VVVF技术在城市轨道交通车辆中的应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1变频器调速基础理论概述
1.1 变频技术
在现代化生产中需要变频变压技术,其主要用途是:
(1)标准50Hz电源 用于人造卫星、大型计算机等特殊要求的电源设备,对其频率、电压波形和幅值及电网干扰等参数,均有很高的精度要求。
(2)不间断电源(UPS)平时电网对蓄电池充电,当电网发生故障停电时,将蓄电池的直流电逆变成50Hz的交流电,对设备临时供电。
最新发展的交流牵引电动机采用变频变压控制(VVVF)的调速方式,它使用逆变器将直流换成为交流,以电压和频率的变化来控制交流电机的调速系统已被公认为在调速性能和节能上是最为先进的调速方式,它与交流电机配合,无换向部分,运行可靠,过载能力强,结构简单,重量轻,几乎不须维修,现已在德国、日本等国已经得到了应用。它也是今后城市轨道交通车辆发展的趋势。
根据有关资料报导,广州本田公司已用200台变频电车取代了152台电阻式控制的旧电车和48台斩波控制电车。在实际的营运路线上,分别对各种电车进行了耗电测定测量结果表明,新型车耗电量为电阻式控制车的72.6%。根据他们对200台新型变频车与200台旧车一年的耗电量比较计算,新型车的耗电约减少24%。由此可见采用变频技术的车辆节电效果十分明显。因此,我国电子工业部在电子工业早在“九五”规划中就将以变频牵引装置为代表的节能技术列为发展的重点。由于交流变频传动比直流传动有着粘着利用高,几乎无需维护,运行可靠及节约能源等一系列优点,因而除干线铁路外,对城市轨道交通用地铁与轻轨列车发展交流变频调速传动是当前必然的趋势。
(3)直-交变频技术(即逆变技术)
在电子学中,振荡器利用电子放大器件将直流电变成不同频率的交流电甚至电磁波,又称为振荡技术。在变频技术中,逆变器则利用功率开关将直流电变成不同频率的交流电又称为逆变技术。
(4)交-交变频技术(即移相技术)
它通过控制电子电子器件的导通与关断时间,实现交流无触点的开关、调压、调速等目的。主要应用于大功率、低速度的场合。
变频技术的类型主要有以下几种:
(1)交-直变频技术(即整流技术)
它是通过二级管整流、二级管续流或晶闸管、功率晶体管可控整流实现交-直流(0Hz)功率转换。这种转换多属于工频整流。
(2)直-直变频技术(即斩波技术)
它是通过改变电力电子器件的通断时间即改变脉冲的频率(定宽变频),或改变脉冲的宽度(变频调宽),从而达到调节直流平均电压的目的。
VVVF变频器的控制相对简单,机械特性硬度也较好,能够满足一般传动平滑调速要求,已在生产的各个领域得到了广泛应用。但是,在代应时这种控制方式,由于输出电压较小,受定子电阻压降的影响比较显著,故造成输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,因此人们又研究出矢量控制变频调速技术。
1.2变频技术的发展过程及状况
变频技术是应交流电机无级调速的需要而诞生的。自20世纪60年代以来,电子电子器件从SCR(晶闸管)、GTO(门极可关断晶闸管),BJT(双极型功率晶体管)、MOSFET(金属氧化物场效应管)、SIT(静电感应晶体)等、SITH(静电感应晶闸管)、MGT(MOS控制晶体管)、MCT(MOS控制晶闸管)发展到今天的IGBT(绝缘栅双型晶体管)、HVIGBT(耐高压绝缘栅双极型晶闸管)等,器件的更新促使电子变换技术不断发展。自20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式。20世纪80年代后半期,美、日、德、英等发达国家的VVVF变频器已投入市场并广泛应用。
(3)中频装置 广泛用于金属熔炼、感应加热及机械零件的淬火烧火。
(4)变频调速 用三相变频器产生频率、电压可调的三相变频电源,对三相感应电动机和同步电动机进行变频调速。
简单地说,变频技术就是把直流电逆变成不同频率的交流电,或是把交流电变成直流电再逆变成不同频率的交流电,或是把直流电变成交流电再把交流电变成直流电等技术的总称。总之,这一切都是电能不发生变化,而只有频率发生变化。
VVVF技术在城市轨道交通车辆中的应用
wenku.baidu.com学生姓名:
学号:
专业班级:
指导教师:
摘 要
城市轨道交通车辆的牵引电动机长期以来都普遍采用直流旋转电动机。其传动方式有变阻控制和斩波调压控制。变阻控制在老式城市轨道车辆上普通使用,虽然结构简单,但由于车频繁启动和制动,使20%的电能消耗在电阻上,这种方式大多已被淘汰。
如上所述,目前在750VDC系统下运行的地铁中采用成熟的批量生产的价廉的耐压1200V TGBT构成三点式逆变器实现地铁车辆交流传动方案,造价不贵,也是符合现在城市轨道机车发展的趋势。
关键词:城轨车辆;VVVF;GTO;IGBT
引 言
早期地铁车辆是蒸汽牵引,1890年改为电力牵引后一直采用直流电动机牵引,由凸轮变阻调速控制,后来发展到斩波器调速控制。20世纪90年代由于电力电子技术和微机控制技术的迅猛发展,大功率自关断元器件(GTO、IGBT、IPM)走向产品化和实用化,变频变压调速控制(VVVF)技术迅速发展,交流传动车辆广泛应用用于城轨交通。日本东京、大阪、名古屋等城市地铁从1991年开始新造地铁车全部采用lGBT或IPM的VVVF交流传动装置。巴黎地铁和德国法兰克福地铁新造车也开始采用交流传动车辆。英国、俄国斯、美国、韩国、墨西哥、西班牙等国家城轨交通都在订购交流传动车辆。
交流传动装置、制动装置、微机控制及诊断系统是城轨车辆的核心技术和关键部件。目前,我国城轨车辆的交流传动装置,包括辅助电源供电设备以及微机控制与诊断系统,全部由国外西门子公司、阿尔斯通公司、庞巴迪公司和东芝公司等提供产品与软件。由株洲电力机车研究所自主开发的城轨车辆交流传动装置至今还没有装车投入运行,还没有自己品牌的交流传动系统。制动装置基本上由克诺尔公司和日本NABCO公司提供产品,由四方车辆研究所和铁科院机辆所负责开发的城轨车辆制动装置仍处于样品阶段,还没有装车投入运用考核。因此,加速上述关键部件的国产化是当务之急。
相关文档
最新文档