矩形隧道掘进机国内外概况和发展趋势

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1国外概况和发展趋势

目前世界上绝大多数盾构断面均为标准的圆形,因此我们将非圆形断面盾构称“异形断面盾构”。从历史上看,异形断面盾构的断面形式包括矩形(圆角矩形)、多圆相交的并列圆形、多段弧线相切围合形(日本称复合圆形)。本课题总体设计所选择的就是4段圆弧相切围合的形状,如图3所示。其外观接近椭圆,但数学方程式并非椭圆,我们将其命名为“类矩形”。

图3:类矩形盾构衬砌结构

1.1.1 异形断面盾构的重生

由法国人Marc Isambard Brunell(1825年)建造的人类历史上第一台盾构机就是矩形断面的,如图4所示。因为对于使用功能而言,矩形的断面使用效率

图4 历史上第一台盾构机

是最高的,而且从当时掌子面人工开挖的方式看来说,矩形断面最有利于挖掘工人的布置(由于当时施工能力的限制。1843年,采用这台11 m宽、6 m高的矩形盾构机完成了396 m长的泰晤士河隧道,开创了盾构法隧道的新天地。由于当时结构设计和施工技术的局限,该隧道的衬砌为砖砌双联拱结构,与盾构外形并不匹配。

随着技术的发展,自纽约Pneumatic Transit隧道(Alfred Ely Beach,1870)起,圆形衬砌结构由于受力合理迅速取代了矩形断面,见图5(a);1890年,连通美国与加拿大边境的St. Clair 铁路隧道盾构首次采用液压拼装机面,见图5(b);1926年伦敦地铁首次采用了电驱动大刀盘切削正面土体,实现了全断面机械化开挖,见图5(c)。从此,圆形盾构由于衬砌结构经济性好,便于实现机械化开挖和衬砌拼装,迅速成为主流,矩形盾构在大约100年的时间里成为被遗忘的技术。

(a) (b) (c)

20世纪90年代以后,随着日本城市逐步由功能优先的现代化建设转向人居为本的后现代化建设,需要在本已拥挤的地下空间中建设地铁,地下化铁路,共同沟,地下道路等,由于《日本民法典》规定50米深度以地下空间属于地面物业业主所有(2001年修正案),往往面临狭小的道路无法布置双线隧道的问题,即使开发出40cm极小间距施工的盾构技术也无济于事,唯一的办法是将两根隧道合为一体。90年代,此类隧道多采用双圆/多圆断面,但这种形式一般需设

图5:早期盾构技术沿革

中柱或采用繁琐的结构托换/置换工艺,空间仍有浪费。因此,90年代中期以后,随着异形断面刀盘技术的成熟,断面利用效率更高,结构形式更简洁的类矩形盾构逐步取代了双圆/多圆盾构。2005年之后,已经检索不到日本双圆盾构的施工案例。

于2002年引进了日本的双圆盾构技术,并用于轨道交通8号线、6号线、和2号线东延伸段施工。大部分施工效果良好,但也发现其虽然能够达到较高的环境保护标准,但是控制技术相对复杂,对施工管理要求较高,隧道空间使用弹性不大,泵房施工繁琐。也引进了此类盾构,评价与此类似。目前,尚无新的双圆盾构应用计划。

自1994年至今,日本共研发矩形和复合圆形(类矩形)盾构14种,见附表1所示。其中10、神奈川6号川崎线盾构为MMST工法所用的超前支护盾构,其主隧道断面为矩形,但超前支护盾构的本质为小型并列多圆盾构,虽然算作矩形盾构,但技术特征与使用方法差异很大。

值得指出的是,目前研发异形断面盾构并付诸实际应用的只有我国和日本。究其原因还是由于东西方城市发展的模式的差异导致市场需求的差异。除纽约外,

图2 日本并列圆形盾构

美国大多数城市结构比较疏散,地下空间开发的强度并不高;欧洲城市往往面临及其严格的古建筑保护法规,城市核心区地下工程总量也不大,更加趋向于建设新城。

山駅区间地下化

盘 14

东京相模纵贯川尻隧道工程

8.24×

11.96

敞开式

2011

15

东京地铁有乐町线小竹向原~千川联络线

6.8X5.7 土压平衡/行星刀盘

2012

1.1.2 日本矩形盾构主要关键发展趋势

由于建设体制和计价方式不同,日本异形断面盾构技术发展体现出高度的灵活性和针对性,基本每一款异形断面盾构都紧密结合相应的工程项目量身定做,在二十余年的发展过程中取得了很多独树一帜的技术,其中最为关键的两项是异形全断面切削技术和异形衬砌结构机械化拼装技术。

1)异形全断面切削技术

除了部分应用于软岩和自立性硬土的盾构采用敞开式开挖以外,日本所有应用于软土地区的异形断面盾构都采用了全断面切削技术,从未采用过以往用于小直径盾构的多刀盘部分切削方案,见附图6。这是由于在软土中,部分切削意味着正面有挤压效应,产导致切口前方隆起、通过后沉降。这一问题往往会被误认

为盾壳背土,采取错误的措施,更加剧了地层的扰动与沉降。

图6:多刀盘部分断面切削方案

表2为日本目前矩形盾构所用过的主要切削方式。

表2 矩形盾构主要切削方式

其中“偏心多轴(DPLEX)刀盘”是在数台驱动轴的前端偏心支承切削器,当按同一方向旋转驱动轴时,切削器机架作平行环运动,以此掘削和这个切削器形状大致相似的隧道断面。因此,只要变换切削器机架的形状,就可以筑造出矩形、椭圆形、马蹄形、带有突起的圆形以及圆环形等多种多样化断面的隧道。如图1.2.1-1所示。

磨盘式偏心轴

图1.2.1-1 掘削机构模式及实体盾构机图

“阿波罗刀头(All Potential Rotary Cutter)”由刀盘、摇动构架、公转圆筒三部分组成。如图1.2.1-2所示。在刀头高速旋转(自转)的同时,通过摇动构架及公转圆筒的旋转使刀盘在所要求的轨迹上移动(使其公转)进行任意断面的掘削。

图1.2.1-2 刀盘旋转及轨迹示意图

“仿形刀盘”在旋转时进行伸缩(辐条6根中的4根),来切削复合圆形断面。此外,随着伸缩刀盘的伸缩产生土仓容积的变动,为了防止开挖面土压平衡的失衡,在2处安装了土压变动控制装置。如图1.2.1-3所示。

图1.2.1-3 仿形刀盘的配置图及实体盾构机图

仿形刀盘也有采用千斤顶驱动的摆动刀盘方案,其特点是低成本,见图1.2.1-4所示。

相关文档
最新文档