大,且最大利润为12302025002.025010)250(2=-⨯-⨯=L (元)。
3.投产某产品的固定成本为36(万元),且边际成本为402)(+='q q C (万元/百台).试求产量由4百台增至6百台时总成本的增量,及产量为多少时,可使平均成本达到最低. 解:成本函数为:36)402()(0++=⎰qdx x q C当产量由4百台增至6百台时,总成本的增量为=+=+=∆⎰6464264|40|)402(x x dx x C 100(万元)364036)402()(20++=++=⎰q q dx x q C qqq q C 3640)(++=∴ 2361)(q q C -=',令0361)(2=-='qq C 得,6,6-==q q (负值舍去)。
经济应用数学复习题
经济应用数学复习题及解答一、填空题1、已知函数)(x f 的定义域是[]3,2,则)9(2x f -的定义域是_______________________。
2、已知)(x f 是可导的偶函数,且2)3(=‘f ,则=-)3(’f ___________________________。
3、某商品的需求函数275Q p =-(p 为价格),则当p =_________时的需求价格弹性为1-。
4、已知点)3,1(为曲线23bx ax y +=的拐点,则=a _____________,=b ________________。
5、已知函数)(x f =xe -,则不定积分⎰=dx xx f )(ln '___________________________________。
6、定积分=-+⎰-dx x x x )1sin (2112________________.7、=⎰-dt e dx d x xt 32________________________________. 8、设函数y y x z sin 2+=,则=dz _______________________________.9、交换二重积分顺序⎰⎰⎰⎰-+2280222202d ),(d d ),(d x x y y x f x y y x f x 为____________________________.10、设,2:22x y x D ≤+⎰⎰-Ddxdy y x x 的值为-则222_____________.11、幂级数∑∞=1n nn x 的收敛域为________________.二、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中) 1、下列极限中,正确的是( ))(A e x xx =+→cot 0)tan 1(lim )(B 01lim sin 1x x x→= )(C sec 0lim(1cos )xx x e →+= )(D 1lim(1)n n n e →∞+=2、设的是,则)(01arctan 1212)(11x f x xx f xx=+-=( ))(A 跳跃间断点 )(B 可去间断点 )(C 连续点 )(D 无穷间断点3、函数)(x f 在点0x x =处可导且2)(0'=x f ,则 hx f h x f h )()(lim 000--→等于( ))(A 21 )(B 2 )(C 21- )(D 2-4、已知0)(=x x f 在的某个邻域内连续,且,0)0(=f ,2cos 1)(lim0=-→xx f x 则0)(=x x f 在处( ) )(A 不可导 )(B 可导且0)0('≠f )(C 取得极小值 )(D 取得极大值 5、设()()F x G x ''=,则( ))(A ()()F x G x + 为常数 )(B ()()F x G x -为常数)(C ()()0F x G x -= )(D ()()d dF x dxG x dx dx dx=⎰⎰ 6、若记=N xdx x ⎰-22sin ππ,=M xdx ⎰-222sin ππ,=P dx x x ⎰-+2221sin ππ,则下列结论正确的是( ))(A N M P >> )(B N M P << )(C M N P << )(D NP M <<7、设[]的是,则 连续,,在)()()(d )()()(x f x F b x a t x f x F b a x f xa≤≤=⎰( ))(A 一个原函数 )(B 原函数的一般表示式)(C 在[]b a ,上的积分与一个常数之差 )(D 在[]b a ,上的定积分8、下列命题不正确的是( ))(A ),(y x f z =在点),(00y x 处可微,则),(y x f 在),(00y x 处关于y x ,的偏导数均存在)(B ),(y x f z =在点),(00y x 处可微,则),(y x f 在),(00y x 处一定连续)(C ),(y x f z =在点),(00y x 关于y x ,的偏导数),(),,(0000y x f y x f y x 均存在,则全微分 dy y x f dx y x f dz y x ),(),(0000+=)(D ),(y x f z =在点),(00y x 邻域关于y x ,的偏导数均存在且连续,则),(y x f z =在点),(00y x 处可微且全微分dy y x f dx y x f dz y x ),(),(0000+= 9、下列广义积分中收敛的是 ( ))(A dx xx e2ln 1⎰+∞)(B dx x x eln 1⎰+∞)(C dx x x e 2ln ⎰∞+ )(D dx xx e ln ⎰+∞10、设幂级数∑∞=-15n n n )x (a在x=-1处收敛,则在x=6处该幂级数是( ))(A 绝对收敛 )(B 条件收敛 )(C 发散 )(D 敛散性不确定11、设无穷级数∑∞=1n na收敛,无穷级数∑∞=1n nb发散,则无穷级数∑∞=+1)(n n nb a( ))(A 条件收敛 )(B 绝对收敛 )(C 可能收敛也可能发散 )(D 发散三、求解下列各题 1、为正整数)(其中n n 4n 124n 1141lim 222⎪⎪⎭⎫⎝⎛++++++∞→ n n 2、⎪⎭⎫ ⎝⎛--→111lim 0x x e x 3、x x x x )11(lim +-∞→ 4、已知0)11(lim 2=--++∞→b ax x x x ,求a ,b 的值。
2022级函授本科《经济应用数学》复习资料
2022级函授本科《经济应用数学》复习资料一、单选题co某in某()(1)in某co某(A)0(B)in2某(C)co2某(D)1(2)设矩阵A22,B32,C23,下列运算不可行的是()(A)ABB.AC(C)BC(D)BAC(3)任意抛一个均匀的骰子两次,则这两次出现的点数之和为8的概率为()(A)236(B)34(C)3636(D)536(4)A、B为两个事件,则P(AB)=()(A)P(A)P(B)(B)P(A)P(AB)(C)P(A)P(B)(D)P(BA)(5)已知A31013,B,则AB()25427(A)无意义(B)是2阶方阵(C)是3某2矩阵(D)是2某3矩阵k某y0(6)若齐次线性方程组有非零解,则k=()某ky0(A)k=-1或k=1(B)k≠-1且k≠1(C)k=1(D)k=-1(7)设A为n阶可逆阵,且A=1,则A1=()(A)0(B)0.25(C)1(D)4(8)设A,B为任意二个随机事件,则下面说法错误的是()(A)A与A互不相容(B)P(AA)P(A)(C)若0P(B)1,则P(A)P(B)P(AB)P(B)P(AB)(D)AB表示A与B都不发生(9)设随机变量某的分布律为某303P0.20.70.12则E(2某1)()(A)12(B)8(C)6.4(D)10(10)设随机变量某~U(2,4),则E某=()(A)3(B)19(C)二、填空题2128(D)33012(1)设A=123,则代数余子式A32_____416325(2)设A103,则代数余子式A32_____034(3)设A为五阶矩阵,A2,A为伴随矩阵,则A(4)设矩阵A(5)(6)设A、B两事件互不相容,则P(AB)(7)设随机变量某~N(2,4),则301A,则0713213=24021E(某)D(某)(8)已知P(A)0.6,P(B)0.4,P(A|B)0.5,则P(AB)________(9)设某服从参数3的指数分布,则(10)设某~N(,),则P某三、计算题(一)2E(某)D(某)1214231.设A211,B101,求2AB352111123410122计算行列式D31101205131215343.求行列式的值。
经济应用数学题集5
经济应用数学题集51、单项选择题(每小题2分,共15分)1.函数的定义域是( )A. B. C. D.2.下列函数中为偶函数的是( )A. B. C. D.3.下列函数中,不是基本初等函数的是( )A. B. C. D.4.当时,与之间的关系为( )A.同阶无穷小,但不是等价无穷小B.等价无穷小C.是较高阶的无穷小D.是较低阶的无穷小5.函数在处连续,则( )A.1B.0C.2D.6.函数在点处的左导数和右导数都存在且相等,是函数在点处可导的( )A.必要条件B.充分条件C.充分必要条件D.无关条件7.已知某函数的二阶导数为,则下列函数中,可能为某函数的是( )A. B. C. D.8.函数在定义域内( )A.单调增加B.单调减少C.不增不减D.有增有减9.函数在上的最小值是( )A. B. C. D.10.设,则( )A. B.C. D.11.下列无穷积分中收敛的是( )A. B. C. D.12.设均为阶可逆矩阵,则下列等式成立的是( )A., B.C. D.13.设,,是单位矩阵,则 =( )A. B. C. D.14.若事件A、B满足,则( )A.A与B同时发生 B.A发生时则B必发生C.B发生时则A必发生 D.A不发生则B总不发生15.某市居民电话普及率为80%,电脑拥有率为30%,有15%两样都没有,如随机检查一户,则既有电脑又有电话之概率为( )A.0.15B.0.2C.0.25D.0.12、填空题(每小题2分,共10分)16.设,则17.曲线在点处的切线方程为18.设函数,则________19.20.设事件A与B互不相容,,则 ____________3、计算题(每小题10分,共20分)21.22.计算二重积分,其中积分区域D为的矩形4、应用题(每小题10分,共20分)23.某企业分批生产某产品q吨,固定成本8万元,总成本函数为其中k为待定系数,已知批量吨时,总成本万元,问批量是多少时,使每批产品的平均成本最低,最低平均成本是多少?24.求抛物线及其在点(0,-3)和(3,0)处的切线所围成图形的面积五、证明题(每小题10分,共20分)25.证明26.证明当时,。
经济数学复习题及答案
一、 单项选择题 1. xx x 1lim→=( )A. 0B. 1C. -1D. 不存在2.设函数f (x )的定义域为[0,4],则函数f (x 2)的定义域为( ) A.[0,2] B.[0,16] C.[-16,16]D.[-2,2]3.设),()(00x f x x f y -∆+=∆且函数)(x f 在0x x =处可导,则必有( ) A .0lim 0=∆→∆y x B .0=∆yC .0=dyD .dy y =∆4.设f (x )为可微函数,且n 为自然数,则⎥⎦⎤⎢⎣⎡+-∞→)n x (f )x (f 1lim n =( )A. 0B.)x (f 'C. -)x (f 'D.不存在 5.要使无穷级∑∞=0n naq(a 为常数,a ≠0)收敛,则q =( )A.0.5B.1C.1.5D.26.设f (x )是连续函数,且f(0)=1,则=⎰→2x limx dt )t (tf x ( ) A. 0 B.21C. 1D. 27.函数⎪⎩⎪⎨⎧≥<+=1312)(3x xx x x f 在x =1处的导数为( ) A. 1 B. 2 C. 3D.不存在 8.函数y =x 2-ln(1+x 2)的极小值为( ) A. 3 B. 2 C. 1D. 09.已知某商品的产量为x 时,边际成本为)x (e x 1004-,则使成本最小的产量是( ) A. 23 B. 24 C. 25 D. 26 10.下列反常积分收敛的是( )A.⎰+∞12d 1x x B.⎰+∞1d 1x x C.⎰+∞1d ln x xD.⎰+∞1d ln x xx1.A2.C3.A4.B5.A6.C7.C8.D9.B 10.A11. 极限=→xxx 62tan lim0( )A .0B .31C .21 D .312.下列区间中,函数f (x)= ln (5x+1)为有界的区间是( )A.(-1,51)B.(-51,5)C.(0,51)D.(51,+∞)13.函数f (x )=ln x - ln(x -1)的定义域是( ) A .(-1,+∞) B .(0,+∞) C .(1,+∞)D .(0,1)14.设函数g (x)在x = a 连续而f (x) = (x-a)g(x),则'f (a) =( ) A. 0 B. g '(a) C. f (a) D. g (a) 15.x =0是函数f (x )=xx +2e的( )A .零点B .驻点C .极值点D .非极值点16.设函数f (x)定义在开区间I上,∈0x I ,且点(x 0, f (x 0) )是曲线y= f (x)的拐点,则必有( ) A. 在点(x 0,f (x 0))两侧,曲线y=f (x)均为凹弧或均为凸弧.B. 当x<x 0时,曲线y=f (x)是凹弧(或凸弧),则x>x 0时,曲线y=f (x)是凸弧(或凹弧).C. x<x 0时,f (x)<f(x 0) 而x>x 0时,f(x)>f(x 0).D. x<x 0时,f (x)>f(x 0) 而x>x 0时,f(x)<f(x 0). 17.设f (x )=arccos(x 2),则f '(x )=( ) A .211x--B .212xx --C .411x--D .412xx --18.设某商品的需求函数为D(P)=475-10P-P 2,则当P = 5时的需求价格弹性为( ) A.0.25 B.-0.25 C.100 D.-100 19.无穷限积分⎰+∞x -dx x e =( )A. -1B. 1C. -21D.21 20.初值问题⎩⎨⎧==+=3|0dy d 2x y y x x 的隐式特解为( )A .x 2+y 2=13B .x 2+y 2=6C .x 2-y 2=-5D .x 2-y 2=1011.B 12.C 13.C 14.D 15.D 16.B 17.D 18.A 1 9.B 20.A 21. 设2a 0π<<,则=→x x sin lim a x ( )A.0B.1C.不存在D.aasin22.已知f(x)的定义域是[0,3a],则f(x+a)+f(x-a)的定义域是( ) A .[a,3a] B .[a,2a] C .[-a,4a]D .[0,2a]23.=→xx x x sin 1sinlim20( )A .1B .∞C .不存在D .024.函数y=1-cosx 的值域是( ) A.[-1,1] B.[0,1] C.[0,2] D.(-∞,+∞)25.下列各式中,正确的是( )A.e )x 11(lim x 0x =++→ B.e )x 1(lim x1x =-→C.e )x11(lim x x -=-∞→ D.1x x e )x11(lim -∞→=- 26.=⎰→xtdtcos limx2x ( )A .0B .1C .-1D .∞27.下列广义积分中,发散的是( )A.⎰+∞1xdx B.⎰+∞+12x 1dx C.⎰+∞-1xdx e D.⎰+∞12)x (ln x dx28.设D=D (p )是市场对某一商品的需求函数,其中p 是商品价格,D 是市场需求量,则需求价格弹性是( ) A .)p ('D p D - B .)p ('D D p - C .)D ('p p D - D .)D ('p Dp- 29.⎰⎰≤+=222y x dxdy ( )A .πB .4C .2πD .230.已知边际成本为x 1100+,且固定成本为50,则成本函数是( )A.100x+x 2B.100x+x 2+50C.100+x 2D.100+x 2+5021.D 22.B 23.D 24.C 25.D 26.C 27.A 28.B 2 9.C 30.B 31. 设⎪⎩⎪⎨⎧=≠-+=0,00,11)(x x xx x f ,则x =0是f (x )的( ) A .可去间断点 B .跳跃间断点 C .无穷间断点 D .连续点32.如果322sin 3lim0=→x mx x ,则m = ( )A .32B .23C .94D .4933.已知某商品的成本函数为500302)(++=Q Q Q C ,则当产量Q =100时的边际成本为( )A .5B .3C .3.5D .1.5 34.在区间(-1,0)内,下列函数中单调增加的是( ) A .14+-=x y B .35-=x y C .12+=x yD .2||+=x y35.函数f(x)在点x=x 0处连续是f(x)在x=x 0处可导的( ) A .必要条件B .充分条件C .充分必要条件D .既非充分条件又非必要条件36.设函数y =f (x )在点x 0的邻域V (x 0)内可导,如果∀x ∈V (x 0)有f (x )≥f (x 0),则有( ) A .)(')('0x f x f ≥ B .)()('0x f x f ≥ C .0)('0=x f D .0)('0>x f37.微分方程01y e x =-'的通解是( ) A . C e y x +=- B .C e y x +-=- C .C e y x += D .C e y x+-= 38.无穷限积分=⎰+∞-02dx xe x ( )A .1B .0C .21-D .2139.下列广义积分中,收敛的是( ) A .⎰-10x 1dx B .⎰∞-e 1x dxC .⎰-10x 1dxD .⎰∞-e 1x dx40.函数y=ln(的定义域是( ) A .),0()0,(+∞⋃-∞ B .),1()0,(+∞⋃-∞ C .(0,1] D .(0,1)31.A 32.C 33.C 34.B 35.A 36.C 37.B 38.D 39.C 40.D41. 函数f(x)=arcsin(2x-1)的定义域是( )A. (-1,1)B. [-1,1]C. [-1,0]D.[0,1]42. 设f(t)=t 2+1,则f(t 2+1)=( ) A. t 2+1 B. t 4+2 C. t 4+t 2+1 D. t 4+2t 2+243.函数y=2+ln(x +3)的反函数是( )A .y=e x +3-2B .y=e x +3+2C .y=e x -2-3D .y=e x -2+344.函数xx f(x)1sin=在点x =0处( ) A .有定义但无极限 B .有定义且有极限 C .既无定义又无极限 D .无定义但有极限 45.设函数f(x)可导,又y=f(-x),则y '=( )A. )x (f 'B. )x (f -'C. -)x (f 'D.-)x (f -'46.设函数f (x )可导,且1Δ)()Δ4(lim000Δ=-+→xx f x x f x ,则=')(0x f ( )A .0B .41C .1D .447.设I=⎰dx x sin x 22,则I=( )A.-cosx 2B.cosx 2C.-cosx 2D.cosx 2+C48.数列0,31,42,53,64,…的极限是( ) A. 0 B. n2n - C. 1 D. 不存在49.广义积分=+⎰∞+∞-dx e 1e x2x( ) A. π B.2π C.4πD.050.若cos2x 是g (x )的一个原函数,则( ) A .⎰+=C x x x g 2cos d )( B .⎰+=C x g x x )(d 2cos C .⎰+='C x x x g 2cos d )(D .⎰+='C x g x x )(d )2(cos41.D 42.D 43.C 44.D 45.D 46.B 47.C 48.C 49.B 50.A51. 极限x x x )31(lim -∞→=( )A.e -3B.e -2C.e -1D.e 352.函数y=ln(22x 1x 1--+)的定义域是( ) A .|x|≤1B .|x|<1C .0<|x|≤1D .0<|x|<153.若f (x )为奇函数,且对任意实数x 恒有f (x +3)-f (x -1)=0,则f (2)=( ) A. -1 B.0 C.1 D.254.设△y=f(x 0+△x)-f(x 0)且函数f(x)在x=x 0处可导,则必有( ) A .0x lim →∆△y=0B .△y=0C .dy=0D .△y=dy55.若曲线y =f (x )在x =x 0处有切线,则导数f '(x 0)( ) A.等于0 B.存在 C.不存在 D.不一定存在56.设函数y =(sin x 4)2,则导数xyd d =( )A. 4x 3cos(2x 4)B. 4x 3sin(2x 4)C. 2x 3cos(2x 4)D. 2x 3sin(2x 4)57.0x lim →x 2sin 2x 1=( )A .0B .1C .-1D .不存在58.若f '(x 2)=x1(x >0),则f (x )=( ) A. 2x +C B.x1+C C. 2x +CD. x 2+C59.设C e dx )x (xf 2x +=-⎰,则f(x)=( ) A .2x xe - B .-2x xe - C .2x e 2-D .-2x e 2-60.设产品的利润函数为L (x ),则生产x o 个单位时的边际利润为( ) A .0x )x (L B .dx )x (dL C .x x dx )x (dL =D .)dx)x (L (dx d 51.A 52.C 53.B 54.A 55.D 56.B 57.A 58.C 59.D 60.C61. 函数f (x )=33x -x 的极大值点为( )A. x =-3B. x =-1C. x=1D. x=3 62.设x 22)x (,x )x (f =ϕ=,则=ϕ)]x ([f ( ) A.2x 2B.x2xC.x 2xD.22x63.函数f (x )=21sin 2xx ++是( )A.奇函数B.偶函数C.有界函数D.周期函数64.设函数y=2x 2,已知其在点x 0处自变量增量3.0x =∆时,对应函数增量y ∆的线性主部为-0.6,则x 0=( )A. 0B. 1C. -0.5D. -465.设函数f(x)在点a 可导,且1h2)h 5a (f )h 5a (f lim 0h =--+→,则=')a (f ( )A. 51B. 5C. 2D.21 66.下列反常积分收敛的是( ) A.⎰∞+1d xx B.⎰∞+1d x x C.⎰∞++11d xxD.⎰∞++121d xx67.下列无穷限积分中,发散的是( ) A.⎰+∞-1x dx xe B.⎰+∞e x ln x dxC.⎰+∞-1x 2dx e xD.⎰+∞e2xln x dx68.设f (x )=2x ,则f ″(x )=( )A. 2x ·ln 22B. 2x ·ln4C. 2x ·2D. 2x ·469.设某商品的需求函数为Q=a-bp ,其中p 表示商品价格,Q 为需求量,a 、b 为正常数,则需求量对价格的弹性=EPEQ( )A. bp a b --B. bp a b-C. bpa bp--D.bpa bp- 70.正弦曲线的一段y =sin x ≤≤x 0(π)与x 轴所围平面图形的面积为( ) A. 1 B.2 C.3 D.461.B 62.D 63.C 64.C 65.A 66.D 67.B 68.A 69.D 70.B71. 设函数)(x f y =的定义域为(1,2),则)(ax f 0<a 的定义域是( )A. )2,1(aa B. )1,2(a a C. )2,(a a D. ),2(a a72. 设f(x)=ln4,则0x lim→∆=∆-∆+xx f x x f )()(( ) A .4 B .41C .0D .∞73.设||)(x x x f =,则=)0('f ( )A. 1B. -1C. 0D. 不存在74.设函数x x x f -=-2)1(,则f(x)=( ) A .)1(-x x B .)1(+x x C .)2)(1(--x x D .)2)(1(-+x x75.下列极限中不能应用洛必达法则的是( )A. x x x ln lim∞→ B. x x x 2cos lim ∞→ C. xxx -→1ln lim 1D. x e x x ln lim -∞→76.设13)(315+-+=x x x x f ,则=)1()16(f ( )A .16!B .15!C .14!D .0 77.设f (x)是连续函数,且⎰=xx x dt t f 0cos )(,则f (x)=( )A. x x x sin cos -B. x x x sin cos +C. x x x cos sin -D. x x x cos sin +78.⎰=+dx )1x 2(100( ) A.C )1x 2(1011101++ B.C )1x 2(2021101++ C.C x ++99)12(100 D.C )1x 2(20099++79.设某商品的需求函数为Q=a-bp ,其中p 表示商品价格,Q 为需求量,a 、b 为正常数,则需求量对价格的弹性=EPEQ( )A.bp a b --B. bp a b- C. bp a bp -- D. bp a bp -80.已知生产某商品x 个的边际收益为30-2x ,则总收益函数为( ) A .2230x - B .230x - C .2230x x - D .230x x - 71.B 72.C 73.C 74.B 75.B 76.D 77.A 78.B 79.D 80.D 二、 填空题1.nn n ln )1ln(lim+∞→= _______。
云南民族大学成人高等教育《经济应用数学(线性代数)》期末考试复习题及参考答案
云南民族大学成人高等教育《经济应用数学(线性代数)》试题姓名专业层次班级一、单项选择题:(本大题共10小题,每小题3分,共计30分)1.设3阶方阵A=[],其中 ( i=1, 2, 3)为A的列向量,且|A|=2,则|B|=|[]|=()A -2B 0C 2D 62.若方程组有非零解,则k=()A -1B 0C 1D 23. 设A,B为同阶可逆方阵,则下列等式中错误的是()A |AB|=|A||B|B (AB)-1=B-1A-1C (A+B)-1=A-1+B-1D (AB)T=BTAT4. 设A为三阶矩阵,且|A|=2,则|(A*)-1|=()[2分]A 1/4B 1C 2D 45.已知向量组A:中线性相关,那么( ) A 线性无关B 线性相关C 可由线性表示D 线性无关6.向量组的秩为r,且r<s,则()A 线性无关B 中任意r个向量线性无关C 中任意r+1个向量线性相关D 中任意r-1个向量线性无关7.若A与B相似,则()[2分]A A,B都和同一对角矩阵相似B A,B有相同的特征向量C A-λE=B-λED |A|=|B|8. 设,是Ax=b的解,η是对应齐次方程Ax=0的解,则()A η+ 是Ax=0的解B η+(- )是Ax=0的解C + 是Ax=b的解D - 是Ax=b的解9.下列向量中与 a=(1,1,-1)正交的向量是()A =(1,1,1)B =(-1,1,1)C =(1,-1,1)D =(0,1,1)10.设A= ,则二次型f(x1,x2)=xTAx是()题号一二三四五总分分数A 正定B 负定C 半正定D 不定二、填空题(本大题共10小题,每小题2分,共计20分)1.设A为三阶方阵且|A|=3,则|2A|= .2.已知 =(1,2,3),则|T|= .3. 设A= ,则A*=____________4. 设A为4×5的矩阵,且秩(A)=2,则齐次方程Ax=0的基础解系所含向量的个数是5. 设有向量 =(1,0,-2), =(3,0,7),=(2,0,6).则的秩是6. 方程x1+x2-x3=1的通解是____________7.设A满足3E+A-A2=0,则 =_________8. 设三阶方阵A的三个特征值为1,2,3. 则|A+E|= .9. 设α与β的内积(α,β)=2,‖β‖=2,则内积(2α+β,-β)=10. 矩阵A= 所对应的二次型是__________三、计算题。
经济应用数学(习题参考详细答案)
经济应用数学(习题参考详细答案)————————————————————————————————作者:————————————————————————————————日期:2习题参考答案第1章 函数、极限与连续习题1.11.(1)不同,因为它们的定义域不同;(2)不同,因为它们的定义域和对应法则都不同. 2.(1)[2,1)(1,2]-U ;(2)(3,3)-.3.2,41,1. 4.(1)12,,ln 2+===x v v u u y ; (2)13,sin ,2+===x v v u u y ;(3)x u u y ln 1,5+==; (4)52,sin ,,2+==-==x t t v v u e y u. 5.(100)2000C =,(100)20C =. 6.2214)(x x x R -=. 7.(1)25000;(2)13000;(3)1000. 8.()1052p Q p =+⨯. 9.130,(0700)9100117,(7001000)x x y x x ≤≤⎧=⎨+<≤⎩. 习题1.21.(1)0; (2)0; (3)1; (4)0; (5)24; (6)41; (7)1; (8)41; (9)0; (10)∞. 2.(1)无穷大; (2)无穷大; (3)无穷小; (4)无穷小; (5)无穷小; (6)无穷大; (7)无穷大; (8)无穷大.2 3.(1)2;(2)1;(3)53;(4)4e ;(5)e1;(6)21e ;(7)4;(8)0.4.0lim ()lim ()lim ()1x x x f x f x f x +-→→→===-.习题1.31.(1)32;(2)2sin 2;(3)0;(4)2;(5)21;(6)∞. 2.不连续;图形略. 3.2=k .因为函数()f x 在其定义域内连续,即在0=x 也联系,则()0lim (0)x f x f →=,即()()0lim lim x x f x f x k ++→→==,0lim ()2x f x -→=,所以2=k . 4.略.习题1.41.本利和1186.3元,利息186.3元;本利和1164.92元,利息164.92元. 2.1173.51元;xey ⋅-=1.06000,4912.39元,4444.91元,3639.19元,2979.51元.第1章 复习题1.(-2,2),图形略. 2.(1)13,-==x u u y ;(2)x u u y 21,3+==; (3)x u u y ln 2,10+==;(4)2,,x v e u e y vu===-;(5)x v v u u y ===,ln ,;(6)x t t w w v v u u y 2,cos ,,lg ,22=====. 3.(1)()1200010C q q =+;(2)()30R q q =;(3)()2012000L q q =-. 4.280,(0900)22450400,(9002000)q q R q q ⎧=⎨+<⎩≤≤≤. 5.1,(04)1.5,(410)2,(1020)s P s p <<⎧⎪=⎨⎪<⎩≤≤≤,图形略.3 6.1-.7.(1)9-; (2)∞; (3)0; (4)0; (5)2; (6)0; (7)5; (8)2; (9)5e ; (10)8-e . 8.1k =. 9.a π=.10.221R Q Q =++.11.150,(0300)142.52250,(300800)1358250,(8001000)q q R q q q q ⎧⎪=+<⎨⎪+<⎩≤≤≤≤.12.800001000Q P =-.13.3000100Q P =+;平衡状态时,70,10000P Q ==. 14.(600)1000400L =;.第2章 导数与微分习题2.11.(1)1-;(2)51. 2.(1)3ln 1x y =';(2)3132-='x y ;(3)32x y -=';(4)2523--='x y ;(5)2121-='x y ;(6)3734--='x y ; (7)2ln 1x y =';(8)x y sin -='.3.033633=--+πy x .4.切线方程:02=-+y x ;法线方程:x y =. 5.切线方程:01-=+y x ;法线方程:03=-+y x .4 习题2.21.(1)4|2='=x y ; (2)1sin 2|0='=x y ; (3)32|1-='=x y ; (4)213|-=='e y x ; (5)2|21-='=x y ; (6)92|1-='=x y . 2.(1)x x y 2cos 432+='; (2)xe y x 122+='; (3)2)cos 1(sin cos 1t t t y +++=';(4)xx y ln 121+=';(5)xx x x y 3)12(-+=';(6))63cos(6+='x y ;(7)x x x x x y tan sec sec 3tan 32++='; (8)x x y 2sin cos 22-='; (9)x e x y x 52cos 42sin 2+⋅=';(10))sin 2(sec cos 22x x y ⋅='; (11)xx ex x y 221)2ln 1(2⋅++=';(12)xe xe y x e 11++⋅='-. 3.(1)yx y x dx dy 22+-=; (2))2cos(sin )2cos(2cos y x y x y x y dx dy +++-=. 4.0222=-+y x .5.(1)x y x y x y x y cos ,sin ,cos ,sin )4(=='''-=''-='; (2)x x x y cos sin 2--=''.6.切线方程:022=--y x ;法线方程:012=-+y x .习题2.31.(1)dx x x dy )26(2-=; (2)dx x x dy )sin (cos -=;5 (3)dx xx x dy 2ln 2-=; (4)dx x e x dy x2)1(-=;(5)dx e dy x 2.04.0=; (6)dx x x dy )32(sec )32tan(42++=.2.(1)221x ; (2)x sin ; (3)||ln x ; (4)x 2.3.11.75.习题2.41.(1)2;(2)1;(3)a cos ;(4)n m ;(5)3;(6)21-;(7)21;(8)∞+.2.(1)1; (2)0.习题2.51.(1)在)2,(-∞内单调增加,在),2(∞+内单调减少,有极大值为7)2(=f ; (2)在),(∞+-∞内单调增加,无极值; (3)在),(∞+-∞内单调增加,无极值;(4)在),1()0,(∞+-∞Y 内单调减少,在)1,0(内单调增加,有极小值为0)0(=f ,有极大值为1)1(-=e f .2.(1)最大值为69)4(=f ,最小值为61)6(-=-f ; (2)最大值为2)1(=f ,最小值为26)3(-=f ; (3)最大值为2)2(ππ=-f ,最小值为2)2(ππ-=f .3.当销售量80=x 时,平均成本最低为40)80(=C 元.4.当学费降低15次,即学费降为325元时,这个培训班可获得最大收益,最大收益为422500元.5.当每周泵的销售量33=x 个时,每周取得利润最大约为662.31元.习题2.61.(1)凹区间为)1,(-∞,凸区间为),1(∞+,拐点为)2,1(; (2)凹区间为),2(∞+,凸区间为)2,(-∞,拐点为)3,2(; (3)凹区间为),1(∞+,凸区间为)1,(-∞,拐点为)6,1(;(4)凹区间为)1,1(-,凸区间为),1()1,(∞+--∞Y ,拐点为)2ln ,1(-和)2ln ,1(; (5)凸区间为),0()0,(∞+-∞Y ,无拐点;6 (6)凹区间为)2,(-∞,凸区间为),2(∞+,无拐点.2.平均成本函数在)80,0(内单调减少,在),80(∞+内单调增加,有极小值为40)80(=C ,在),0(∞+内是凹的.3.收益函数曲线在)6,0[内单调增加,在]80,6(内单调减少,有极大值为44.73)6(=R ,在)80,0(内是凸的.习题2.71.(20)160L =元,(20)8L =元,(20)6L '=元.2.(1)2()0.092S t t t '=++;(2)(5)29.25S =(百万元),(5)9.25S '=(百万元);(3)(5)29.25S =表明5个月的销售总量为29.58百万元;(5)9.25S '=表明若再多销售1个月,将多销售9.25百万元.3.(1)23780()N x x '=;(2)(10)37.837N '=≈(只),表明当广告费用为1万美元时,若多投入1千美元的广告费,将再多销售船只37只;(20)9.459N '=≈(只),表明当广告费用为2万美元时,若再多投入1千美元的广告费,将多销售船只9只.4.(1)179.9美元;(2)180美元. 5.约108.27元. 6.(1)13EQ P EP =-;(2)11|3P EQ EP ==-,3|1P EQ EP ==-,55|3P EQ EP ==-.7.3EQ P EP P =+,31|2P EQ EP ==.8.(1)24EQ P EP P =--; (2)61|3P EQ EP ==-;(3)因为62|03P ER EP ==>,所以在6P =时,若价格上涨1%,总收益增加0.67%. (4)12P =时,总收益最大,最大总收益是(12)72R =. 第2章 复习题1.(1)212sin(31)y x x '=-+;(2)41y x '=+; (3)34)1(2x x y -=';(4)2222(1)x x y x -+'=-;7 (5)222sec tan (1)2sec (1)x x x x xy x +-'=+;(6)sin 22cos 2x y e x '=;(7)2(1)[2cot (1)csc ]y x x x x '=+-+;(8)22ln(1)1x x y x --=-.2.222(24)x d yx x e dx=++.3.(1)21x x y e y ye '=-+; (2)32xy y '=-.4.求下列函数的微分. (1)2(622)dy x x dx =+-; (2)(sin 22cos2)dy x x x dx =+;(3)222(1)x dy x x edx -=-; (4)2332(1)x dy dx x =-.5.切线方程:870x y --=;法线方程:890x y +-=.6.在(,0)(1,)-∞+∞U 内单调增加,在(0,1)内单调减少,有极大值为(0)0f =,有极小值为3(1)2f =-.7.在(0,24)内单调增加,在(24,)+∞内单调减少,有极大值为(24)6916f =;凹区间为(0,12),凸区间为(12,)+∞,拐点为(12,3460).8.生产50000个单位时,获得的利润最大,最大利润为30000)50000(=L . 9.455100dP x Pdx x P+=-+,其实际含义为:当需求量为x 时,若需求量再增加一个单位,则价格将减少455100dP x Pdx x P+=-+元. 10.280()(2)N t t '=+,其实际意义是:当对一个新工人进行t 天培训后,若再多培训一天,该工人就能多装配280()(2)N t t '=+个元件.11.(1)生产量3Q =时,平均成本最小为(3)6C =元. (2)边际成本2()15123C Q Q Q '=-+,显然(3)(3)6C C '==元. (3)1Q ECEQ ==0.6,其经济意义为:当生产量1Q =时,若生产量增加1%,则成本将增加0.6%.8 第3章 不定积分与定积分习题3.11.(1)C x +661; (2)C x x ++2717; (3)C x+22ln 1;(4)C x x ++-sin cos ; (5)C x +22ln 81;(6)C x x ++3||ln ;(7)C x +2774;(8)C x x ++23223;(9)C x x +-232931092;(10)C x x x ++-838522325;(11)C x x +-sin 3||ln 2;(12)C x x e x +-+sin 32; (13)C x x x +++65225;(14)C x x x +++-3271344; (15)C x x x++--||ln 21;(16)C x x x x +--+23327323172.2.()f x 2)21(2x e x --=. 3.2ln +=x y (21ex ≥). 4.2125Q Q R -=. 5.20005212++=x x C . 习题3.21.(1)41(53)20x C ++; (2)31(32)6x C --+;(3)1sin(31)3x C ++;(4)1cos(12)2x C -+;(5)2313x e C ++;(6)2x e C --+;(7)212x e C +;(8)2214x e C --+;(9)21cos(2)2x C -++;(10)322(sin )3x C +;(11)2xeC + ;(12)2xe C --+.2.(1)532224(2)(2)53x x C +-++;(2)26ln(3)x x C -++;(3)5322210(35)(35)4527x x C -+-+; (4)3ln 322x x C ---+;(5)322(3)633x x C -+-+;(6)23ln(123)x x C --+-+.3.(1)3311ln 39x x x C -+;(2)221124x x xe e C -+;(3)ln3x x x C -+;(4)1(cos sin )2x x x e C ++.习题3.31.(1)32; (2)52; (3)214a π; (4)0. 2.(1)⎰102dx x ≥⎰13dx x ;(2)⎰10dx e x ≥⎰12dx e x ;(3)⎰10dx e x ≥⎰+1)1(dx x ;(4)⎰20πxdx ≥⎰2sin πxdx .习题3.41.(1)2243; (2)0; (3)2183740--; (4)e e -3;(5)331-; (6)3340; (7)34; (8)487. 2.245.3.⎰-=503001.030201dx e p x .4.146250元.习题3.51.(1)313; (2)431121121)(π--; (3)32---e e ; (4))1(211--e ; (5))1(23-e ; (6))2cos 1(cos 21-.2.(1)52ln 8-; (2)2ln )1ln(1++-e ; (3)35; (4)15216532+-.3.(1)0; (2)0; (3)332π; (4)22π-. 4.(1)121--e ;(2))(251+-πe . 习题3.61.(1)31; (2)2; (3)21; (4)0.2.1.习题3.71.50424.0)(2++=x x x C .2.4200)(2x x x R -=,17500)100(=R 元,175)100(=R 元/单位.3.t e t S 08.05050)(--=,18.3)6(≈S 辆. 4.约8.97万元. 5.(1)40;(2)总收益为5200美元,平均单位收益为130美元/kg ,总成本为4200美元,总利润是1000美元.习题3.81.(1)一阶; (2)二阶; (3)五阶; (4)四阶.2.(1)C x y +=221; (2)C x y +-=21;(3))ln(C e y x +=; (4)1-⋅=x C xy ;(5)22332x e C y -⋅+=; (6))21(122C e x y x +-=-.3.(1)xe e y =; (2))1(212x y --=.第3章 复习题1.(1)C x ++-)1(cos 212;(2)C x +-4)53(121;(3)C x x +++-+)22ln(422; (4)C x x +-)41(ln 44.2.(1)21; (2)24; (3))25(6-; (4))3132(313+e .3.1. 4.40000. 5.约1.53美元.6.10ln0.216-≈,在[0,16]内的全部利润约87.82百元. 7.总成本函数为2()215200C x x x =++; 总利润函数为2()442200L x x x =--;11=x 个单位时,获得最大利润,最大利润是42)11(=L .8.(1)C x y =+-)1)(1(; (2))(2C e e y x x +-=-; (3)4)1(21+=x y ,. 第4章 矩 阵习题4.1略.习题4.21.11,3,2,7,5-====-=z u w y x .2.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=111325325310373432316317383Z . 3.5211114208235-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦4.15461021⎡⎤⎢⎥-⎣⎦5.(1)505176213-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦;(2)1235-⎡⎤⎢⎥⎣⎦;(3)[]13161922; (4)20742769-⎡⎤⎢⎥---⎣⎦;(5)123246369⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(6)[]70. 8.(1)12190544-⎡⎤⎢⎥-⎣⎦;(2)26751110614-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥⎣⎦;(3)1111580391241424201225218--⎡⎤⎢⎥-⎢⎥⎢⎥--⎢⎥-⎣⎦; (4)5303128⎡⎤⎢⎥-⎣⎦;(5)5313028⎡⎤⎢⎥-⎣⎦.运费 耗费 9.420000130000382000119000320001000001122000349000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦一班二班三班总计 10.[]64601600010540钾氨磷习题4.31.(1)113-1-200-7470000000000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,2R =; (2)120001130024000⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦,3R =; (3)12390236596410022⎡⎤⎢⎥--⎢⎥-⎢⎥⎢⎥-⎢⎥⎣⎦,3R =;(4)1312074800210000--⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦,3R =. 2.(1)2;(2)2;(3)4;(4)3.3.(1)8=k ;(2)8≠k ,(3)k 不存在.习题4.41.因为AB =BA =E ,所以B 是A 的逆矩阵.2.11,510x y =-=.3.(1)2550291111⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦;(2)414457568⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(3)2015215911-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦414457568⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦. 4.(1)1-A143153164--⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦;(2)1-A 不存在,(3)15111444411112222111144441111A -⎡⎤--⎢⎥⎢⎥⎢⎥-⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦;(4)1-A 1153222421731222⎡⎤--⎢⎥⎢⎥=-⎢⎥⎢⎥-⎢⎥⎣⎦. 5.A =18315511115511055⎡⎤--⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦. 6.1200020002B AB -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.第4章 复习题一、1.().,,2,1;,,2,1,,n j m i b a t n s m ij ij ΛΛ=====2.t l m k s n ===,,. 3.()TA 1-. 4.B ,A . 5.非零行的行数.二、1.(d); 2.(b)(d); 3.(a); 4.(c)(d).三、1.3071845232⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦.2.()3R A =,()1R B =.3.38172777122221935222Z ⎡⎤---⎢⎥⎢⎥⎢⎥=---⎢⎥⎢⎥⎢⎥---⎢⎥⎣⎦.第5章 线性方程组习题5.21.(1)123783x x x =⎧⎪=⎨⎪=-⎩;(2)无解;(3)123000x x x =⎧⎪=⎨⎪=⎩;(4)1233252x kx k x k ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩;(5)1123212331425351622623x k k k x k k k x k x k x k =++-⎧⎪=---+⎪⎪=⎨⎪=⎪⎪=⎩;(6)12342,3,1,0.x x x x =⎧⎪=-⎪⎨=⎪⎪=⎩.2. (1)4m =,1233x k x k x k =-⎧⎪=⎨⎪=⎩; (2)3m =,1233525x k x k x k ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩.3.(1)5m ≠; (2)5,2m k =≠-; (3)5,2m k ==-. 4.(1)02p q ≠≠或时方程组无解;(2)02p q ==且时有解,解为11232123314253522263x k k k x k k k x k x kx k =++-⎧⎪=---+⎪⎪=⎨⎪=⎪⎪=⎩5.5=m ,1122123142164555373555x k k x k k x k x k ⎧=--+⎪⎪⎪=-+⎨⎪=⎪⎪=⎩.6.(1)7349121714Z ⎡⎤--⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦;(2)22308Z -⎡⎤=⎢⎥⎣⎦. 第5章 复习题一、1.111111111,n n m mn m mn m a a a a b aa a ab ⎛⎫⎛⎫⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭LL MM MM M LL,无解,有唯一解,有无穷多组解,无解,未知数个数,小于2.(1)无解(2)有无穷多组解(3)有唯一解 3.3124121,2.x x x x x x =++⎧⎨=+⎩二、1. (d);2. (c). 三、04122112Z ⎡⎤⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎣⎦四、1.11221331427188373x k k x k k x k x k =-+⎧⎪=-+-⎪⎨=⎪⎪=⎩;2.1234,321.2x x x ⎧⎪=⎪⎪=-⎨⎪⎪=⎪⎩;3.1231,1,1.x x x =⎧⎪=-⎨⎪=-⎩;4. 1230,0,0.x x x =⎧⎪=⎨⎪=⎩; 5.112321324332x k k k x k x k x k =-+⎧⎪=⎪⎨=⎪⎪=⎩.五、11221231422223x k k x k k x k x k =++⎧⎪=--+⎪⎨=⎪⎪=⎩.第6章 线性规划初步习题6.11.设生产1A 产品1x 万瓶,生产2A 产品2x 万瓶,获得利润L 美元. 则该问题的数学模型为:12max 80003000L x x =+12121212535003008020000..1249000,0x x x x s t x x x x +⎧⎪+⎪⎨+⎪⎪⎩≤≤≤≥≥其矩阵形式为:max ..0L CX AX B s t X =≤⎧⎨≥⎩其中:[]80003000C =,12x X x ⎡⎤=⎢⎥⎣⎦,5330080124A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,50020000900B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦. 2.设A 需要1x 个单位,B 需要2x 个单位,总费用为F . 则该问题的数学模型为:121212min 20030024.0,0F x x x x s t x x =++⎧⎨⎩≥≥≥其矩阵形式为:min ..0F CX AX B s t X =⎧⎨⎩≥≥ 其中:[]200300C =,12x X x ⎡⎤=⎢⎥⎣⎦,[]12A =,[4]B =.3.设第i 月的进货量为1i x 千件,售货量为2i x 千件(3,2,1=i ),利润为L 美元.则该问题的数学模型为:111221223132max 8969910L x x x x x x =-+-+-+111112211112212231300300..3000(1,2,3;1,2)ij x x x x s t x x x x x x i j ⎧⎪-+⎪⎨-+-+⎪⎪==⎩≤≤≤≥ 其矩阵形式为:max ..0L CX AX B s t X =⎧⎨⎩≤≥其中:[]8969910C =---,111221223132x x x X x x x ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,100000111000111110A ⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦,300300300B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.习题6.21.(1)最优解为12032x x ⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦,最优值为min 3S =-.(2)无最优解.(3)无穷多组最优解为满足8221=+x x 且介于点(2,3)和(4,2)件的线段上的所有点,最优值为16max =S .第6章 复习题1.设生产A 产品1x 个单位,生产B 产品2x 个单位,获得利润L 元. 则该问题的数学模型为:12max 800010000L x x =+ 12121212128940058320..642804123500,0x x x x s t x x x x x x +⎧⎪+⎪⎪+⎨⎪+⎪⎪⎩≤≤≤≤≥≥其矩阵形式为:max ..0L CX AX B s t X =⎧⎨⎩≤≥其中:[]800010000C =,12x X x ⎡⎤=⎢⎥⎣⎦,895864412A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,400320280350B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦. 2.设工厂i 给工地j 的砖量为ij x 万块(其中:1,2i =分别表示工厂A 、B ,1,2,3j =分别表示工地甲、乙、丙),总运费为F 元.则该问题的数学模型为:111213212223min 5060706011027F x x x x x x =+++++112112221323111213212223171815..23270(1,2;1,2,3)ij x x x x x x s t x x x x x x x i j +=⎧⎪+=⎪⎪+=⎪⎨++=⎪⎪++=⎪≥==⎪⎩ 其矩阵形式为:min ..0F CX AX B s t X ==⎧⎨≥⎩其中:[5060706011027]C =,⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=232221131211x x x x x x X ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=111000000111100100010*********A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=2723151817B3.设第i 个煤矿运往第j 个城市的煤量为ij x 千吨(其中:1,2,3i =分别表示甲、乙、丙三个煤矿,1,2,3,4j =分别表示A 、B 、C 、D 四个城市),总运费为F 元.则该问题的数学模型为:111213142122232431323334min 1211181191111131014137F x x x x x x x x x x x x =+++++++++++41142143131132133134149115..4780)1,2,3;1,2,3,4)j j j j j j i i i i i i i i ij x x x x s t x x x x i j =======⎧=⎪⎪⎪=⎪⎪⎪⎪=⎪⎪⎪=⎪⎨⎪⎪=⎪⎪⎪=⎪⎪⎪=⎪⎪≥==⎪⎩∑∑∑∑∑∑∑ 其矩阵形式为:min ..0F CX AX B s t X ==⎧⎨≥⎩其中:[1211181191111131014137]C =,111213142122232431323334x x x x x x X x x x x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,111100000000000011110000000000001111100010001000010001000100001000100010000100010001A ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,49115478B ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦.4.设i A 机床生产j B 工件的数量为ij x (1,2;1,2,3i j ==),总加工费为S 元. 则该问题的数学模型为:111213212223min 139********S x x x x x x =+++++1121122213231112132122230.40.54001.1 1.26001.3500..0.41018000.5 1.2 1.39000(1,2;1,2,3)ij x x x x x x s t x x x x x x x i j +=⎧⎪+=⎪⎪+=⎪⎨++≤⎪⎪++≤⎪≥==⎪⎩ 其矩阵形式为:min ..0F CX AX Bs t AeqX BeqX =⎧⎪=⎨⎪⎩≤≥ 其中:[1391011128]C =,111213212223x x x X x x x ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,0.4 1.110000000.5 1.2 1.3A ⎡⎤=⎢⎥⎣⎦,800900B ⎡⎤=⎢⎥⎣⎦, 0.4000.5000 1.100 1.2000100 1.3Aeq ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,400600500Beq ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦5.用图解法求下列各题.(1)最优解为1220x x ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,最优值为max 4S =.(2)无最优解为.(3)无穷多组最优解为满足121x x +=且介于点(1,0)和点(0,1)间的线段上的所有点.第7章 随机事件与概率习题7.11.(1){}0t t Ω=≥;(2)设}{个次品取到正品前抽取了i A i =(0,1,2,3,4i =),则01234{,,,,}A A A A A Ω=;(3)设}{次中得一等奖第i A i =(1,2,i =L ),则12{,,}A A Ω=L . 2.(1)AB ; (2)A ; (3)ABC ABC ABC ⋃⋃; (4)ABC ; (5)A B C ⋃⋃; (6)A B C ⋃⋃或ABC ; (7)ABC 或A B C ⋃⋃;(8)ABC ABC ABC ABC ⋃⋃⋃.3.(1)321A A A ;(2)321A A A ⋃⋃;(3)321321321A A A A A A A A A ⋃⋃;(4)321321321321A A A A A A A A A A A A ⋃⋃⋃.4.(1)[0,3); (2)[0,2); (3)(,0)[2,)-∞⋃+∞; (4)φ.习题7.21.14. 2.(1)13; (2)215; (3)815.3.(1)61; (2)b ; (3)0.84; (4)1511; (5)0.7; (6)0.6. 4.(1)61; (2)65.5.(1)158; (2)97.6.(|)0.3P B S =. 7.0.64.8.(1)0.42;(2)0.88;(3)0.46. 9.(1)89110;(2)81100.10.35.11.0.592.12.0.4,0.5,0.6,0.6,0.75. 13.0.93.第7章 复习题1.12B A A =;12C A A =;1212()()D A A A A =⋃;12E A A =⋃.其中B C D 、、两两互不相容,C 与E 为对立事件.2.因为B A ⊂,所以()()P B P A <. 3.(1)2845; (2)145; (3)15; (4)1645; (5)1745; (6)4445. 4.0.97;0.03. 5.0.75;0.25.6.(1)0.988;(2)0.012;(3)0.83.7.(1)44%;(2)15%;(3)2.25%;(4)0.25%;(5)13.6%;(6)13.3%. 8.(1)0.27;(2)0.15.9.(1)0.45,0.24,0.14;(2)0.83;(3)0.54. 10.0.78. 11.0.72.12.(1)0.74;(2)0.56.第8章 随机变量分布及其数字特征习题8.11.设随机变量0,()1,()X ⎧=⎨⎩没投中投中,则(0)0.6P X ==,(1)0.4P X ==.2.设取出产品的等级为随机变量X , X 取1、2、3分别表示产品等级为一、二、三级,则4(1)7P X ==,2(2)7P X ==,1(3)7P X ==.习题8.21.(1)是概率分布.因为满足离散型随机变量分布律的性质;(2)25.0)30(==XP;(3)35.0)25(=≤XP;(4)4.0)30(=>XP.2.(1)P (X=100) =0.25;(2)7.0)0(=>XP;(3)4.0)100(=≥XP.3.X-1 2 6)(XP0.1 0.3 0.6 4.X0 1 2P(X)213815381195.(1)X0 1 2) (X P 194949(2)X0 1 2) (X P115815256.0.14;0.95.7.0.009;0.998;7,0.617.8.(1)25.0=C;(2)0.25,0.75;(3)F (X)=0,10.25,13 0.5,3 4.51, 4.5xxxx<-⎧⎪-<⎪⎨<⎪⎪⎩≤≤≥.9.0.000008.习题8.31.(1)a =3;(2)95. 2.(1)0.2325;(2)0.5479. 3.(1)常数k=4;(2)0.5392.4.(1)c=61;(2)127;(3)()F x =20,211,241231,4x x x x <⎧⎪⎪-<⎨⎪⎪⎩≤≥.5.(1)0.4773;(2)0.0227;(3)0.9545. 6. 1.96λ=.7.(1)0.475;(2)0.025.8.(1)0.09176;(2)12475支/周.习题8.41.47. 2.(1)31; (2)32; (3)2435.3.(1)c =6; (2)61; (3)67.4.0.3. 5.2.6.k =4;α=3.7.(1)445;(2)盈利57500元.习题8.51.163. 2.数学期望为0.3;方差为0.319. 3.E (X )=9元;D (X )=3.4. 4.(1)31;(2)454;(3)4516.5.(1)12-;(2)20.6.(1)4.1;(2)3.93,1.98. 7.7.8.(1)5;(2)17;(3)0. 9.a =0.6,b=1.2, D ( X )=0.08.第8章 复习题1.1()(1,2,3,4,5,6)6P X k k ===; 0,(1)1,(12)61,(23)31(),(34)22,(45)35,(56)61,(6)x x x F x x x x x <⎧⎪⎪≤<⎪⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪⎪≤<⎪⎪≥⎪⎩2.(1)0.11;(2)0.96.3.(1)不是;(2)是. 4.0.9324. 5.0.3935. 6.(1)61;(2)21625. 7.(1)K =0.5;(2)1.414. 8.(1)0.483;(2)0.983. 9.50.85.10.(1)0.1056;(2)0.1056. 11.(1)0.5;(2)0.25;(3)43;(4)29. 12.(1)0;(2)1. 13.开发该软件.14.(1)()145,()140E X E Y ==,选择中型扩建. (2)()2725,()12400D X D Y ==,选择中型扩建. 15.(1)X 1 2 3 4 5 P4%39%29%21%7%(2)() 2.88E X =;(3)() 1.0256,() 1.013D X D X =≈.16.(1)X 1 2 3 4 5 P7/296/293/296/297/29(2)()3E X =,()11.34D X ≈;(3)略.第9章 数理统计初步习题9.1略.习题9.21.(1290,1304).2.(1271,1323).3.(2.08, 2.42).4.(18,20).5.(17.9,91.1).习题9.31.产品合格. 2.产品合格. 3.不正常. 4.广告不真实. 5.有变化.习题9.41.(1)略;(2)ˆ 6.45 1.58=-;(3)变量x与y存在显著线性相关关系.y x2.x与y存在显著线性相关关系;ˆ41.320.53=+.y x第9章复习题1.(1)(93.54,136.72);(26.4,46.84);(2)略.2.该校3年级男生平均身高与全国一致,身高差异程度没有拉大.3.该生产线不正常.4.这两种药品对血压影响是相同的.5.该基金的风险没有增大.6.(71.15, 80.45).7.(1)ˆ66.6 1.36=+;(2)y与xx存在显著线性相关关系.y x8.(1)y与x存在显著线性相关关系;(2)ˆ 4.950.18=-+.y x29目录习题参考答案 (1)第1章函数、极限与连续 (1)第1章复习题 (2)第2章导数与微分 (3)第3章不定积分与定积分 (8)第4章矩阵 (11)第4章复习题 (14)第5章线性方程组 (15)第6章线性规划初步 (17)第7章随机事件与概率 (23)第8章随机变量分布及其数字特征 (24)第9章数理统计初步 (28)。
经济数学试题及答案
经济数学试题及答案一、选择题1. 某公司的年利润以每年10%的速度增长,如果去年的年利润为100万元,那么两年后的年利润预计为多少?A. 121万元B. 110万元C. 120万元D. 111万元答案:A2. 假设银行的年利率为5%,如果小明存入10000元,一年后他将获得多少利息?A. 500元B. 550元C. 505元D. 450元答案:C3. 某商品的原价为200元,现在打8折出售,打折后的价格是多少?A. 160元B. 180元C. 240元D. 200元答案:A4. 一个投资项目,初始投资为10000元,预计每年可获得2000元的收益,不考虑其他因素,该项目的回收期是多少年?A. 3年B. 4年C. 5年D. 6年答案:B5. 以下哪个公式用于计算复利?A. A = P(1 + r/n)^(nt)B. A = P(1 + r)^tC. A = P + r^tD. A = P(1 - r)^t答案:A二、填空题1. 如果一个贷款的月利率为0.5%,那么年利率为________%。
答案:62. 某公司的股票价格从年初的10元上涨到年末的12元,该股票的年收益率为________%。
答案:203. 某人计划在5年内攒够100000元用于购房首付,如果他每月存入相同的金额,假设年利率为5%,他每月需要存入________元。
答案:1666.67三、计算题1. 张先生向银行贷款150000元,年利率为6%,贷款期限为10年,采用等额本息还款方式,请问张先生每月需要还款多少元?解:根据等额本息还款公式计算,每月还款额 = 贷款本金× 月利率× (1+月利率)^还款期数 / [(1+月利率)^还款期数 - 1]。
月利率为6%/12 = 0.5%,还款期数为10×12=120期。
代入公式得每月还款额 = 150000 × 0.005 × (1+0.005)^120 / [(1+0.005)^120 - 1] ≈ 1572.22元。
大学经济数学复习题库
大学经济数学复习题库# 大学经济数学复习题库一、选择题1. 某公司今年的利润为100万元,预计明年利润增长率为5%,那么预计明年的利润是多少万元?A. 105B. 110C. 120D. 1302. 下列哪个函数不是线性函数?A. \( y = 2x + 3 \)B. \( y = x^2 + 1 \)C. \( y = 3x \)D. \( y = 5 \)3. 在经济学中,边际成本与平均成本的关系是什么?A. 边际成本总是高于平均成本B. 边际成本总是低于平均成本C. 当边际成本高于平均成本时,平均成本上升D. 当边际成本低于平均成本时,平均成本下降二、填空题4. 如果某商品的需求函数为 \( P = 150 - 2Q \),其中 \( P \) 为价格,\( Q \) 为数量,那么当 \( Q = 50 \) 时,价格 \( P \) 为_______。
5. 假设某公司的成本函数为 \( C(Q) = 10Q + 5000 \),其中 \( Q \) 为产量,那么该公司的边际成本是_______。
三、计算题6. 某公司在生产过程中,其总成本函数为 \( C(Q) = 100 + 5Q +0.5Q^2 \),求该公司的边际成本和平均成本函数。
7. 假设某商品的供给函数为 \( S(P) = 2P - 10 \),需求函数为\( D(P) = 100 - 2P \),求该商品的均衡价格和均衡数量。
四、简答题8. 解释什么是边际效用递减原理,并给出一个实际生活中的应用例子。
9. 请简述完全竞争市场的特点,并说明为什么在完全竞争市场中,价格是由市场决定的。
五、论述题10. 论述在经济决策中,如何利用边际分析来确定最优生产量。
11. 讨论在不同市场结构下,企业如何制定价格策略,并分析其对市场的影响。
六、案例分析题12. 某公司面临生产决策,其固定成本为100万元,变动成本为每单位产品50元,产品售价为每单位100元。
《经济应用数学》专科复习题及参考答案
四 川 农 业 大 学 网 络 学 院《经济应用数学》专科复习题及参考答案一、是非题1·21cos 2)(x x x f -=的间断点为0x = 。
对 2·函数231)(22+--=x x x x f 的可去间断点是2=x 。
错3·1sin 1-++=x xx y 的连续区间为),1()1,(∞+-∞ 。
对 4·1ln 22-=x x y 的连续区间为),1()1,(∞+-∞ 。
错5.若 )(lim 0x f x x →存在,则必有)(lim )(lim .x f x f x x x x +-→→=。
对6.若)(lim )(lim 0x f x f x x x x +-→→==a ,则必有)(lim 0x f x x →=a 。
对7·设)(x f 在3x =可导,则3()(3)lim'(3)3x f x f f x →-=-。
对8·设)(x f 在0x 可导,则)(')()(lim0000x f x x x f x f x x =--→。
对9·当1→x 时,1sin 4-+x e x x是无穷大量 。
对10.某区间上的最小值一定是该区间上的极小值。
错11.若)('x C 为边际成本函数(x 为产量),则⎰xdx x C 0)('为总成本函数。
对12.xx x x x f sin cos )(22+⋅=为偶函数。
错13·x e y X +=32在),(+∞-∞ 上为单调减函数。
错14·x e y X 25+=在),(+∞-∞ 上为单调增函数。
对15.二无穷小量之和为无穷小量。
对16.某区间上的极大值就是该区间上的最大值。
错17.23312x x x y -+-=的定义域为),(∞+-∞。
错18.连续函数必是可导函数。
错19.若⎰xdx x R 0)('为总收益函数,则)('x R 为边际收益函数(x 为产量)。
《经济应用数学》复习资料
一、单项选择题:1.下列函数中,为奇函数的是( )①2x y = ② 3x y = ③ x y cos = ④1sin +=x y2.下列为偶函数是( )① 2x y = ② 3x y = ③ 1cos +=x y ④ 1sin +=x y3.当0→x 时,下列变量中( )是无穷小量.① x x sin ② sin x x③ x x cos ④ x x cos 4.当0→x 时,下列变量中( )是无穷大量.① x x sin ② sin x x ③ x x cos ④ x x cos5.设函数⎩⎨⎧++-=22)(2x a x x f 3,3,≥≤x x 在 x = 3处连续,则 a =( ) ① 1 4 ② 1 5 ③ 1 6 ④ 1 76.若23lim 63x x a x →-=-,则 a =( ) ① 1 ② 2 ③ 3 ④ 97.设函数21y x =-,则dy =( )① (1)x dx - ② xdx 2 ③ 2(1)x dx - ④ (21)x dx -8.3sin 9xdx =⎰( )① 1cos93x c + ②3cos9x c + ③ 1cos93x c -+ ④ 3cos9x c -+ 9.设函数22y x x =-,则dy =( )① (1)x dx - ② xdx 2 ③ 2(1)x dx - ④ (21)x dx -10.3sin 2xdx =⎰( )① 3cos 22x c + ②2cos 23x c + ③ 3cos 22x c -+ ④ 2cos 23x c -+二、填空题:1.04sin lim x x x→=______________ 2.51lim 1x x x →∞⎛⎫+= ⎪⎝⎭_______________3.0sin lim 6x x x→=______________ 4.1lim 1x x x →∞⎛⎫+= ⎪⎝⎭_______________ 5.函数241)(x x f -=在区间[-4,5]上的最大值=m ______________6.函数2y x x =- 在点(3 ,6 )处的切线方程为 。
经济应用数学试卷期末
一、选择题(每题2分,共20分)1. 下列哪个不是经济数学中的基本概念?A. 指数B. 概率C. 逻辑D. 线性方程2. 在下列函数中,哪个函数是单调递增的?A. f(x) = x^2B. f(x) = -x^3C. f(x) = xD. f(x) = -x3. 设某商品的需求函数为 Q = 100 - 2P,其中 P 为价格,Q 为需求量。
当价格P 为多少时,需求量 Q 为最大?A. 25B. 50C. 75D. 1004. 若某公司年销售额为100万元,年增长率为10%,则3年后公司的销售额为多少?A. 110万元B. 121万元C. 133万元D. 146万元5. 下列哪个不是经济数学中的优化问题?A. 投资组合问题B. 生产计划问题C. 价格决策问题D. 消费者选择问题6. 设某商品的成本函数为 C(x) = 100 + 10x,其中 x 为产量。
则当产量为多少时,成本函数达到最小?A. 5B. 10C. 15D. 207. 若某商品的需求价格弹性为 -2,价格下降10%,则需求量将增加多少?A. 5%B. 10%C. 20%D. 30%8. 在线性规划问题中,目标函数为最大化利润,约束条件为资源限制。
若增加一个资源限制条件,则以下哪个结论可能成立?A. 目标函数的最大值可能增加B. 目标函数的最大值可能减少C. 目标函数的最大值可能不变D. 无法确定9. 在指数增长模型中,若年增长率为5%,则3年后该量的增长倍数为多少?A. 1.05^3B. 1.05C. 1.15D. 1.2510. 在下列统计量中,哪个用于衡量数据的集中趋势?A. 标准差B. 离散系数C. 中位数D. 四分位数二、填空题(每题2分,共20分)1. 经济数学中的线性方程组通常可以用矩阵形式表示为 Ax = b,其中 A 是______,x 是______,b 是______。
2. 指数函数 y = a^x 在 a > 1 时表示______,在 0 < a < 1 时表示______。
经济数学基础复习题重点
经济数学基础复习题一、 单项选择题:1.函数 yx 2 4) .x的定义域是(A . [ 2, )2B. [ 2,2) (2, )C. (, 2)( 2,)D. (,2)(2, )答案: B2.设 f (x)1 1,则 f ( f ( 2)) =().x1325 A .B .22C .D .33答案: D3.以下函数中为奇函数的是( ).A . yx2xB . yexexC . ylnx1 D . yx sin xx1答案: C4.以下各对函数中, ( )中的两个函数相等 .A.y x ln(1 x) 与 g ln(1 x)B.y ln x 2 与g 2 ln xx 2xC. y1 sin2 x 与 g cos xD .yx(x 1) 与 yx (x1)答案: A5,若 f ( x) x cosx ,则 f ( x) ( ).A . cos x x sin xB . cos x x sin xC . 2sin x x cos xD .2 sin x x cos x答案: D6,以下等式不成立的是().A . A . ln xdxd 111xB . dxd 212 x d1xC . cos xdx d sin xD . dx答案: Cxx7.以下函数中, ()是 x cosx 2 的原函数.A . 1sin x2B . 2 sin x2C . - 2 sin x2D .-1sin x 2答案: A 22118,若 f x xd xe xc,则 f ( x) =().( )eA .1B .-1C .1D .-1xxx 2x 2答案: C9.以下定积分中积分值为 0 的是().1e x e x 1e x e xA .dxB .dx1212C .( x 3cos x)dxD .(x 2 sin x)dx答案: A10.设 A 为 32 矩阵, B 为 2 4 矩阵, C 为 4 2 矩阵,则以下运算中()可以进行.A . AC T BB . AC T B TC . ACB TD . ACB答案: B11.设 A 是可逆矩阵,且A AB I ,则 A 1( ).A.BB.1 B C.I B D.(IAB)1答案: C1 20 312.设A0 0 1 3 2 413,则 r (A) =( ).A . 4B . 3C . 2D . 1答案: C1 32 0 5 0 1 0 2 4 13.设线性方程组 AX b 的增广矩阵为0 3 2 ,则此线性方程0 1 0248组的一般解中自由未知量的个数为( ).A . 1B . 2C . 3D .4答案: A二、 填空题11.函数 y4 xln( x 1) 的定义域是.答案: (1, 2) (2, 4]2.设函数 f (u)u 2 1 , u( x)1 ,则 f (u(2)) .x答案:343. 某产品的成本函数为( ) 4 2 8 200 ,那么该产品的均匀成本函数C q qqC (10) .答案: 684.已知f (x) 1sin x,当时, f ( x) 为无量小量.x答案: x 01 1 2x , x 05. 函数f (x) xk, x 0在 x = 0 处连续,则k =.答案: - 1.16.曲线y x 2在点(1, 1) 处的切线方程是.答案: y 1 x 32 2p7.需求量 q 对价格p的函数为q( p) 100 e 2 ,则需求弹性为 E p.答案:p2,若 f ( x)dx (x 1) 2 c ,则f ( x) .8填写: 2(x 1)9.若 f( x x F(x)c ,则exf (ex)dx = . )d填写: F (e x ) c10. 1 ( x 2sinx 2)dx .1填写:-411. 设 A 1 3,则 I 2A= .1 2填写:1 65212.若n阶矩阵 A 满足,则 A 为对称矩阵 .填写: A T = A (或a ij a ji)13.设A,B为两个已知矩阵,且I B可逆,则方程 A BX X 的解X .填写: (I B) 1A21 214.矩阵 42 的秩为 .3 3填写: 215. 线性方程组 AXO 的系数矩阵 A 化成阶梯形矩阵后为1 2 1 A0 410 0 d 1则当 d时,方程组 AXO 有非 0解.(三)计算题1. lim x 2 x 2 3x 2x 24解 lim x23x 2 = lim ( x 2)( x 1) = lim x 1= 1x 2x 2 4 x 2( x 2)( x 2) x 2 ( x 2)4.2. lim1 x2 1x sin xx 0解lim1 x 21=( 1 x 21)( 1 x 21)x s i nxlim2x 0x 0( 1x 1)x sin x=limx11 = 11x 2 1) sin x=x( 223. lim(12x)5(3x 2 x 6 2) )x( x 1)( 2x 3)151 2解lim(12 x)5 (3x 2x 6 2)) = lim (x2) (3 x x 2))x(x 1)(2x 3)x(1 1 )(2 3 ) 6xx( 2) 5 33=262.已知 y 2 xcos x ,求 y (0).41 xcos x )解 由于 y ( x)= (2x1 x= 2x ln 2 (1 x) sin x ( 1) cos x(1 x)2= 2 x ln 2 cos x (1 x) sin x(1 x)2所以, y (0) = 20 ln 2 cos0 (1 0) sin 0 ln 2 1(1 0) 25.设y ln x 1 , 求 dy .2x 1解:y ( ln x 1 ) 1 22x ln x (2x 1) 22x 1dy y dx1 2dx 2 x ln x ( 2x 1)26.设函数y y(x) 由方程e xy x ln y e 确立,求y (0)解:方程两边对x 求导,得e x y (1 y ) ln y x y 0y( ye x y x) y ye x y y ln yy ye x y y ln y. ye x y x当 x 0 时, y 1 。
经济数学试题及答案大全
经济数学试题及答案大全一、选择题1. 在经济学中,边际成本是指:A. 总成本除以产量B. 增加一单位产出所增加的成本C. 固定成本D. 总成本答案:B2. 如果一个企业的边际收益大于其边际成本,那么:A. 企业应该减少生产B. 企业应该增加生产C. 企业应该保持当前产量D. 企业应该关闭答案:B二、填空题1. 经济学中的________是指在其他条件不变的情况下,一种商品的价格变化对其需求量的影响。
答案:需求弹性2. 当一个市场处于完全竞争状态时,单个企业的市场力量________。
答案:很小或几乎为零三、简答题1. 简述什么是消费者剩余,并给出一个例子。
答案:消费者剩余是指消费者愿意为一种商品支付的价格与他们实际支付的价格之间的差额。
例如,如果一个消费者愿意为一杯咖啡支付5元,但实际只支付了3元,那么消费者剩余就是2元。
2. 解释什么是市场均衡,并说明其对经济的意义。
答案:市场均衡是指供给量等于需求量的状态,此时市场价格达到稳定。
市场均衡对经济的意义在于资源的有效分配,确保生产者和消费者的利益最大化。
四、计算题1. 假设一个完全竞争市场中,某企业的成本函数为C(q) = 10 + 2q,其中q是产量。
如果市场价格为12元,求该企业的最优产量。
答案:首先计算边际成本,MC = dC/dq = 2。
然后设置边际收益等于边际成本,MR = MC = 12。
由于完全竞争市场中,企业的边际收益等于市场价格,所以MR = 12。
最优产量q是MR = MC时的产量,即q = (12 - 10) / 2 = 1。
2. 如果上述企业面临市场价格下降到10元,且固定成本不变,求新的最优产量。
答案:同样设置MR = MC = 10。
最优产量q是MR = MC时的产量,即q = (10 - 10) / 2 = 0。
这意味着在新的价格下,企业将不会生产任何产品。
五、论述题1. 论述垄断市场与完全竞争市场的区别,并分析垄断市场可能带来的经济问题。
经济应用数学复习题(1)
一 单选题1. 设函数y=f(x)的定义域[4,4-],则)的定义域是 ( A )A. [0,16]B. (0,16)C. [0,16)D. (0,16] 2. 函数211x y x -=+的反函数是 ( C ) A. 11()212x y x x -=≠-+ B. 11()212x y x x +=≠-C. 1(2)2x y x x +=≠-D. 1(2)2x y x x+=≠-+3. 153lim251n n n x +→∞-=⨯+ ( B ) A.35 B. 12 C. 35- D. 12-4. 当x →+∞时,是 (A ) A. 同阶无穷小 B.等价无穷小 C. 高阶无穷小 D.低阶无穷小 5. 设函数f(x)在0x 处可导,则000()()lim x f x x f x x∆→-∆-=∆ ( B )A. 0()f x 'B. 0-()f x 'C. 0-()f xD. 0()f x6. 设某商产品单价为500元时,需求价格弹性0.2η=,它说明在价格500元的基础上上涨1℅,需求将下降 ( C ) A. 0.2B. 20℅C. 0.2℅D. 207. 在区间[]-1,1上满足罗尔定理条件的函数是 ( D )A. sin x yx=B. 2(1)y x =+ C. y x = D. 21y x =+8. 已知函数sin xy e x =,则dy = ( C )A. sin x e xdx +B. cos xe xdx + C. (sin cos )xe x x dx + D. (sin cos )xe x x dx - 9. 已知y=f(x)的一个原函数为sin 2x ,则()f x dx '⎰= ( D )A. sin 2x C +B. 2sin 2x C +C. cos2x C +D. 2cos2x C + 10. 设2,0(),0x x f x x x >⎧=⎨≤⎩,则11()f x dx -=⎰ ( D ) A. 012xdx -⎰B. 1202x dx ⎰C.10201x dx xdx -+⎰⎰ D.10201xdx x dx -+⎰⎰11. 以下各组函数中表示同一函数的一组是( C )A. f(x)= x xC. f(x)=xlg x g(x)= 2lg x12. 设2()arcsin3x f X -=,则函数的定义域是 ( B ) A. (1,5-) B. [1,5-] C. [1,5-) D. (1,5-]13. 设sinx 2()2 x 2x f x x πππ⎧≥⎪⎪=⎨⎪<⎪⎩.则2lim ()x f x π→是( A )A. 1B. 0C. 1-D. 不存在14. 当0x →时,下列变量中是无穷小量的是 ( B )A.sin xx B. sin x x C. 11sin x x D. 1(1)xx+15. 抛物线2x y =上的点)41,21(-处切线的斜率K= ( D )A. 1B. 2C. -2D. -116. 下列各函数在给定区间上满足罗尔定理条件的是 ( A )A.[]23(),1,121f x x =-+ B. [](),0,1x f x xe =C.[](),1,1f x x =- D. []1(),1,ln f x e x=17. 函数xy x e =-在区间(,0)-∞内 ( B )A. 单调递减B. 单调递增C. 不增不减D. 有增有减18.cos xd x =⎰( A )A. cos sin x x x C -+B. cos sin x x x C ++C. cos cos x x x C -+D. cos cos x x x C ++19. 1arcsin xd tdt dx =⎰( C )A. 0C. arcsin xD. arcsin arcsin b a -20. 下列广义积分收敛的是 ( D )A.1+∞⎰B.+∞⎰C.+∞⎰D.211dx x +∞⎰21.函数21log y =+ ( D )A.12-=x y B.122-=x yC.14-=x yD.14x y -=22.1lim(1)1nn n →∞+=+ ( A ) A. e B. 1e - C. 2eD. 123.函数()212y x =+间断点的个数是 ( B )A. 0B. 1C. 2D. 324.关于函数连续与可导的关系,下列叙述正确的是 ( B )A.连续必可导B. 可导必连续C.可导不一定连续D. 连续与可导没有直接关系25.设2()y f x =.则=dy( ) ( D )A. 2()xf x dx 'B. 22()f x dxC. 2(2)xf x dx 'D. 22()xf x dx '26.设函数ln y x =在闭区间[1,]e 上满足拉格朗日定理.则定理中的ξ= ( A )A. 1e -B. 1e +C. eD. e -27. 函数2xy e=在2x =时的弹性是( D )A. 2B. 42e C. 44eD. 428.经过第二换元积分法,设tan x t =.则= ( B )A.sec tdt ⎰B. 3sec tdt ⎰C.2sec 1tdt t +⎰D. 3sectdt -⎰29.203sin lim13xx t dt x →=⎰( A )A. 1B. 0C. 12D.1330.2011dx x +∞=+⎰ ( C ) A. 0 B. πC. 2πD. ∞31.函数y =( A ) A.]( 1 , 1- B. ( 1 , 1)-C. ]( 1 , 0-D.(),1(1,)-∞--+∞32. 函数ln(12),(,0]y x x =-∈-∞的反函数是 ( A )A. 12xe y -=B. 12xe y +=C. 12x e y -=D. 12xe y +=-33. 若3222lim1221x an bn n n →∞++=++,则a,b 的值分别是 ( B ) A. 0,1a b == B. 0,2a b == C. 1,2a b == D. 1,0a b ==34. 2201cos lim x xx→-= ( B ) A. 0 B. 1 C. 2 D. 1235. 函数()f x x =在0x =处 ( C )A. 既连续又可导B. 不连续但可导C. 连续但不可导D. 既不连续也不可导36. 函数ln cos y x =,则dydx= ( B ) A. tan x B. tan x - C. cot x D. cot x -37. 函数()f x =[0,1]使罗尔定理成立ξ= ( C ) A. 0 B. 12C.23D. 1 38. 函数ln(1)y x x =-+的单调减区间是 ( A ) A. ()1,0- B. ()1,-+∞ C.()1,1- D. []1,1-39. 设()()F x G x ''=,则下列结论中正确的是 ( D ) A. ()()F x G x = B. ()()1F x G x =+ C. ()()F x dx G x dx ''⎡⎤⎡⎤=⎣⎦⎣⎦⎰⎰ D. ()()dF x dG x =⎰⎰ 40.21(1)dxx x +∞=+⎰( D )A. 0B. ∞C. ln 2D.1ln 2241. 设函数y =的定义域是 ( C )A. (),1(1,)-∞--+∞B. (),1(1,4)-∞--C.(),1(1,4)-∞- D. ()4,1(1,4)--42. 函数2,11xyx x -=≠-+的反函数是 ( A ) A. 21x y x -=+ B. 21xy x +=+C. 21x y x +=-D. 21xy x -=-43. 11(2)3lim(2)3n nn n x ++→∞-+=-+ ( A ) A.13 B. 12 C. 13- D. 12-44. 当0x →时,sin x 与x 是 ( B )A. 同阶无穷小B.等价无穷小C. 高阶无穷小D.低阶无穷小 45. 设()f a '存在且为1,则0(2)()limh f a h f a h→+-= ( D )A. 0B. 1C. 1-D. 246. 设某商产品单价为100元时,需求价格弹性0.1η=,它说明在价格100元的基础上上涨1℅,需求将下降 ( C ) A. 0.1B. 10℅C. 0.1℅D. 1047. 函数lnsin y x =在5,66ππ⎡⎤⎢⎥⎣⎦上满足罗尔定理条件的ξ= ( D ) A. 0 B.4π C. 3π D. 2π48. 已知函数sin 3xy e x =,则dy = ( A )A. []sin33cos3xe x x dx + B. []sin33cos3x e x x dx - C. []sin33cos3xe x x dx -+ D. []sin33cos3x e x x dx -+49.ln xdx ⎰= ( A )A. (ln 1)x x C ++B. (ln 1)x x C -++C. (ln 1)x x C -+D. (1ln )x x C -+ 50.cos x dx π=⎰( C )A. 0B. 1C. 2D. 2-二 填空题1. 设f(x)=11x x +-,则f(x+1)= 2xx-+。
经济数学基础复习题重点
经济数学基础复习题一、单项选择题:1.函数242--=x x y 的定义域是( ).A .),2[+∞-B .),2()2,2[+∞⋃-C .),2()2,(+∞-⋃--∞D .),2()2,(+∞⋃-∞答案:B2.设11)(+=xx f ,则))2((f f =( ). A .21 B .23 C .32 D .35答案:D3.下列函数中为奇函数的是().A .x x y -=2B .x x y -+=e eC .11ln +-=x x y D .x x y sin = 答案:C4.下列各对函数中,( )中的两个函数相等. A . 2)1ln(xx x y -=与x x g )1ln(-= B . 2ln x y =与x g ln 2= C . x y 2sin 1-=与x g cos = D . )1(-=x x y 与)1(-=x x y答案:A5,若x x x f cos )(=,则='')(x f ( ).A .x x x sin cos +B .x x x sin cos -C .x x x cos sin 2+D .x x x cos sin 2-- 答案:D6,下列等式不成立的是( ). A .A .x x x 1dd ln = B .21d d 1xx x -= C .x x x sin d d cos = D .xx x 1d d 12=答案:C7.下列函数中,( )是2cos x x 的原函数.A .21sin x 2 B .2 sin x 2 C .-2 sin x 2 D .-21sin x 2 答案:A 8,若c x x f xx+-=⎰11e d e)(,则f (x ) =( ).A .x 1 B .-x 1 C .21x D .-21x答案:C9.下列定积分中积分值为0的是( ).A .x xx d 2e e 11⎰--- B .x xx d 2e e 11⎰--+ C .x x x d )cos (3⎰-+ππD .x x x d )sin (2⎰-+ππ答案:A10.设A 为23⨯矩阵,B 为42⨯矩阵,C 为24⨯矩阵,则下列运算中( )可以进行.A .B AC T B .T T B AC C .TACB D .ACB 答案:B11.设A 是可逆矩阵,且A AB I +=,则A-=1( ).A .B B . 1+BC . I B +D . ()I AB --1 答案:C12.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=314231003021A ,则r (A ) =( ). A .4 B .3 C .2 D .1答案:C13.设线性方程组b AX =的增广矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----84020123004201050231,则此线性方程组的一般解中自由未知量的个数为( ).A .1B .2C .3D .4 答案:A二、填空题1.函数)1ln(14-+-=x x y 的定义域是.答案:]4,2()2,1(⋃2.设函数1)(2-=u u f ,xx u 1)(=,则=))2((u f .答案:43-3. 某产品的成本函数为20084)(2++=q q q C ,那么该产品的平均成本函数=)10(C .答案: 684.已知xxx f sin 1)(-=,当 时,)(x f 为无穷小量. 答案:0→x5. 函数⎪⎩⎪⎨⎧=≠+-=0,0,211)(x k x xxx f 在x = 0处连续,则k = . 答案:-1.6.曲线21-=x y 在点)1,1(处的切线方程是.答案:2321+-=x y 7.需求量q 对价格p 的函数为2e 100)(pp q -⨯=,则需求弹性为E p =.答案:2p-8,若c x x x f ++=⎰2)1(d )(,则=)(x f .填写:)1(2+x 9.若c x F x x f +=⎰)(d )(,则x f x x )d e (e --⎰= .填写:c F x+--)e(10.=-⎰-112d )2sin (x x x.填写:-4 11. 设⎥⎦⎤⎢⎣⎡--=2131A ,则A I 2-= . 填写:⎥⎦⎤⎢⎣⎡--526112.若n 阶矩阵A 满足 ,则A 为对称矩阵. 填写:A T = A (或ji ij a a =)13.设B A ,为两个已知矩阵,且B I -可逆,则方程X BX A =+的解=X .填写:A B I 1)(--14.矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--330204212的秩为 .填写:215.线性方程组O AX =的系数矩阵A 化成阶梯形矩阵后为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→100140121d A则当d 时,方程组O AX =有非0解.(三)计算题1.423lim 222-+-→x x x x 解 423lim 222-+-→x x x x =)2)(2()1)(2(lim 2+---→x x x x x = )2(1lim 2+-→x x x = 41 .2.xx x x sin 11lim 20-+→解 x x x x s i n 11lim 20-+→ = xx x x x x sin )11()11)(11(lim 2220++++-+→= xx xx sin )11(lim20++→ =121⨯=21 3.))32)(1()23()21(lim 625--++-∞→x x x x x x 解 ))32)(1()23()21(lim 625--++-∞→x x x x x x =))32)(11()213()21(lim 625xx x x x x --++-∞→ =2323)2(65-=⨯-4.已知y xxx--=1cos 2,求)0(y ' . 解 因为 y '(x )=)1cos 2('--xx x=2)1(cos )1(sin )1(2ln 2x xx x x------=2)1(sin )1(cos 2ln 2x xx x x----所以,)0(y '=12ln )01(0sin )01(0cos 2ln 22-=----5.设121ln -+=x x y , 求d y . 解: 2)12(2ln 21)121ln (--='-+='x x x x x yx x x x x y y d )12(2ln 21d d 2⎥⎦⎤⎢⎣⎡--='=6.设函数)(x y y =由方程e ln e =++y x y x 确定,求)0(y ' 解:方程两边对x 求导,得 0ln )1(e='++'++y yxy y yx y y y y x y y x y x ln e )e (--='+++xy yy y y yx y x +--='++e ln e . 当0=x 时,1=y 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一 单选题1. 设函数y=f(x)的定义域[4,4-],则)的定义域是 ( A )A. [0,16]B. (0,16)C. [0,16)D. (0,16] 2. 函数211x y x -=+的反函数是 ( C ) A. 11()212x y x x -=≠-+ B. 11()212x y x x +=≠-C. 1(2)2x y x x +=≠-D. 1(2)2x y x x+=≠-+3. 153lim251n n n x +→∞-=⨯+ ( B ) A.35 B. 12 C. 35- D. 12-4. 当x →+∞时,是 (A ) A. 同阶无穷小 B.等价无穷小 C. 高阶无穷小 D.低阶无穷小 5. 设函数f(x)在0x 处可导,则000()()lim x f x x f x x∆→-∆-=∆ ( B )A. 0()f x 'B. 0-()f x 'C. 0-()f xD. 0()f x6. 设某商产品单价为500元时,需求价格弹性0.2η=,它说明在价格500元的基础上上涨1℅,需求将下降 ( C ) A. 0.2B. 20℅C. 0.2℅D. 207. 在区间[]-1,1上满足罗尔定理条件的函数是 ( D )A. sin x yx=B. 2(1)y x =+ C. y x = D. 21y x =+8. 已知函数sin xy e x =,则dy = ( C )A. sin x e xdx +B. cos xe xdx + C. (sin cos )xe x x dx + D. (sin cos )xe x x dx - 9. 已知y=f(x)的一个原函数为sin 2x ,则()f x dx '⎰= ( D )A. sin 2x C +B. 2sin 2x C +C. cos2x C +D. 2cos2x C + 10. 设2,0(),0x x f x x x >⎧=⎨≤⎩,则11()f x dx -=⎰ ( D ) A. 012xdx -⎰B. 1202x dx ⎰C.10201x dx xdx -+⎰⎰ D.10201xdx x dx -+⎰⎰11. 以下各组函数中表示同一函数的一组是( C )A. f(x)= x xC. f(x)=xlg x g(x)= 2lg x12. 设2()arcsin3x f X -=,则函数的定义域是 ( B ) A. (1,5-) B. [1,5-] C. [1,5-) D. (1,5-]13. 设sinx 2()2 x 2x f x x πππ⎧≥⎪⎪=⎨⎪<⎪⎩.则2lim ()x f x π→是( A )A. 1B. 0C. 1-D. 不存在14. 当0x →时,下列变量中是无穷小量的是 ( B )A.sin xx B. sin x x C. 11sin x x D. 1(1)xx+15. 抛物线2x y =上的点)41,21(-处切线的斜率K= ( D )A. 1B. 2C. -2D. -116. 下列各函数在给定区间上满足罗尔定理条件的是 ( A )A.[]23(),1,121f x x =-+ B. [](),0,1x f x xe =C.[](),1,1f x x =- D. []1(),1,ln f x e x=17. 函数xy x e =-在区间(,0)-∞ ( B )A. 单调递减B. 单调递增C. 不增不减D. 有增有减18.cos xd x =⎰( A )A. cos sin x x x C -+B. cos sin x x x C ++C. cos cos x x x C -+D. cos cos x x x C ++19. 1arcsin xd tdt dx =⎰( C )A. 0C. arcsin xD. arcsin arcsin b a -20. 下列广义积分收敛的是 ( D )A.1+∞⎰B.+∞⎰C.+∞⎰D.211dx x +∞⎰21.函数21log y =+ ( D )A.12-=x y B.122-=x yC.14-=x yD.14x y -=22.1lim(1)1nn n →∞+=+ ( A ) A. e B. 1e - C. 2eD. 123.函数()212y x =+间断点的个数是 ( B )A. 0B. 1C. 2D. 324.关于函数连续与可导的关系,下列叙述正确的是 ( B )A.连续必可导B. 可导必连续C.可导不一定连续D. 连续与可导没有直接关系25.设2()y f x =.则=dy( ) ( D )A. 2()xf x dx 'B. 22()f x dxC. 2(2)xf x dx 'D. 22()xf x dx '26.设函数ln y x =在闭区间[1,]e 上满足拉格朗日定理.则定理中的ξ=( A )A. 1e -B. 1e +C. eD. e -27. 函数2xy e=在2x =时的弹性是( D )A. 2B. 42e C. 44eD. 428.经过第二换元积分法,设tan x t =.则= ( B )A.sec tdt ⎰B. 3sec tdt ⎰C.2sec 1tdt t +⎰D. 3sectdt -⎰29.203sin lim13xx t dt x →=⎰( A )A. 1B. 0C. 12D.1330.2011dx x +∞=+⎰ ( C ) A. 0 B. πC. 2πD. ∞31.函数y =( A ) A.]( 1 , 1- B. ( 1 , 1)-C. ]( 1 , 0-D.(),1(1,)-∞--+∞32. 函数ln(12),(,0]y x x =-∈-∞的反函数是 ( A )A. 12xe y -=B. 12xe y +=C. 12x e y -=D. 12xe y +=-33. 若3222lim1221x an bn n n →∞++=++,则a,b 的值分别是 ( B ) A. 0,1a b == B. 0,2a b == C. 1,2a b == D. 1,0a b ==34. 2201cos lim x xx→-= ( B ) A. 0 B. 1 C. 2 D. 1235. 函数()f x x =在0x =处 ( C )A. 既连续又可导B. 不连续但可导C. 连续但不可导D. 既不连续也不可导36. 函数ln cos y x =,则dydx= ( B ) A. tan x B. tan x - C. cot x D. cot x -37. 函数()f x =[0,1]使罗尔定理成立ξ= ( C )A. 0B. 12C.23D. 1 38. 函数ln(1)y x x =-+的单调减区间是 ( A ) A. ()1,0- B. ()1,-+∞ C.()1,1- D. []1,1-39. 设()()F x G x ''=,则下列结论中正确的是 ( D ) A. ()()F x G x = B. ()()1F x G x =+ C. ()()F x dx G x dx ''⎡⎤⎡⎤=⎣⎦⎣⎦⎰⎰ D. ()()dF x dG x =⎰⎰ 40.21(1)dxx x +∞=+⎰( D )A. 0B. ∞C. ln 2D.1ln 2241. 设函数y =的定义域是 ( C )A. (),1(1,)-∞--+∞B. (),1(1,4)-∞--C.(),1(1,4)-∞- D. ()4,1(1,4)--42. 函数2,11xyx x -=≠-+的反函数是 ( A ) A. 21x y x -=+ B. 21xy x +=+C. 21x y x +=-D. 21xy x -=-43. 11(2)3lim(2)3n nn n x ++→∞-+=-+ ( A ) A.13 B. 12 C. 13- D. 12-44. 当0x →时,sin x 与x 是 ( B )A. 同阶无穷小B.等价无穷小C. 高阶无穷小D.低阶无穷小 45. 设()f a '存在且为1,则0(2)()limh f a h f a h→+-= ( D )A. 0B. 1C. 1-D. 246. 设某商产品单价为100元时,需求价格弹性0.1η=,它说明在价格100元的基础上上涨1℅,需求将下降 ( C ) A. 0.1B. 10℅C. 0.1℅D. 1047. 函数lnsin y x =在5,66ππ⎡⎤⎢⎥⎣⎦上满足罗尔定理条件的ξ= ( D ) A. 0 B.4π C. 3π D. 2π48. 已知函数sin 3xy e x =,则dy = ( A )A. []sin33cos3xe x x dx + B. []sin33cos3x e x x dx - C. []sin33cos3xe x x dx -+ D. []sin33cos3x e x x dx -+49.ln xdx ⎰= ( A )A. (ln 1)x x C ++B. (ln 1)x x C -++C. (ln 1)x x C -+D. (1ln )x x C -+ 50.cos x dx π=⎰( C )A. 0B. 1C. 2D. 2-二 填空题1. 设f(x)=11x x +-,则f(x+1)= 2xx-+。
2. 设1 xsin 0() 0x f x xk x ⎧≠⎪=⎨⎪=⎩在0=x 点连续,则 =k 0 。
3. 1lim 1xx x x →∞-⎛⎫= ⎪+⎝⎭2e - 。
4. 设f(x)是可导函数,(sin )y f x =,则dydx= cos (sin )xf x ' 。
5. 设sin y x =,则()(10)yx = sin x - 。
6. 函数2()1x f x x=+的单调减区间为 (2,1)(1,0)--- 。
7. 函数3237y x x =-+的极大值为 7 。
8. 2x xedx -=⎰ 212x e C --+ 。
9.()()m n nmf x dx f x dx +=⎰⎰ 010. 无穷限反常积分2ln edxx x+∞=⎰1 11. 设2211()f x x x x+=+,则f(x)= 22x - 。
12. limx →∞= 0 。
13. 设ae 0()2+cosx 0x x f x x -⎧≤=⎨>⎩是连续函数,则a= 3 。
14. 设函数f(x)在0x 处可导,则000()()limx f x x f x x∆→+∆-=∆ 0()f x ' 。
15. 设函数2sin y x =,则22d ydx= 2cos2x 。