等腰三角形(基础)知识讲解

合集下载

第十七讲 等腰三角形与直角三角形

第十七讲 等腰三角形与直角三角形

第十七讲 等腰三角形与直角三角形归纳 1:等腰三角形基础知识归纳:1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边.即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.推论2:等边三角形的各个角都相等,并且每个角都等于60°.2、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.基本方法归纳:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b <a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A =180°—2∠B ,∠B =∠C =2180A ∠-︒ 注意问题归纳:等腰三角形的性质与判定经常用来计算三角形的角的有关问题,并证明角相等的问题.【例1】已知等腰三角形的三边长分别为a 、b 、4,且a 、b 是关于x 的一元二次方程x 2﹣12x +m +2=0的两根,则m 的值是( )A .34B .30C .30或34D .30或36归纳2:等边三角形基础知识归纳:1.定义三条边都相等的三角形是等边三角形.2.性质:等边三角形的各角都相等,并且每一个角都等于60°3.判定三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.基本方法归纳:线段垂直平分线上的一点到这条线段的两端距离相等;到一条线段两端点距离相等的点,在这条线段的垂直平分线上.注意问题归纳:三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.【例2】如图,∠EOF的顶点O是边长为2的等边△ABC的重心,∠EOF的两边与△ABC的边交于E,F,∠EOF=120°,则∠EOF与△ABC的边所围成阴影部分的面积是()A.32B.235C.33D.34归纳3:直角三角形基础知识归纳:有一个角是直角的三角形叫作直角三角形直角三角形的性质:(1)直角三角形两锐角互余.(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半.基本方法归纳:(1)两个内角互余的三角形是直角三角形.(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.注意问题归纳:注意区分直角三角形的性质与直角三角形的判定,在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半,它的逆命题不能直接使用.【例3】已知等腰三角形的底角是30°,腰长为,则它的周长是.归纳4:勾股定理基础知识归纳:直角三角形的两条直角边a、b的平方和等于斜边c的平方,即:a2+b2=c2;基本方法归纳:如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形.注意问题归纳:勾股定理的逆定理也是判定直角三角形一种常用的方法,通常与直角三角形的性质结合起来考查.【例4】如图,在△ABC中,内角A、B、C所对的边分别为a、b、c.(1)若a=6,b=8,c=12,请直接写出∠A与∠B的和与∠C的大小关系;(2)求证:△ABC的内角和等于180°;(3)若()12a b caa b c c++=-+,求证:△ABC是直角三角形.【基础练习】1.一个等腰三角形的底边长是6,腰长是一元二次方程x2﹣8x+15=0的一根,则此三角形的周长是()A.16B.12C.14D.12或162.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB 于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°3.如图,等边△OAB的边长为2,则点B的坐标为()A.(1,1)B.(1,3)C.(3,1)D.(3,3)4.如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A顺时针旋转得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为()A.1.6B.1.8C.2D.2.65.下列长度的三条线段,能组成三角形的是()A.2,2,4B.5,6,12C.5,7,2D.6,8,10 6、等腰三角形一边长为2,它的另外两条边的长度是关于x的一元二次方程x2﹣6x+k=0的两个实数根,则k的值是()A.8B.9C.8或9D.127.如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点D,交AB与点E,已知△BCE的周长为10,且BC=4,则AB的长为()A.3B.4C.5D.68.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.32B.2C.52D.3【基础练习】9.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A.42B.4C.25D.810.如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD55BD的最小值是()A.25B.45C.53D.1011.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4.点P是边AC上一动点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长度为()A.813B.1513C.2513D.321312、如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=kx(x>0)的图象上,若AB=2,则k的值为()A.4B.22 C.2D.213.如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.(1)求证:△BDE∽△CAD.(2)若AB=13,BC=10,求线段DE的长.14.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB;(2)若BC=3,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.1.在△ABC中,点M为BC的中点,AD平分∠BAC,且BD⊥AD于点D,延长BD交AC于点N若AB=4,DM=1,则AC的长为()A.5B.6C.7D.82.如图,在△ABC中,AB=AC,AE平分∠BAC,F为AC上一点,且AF=EF.若∠B=42°,则∠EFC为()A.48°B.96°C.138°D.84°3.如图:分别以Rt△ABC的直角边AC及斜边AB为边作等边△ACD及等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF交AC于点O.给出下列说法:①AC=EF;②四边形ADFE是平行四边形;③△ABC≌△ADO;④2FO=BC;⑤∠EAD=120°.其中正确结论的个数是()A.2B.3C.4D.54.如图,在△ABC中,∠CAB=90°,AB=AC=4,P为AC中点,点D在直线BC上运动,以为边向AD的右侧作正方形ADEF,连接PF,则在点D的运动过程中,线段PF的最小值为()A.2B.2C.1D.225.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使点A与BC的中点D重合,折痕为MN,则线段BN的长为()A.4B.3C.2D.56.如图,△PAB与△PCD均为等腰直角三角形,点C在PB上,若△ABC与△BCD的面积之和为10,则△PAB与△PCD的面积之差为()A.5B.10C.l5D.207.《九章算术》勾股章有一“引葭赴岸”问题:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问:水深,葭长各几何.”意思是:如示意图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度和芦苇的长度分别是多少?备注:1丈=10尺.设芦苇长x尺,则可列方程为()A.x2+102=(x+1)2B.(x﹣1)2+52=x2C.x2+52=(x﹣1)2D.x2+12=(x﹣1)28.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,如果CE=8,则ED的长为()A.2B.3C.4D.69.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2:1,若随机在大正方形及其内部区域投针,则针尖扎到小正方形(阴影部分)的概率是()A.0.2B.0.25C.0.4D.0.510.如图,在△ABC中,∠CAB=90°,∠ABC=60°,BD平分∠ABC,若CD=6,则AD的长为()A.2B.3C.4D.4.511.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE12BC .求证:A B平分∠EAD.12.(如图,在△ABC中,AD⊥BC于点D,点F为AB上一点,连接CF,过点B作BE⊥BC 交CF的延长线于点E,交AD于点H,且∠1=∠2.(1)求证:A B=AC;(2)若∠1=22°,∠AFC=110°,求∠BCE的度数.13.如图,等边△ABC中,AB=6,D是AC的中点,E是BC延长线上的一点,CE=CD,DF⊥BE,垂足为F.(1)求BD的长;(2)求证:B F=EF;(3)求△BDE的面积.。

等腰三角形的性质与判定

等腰三角形的性质与判定

第05讲等腰三角形的性质与判定【学习目标】1.了解等腰三角形的有关概念,探索并掌握性质及判定方法。

【基础知识】一.等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.二.等腰三角形的判定判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.【简称:等角对等边】说明:①等腰三角形是一个轴对称图形,它的定义既作为性质,又可作为判定办法.②等腰三角形的判定和性质互逆;③在判定定理的证明中,可以作未来底边的高线也可以作未来顶角的角平分线,但不能作未来底边的中线;④判定定理在同一个三角形中才能适用.三.等腰三角形的判定与性质1、等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.2、在等腰三角形有关问题中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线,虽然“三线合一”,但添加辅助线时,有时作哪条线都可以,有时不同的做法引起解决问题的复杂程度不同,需要具体问题具体分析.3、等腰三角形性质问题都可以利用三角形全等来解决,但要注意纠正不顾条件,一概依赖全等三角形的思维定势,凡可以直接利用等腰三角形的问题,应当优先选择简便方法来解决.【考点剖析】一.等腰三角形的性质(共7小题)1.(2021秋•盱眙县期末)如果等腰三角形两边长是5cm和2cm,那么它的周长是()A.7cm B.9cm C.9cm或12cm D.12cm2.(2021秋•抚远市期末)等腰三角形的两边长分别为3和6,则这个三角形的周长是()A.15B.12C.12或15D.93.(2022春•鼓楼区校级期中)如图,在△ABC中,∠A=α,∠B=∠C,点D是△ABC外一点,E,F分别在AB,AC上,ED与AC交于点G,且∠D=∠B,若∠1=2∠2,则∠EGF的度数为()A.180°﹣2αB.60°+13αC.90°−32αD.30°+23α4.(2022春•镇江期中)三角形的三边长为2,a,5,如果这个三角形中有两条边相等,那么它的周长是.5.(2022春•金湖县校级月考)在△ABC中,∠C=30°,且∠A=∠B;求∠A的度数.6.(2022春•睢宁县月考)一个等腰三角形的两条边长为4,7,那么它的周长是多少?7.(2021秋•邗江区期末)如图,△ABC中,AB=AC,AB的垂直平分线DE分别交AC、AB于点D、E.(1)若∠A=50°,求∠CBD的度数;(2)若AB=7,△CBD周长为12,求BC的长.二.等腰三角形的判定(共7小题)8.(2021秋•仪征市期末)在△ABC中,∠A=100°,当∠B=°时,△ABC是等腰三角形.9.(2021秋•靖江市期末)已知a,b是△ABC的两条边长,且a2+b2﹣2ab=0,则△ABC的形状是()A.等腰三角形B.等边三角形C.锐角三角形D.不确定10.(2021秋•滨海县期末)用三根木棒首尾相连围成一个等腰三角形,其中两根木棒的长度分别为3cm和6cm,则第三根木棒长为cm.11.(2021秋•泗阳县期中)如图,∠EAC是△ABC的外角,AD平分∠EAC,AD∥BC.(1)求证:AB=AC;(2)若点H是BC的中点,求证:AH⊥AD.12.(2021秋•鼓楼区校级期末)下列长度的三条线段能组成等腰三角形的是()A.1,2,3B.3,4,5C.2,2,3D.2,2,413.(2021秋•龙华区校级期末)如图,在3×3的正方形网格中,点A、B在格点上,要找一个格点C,使△ABC是等腰三角形(AB是其中一腰),则图中符合条件的格点有()A.2个B.3个C.4个D.5个14.(2020秋•定西期末)如图,在△ABC中,∠B=90°,AB=16cm,BC=12cm,AC=20cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当点Q在边BC上运动时,出发几秒后,△PQB是等腰三角形?(2)当点Q在边CA上运动时,出发几秒后,△BCQ是以BC或BQ为底边的等腰三角形?三.等腰三角形的判定与性质(共6小题)15.(2020秋•绿园区期末)如图,直线l分别与直线AB、CD相交于点E、F,EG平分∠BEF交直线CD 于点G,若∠1=∠BEF,若EF=3,则FG为()A.4B.3C.5D.1.516.(2021•建湖县二模)若一条长为32cm的细线能围成一边长等于8cm的等腰三角形,则该等腰三角形的腰长为cm.17.(2021秋•句容市期末)如图,BD平分∠ABC,DE∥BC交BA于点E,若DE=52,则EB=.18.(2021秋•射阳县校级期末)已知:如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O,且MN ∥BC,分别交AB、AC于点M、N.求证:MN=BM+CN.19.(2021秋•盱眙县期末)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.20.(2021秋•苏州期末)如图,在△ABC中,AD⊥BC,∠B=62°,AB+BD=CD,则∠BAC的度数为()A.87°B.88°C.89°D.90°【过关检测】一.选择题(共6小题)1.(2021秋•溧阳市期末)若等腰三角形边长别为6cm和3cm,则该等腰三角形的周长是()A.9cm B.12cm C.15cm D.12cm或15cm2.(2021秋•江阴市期末)等腰三角形的周长为21cm,其中一边长为5cm,则该等腰三角形的底边长为()A.5cm B.11cm C.8cm或5cm D.11cm或5cm3.(2022•陕西模拟)如图,在△ABC中,AB=AC,BD=CD,点E为AC的中点,连接DE.若△ABC 的周长为20cm,则△CDE的周长为()A.10 cm B.12 cm C.14 cm D.16cm4.(2022•黔东南州模拟)如图,在△ABC中,AB=AC,BD为△ABC的高.若∠CBD=20°,则∠BAC 的度数是()A.30°B.40°C.50°D.60°5.(2021秋•鼓楼区校级期末)下列长度的三条线段能组成等腰三角形的是()A.1,2,3B.3,4,5C.2,2,3D.2,2,46.(2021秋•靖江市期末)已知a,b是△ABC的两条边长,且a2+b2﹣2ab=0,则△ABC的形状是()A.等腰三角形B.等边三角形C.锐角三角形D.不确定二.填空题(共3小题)7.(2021秋•溧水区期末)如图,在△ABC中,∠ABC、∠ACB的平分线交于点O,MN经过点O,且MN ∥BC,分别交AB、AC于点M、N.若BM=3cm,MN=5cm,则CN=cm.8.(2021秋•宁津县期末)如图,△ABC中,∠A=∠ACB,CP平分∠ACB,BD,CD分别是△ABC的两外角的平分线,下列结论中:①CP⊥CD;②∠P=12∠A;③BC=CD;④∠D=90°−12∠A;⑤PD∥AC.其中正确的结论是(直接填写序号).9.(2021秋•东城区校级期末)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若BE=3,CD=4,ED=5,则FG的长为.三.解答题(共3小题)10.(2022春•无锡期中)如图①,△ABC的角平分线BD、CE相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,过P点作直线MN,分别交AB和AC于点M和N,且MN平行于BC,试求∠MPB+∠NPC 的度数(用含∠A的代数式表示);(3)将(2)中的直线MN绕点P旋转,分别交线段AB于点M(不与A、B重合),交直线AC于N,试探索∠MPB、∠NPC、∠A三者之间的数量关系,并说明理由.11.(2021秋•淮安区期末)如图,在△ABC中,AB=AC,∠A=50°,AB的垂直平分线MN交AC于点D,交AB于点E,求∠DBC的度数.12.(2021秋•泗洪县期末)如图,在△ABC中,AB=AC,角平分线BD,CE相交于点O,求证:OB=OC.第05讲等腰三角形的性质与判定【学习目标】1.了解等腰三角形的有关概念,探索并掌握性质及判定方法。

等腰三角形知识点总结等腰三角形知识点归纳重点

等腰三角形知识点总结等腰三角形知识点归纳重点

等腰三角形知识点总结等腰三角形知识点归纳重点等腰三角形是初中数学中的一种基本几何图形,具有很多特殊的性质和定理。

本文将对等腰三角形的相关知识点进行总结和归纳,帮助读者更好地理解和掌握等腰三角形的特点和应用。

以下是等腰三角形知识点总结汇总,希望对大家的学习有所帮助。

1、等腰三角形知识总结,定义(1)等腰三角形:有两条边相等的三角形叫等腰三角形,相等的两条边叫腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

(2)等边三角形:特殊的等腰三角形,三条边都相等的三角形叫做等边三角形。

2、等腰三角形知识总结,等腰三角形的相关概念(1)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在的直线就是它的对称轴。

(2)等腰三角形的外心、内心、重心和垂心都在顶角平分线上,即四心共线。

(3)等边三角形的外心、内心、重心和垂心四心合一,成为等边三角形的中心。

3、等腰三角形知识总结,等腰三角形的性质定理(1)推理格式:在△ABC中,因为AB=AC,所以∠B=∠C。

(2)定理的作用:证明同—个三角形中的两个角相等。

4、等腰三角形知识总结,等腰三角形性质定理的推论(1)等腰三角形的顶角平分线平分底边并且垂直于底边。

(2)等边三角形的三个内角都相等,并且每个角都等于60°。

5、等腰三角形知识总结,等腰三角形的判定定理(1)该定理是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据。

(2)注意:该定理不能叙述为“如果一个三角形中有两个底角相等,那么它的两腰也相等”。

因为在没有判定出它是等腰三角形之前,不能用“底角”、“腰”这些名词,只有等腰三角形才有“底角”、“腰”。

相等的两条边叫腰;两腰的夹角叫顶角;顶角所对的边叫底;腰与底的夹角叫底角。

(2)等边对等角;(3)底边上的高、底边上的中线、顶角平分线互相重合;(4)是轴对称图形,对称轴是顶角平分线;(5)底边小于腰长的两倍并且大于零,腰长大于底边的一半;(6)顶角等于180°减去底角的两倍;(7)顶角可以是锐角、直角、钝角,而底角只能是锐角.等边三角形性质:①具备等腰三角形的一切性质。

等腰三角形的判定知识讲解

等腰三角形的判定知识讲解
事地点(不考虑风浪因素)?
O
A
B
学习目标:
1. 掌握等腰三角形的判定定理.
重点
2、会综合运用等腰三角形的性质和判定进行有关的
计算和证明。
重点
3、理解勾股定理逆定理的证明方法。 难点
自学课本P89---90,并完成学案----自主学习
把“等腰三角形的两个底角相等”改写成 “如果------那么-----”形式。
∴ BA=BC(等角对等边) ∵AB=20(12-10)=40
A
∴BC=40
答:B处到达灯塔C40海里


如图,在△ABC中,AB=AC,∠ABC和∠ACB的平分 线交于点O.过O作EF∥BC交AB于E,交AC于F.
身 (1)、请你写出图中所有等腰三角形,并探究EF、BE、
手 FC之间的关系;
AA
赶到出事地点(不考虑风浪因素)?
O
A
B
课堂小结
今天你学到了什么?
1、等腰三角形的判定定理:等角对等边。
2、用构造直角三角形证明了勾股定理的逆定理。 3、会运用等腰三角形的性质和判定进行计算和 证明。

馈 1、如图,把一张矩形的纸沿对 D E
C
矫 角线折叠,重合部分是一个等
正 腰三角形吗?说明理由。
400
750
小试牛刀
例1:如图,上午10 时,一条船从A处出发以20海里 每小时的速度向正北航行,中午12时到达B处,从 A、B望灯塔C,测得∠NAC=40°∠NBC=80°求从 B处到灯塔C的距离解:∵∠NBC=∠A+∠C
∴∠C=80°- 40°= 40°
C
80° N 北
∴ ∠C = ∠A
B 40°

等腰三角形性质定理(基础)知识讲解

等腰三角形性质定理(基础)知识讲解

等腰三角形性质定理(基础)责编:杜少波【学习目标】1. 了解等腰三角形的有关概念, 掌握等腰三角形的轴对称性2.利用轴对称变换推导等腰三角形的性质,并加深对轴对称变换的认识.3. 掌握等腰三角形的下列性质:等腰三角形的两个底角相等;等腰三角形三线合一.4. 会利用等腰三角形的性质进行简单的推理、判断、计算和作图.【要点梳理】要点一、等腰三角形的定义1.等腰三角形有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.2.等腰三角形的作法已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a.作法:1.作线段BC=a;2.分别以B,C为圆心,以b为半径画弧,两弧相交于点A;3.连接AB,AC.△ABC为所求作的等腰三角形.3.等腰三角形的对称性(1)等腰三角形是轴对称图形;(2)∠B=∠C;(3)BD=CD,AD为底边上的中线.(4)∠ADB=∠ADC=90°,AD为底边上的高线.结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴.4.等边三角形三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.要点诠释:(1)等腰直角三角形的两个底角相等,且都等于45°,等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A =180°-2∠B ,∠B =∠C =1802A ︒-∠ . (2)用尺规作图时,画图的痕迹一定要保留,这些痕迹一般是画的轻一些,能看清就可以了,题目中要求作的图要画成实线,最后一定要点题,即“xxx 即为所求”.(3) 等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,比如边长为a 的等边三角形它的高是2a ,面积是24a . 【高清课堂:389301 等腰三角形的性质及判定,知识要点】要点二、等腰三角形的性质1.等腰三角形的性质性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”. 推论:等边三角形的各个内角都等于60°.性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”.2.等腰三角形的性质的作用证明两条线段或两个角相等的一个重要依据.3.尺规作图:已知底边和底边上的高已知线段a ,h (如图)用直尺和圆规作等腰三角形ABC,使底边BC =a,BC 边上的高线为h.作法:1.作线段BC=a.2.作线段BC 的垂直平分线l,交BC 与点D.3.在直线l 上截取DA=h,连接AB,AC.△ABC 就是所求作的等腰三角形.【典型例题】类型一、等腰三角形中有关度数的计算题【高清课堂:389301 等腰三角形的性质及判定:例1】1、如图,在△ABC中,D在BC上,且AB=AC=BD,∠1=30°,求∠2的度数.【答案与解析】解:∵AB=AC∴∠B =∠C∵AB=BD∴∠2=∠3∵∠2=∠1+∠C∴∠2=∠1+∠B∵∠2+∠3+∠B=180°∴∠B=180°-2∠2∴∠2=∠1+180°-2∠2∴3∠2=∠1+180°∵∠1=30°∴∠2=70°【总结升华】解该题的关键是要找到∠2和∠1之间的关系,显然∠2=∠1+∠C,只要再找出∠C与∠2的关系问题就好解决了,而∠C=∠B,所以把问题转化为△ABD的角之间的关系,问题就容易的多了.关于角度问题可以通过建立方程进行解决.【高清课堂:389301 等腰三角形的性质及判定:例1练习】举一反三:【变式】已知:如图,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.【答案】解:∵AC=BC=BD,AD=AE,DE=CE,∴设∠ECD=∠EDC=x,∠BCD=∠BDC=y,则∠AED=∠ADE=2x,∠A=∠B=180°-4x在△ABC中,根据三角形内角和得,x+y+180°-4x+180°-4x=180°①又∵A、D、B在同一直线上,∴2x+x+y=180°②由①,②解得x=36°∴∠B=180°-4x=180°-144°=36°.类型二、等腰三角形中的分类讨论2、(2016秋•威海期中)在等腰三角形中,已知一个角为40°,那么另两个角的度数是.【思路点拨】由一个等腰三角形内角为40°,分别从40°是等腰三角形顶角与40°是底角的角度去分析求解即可求得答案.【答案与解析】解:(1)当40°的角为顶角时,由三角形内角和定理可知:两个底角的度数之和=180°-40°=140°,又由等腰三角形的性质可知:两底角相等,故每个底角的度数1140702=⨯︒=︒;(2)当40°的角为底角时,另一个底角也为40°,则顶角的度数=180°-40°-40°=100°.∴另两个角为70°,70°或40°,100°.【总结升华】此题考查了等腰三角形的性质.此题比较简单,注意掌握分类讨论思想的应用,小心别漏解.【高清课堂:389301 等腰三角形的性质及判定:例2(2)】3、已知等腰三角形的周长为13,一边长为3,求其余各边.【答案与解析】解:(1)3为腰长时,则另一腰长也为3,底边长=13-3-3=7;(2)3为底边长时,则两个腰长的和=13-3=10,则一腰长1105 2=⨯=.这样得两组:①3,3,7 ②5,5,3.由三角形三边关系可知:两边之和大于第三边,3+3<7,故不能构成三角形,应舍去.∴等腰三角形的周长为13,一边长为3,其余各边长为5,5.【总结升华】唯独等腰三角形的边有专用名词“腰”“底”,别的三角形没有,此题没有说明边长为3的边是腰还是底,所以做此题应分类讨论.同时结合三角形内角和定理、三角形两边之和大于第三边、两边之差小于第三边,来验证讨论哪些情况符合,哪些情况不符合,从而决定取舍,最后得到正确答案.举一反三:【变式】计算:(1)一个等腰三角形的一边长为8cm,周长为20cm,求其它两边的长.(2)已知等腰三角形的一边长等于6cm,一边长等于7cm,求它的周长.(3)已知等腰三角形的一边长等于5cm,一边长等于12cm,求它的周长.【答案】解:(1)①底边长为8,则腰长为:(20﹣8)÷2=6,所以另两边的长为6cm,6cm,能构成三角形;②腰长为8,则底边长为:20﹣8×2=4,底边长为8cm,另一个腰长为4cm,能构成三角形.因此另两边长为8cm、4cm或6cm、6cm;(2)①6是腰长时,周长=6+6+7=19;②6是底边时,7是腰,周长=6+7+7=20;综上,它的周长为19或20;(3)分两种情况:当腰为5cm时,5+5<12,所以不能构成三角形;当腰为12cm时,12+12>5,12﹣12<5,所以能构成三角形,周长是:12+12+5=29cm.类型三、等腰三角形的性质及其运用4、如图,△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证GD=GE.【思路点拨】过E作EF∥AB交BC延长线于F,根据等腰三角形的性质及平行线的性质可推出∠F=∠FCE,从而可得到BD=CE=EF,再根据AAS判定△DGB≌△EGF,根据全等三角形的性质即可证得结论.【答案与解析】证明:过E作EF∥AB交BC延长线于F.∵AB=AC,∴∠B=∠ACB,∵EF∥AB,∴∠F=∠B,∵∠ACB=∠FCE,∴∠F=∠FCE,∴CE=EF,∵BD=CE,。

初中等腰三角形综合知识归纳

初中等腰三角形综合知识归纳

初中等腰三角形综合知识归纳几何是数学学习中的一道难题,想要学好初中等腰三角形,没有那么容易。

为了帮助大家更好的学习初中等腰三角形。

以下是店铺分享给大家的初中等腰三角形综合知识,希望可以帮到你!初中等腰三角形综合知识1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。

即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°。

2、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。

(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。

(2)要会区别三角形中线与中位线。

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

三角形中位线定理的作用:位置关系:可以证明两条直线平行。

数量关系:可以证明线段的倍分关系。

常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

结论2:三条中位线将原三角形分割成四个全等的三角形。

结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

结论4:三角形一条中线和与它相交的中位线互相平分。

结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

等腰三角形问题的求解误区一、腰和底不分例1、等腰三角形的周长为14,其一边长为4,那么它的底边为_______.误区警示在等腰三角形中,一边长为4,周长为14,设底边长为x,则x+4×2=14,,∴x=6,所以底边长为6.思路分析等腰三角形的一边长为4,这条边可能是腰,也可能是底,应分两种情况进行讨论:(1)当腰是4时,另两边是4,6,且4+4>6,6-4 <4,满足三角形三边关系定理;(2)当底是4时,另两边长是5,5,又5+4>5,5-4 <5,满足三角形三边关系定理.所以等腰三角形的底边为4或6.二、顶角和底角不分例2、已知等腰三角形的一个内角为700,则另外两个内角的度数是( )(A)55°,55°(B)70°,40°(C)55°,55°或70°,40°(D)以上都不对误区警示在等腰三角形中,一个内角为70°,设底角的度数为x,则2x+70=180,∴x=55,所以另外两个内角的度数是55°、55°.思路分析等腰三角形的一个内角为70°,这个角可能是顶角,也可能是底角,应分两种情况进行讨论:(1)当70°角为顶角时,设底角的度数为x,2x+70=180,∴x=55,所以另外两个内角的度数是55°、55°;(2)当70°角为底角时,设顶角的度数为y,y+70×2=180,∴y=40,所以另外两个内角的度数是70°、40°.故选C点拨根据等腰三角形的性质求角的度数时,要分是顶角还是底角两种情况进行讨论.另外,若角度改变时还要考虑利用三角形的内角和定理验证三角形是否存在.三、顶角顶点和底角顶点不分例3、如图2,坐标平面内一点A(2,-1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为( )(A)2 (B)3 (C)4 (D)5误区警示若三角形是等腰三角形,则OP=OA,所以符合符合条件的动点P有两个.思路分析根据题意,结合图形,分三种情况讨论:(1)若点P为顶角顶点,O、A为底角顶点,则PO=OA,符合条件的动点P有一个;(2)若点O为顶角顶点,P、A为底角顶点,则OP=OA,符合条件的动点P有两个;(3)若点A为顶角顶点,O、P为底角顶点,则AP=AO,符合条件的动点P有一个;综上所述,符合条件的动点P的个数共4个.故选C.点拨判定一个三角形是否为等腰三角形,关键是将三角形的三个顶点分别作为顶角顶点进行讨论,把情况考虑完整.四、锐角三角形和钝角三角形不分例4、等腰三角形一腰上的高与另一腰的夹角为40°,则顶角为_______.误区警示不少学生想当然地误解为:如图所示,图3(1)中顶角为50°.思路分析根据题意,应分锐角三角形和钝角三角形两种情况讨论:(1)如图3(1)所示,等腰三角形为锐角三角形时,一腰上的高在三角形内,此时顶角为50°;(2)如图3(2)所示,等腰三角形为钝角三角形时,一腰上的高是在三角形外,此时顶角为130°.故顶角为50°或130°.点拨等腰三角形为锐角三角形或钝角三角形时,一腰上的高可能在三角形内,也可能在三角形外,要注意分两种情况讨论.初中数学解题方法总结一、选择题的解法1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。

(完整版)等腰三角形知识点归纳及提高

(完整版)等腰三角形知识点归纳及提高

等腰三角形知识点归纳及提高知识点归纳:(一)等腰三角形的性质1、有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等推论1:等腰三角形顶角的平分线平分底边且垂直于底边,也就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

推论2:等边三角形的各角相等,且每一个角都等于60°.等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;2、定理及推论的作用等腰三角形的性质定理揭示了三角形中边相等与角相等的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。

等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线相互垂直的重要依据。

(二)等腰三角形的判定1、有关的定理及其推论定理:如果一个三角形有两个角相等,那么这两个角所对的边相等推论1、三个角都相等的三角形是等边三角形。

推论2、有一个角等于60°的等腰三角形是等边三角形。

推论3、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

2、定理及其推论的作用。

等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据。

3、等腰三角形中常用的辅助线等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线相互重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,视具体情况而定。

例1、如图,已知在等边三角形ABC中,D是AC的中点,E为BC延长线上一点,且CE=CD,D M⊥BC,垂足为M。

求证:M是BE的中点。

例2、如图,已知:△ABC中,AB=AC,D是BC上一点,且AD=DB,DC=CA,求∠BAC的度数例3、已知:如图:△ABC中,AB=AC,CD⊥AB于D。

等腰三角形知识点汇总及典型例题

等腰三角形知识点汇总及典型例题

1.主要知识点:1.在同一三角形中,有两条边相等的三角形是等腰三角形(定义)。

在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)2.主要性质: (1).等腰三角形的两个底角相等(简写成“等边对等角”)。

 (2).等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。

 (3).等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。

3.判定:(1)两边相等的三角形为等腰三角形(2)两底角相等的三角形为等腰三角形(3)中线和高合一的三角形为等腰三角形(4)角平分线和高合一的三角形为等腰三角形(5)一个三角形,底边上的中垂线是同一条线,可以判定是此三角形是等腰三角形4.特殊的等腰三角形------等边三角形4.1定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形,等边三角形是特殊的等腰三角形。

(注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。

4.2性质:⑴等边三角形的内角都相等,且均为60度。

⑵等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。

⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。

4.3判定: ⑴三边相等的三角形是等边三角形(定义)。

⑵三个内角都相等的三角形是等边三角形。

⑶有一个角是60度的等腰三角形是等边三角形。

⑷有两个角等于60度的三角形是等边三角形。

4.4反证法:4.4.1定义:假设命题的结论不成立,然后推导出定义、基本事实、已有定理或已知条件相矛盾的结果。

4.4.2一般步骤:应用反证法证明的主要三步是:否定结论→推导出矛盾→结论成立。

实施的具体步骤是:第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学是科学的大门和钥匙--培根
数学是最宝贵的研究精神之一--华罗庚
等腰三角形(基础)知识讲解
责编:杜少波
【学习目标】
1. 了解等腰三角形、等边三角形的有关概念, 掌握等腰三角形的轴对称性;
2. 掌握等腰三角形、等边三角形的性质,会利用这些性质进行简单的推理、证明、计算和作图.
3. 理解并掌握等腰三角形、等边三角形的判定方法及其证明过程. 通过定理的证明和应用,初步了解转化思想,并培养学生逻辑思维能力、分析问题和解决问题的能力.
4. 理解反证法并能用反证法推理证明简单几何题.
【要点梳理】
要点一、等腰三角形的定义
1.等腰三角形
有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.
如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.
2.等腰三角形的作法
已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使
AB=AC=b,BC=a.
作法:1.作线段BC=a;
2.分别以B,C为圆心,以b为半径画弧,两弧
相交于点A;
3.连接AB,AC.
△ABC为所求作的等腰三角形
3.等腰三角形的对称性
(1)等腰三角形是轴对称图形;
(2)∠B=∠C;
(3)BD=CD,AD为底边上的中线.。

相关文档
最新文档