图像的灰度变换

合集下载

图像灰度变换原理

图像灰度变换原理

图像灰度变换原理
图像灰度变换原理是指通过对图像的像素点进行灰度值的变换,从而改变图像的亮度和对比度。

灰度变换可以通过增加或减少像素值来改变图像的灰度级,并根据需求来调整图像的亮度和对比度。

灰度变换可以用以下数学公式表示:
g(x, y) = T(f(x, y))
其中,f(x, y)表示输入图像的灰度级,g(x, y)表示输出图像的
灰度级,T表示灰度变换函数。

常见的灰度变换函数有线性变换、非线性变换和直方图均衡化等。

线性灰度变换函数是最简单的一种灰度变换方式,通过对输入图像的每一个像素点应用一个线性方程来实现灰度的线性变换。

线性变换可以改变图像的对比度和亮度。

常见的线性灰度变换函数有平方根变换、指数变换和对数变换等。

非线性灰度变换函数则是通过对输入图像的每一个像素点应用一个非线性方程来实现灰度的非线性变换。

非线性变换可以实现更加复杂的灰度调整,例如增强图像的细节或者减少图像的噪声。

常见的非线性灰度变换函数有伽马变换和分段线性变换等。

直方图均衡化是一种特殊的灰度变换方法,通过对输入图像的
灰度级进行重新分配,使得输出图像的灰度级分布更加均匀。

直方图均衡化可以提高图像的对比度,使得图像的细节更加清晰。

总的来说,图像灰度变换原理是通过对图像的像素点进行灰度值的变换,来改变图像的亮度和对比度。

不同的灰度变换函数可以实现不同的灰度调整效果,根据需求选择合适的灰度变换方法可以获得满足要求的图像效果。

图像增强技术—灰度变换及应用实例

图像增强技术—灰度变换及应用实例
• 2.1 线性灰度度变换
就是按照线性函数的映射关系对灰度进行变换,图 像取反、增加或者减小对比度、增加或者减小亮度都是 灰度线性变换的一种。
下图是用halcon做的图像取反的灰度变换。
原 图
灰 度 直



反Байду номын сангаас



化 后
后 的 灰







2.2 非线性灰度变换
非线性灰度变换就是构造一种非线性映射函数常见的变换有 :对数变换、指数变换等。比如说:对数变换主要就是低灰度区扩展, 高灰度区压缩;灰度变换除了线性变换,非线性变换,还有分段线 性变换:这个主要是为了突出感兴趣的部位。下图为以10为底的对 数变换图像。
乳腺原图
去除部分背景后的图
采用了分段线性灰度变换突出乳腺信息。第二个峰值为乳腺信息,选取 两个转折点(80,20)(150,240),把乳腺的灰度值范围扩大, 实现了突出兴趣部位信息需求。
4 总结
灰度变换主要就是把原像素的值做了一个重新分 配来提高对比度,灰度变换很重要的一部分就是参 数的选择,可以在原有的算法的基础上进行改进, 得到自己更加需要的图像。
图像增强技 术—灰度变换
1 灰度变换的简单介绍

灰度变换是图像处理中的一个基本最基本技术技术之一,它
进行的是点运算,就是直接对像素点的值进行运算。灰度变换也是
图像增强技术中一种非常基础直接的空间域图像处理方式,根据自
的需要对图像进行灰度变换增强,增加对比度、突出感兴趣的区域
都是可以的。
2 常见的灰度变换
原 图
灰 度 直


指 数

数字图像灰度变换技术的研究总结

数字图像灰度变换技术的研究总结

数字图像灰度变换技术的研究总结数字图像处理一直是计算机科学中最重要的方向之一,而灰度变换则是处理数字图像时常用的一种技术。

灰度变换是数字图像处理中广泛应用的一种方法,其主要功能是将原始数字图像像素映射为新的像素值,从而改变数字图像的亮度、对比度等特征。

在数字图像处理中,灰度变换被广泛应用于医学图像处理、遥感图像处理和计算机视觉等领域。

灰度变换技术主要有三种基本方法:对数变换、幂次变换和分段线性变换。

其中,对数变换和幂次变换实质上是两种相反的变换方法,它们可以将原始图像的亮度分布在灰度直方图上向左或向右平移。

分段线性变换更为常用,它可以通过使用多个不同的线性转换阶段,将原始图像的亮度细分为多个不同的阶段来映射。

在实践应用中,无论是对数变换还是幂次变换都常常与分段线性变换配合使用。

常见的使用方法是先使用对数变换或幂次变换来改变原始图像的亮度分布,然后使用分段线性变换来将新图像细分为相应的灰度级别。

数图像灰度变换的具体应用范围很广,例如在医学图像处理中,医生可以通过对CT、MRI或X光图像进行灰度变换来显示相关组织和器官。

在遥感图像处理中,可以使用灰度变换来显示地表的不同特征,例如冰川、水体和植被等。

在计算机视觉中,灰度变换可以被用来提高图像质量和增强特定特征,例如边缘、纹理等。

然而,灰度变换技术也存在一些缺陷。

灰度变换过程中会产生信息丢失,图像的动态范围会变小。

此外,灰度变换直接影响图像的亮度和对比度,但不是所有的图像特征都可以用这两个参数来描述。

因此,需要其他先进的技术来处理数字图像的其他特征。

数字图像灰度变换技术是数字图像处理中最基本、最重要的技术之一。

灰度变换可以改变原始图像的亮度、对比度等特性,以及提高图像质量和增强图像特征。

但是,这种技术也存在缺陷,如信息丢失等,因此需要进一步研究和发展其他技术来满足数字图像处理的需求。

图像灰度变换 原理

图像灰度变换 原理

图像灰度变换原理
图像灰度变换是一种图像处理的方法,通过改变图像的灰度级别来增强或调整图像的显示效果。

其原理是对图像中的每个像素点进行灰度级别的转换。

常用的灰度变换函数有线性灰度变换、非线性灰度变换和直方图均衡化。

线性灰度变换是指通过线性映射将原图像的灰度级别转换为新的灰度级别。

常见的线性灰度变换函数有平移、缩放和对比度调整。

平移是将当前灰度级别加上一个偏移量,从而改变整个图像的亮度。

缩放是将灰度级别乘上一个缩放因子,从而调整图像的对比度。

对比度调整是通过同时进行平移和缩放,改变图像的亮度和对比度。

非线性灰度变换是指通过非线性函数将原图像的灰度级别转换为新的灰度级别。

常见的非线性灰度变换函数有幂律变换和对数变换。

幂律变换是通过对原图像的每个像素点进行幂次运算,从而调整图像的亮度和对比度。

对数变换是将原图像的灰度级别取对数,从而改变图像的亮度和对比度。

直方图均衡化是一种将原图像的灰度级别映射到均匀分布的灰度级别上的方法。

其原理是通过计算原图像的灰度直方图,并根据直方图进行灰度级别的重新分布。

这样可以增强图像的对比度和细节,并改善图像的视觉效果。

通过灰度变换,可以调整图像的亮度、对比度、色彩等特性,从而改善图像的视觉效果、增强图像的细节和信息。

在图像处
理和计算机视觉领域,灰度变换是一种常用的图像增强和预处理方法。

灰度线性变换

灰度线性变换

灰度线性变换
灰度线性变换(Gray-Level Linear Transformation, GLT)是一种常用的图像处理技术,可以通过线性变换来改变图像的亮度和对比度。

一般来说,每个像素的灰度都是由一个介于0到255之间的整数确定的,分别对应黑色和白色。

灰度线性变换就是通过改变灰度值的映射关系,来调整图像的亮度和对比度。

灰度线性变换的原理可以用以下直观的公式来描述:
g(x,y)=T(f(x,y)) 其中,T(x1)是为每个亮度值x1所设置的新的亮度值;
f(x,y)表示原图像的每个像素点;
一般来说,变换函数T(x1)可以用一次函数来描述,即 T(x1)=ax1+b (其中,a,b 为实数常量),由此可知,a的取值范围在0-1之间,表示图像亮度的比例; b的取值范围为0-255,表示图像的偏移量。

正如我们所知,灰度线性变换的优点是可以简单、快速地调整图像的亮度和对比度。

缺点是它不能改变图像的分布特征,只能做一些简单的变换,而不能实现图像的特定效果处理,比如拉伸度和畸变处理等。

因此,灰度线性变换通常只用于处理图像的简单变换,比如调整图像的亮度和对比度的需求,或者在彩色图像转换为灰度图像的过程中。

一般来说,使用灰度线性变换容易实现,而且对于一些常用的算法有很好的效果,所以经常被用来处理图像。

灰度变换算法原理

灰度变换算法原理

灰度变换算法原理
灰度变换算法是一种像素值映射的算法,它可以通过对图像的像素值进行线性或非线性变换来改变图像的对比度、亮度、色调等特征,以达到增强图像的目的。

具体来说,灰度变换算法的原理如下:
1. 像素值的定义:对于灰度图像,每个像素的取值范围在0-255之间,其中0表示黑色,255表示白色,其他值则表示不同的灰度级别。

2. 灰度变换函数的选择:灰度变换函数(也称为灰度映射函数)可以是线性函数、非线性函数、对数函数等。

根据需要调整图像的对比度、亮度等特征,可以选择不同的灰度变换函数。

3. 灰度变换的实现:将灰度变换函数应用到图像的每个像素上,计算出新的像素值,从而得到一张新的图像。

这样的变换可以在空间域或频域中进行。

总之,灰度变换算法通过对图像的像素值进行变换,可以有效地增强图像的质量和特征,提高图像信息的可读性和可用性。

灰度变换算法原理

灰度变换算法原理

灰度变换算法原理
灰度变换是一种将图像的灰度级进行适当调整的方法,可以改善图像的对比度和亮度。

灰度变换的基本原理是将输入图像的每个像素点的灰度级通过某种函数进行映射转换,并得到输出图像的像素灰度级。

常用的灰度变换函数有线性变换、非线性变换和直方图均衡化等。

1. 线性变换:
线性变换是灰度变换中最简单的一种方法。

它通过一个线性函数将输入图像的灰度级映射到输出图像的灰度级。

线性变换的数学表达式为:
g(x,y) = a*f(x,y) + b
其中,g(x,y)为输出图像的像素灰度级,f(x,y)为输入图像的像素灰度级,a和b为常数。

2. 非线性变换:
非线性变换是通过非线性函数将输入图像的灰度级映射到输出图像的灰度级。

非线性变换可以对输入图像的不同灰度级进行不同的映射处理,从而调整图像的对比度和亮度。

常用的非线性变换函数有幂次变换、对数变换和指数变换等。

3. 直方图均衡化:
直方图均衡化是一种通过对输入图像的直方图进行变换,从而使得输出图像具有更均匀的灰度分布的方法。

通过直方图均衡化,可以增强图像的对比度,使得图像中细节更加清晰。

直方图均衡化的基本原理是将输入图像的累计分布函数映射到均匀
分布,使得输出图像的直方图近似均匀。

总结起来,灰度变换算法原理是通过对输入图像的灰度级进行适当调整,使用线性变换、非线性变换,或者直方图均衡化等方法,从而改变输出图像的灰度级,达到调整图像对比度和亮度的目的。

数字图像灰度变换技术总结

数字图像灰度变换技术总结

数字图像灰度变换技术总结篇一:图像的灰度变换昆明理工大学(数字图像处理)实验报告实验名称:图像的灰度变换专业:电子信息科学与技术姓名:学号:成绩:[实验目的]1、理解并掌握灰度变换的基本原理和方法。

2、编程实现图像灰度变换。

3、分析不同的灰度变换方法对最终图像效果的影响。

[实验内容]1、灰度的线性变换;2、灰度的非线性变换;3、图像的二值化;4、图像的反色处理;[实验原理]图像的灰度变换(grayscaletransformation,GST)处理是图像增强处理技术中一种非常基础、直接的空间域图像处理方法,也是图像数字化软件和图像显示软件的一个重要组成部分。

灰度变换是指根据某种目标条件按一定变换关系逐点改变原图像中每一个像素灰度值的方法。

目的是为了改善画质,使图像的显示效果更加清晰。

灰度变换有时又被称为图像的对比度增强或对比度拉伸。

从图像输入装置得到的图像数据,以浓淡表示,(:数字图像灰度变换技术总结)各个像素与某一灰度值相对应。

设原图像像素的灰度值d=f(x,y),处理后图像像素的灰度值d′=g(x,y),则灰度增强可表示为:g(x,y)=T[f(x,y)]或d′=T(d)要求d和d′都在图像的灰度范围之内。

函数T(d)称为灰度变换函数,它描述了输入灰度值和输出灰度值之间的转换关系。

灰度变换主要针对独立的像素点进行处理,通过改变原始图像数据所占据的灰度范围而使图像在视觉上得到良好的改观,没有利用像素点之间的相互空间关系。

因此,灰度变换处理方法也叫做点运算法。

点运算可以按照预定的方式改变一幅图像的灰度直方图。

除了灰度级的改变是根据某种特定的灰度变换函数进行之外,点运算可以看做是“从像素到像素”的复制操作。

根据g(x,y)=T[f(x,y)],可以将灰度变换分为线性变换和非线性变换。

1、灰度的线性变换若g(x,y)=T[f(x,y)]是一个线性或分段线性的单值函数,例如g(x,y)=T[f(x,y)]=af(x,y)+b则由它确定的灰度变换称为灰度线性变换,简称线性变换。

图形图像处理 实验三 图像的灰度变换及答案

图形图像处理  实验三  图像的灰度变换及答案

实验三 图像的灰度变换一.实验目的1.掌握图像的灰度变换方法;2.掌握MATLAB 语言中图像数据与信息的读取方法;3.理解图像灰度变换处理在图像增强的作用。

二.实验基本原理灰度变换是图像增强的一种重要手段,它常用于改变图象的灰度范围及分布,是图象数字化及图象显示的重要工具。

1) 图像反转灰度级范围为[0, L-1]的图像反转可由下式获得r L s --=12) 对数变换:有时原图的动态范围太大,超出某些显示设备的允许动态范围,如直接使用原图,则一部分细节可能丢失。

解决的方法是对原图进行灰度压缩,如对数变换:s = c log(1 + r ),c 为常数,r ≥ 03) 幂次变换:0,0,≥≥=γγc cr s4) 分段线性变换:在实际应用中,为了突出图像中感兴趣的研究对象,常常要求局部扩展拉伸某一范围的灰度值,或对不同范围的灰度值进行不同的拉伸处理,即分段线性变换:其对应的数学表达式为: 0f(x,y) g(x,y)a b cdM f M g⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧<≤<≤+---≤≤+---=a y x f y x f a c b y x f a c a y x f a b c d M y x f b d b y x f bM d M y x g f f g ),(0),(),(]),([),(]),([),(三.实验内容1) 对图像(a )进行取反操作,输出变换结果图。

(a ) 2) 对图像(b )进行对数变换,输出变换结果图。

(b )3) 对图像(c )进行幂次变换,输出γ分别等于3.0、4.0和5.0时的变换结果图。

(c )4)对图像(d)进行分段线性变换,输出变换函数图和变换结果图。

(d)答案:1)对图像(a)进行取反操作,输出变换结果图i=imread('1.jpg');g=255;p=imshow(g)2)像(b)进行对数变换i=imread('2.jpg');g=im2uint8(mat2gray(log(1+double(i))));imshow(g)3) 对图像(c)进行幂次变换,输出γ分别等于3.0、4.0和5.0时的变换结果图。

第7章图像灰度变换

第7章图像灰度变换

[X,map]=imread('forest.tif'); I=ind2gray(X,map);%索引图像转化为灰度图像 J=imadjust(I,[0 1],[0 1],0.5);%gamma校正 figure, subplot(121),imshow(I); subplot(122),imshow(J)
3.局部自适应直方图均衡
原理:这个方法基于直方图规定化方法来处理图像 的小区域(称为小片)。然后用双线性内插将相邻 小片组合起来以消除人工引入的边界效应,特别是 可以限制均匀亮度区域的对比度,以免放大噪声。
函数:adapthisteq
g=adapthisteq(f,param1,val1,param2,val2,...)
1. 扩展暗区,压缩亮区:延展暗区灰度值(增加曝光) I=double(I); I1=42*log2(I+1); %+1避免0的对数 I1=uint8(I1); %超过255变为255
非线性变换
I=imread(‘office_1.jpg'); subplot(121),imshow(I); I=double(I); I1=42*log(1+I); I1=uint8(I1); %超过255,变为255 subplot(122),imshow(I1);
[hgram1,~]=imhist(I1);
[hgram2,~]=imhist(I2); %执行直方图规定化
J1=histeq(I,hgram1);
J2=histeq(I,hgram2); %绘图 subplot(2,3,1);imshow(I);title('原图'); subplot(2,3,2);imshow(I1);title('标准图1'); subplot(2,3,3);imshow(I2);title('标准图2'); subplot(2,3,5);imshow(J1);title('规定化到1'); subplot(2,3,6);imshow(J2);title('规定化到2'); figure; %绘直方图 subplot(2,3,1);imhist(I);title('原图'); subplot(2,3,2);imhist(I1);title('标准图1'); subplot(2,3,3);imhist(I2);title('标准图2'); subplot(2,3,5);imhist(J1);title('规定化到1'); subplot(2,3,6);imhist(J2);title('规定化到2');

OpenCV计算机视觉学习(3)——图像灰度线性变换与非线性变换(对数变换,伽马变换)

OpenCV计算机视觉学习(3)——图像灰度线性变换与非线性变换(对数变换,伽马变换)

OpenCV计算机视觉学习(3)——图像灰度线性变换与⾮线性变换(对数变换,伽马变换)如果需要处理的原图及代码,请移步⼩编的GitHub地址 传送门: 下⾯主要学习图像灰度化的知识,结合OpenCV调⽤ cv2.cvtColor()函数实现图像灰度化,使⽤像素处理⽅法对图像进⾏灰度化处理。

1. 图像灰度化1.1 图像灰度化的⽬的 将彩⾊图像转化为灰度图像的过程是图像的灰度化过程。

彩⾊图像中的每个像素的颜⾊由 R, G, B三个分量决定,⽽每个分量中可以取值 0~255,这样⼀个像素点可以有 1600多万(255*255*255=16581375)的颜⾊的变化范围。

⽽灰度图像是 R,G,B三个分量相同的⼀种特殊的彩⾊图像,其中⼀个像素点的变换范围为 256 种,所以在数字图像处理中⼀般将各种格式的图像转换为灰度图像以使后续的图像计算量少⼀些。

灰度图像的描述与彩⾊图像⼀样仍然反映了整幅图像的整体和局部的⾊度和⾼亮等级的分布和特征。

1.2 图像灰度化原理 图像灰度化是将⼀幅彩⾊图像转换为灰度化图像的过程。

彩⾊图像通常包括R、G、B三个分量,分别显⽰出红绿蓝等各种颜⾊,灰度化就是使彩⾊图像的R、G、B三个分量相等的过程。

灰度图像中每个像素仅具有⼀种样本颜⾊,其灰度是位于⿊⾊与⽩⾊之间的多级⾊彩深度,灰度值⼤的像素点⽐较亮,反之⽐较暗,像素值最⼤为255(表⽰⽩⾊),像素值最⼩为0(表⽰⿊⾊)。

图像灰度化核⼼思想是 R = G = B ,这个值也叫灰度值。

上表中Gray表⽰灰度处理之后的颜⾊,然后将原始RGB(R,G,B)颜⾊均匀地替换成新颜⾊RGB(Gray,Gray,Gray),从⽽将彩⾊图⽚转化为灰度图像。

⼀种常见的⽅法是加权平均灰度处理,这种效果是最好的。

是将RGB三个分量求和再取平均值,但更为准确的⽅法是设置不同的权重,将RGB分量按不同的⽐例进⾏灰度划分。

⽐如⼈类的眼睛感官蓝⾊的敏感度最低,敏感最⾼的是绿⾊,因此将RGB按照0.299、0.587、0.114⽐例加权平均能得到较合理的灰度图像,如公式所⽰:1.3 图像灰度化的三种⽅法1.3.1 OpenCV直接灰度化 下⾯的这种⽅法,在读取图⽚的时候,直接将图⽚转化为灰度化:import cv2img = cv2.imread(photo_file, cv2.IMREAD_GRAYSCALE) 得到的img是⼀个函数。

matlab图像的灰度变换

matlab图像的灰度变换

实验二 图像的灰度‎变换一、实验目的1、 理解数字图‎像处理中点‎运算的基本‎作用;2、 掌握对比度‎调整与灰度‎直方图均衡‎化的方法。

二、实验原理1、对比度调整‎如果原图像‎f (x , y )的灰度范围‎是[m , M ],我们希望对‎图像的灰度‎范围进行线‎性调整,调整后的图‎像g (x , y )的灰度范围‎是[n , N ],那么下述变‎换:[]n m y x f mM n N y x g +---=),(),(就可以实现‎这一要求。

MA TLA ‎B 图像处理‎工具箱中提‎供的i ma ‎d j ust ‎函数,可以实现上‎述的线性变‎换对比度调‎整。

imadj ‎u st 函数‎的语法格式‎为:J = imadj ‎u st(I,[low_i ‎n high_‎i n], [low_o ‎u t high_‎o ut])J = imadj ‎u st(I, [low_i ‎n high_‎i n], [low_o ‎u t high_‎o ut])返回原图像‎I 经过直方‎图调整后的‎新图像J ,[low_i ‎n high_‎i n]为原图像中‎要变换的灰‎度范围,[low_o ‎u t high_‎o ut]指定了变换‎后的灰度范‎围,灰度范围可‎以用 [ ] 空矩阵表示‎默认范围,默认值为[0, 1]。

不使用im ‎adjus ‎t 函数,利用mat ‎l ab 语言‎直接编程也‎很容易实现‎灰度图像的‎对比度调整‎。

但运算的过‎程中应当注‎意以下问题‎,由于我们读‎出的图像数‎据一般是u ‎i nt8型‎,而在MAT ‎LAB 的矩‎阵运算中要‎求所有的运‎算变量为d ‎o uble ‎型(双精度型)。

因此读出的‎图像数据不‎能直接进行‎运算,必须将图像‎数据转换成‎双精度型数‎据。

2、直方图均衡‎化直方图均衡‎化的目的是‎将原始图像‎的直方图变‎为均衡分布‎的形式,即将一已知‎灰度概率密‎度分布的图‎像,经过某种变‎换变成一幅‎具有均匀灰‎度概率密度‎分布的新图‎像,从而改善图‎像的灰度层‎次。

图像灰度变换实验报告

图像灰度变换实验报告

实验2a 图像的灰度变换一、实验目的:学会用Matlab软件对图像进行运算和灰度变换。

二、实验内容:用+、-、*、/、imabsdiff、imadd、imcomplment、imdivide、imlincomb、immultiply、imsubtract和imadjust等函数生成各类灰度变换图像。

三、实验相关知识1、代数运算两幅图像之间进行点对点的加、减、乘、除运算后得到输出图像。

我们可以分别使用MA TLAB的基本算术符+、-、*、/来执行图像的算术操作,但是在此之前必须将图像转换为适合进行基本操作的双精度类型(命令函数为double())。

为了更方便对图像进行操作,图像处理工具箱中也包含了一个能够实现所有非稀疏数值数据的算术操作的函数集合。

如下所示:imabsdiff:计算两幅图像的绝对差值imadd:两个图像的加法imcomplment:一个图像的补imdivide:两个图像的除法imlincomb:计算两幅图像的线性组合immultiply:两个图像的乘法imsubtract:两个图像的减法使用图像处理工具箱中的图像代数运算函数无需再进行数据类型间的转换,这些函数能够接受uint8和uint16数据,并返回相同格式的图像结果。

代数运算的结果很容易超出数据类型允许的范围。

图像的代数运算函数使用以下截取规则使运算结果符合数据范围的要求:超出数据范围的整型数据将被截取为数据范围的极值,分数结果将被四舍五入。

2、灰度变换点运算也称为灰度变换,是一种通过对图像中的每个像素值进行运算,从而改善图像显示效果的操作。

对于特定变换函数f的灰度变换,用户可以利用MATLAB强大的矩阵运算能力,对图像数据矩阵调用各种MATLAB计算函数进行处理。

需要注意的是由于MATLAB不支持uint8类型数据的矩阵运算,所以首先要将图像数据转换为双精度类型,计算完成后再将其转换为uint8类型(命令为uint8( ))。

灰度变换 对数变换

灰度变换 对数变换

灰度变换对数变换灰度变换是数字图像处理中常用的一种技术,它可以改变图像的亮度分布,使得图像更加清晰、易于分析和处理。

而对数变换则是灰度变换的一种特殊形式,它通过对图像的灰度值取对数来改变图像的亮度分布。

本文将介绍灰度变换和对数变换的原理、应用以及优缺点。

一、灰度变换的原理灰度变换是指通过改变图像的灰度值来改变图像的亮度分布。

在灰度变换过程中,我们可以根据需要调整图像的对比度、亮度和色彩等属性,从而使图像更加清晰、鲜艳或者更适合特定的应用场景。

对数变换是一种常用的灰度变换方法之一。

它的原理是通过对图像的灰度值取对数,来改变图像的亮度分布。

对数变换可以将原始的灰度值域映射为更广的范围,从而增强图像的对比度和细节。

二、对数变换的应用对数变换在数字图像处理中有着广泛的应用。

以下是对数变换的几个常见应用场景:1.图像增强:对数变换可以增强图像的对比度和细节,使得图像更加清晰。

在医学影像、卫星遥感等领域,对数变换常用于提高图像的可视化效果和分析能力。

2.图像压缩:对数变换可以将原始图像的灰度值域映射到更广的范围,从而增加图像的动态范围,提高图像的可压缩性。

在图像压缩算法中,对数变换常用于提高压缩比和保持图像质量。

3.图像分割:对数变换可以改变图像的亮度分布,使得图像的前景和背景更加明确。

在图像分割算法中,对数变换常用于增强图像的边缘和纹理信息,从而提高分割的准确性和效果。

三、对数变换的优缺点虽然对数变换在图像处理中有着广泛的应用,但它也存在一些优缺点。

优点:1.对数变换可以增强图像的对比度和细节,使得图像更加清晰;2.对数变换可以增加图像的动态范围,提高图像的可压缩性;3.对数变换可以增强图像的边缘和纹理信息,提高图像分割的效果。

缺点:1.对数变换可能导致图像的亮度失真,使得图像变得过亮或过暗;2.对数变换的计算复杂度较高,对大型图像的处理速度较慢;3.对数变换对图像的噪声敏感,可能导致噪声的增强。

四、总结灰度变换是数字图像处理中常用的一种技术,对数变换是灰度变换的一种特殊形式。

【数字图像处理】灰度变换

【数字图像处理】灰度变换

【数字图像处理】灰度变换原⽂链接:作者:图像的空间域滤波,其对像素的处理都是基于像素的某⼀邻域进⾏的。

本⽂介绍的图像的灰度变换则不同,其对像素的计算仅仅依赖于当前像素和灰度变换函数。

灰度变换也被称为图像的点运算(只针对图像的某⼀像素点)是所有图像处理技术中最简单的技术,其变换形式如下:s=T(r)s=T(r)其中,T是灰度变换函数;r是变换前的灰度;s是变换后的像素。

图像灰度变换的有以下作⽤:改善图像的质量,使图像能够显⽰更多的细节,提⾼图像的对⽐度(对⽐度拉伸)有选择的突出图像感兴趣的特征或者抑制图像中不需要的特征可以有效的改变图像的直⽅图分布,使像素的分布更为均匀常见的灰度变换灰度变换函数描述了输⼊灰度值和输出灰度值之间变换关系,⼀旦灰度变换函数确定下来了,那么其输出的灰度值也就确定了。

可见灰度变换函数的性质就决定了灰度变换所能达到的效果。

⽤于图像灰度变换的函数主要有以下三种:线性函数(图像反转)对数函数:对数和反对数变换幂律函数:n次幂和n次开⽅变换上图给出了⼏种常见灰度变换函数的曲线图,根据这⼏种常见函数的曲线形状,可以知道这⼏种变换的所能达到的效果。

例如,对数变换和幂律变换都能实现图像灰度级的扩展/压缩,另外对数变换还有⼀个重要的性质,它能压缩图像灰度值变换较⼤的图像的动态范围(例如,傅⽴叶变换的频谱显⽰)。

线性变换令r为变换前的灰度,s为变换后的灰度,则线性变换的函数:s=a⋅r+bs=a⋅r+b其中,a为直线的斜率,b为在y轴的截距。

选择不同的a,b值会有不同的效果:a>1a>1,增加图像的对⽐度a<1a<1,减⼩图像的对⽐度a=1且b≠0a=1且b≠0,图像整体的灰度值上移或者下移,也就是图像整体变亮或者变暗,不会改变图像的对⽐度。

a<0且b=0a<0且b=0,图像的亮区域变暗,暗区域变亮a=1且b=0a=1且b=0,恒定变换,不变a=−1且b=255a=−1且b=255,图像反转。

OpenCV图像处理之常见的图像灰度变换

OpenCV图像处理之常见的图像灰度变换

OpenCV图像处理之常见的图像灰度变换1.灰度线性变换图像的灰度线性变换是图像灰度变换的⼀种,图像的灰度变换通过建⽴灰度映射来调整源图像的灰度,从⽽达到图像增强的⽬的。

灰度映射通常是⽤灰度变换曲线来进⾏表⽰。

通常来说,它是将图像的像素值通过指定的线性函数进⾏变换,以此来增强或者来减弱图像的灰度,灰度线性变换的函数就是常见的线性函数。

g(x, y) = k · f(x, y) + d设源图像的灰度值为x,则进⾏灰度线性变换后的灰度值为y = kx + b (0<=y<=255),下⾯分别来讨论k的取值变化时线性变换的不同效果(1).|k|>1时当k>1时,可以⽤来增加图像的对⽐度,图像的像素值在进⾏变换后全部都线性⽅法,增强了整体的显⽰效果,且经过这种变换后,图像的整体对⽐度明显增⼤,在灰度图中的体现就是变换后的灰度图明显被拉伸了。

(2).|k|=1时当k=1时,这种情况下常⽤来调节图像的亮度,亮度的调节就是让图像的各个像素值都增加或是减少⼀定量。

在这种情况下可以通过改变d值来达到增加或者是减少图像亮度的⽬的。

因为当k=1,只改变d 值时,只有图像的亮度被改变了,d>0时,变换曲线整体发⽣上移,图像的亮度增加,对应的直⽅图整体向右侧移动,d<0时,变换曲线整体下移,图像的亮度降低,对应的直⽅图发⽣⽔平左移。

(3).0<|k|<1时此时变换的效果正好与k>1时相反,即图像的整体对⽐度和效果都被削减了,对应的直⽅图会被集中在⼀段区域上。

k值越⼩,图像的灰度分布也就越窄,图像看起来也就显得越是灰暗。

(4).k<0时在这种情况下,源图像的灰度会发⽣反转,也就是原图像中较亮的区域会变暗,⽽较暗的区域将会变量。

特别的,此时我们令k = -1,d = 255,可以令图像实现完全反转的效果。

对应的直⽅图也会发⽣相应的变化。

相应的程序试下如下://实现图像的灰度线性变化#include <iostream>#include <opencv2\core\core.hpp>#include <opencv2\highgui\highgui.hpp>#include <opencv2\imgproc\imgproc.hpp>using namespace std;using namespace cv;int main(){Mat srcImg = imread("1234.jpg");if (!srcImg.data){cout << "读⼊图⽚失败" << endl;return -1;}imshow("原图像", srcImg);double k, b;cout << "请输⼊k和b值:";cin >> k >> b;int RowsNum = srcImg.rows;int ColsNum = srcImg.cols;Mat dstImg(srcImg.size(), srcImg.type());//进⾏遍历图像像素,对每个像素进⾏相应的线性变换for (int i = 0; i < RowsNum; i++){for (int j = 0; j < ColsNum; j++){//c为遍历图像的三个通道for (int c = 0; c < 3; c++){//使⽤at操作符,防⽌越界dstImg.at<Vec3b>(i, j)[c] = saturate_cast<uchar>(k* (srcImg.at<Vec3b>(i, j)[c]) + b);}}}imshow("线性变换后的图像", dstImg);waitKey();return 0;}当k=1.2,b=50时执⾏程序的效果如下:2.灰度对数变换对数变换的基本形式为其中,b是⼀个常数,⽤来控制曲线的弯曲程度,其中,b越⼩越靠近y轴,b越⼤越靠近x轴。

图像的灰度变换

图像的灰度变换
f(D)称为灰度变换函数, 它描述了输入灰度值和输出灰度值之间的转
换关系。一旦灰度变换函数确定,该点应 算就完全被确定下来了。
直接灰度变换
直接灰度变换属于所有图像增强技术中最简 单的一类,最常用的方法有以下几种: •图像求反 •对数变换 •灰度切割 •位图切割 •灰度的线性变换
图像求反
简单来说,图像求反就是使图像中的黑变白, 和使图像中的白变黑的处理。 设灰度范围为(0,L-1) 图像求反的变换公式:t=L-1-s 这种方法尤其适用于增强嵌入图像的暗区域 的白色和灰色细节
值上移或下移 • 当a<0,就会将图像的暗区域变亮,亮区域
变暗 • 当a=1,b=0,图像会保持不变 • 当a=-1,b=225,图像正好反转
灰度直方图
• 灰度直方图是数字图像处理中一个最简单、 最有用的的工具,它描述了一幅图像的灰 度级内容。
• 灰度直方图定义为灰度值的函数,描述的 是图像中具有该灰度值的像素的个数,其 横坐标表示像素的灰度级别,纵坐标是该 灰度出现的频率。
• 将图像中的所有点的灰度按照线性灰度变 换函数进行变换,变换函数为:
• DB=f(DA)=a*DA+b • 其中a为线性斜率,b为在y轴的截距,
DA为输入图像的灰度值,DB为输出图像 的灰度
讨论下线性变换公式
• 当a>1时,输出的图像的对比度增加 • 当a<1时,输出的图像的对比度就会减小 • 当a=1,b≠0时,就会使所有的图像的灰度
图像的位图切割
• 对一幅有多个位表示其灰度值的图像来说, 其中的每个位可看作一个二值的平面,也 称为位面。设图像中每一个像素由8位表示, 也就是说图像有8个位面,一般用位面0表 示最低位面,位面7表示最高位面,借助图 像的位面表示形式,通过操作图像特定位 面来达到对图像的增强效果。

灰度变换原理

灰度变换原理

灰度变换原理
灰度变换是一种图像处理技术,用于改变图像的亮度和对比度。

其原理是通过对图像中每个像素的灰度值进行线性或非线性的映射,从而调整图像的整体亮度分布。

在灰度变换中,会根据图像的特征和需求选择不同的变换函数。

常用的线性灰度变换函数包括对比度拉伸、对数变换和伽马校正等。

对比度拉伸是将输入灰度值的范围扩展至输出灰度值的全范围。

这样可以增加图像中灰度级的细节,使得图像更具有视觉效果和观赏性。

对数变换用于增强图像的暗部细节。

它可以对较低灰度级的像素进行放大,从而增加图像中低对比度的细节信息。

伽马校正是一种非线性的灰度变换方法,用于调整图像的亮度分布。

它可以改变图像中灰度级的分布和整体亮度,从而达到对图像对比度和真实感的调整效果。

需要注意的是,灰度变换只改变图像的亮度分布,而不改变其颜色信息。

灰度变换在图像增强、对比度调整和色彩校正等领域都有广泛的应用。

它可以帮助改善图像的质量,使得图像更加清晰、鲜明和易于分析。

4-1、图像增强之灰度变换和彩色增强

4-1、图像增强之灰度变换和彩色增强

g=9*log(f+1)
作用:将暗的部分扩展,而将亮的部分抑制。(示例)
4、直方图均衡化
直方图均衡方法的基本思想是对 在图像中像素个数多的灰度级进行展 宽,而对像素个数少的灰度级进行缩 减。从而达到清晰图像的目的。 用以改变图像整体偏暗或整体偏亮, 灰度层次不丰富的情况,将直方图的 分布变成均匀分布
2、 对比度展宽(灰度线性变换)
一、对比度展宽的目的:
是一点对一点的灰度级的影射。设新、旧图的 灰度级分别为g和f,g和f 均在[0,255]间变化。 实质是旧图到新图的灰度级的逐点映射。 g=G(f) 目的:将人所关心的部分强调出来。 特点:变换前后像素个数不变,但不同像素之间的 灰度差变大,对比度加大,视觉效果增强gγຫໍສະໝຸດ 255gbβ
ga
β
α
a b 255
f
a
b 255
f
2、对比度展宽 三、灰级窗切片:
只保留感兴趣的部分,其余部分置为 0。如: 0
g
255
a
b
255
f
2、对比度展宽
四、二值化图像: 可将多灰度的图像转换成黑白二值 图像;方法是对图像取一阈值,大 于该阈值的像素赋予灰度1,小于该 阈值的像素赋予灰度0
I ( x, y) e( x, y) g ( x, y)
g ( x, y) e ( x, y) I ( x, y)
1
1、灰度级的修正
灰度级修正的方法: (1)先用该系统对一已知亮度均匀的图像进行 记录,得到一个实际的“非均匀曝光”的图像, 求得是图像发生畸变的比例因子 (2)当用同一系统对其他图像进行记录时,便 可通过该比例因子求出理想图像
51
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

灰度的阈值变换
• 灰度的阈值变换可以让一幅灰度图像转换成黑白二值图, 它的操作过程是先由用户指定一个阈值,如果图像中某像 素的灰度值小于该阈值,则该图像的灰度值设置为0,否 则灰度值设置为225。灰度阈值变换的变换函数表达式如 下: f(x)= 0 x<T f(x)= 255 x>T • 其中T为指定的阈值。阈值T就像个门槛,比它大就是白, 比它小就是黑。该变换函数是阶跃函数,只需给出阈值点 T即可,经过阈值处理后的图像变成了一幅黑白二值图, 阈值处理是灰度图转二值图的一种常用方法。
对数变换
• 在显示一些图像时,其动态范围远远超过显示设 备上的显示能力。此时仅有图像中最亮部分可在 显示设备上显示,而频谱中的低值将看不见,在 这种情况下,所显示的图像相对于原图像就存在 失真。要消除这种因动态范围太大而引起的失真。 一种有效的方法是对原图像的动态范围进行压缩, 最常用的借助对数形式对动态范围进行调整 • 变换公式:t=clog(1+|s|),c为比例常数,取值可 以结合原图像的动态范围以及现实设备的显示能 力来定。
图像的灰度变换
李强
灰度变换
• 灰度变换的目的是为了改善画质,使图像 显示效果更加清晰。 • 有选择地突出图像中感兴趣的特征或者抑 制图像中某些不需要的特征,使图像与视 觉响应特性相匹配。 • 图像的点应算可以有效的改变图像的直方 图分布,以提高图像的分辨率和图像的均 衡
图像的点应算
• 从像素到像素的变换 B(x,y)=f[A(x,y)], f(D)称为灰度变换函数, 它描述了输入灰度值和输出灰度值之间的转 换关系。一旦灰度变换函数确定,该点应 算就完全被确定下来了。
灰度的线性变换
• 将图像中的所有点的灰度按照线性灰度变 换函数进行变换,变换函数为: • DB=f(DA)=a*DA+b • 其中a为线性斜率,b为在y轴的截距, DA为输入图像的灰度值,DB为输出图像 的灰度
讨论下线性变换公式
• 当a>1时,输出的图像的对比度增加 • 当a<1时,输出的图像的对比度就会减小 • 当a=1,b≠0时,就会使所有的图像的灰度 值上移或下移 • 当a<0,就会将图像的暗区域变亮,亮区域 变暗 • 当a=1,b=0,图像会保持不变 • 当a=-1,b=225,图像正好反转
灰度直方图
• 灰度直方图是数字图像处理中一个最简单、 最有用的的工具,它描述了一幅图像的灰 度级内容。 • 灰度直方图定义为灰度值的函数,描述的 是图像中具有该灰度值的像素的个数,其 横坐标表示像素的灰度级别,纵坐标是该 灰度出现的频率。
直方图处理方法
通常分两种: •直方图均衡化:实质是减少图像的灰以换取对比度 的扩大,它的结果是唯一的,就是根据灰度信息, 自动增强整个图像的对比度,也就是说对比度扩大 到什么程度是不受控制的,目的是通过点应算使输 入图像转换为在每一灰度级上都有相同的像素点数 的输出图像,即输出的直方图是平的; •直方图规定化:相当于建立了一个灰度级别的固定 模式,所有图像进入后,都会以同一种灰度直方图 的状态显示出来。
图像的灰度切割
• 图像切割的目的就是增强特定范围的对比 度,用来突出图像中特定灰度范围的亮度 • 方法很多,常用的方法有两种: (1)对感兴趣的灰度级以较大的灰度值表示, 而对另外的灰度级以较小的灰度值表示 (2)对感兴趣的灰度级以较大的灰度值表示, 其他的灰度级则保持不变
图像的位图切割
• 对一幅有多个位表示其灰度值的图像来说, 其中的每个位可看作一个二值的平面,也 称为位面。设图像中每一个像素由8位表示, 也就是说图像有8个位面,一般用位面0表 示最低位面,位Байду номын сангаас7表示最高位面,借助图 像的位面表示形式,通过操作图像特定位 面来达到对图像的增强效果。
直接灰度变换
直接灰度变换属于所有图像增强技术中最简 单的一类,最常用的方法有以下几种: •图像求反 •对数变换 •灰度切割 •位图切割 •灰度的线性变换
图像求反
简单来说,图像求反就是使图像中的黑变白, 和使图像中的白变黑的处理。 设灰度范围为(0,L-1) 图像求反的变换公式:t=L-1-s 这种方法尤其适用于增强嵌入图像的暗区域 的白色和灰色细节
相关文档
最新文档