高频变压器的分析与设计.

合集下载

高频开关电源变压器设计

高频开关电源变压器设计

开关电源功率变压器的设计方法1开关电源功率变压器的特性功率变压器是开关电源中非常重要的部件,它和普通电源变压器一样也是通过磁耦合来传输能量的。

不过在这种功率变压器中实现磁耦合的磁路不是普通变压器中的硅钢片,而是在高频情况下工作的磁导率较高的铁氧体磁心或铍莫合金等磁性材料,其目的是为了获得较大的励磁电感、减小磁路中的功率损耗,使之能以最小的损耗和相位失真传输具有宽频带的脉冲能量。

图1(a)为加在脉冲变压器输入端的矩形脉冲波,图1(b)为输出端得到的输出波形,可以看出脉冲变压器带来的波形失真主要有以下几个方面:图1脉冲变压器输入、输出波形(a)输入波形(b)输出波形(1)上升沿和下降沿变得倾斜,即存在上升时间和下降时间;(2)上升过程的末了时刻,有上冲,甚至出现振荡现象;(3)下降过程的末了时刻,有下冲,也可能出现振荡波形;(4)平顶部分是逐渐降落的。

这些失真反映了实际脉冲变压器和理想变压器的差别,考虑到各种因素对波形的影响,可以得到如图2所示的脉冲变压器等效电路。

图中:Rsi——信号源Ui的内阻Rp——一次绕组的电阻Rm——磁心损耗(对铁氧体磁心,可以忽略)T——理想变压器Rso——二次绕组的电阻RL——负载电阻C1、C2——一次和二次绕组的等效分布电容Lin、Lis——一次和二次绕组的漏感Lm1——一次绕组电感,也叫励磁电感n——理想变压器的匝数比,n=N1/N2图2脉冲变压器的等效电路将图2所示电路的二次回路折合到一次,做近似处理,合并某些参数,可得图3所示电路,漏感Li包括Lin和Lis,总分布电容C包括C1和C2;总电阻RS包括Rsi、RP和Rso;Lm1是励磁电感,和前述的Lm1相同;RL′是RL等效到一次侧的阻值,RL′=RL/n2,折合后的输出电压U′o=Uo/n。

经过这样处理后,等效电路中只有5个元件,但在脉冲作用的各段时间内,每个元件并不都是同时起主要作用,我们知道任何一个脉冲波形可以分解成基波与许多谐波的叠加。

高频变压器的设计方法及其应用研究

高频变压器的设计方法及其应用研究

高频变压器的设计方法及其应用研究摘要:首先论述了设计高频变压器的基本原则,分析了高频变压器设计的基本要求。

阐述了高频变压器的设计方法,详细讨论了磁芯材料、磁芯结构、磁芯参数、线圈参数、组装结构和工作点确定等各个方面设计时应该注意的问题。

运用面积相乘(AP)法设计了一款实际应用的高频变压器。

最后简介了高频变压器的发展方向和应用前景。

关键词:高频变压器,面积相乘法,磁芯材料,线圈参数1.引言电子变压器、半导体开关器件、半导体整流器件和电容器一起,被称为电源装置中的四大主要元器件[1]。

电子变压器作为一种主要的软磁电磁元件,在电源技术中和电力电子技术中得到广泛的应用。

高频变压器是指工作频率大于等于20KHz的变压器,主要用于高频开关电源中作高频开关电源变压器,也可以用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器。

一般传送功率比较大的,工作频率比较低;传送功率比较小的,工作频率比较高。

高频电子变压器和它的发展方向最近成为电子变压器行业关注的一个焦点。

电子设备小型化和轻量化的需求日益突出,因此,对于占用电子设备很大体积和重量的电感变压器相应向高频化的方向发展。

同时,器件也由传统的插件向表面贴装的方向发展,笔记本电脑的日益普及,各种数码消费电子和汽车电子的蓬勃发展,都为高频电感变压器的发展提供千载难逢的机会。

在DC-DC转换器中,更低的电压,更高的电流的发展趋势,对相应的高频电子变压器的设计提出更高的要求。

2.高频变压器的设计原则与设计要求(1) 高频变压器的设计原则。

高频变压器作为一种产品,与其他商品一样,设计原则是在具体使用条件下完成具体功能中追求性能价格比最好。

产品虽然性能好,但如果价格不能为市场接受也会遭冷落和淘汰。

(2) 高频变压器的设计要求。

以设计原则为出发点,高频变压器的设计要求包括:使用条件,完成功能,提高效率,降低成本。

使用条件包括两方面内容:可靠性和电磁兼容性。

可靠性是指在具体的使用条件下,高频电源变压器能正常工作到使用寿命为止[2]。

开关电源之高频变压器设计

开关电源之高频变压器设计

开关电源之高频变压器设计发表时间:2019-06-18T17:24:32.980Z 来源:《科技研究》2019年4期作者:张升[导读] 本文主要介绍高频变压器具体参数的确定、及其在设计过程应当注意的问题及并提出相应的解决办法。

(中山市木林森光电有限公司 528415)摘要:开关电源设计中的难点之一就是高频变压器的设计,由于高频变压器是开关电源中进行能量储存和能量传输的重要部件,其合理性与参数计算的正确性将直接影响到开关电源的整体性能。

而衡量高频变压器的好坏,除了要考虑一般变压器中涉及的效率、运行特性等方面,还要考虑到其交直流损耗、漏感、线圈本身分布参数等诸多方面影响。

本文主要介绍高频变压器具体参数的确定、及其在设计过程应当注意的问题及并提出相应的解决办法。

关键词:开关电源;高频变压器;设计要点1 开关电源之高频变压器的主要构成及分类从广义上来说,凡以半导体功率的开关器件为开关管,经对开关管进行高频开通以及关断控制,会将电能形态转化为其他电能形态装置,这就是所谓的开关转换器。

用开关转换器作为主要的组成部件,以闭环自动控制来稳定它的输出电压,并且在电路中增加保护环节电源,此为开关电源。

若用高频DC/DC 转换器作为开关电源工作时的开关转换器则就成为高频开关电源。

高频开关电源基本的路线是由开关型的功率变换器,整流滤波电路,交流直线转换电路以及控制电路组成。

高频开关电源变压器分类方式:(1)按照驱动方式的不同可以分为他激式和自激式;(2)按照电路的拓扑结构可以分为隔离式和非隔离式;前者包括正激式,反激式与半桥式,全桥式,推挽式;后者包括降压型与升压型等;(3)按照输出输入间是否有着电器隔离,可将其分为隔离式与非隔离式;(4)按照DC 转换器/DC 开关条件,可将其分为硬开关以及软开关。

2 开关电源之高频变压器的设计要点2.1 整体设计对于实用的可调开关电源,需能控制输出电压在合适的范围内调节,并且保证电流不超过所设计的最大值。

高频LLC谐振变压器设计要素及注意事项

高频LLC谐振变压器设计要素及注意事项

总结高频LLC谐振变压器设计要素1、须注意减少邻近效应。

相邻导线流过高频电流时,由于磁电作用使电流偏向一边的特性,称为“邻近效应”。

如相邻二导线A,B流过相反电流IA和IB时,B导线在IA产生的磁场作用下,使电流IB在B导线中靠近A导线的表面处流动,而A导线则在IB产生的磁场作用下,使电流IA在A导线中沿靠近B导线的表面处流动。

又如当一些导线被缠绕成一层或几层线匝时,磁动势随绕组的层数线性增加,产生涡流,使电流集中在绕组交界面间流动,这种现象就是邻近效应。

邻近效应随绕组层数增加而呈指数规律增加。

因此,邻近效应影响远比趋肤效应影响大。

减弱邻近效应比减弱趋肤效应作用大。

由于磁动势最大的地方,邻近效应最明显。

如果能减小最大磁动势,就能相应减小邻近效应。

所以合理布置原副边绕组,就能减小最大磁动势,从而减小邻近效应的影响。

理论和实践都说明,设计工频变压器时使用的简单方法,对设计高频变压器不适用。

在磁芯窗口允许情况下,应尽可能使用直径大的导线来绕制变压器。

在高频应用中常导致错误,使用直径太大的导线,则会使层数增加,叠加和弯曲次数增多,从而加大了邻近效应和趋肤效应,就会使损耗增加。

因此太大的线径和太小的线径一样低效。

显然由于邻近效应和趋肤效应缘故,绕制高频电源变压器用的导线或簿铜片有个最佳值。

当相邻的导线流过电流时,会产生可变磁场,从而形成邻近效应,如果邻近效应发生在绕组层间时,其危害性是很大的。

邻近效应比集肤效应更严重,因为集肤效应只是将导线的导电面积限制在表面的一小部分,增加了铜损。

它没有改变电流的幅值,只是改变了导线表面的电流密度。

但相对来看,邻近效应中的涡流是由相邻绕组层电流的可变磁场引起的,而且涡流的大小随绕组层数的增加按指数规律递增。

总结,做高频LLC谐振变压器时使用的线材,用多股绞合线或者丝包线为最佳。

例如:0.1*40股,或者0.05*40股等,线径越小,邻近效应与趋肤效应危害就越小。

当线径小到某一值时,再减小线径所起作用就不大了,就市面上来讲,目前多数用的0.1*XX股线为最多。

基于高频变压器纳米晶磁芯损耗分析与计算

基于高频变压器纳米晶磁芯损耗分析与计算

基于高频变压器纳米晶磁芯损耗分析与计算随着电子设备智能化和小型化的发展,高频变压器在电源和通信设备中起到了越来越重要的作用。

在高频变压器中,纳米晶磁芯由于其高饱和磁通密度,低磁滞损耗和低温升特性等优点,成为了追求高效率和小型化设计的首选材料。

然而,纳米晶磁芯在高频工作条件下会存在较大的损耗,这会导致变压器的温升过高,从而降低工作效率和寿命。

因此,对于纳米晶磁芯的损耗进行分析和计算非常重要。

纳米晶磁芯的损耗主要包括磁滞损耗和涡流损耗两部分。

其中,磁滞损耗是由于磁芯在经历磁场反向变化时,磁矩的旋转和重组所产生的能量损耗。

涡流损耗则是由于变压器中高频交变磁场在导体周围产生的涡流所产生的热能损失。

为了减小纳米晶磁芯的损耗,设计师需要在设计过程中选择适当的材料和结构,以及优化磁芯的工艺参数。

在计算磁滞损耗时,可以采用双曲线模型来估计磁滞损耗的大小。

该模型假设磁感应强度和磁场强度的关系为双曲线型,即B=Bs*(H+Hk)/(H+Hk'),其中B为磁感应强度,H为磁场强度,Bs为饱和磁感应强度,Hk和Hk'为双曲线上的两个参数。

根据双曲线模型,可以计算出磁滞损耗的大小,公式为Ph=Kf*f*Bm^2*Vt,其中Ph为磁滞损耗,Kf为磁滞损耗系数,f为磁芯的工作频率,Bm为磁芯的峰值磁感应强度,Vt为磁芯的体积。

在计算涡流损耗时,需要考虑导体的几何结构和磁芯的工作频率等因素。

在高频工作条件下,应当尽量采用空气绕组或微绕组等设计,以减小涡流损耗。

涡流损耗的计算公式为Pc=Ke*f^2*Bm^2*t^2*R,其中Pc为涡流损耗,Ke为涡流损耗系数,f为磁芯的工作频率,Bm为磁芯的峰值磁感应强度,t为导体的厚度,R为导体的电阻率。

综上所述,在高频变压器的设计中,纳米晶磁芯的损耗分析和计算是非常重要的。

通过合理的材料选择和结构优化,可以有效地减小磁滞损耗和涡流损耗,提高变压器的工作效率和寿命。

高频变压器设计原理

高频变压器设计原理

摘要:阐述了高频开关电源热设计的一般原则,着重分析了开关电源散热器的热结构设计。

关键词:高频开关电源;热设计;散热器1 引言电子产品对工作温度一般均有严格的要求。

电源设备内部过高的温升将会导致对温度敏感的半导体器件、电解电容等元器件的失效。

当温度超过一定值时,失效率呈指数规律增加。

有统计资料表明,电子元器件温度每升高2℃,可靠性下降10%;温升50℃时的寿命只有温升为25℃时的1/6。

所以电子设备均会遇到控制整个机箱及内部元器件温升的要求,这就是电子设备的热设计。

而高频开关电源这一类拥有大功率发热器件的设备,温度更是影响其可靠性的最重要的因素,为此对整体的热设计有严格要求。

完整的热设计包括两方面:如何控制热源的发热量;如何将热源产生的热量散出去。

最终目的是如何将达到热平衡后的电子设备温度控制在允许范围以内。

2 发热控制设计开关电源中主要的发热元器件为半导体开关管(如MOSFET、IGBT、GTR、SCR等),大功率二极管(如超快恢复二极管、肖特基二极管等),高频变压器、滤波电感等磁性元件以及假负载等。

针对每一种发热元器件均有不同的控制发热量的方法。

2.1 减少功率开关的发热量开关管是高频开关电源中发热量较大的器件之一,减少它的发热量,不仅可以提高开关管自身的可靠性,而且也可以降低整机温度,提高整机效率和平均无故障时间(MTBF)。

开关管在正常工作时,呈开通、关断两种状态,所产生的损耗可细分成两种临界状态产生的损耗和导通状态产生的损耗。

其中导通状态的损耗由开关管本身的通态电阻决定。

可以通过选择低通态电阻的开关管来减少这种损耗。

MOSFET的通态电阻较IGBT的大,但它的工作频率高,因此仍是开关电源设计的首选器件。

现在IR公司新推出的IRL3713系列HEXFET(六角形场效应晶体管)功率MOSFET已将通态电阻做到3mΩ,从而使这些器件具有更低的传导损失、栅电荷和开关损耗。

美国APT公司也有类似的产品。

高频开关电源变压器的优化设计及其应用研究

高频开关电源变压器的优化设计及其应用研究

高频开关电源变压器的优化设计及其应用研究摘要:在开关电源当中,变压器是实现核心性能的关键技术组件,因此要把控合理设计与应用。

本文通过分析高频开关电源变压器的构成及发展现况,进一步分析了变压器的优化设计方向与实际应用。

关键词:优化设计;变压器;高频开关电源引言:目前的开关电源正不断向高频化的方向发展,因此其相应的变压器装置也开始采用高频形式,基于此,本文主要围绕着高频开关电源变压器的内部设计展开的研究,希望能够对高频开关电源变压器的实际应用有所帮助。

1.高频开关电源变压器的构成及发展现况1.1高频开关电源变压器的构成与分类高频开关电源变压器中,其开关器件是基于半导体功率,因此也可称之为开关管,而控制开关管在高频下进行关闭与开通操作,从而实现将某种电能的形态转换为其他类型电能形态,这种性能的装置就叫做开关转换器。

以开关转换器为关键部件,再利用闭环自动控制方式对输出电压进行稳定处理,同时,整个电路中还配有相应的保护电源,这种情况下的电源就叫做开关电源,而使用高频的转换器做电源开关工作的转换装置,就被称作高频开关电源,其一般是采用高频DC 转换器。

在高频开关电源当中,其运行的最基本路线包括整流滤波电路、开关型的功率变换装置、控制电路以及交流直线转换电路,而其相应的变压器装置可采用以下几种分类方式。

一是基于不同的驱动方式来划分为自激式驱动变压器以及他激式驱动变压器;二是根据电路的拓扑结构来划分变压器类型,具体可分为两类,包括隔离式变压器与非隔离式变压器,其中隔离式变压器装置还可划分为半桥式变压器、全桥式变压器、反激式变压器、正激式变压器以及推挽式变压器,非隔离式变压器则包括升压型变压器与降压型变压器;三是基于输入与输出之间是否存在电器隔离来划分变压器类型,有电器隔离则为隔离式变压器,无电器隔离则为非隔离式变压器;四是基于DC的开关条件或DC转换器类型来划分,可分为软开关型变压器与硬开关型变压器[1]。

1.2开关电源技术的发展现况电源从上世纪60年代开始就得到使用,一开始大部分使用电源的电子产品都是线性电源结构,这种电源在原理上存在许多局限,且电源本身的体积大、重量高,还具有损耗大的缺点,随后,一种基于开关调节器的直流稳压电源逐渐将其取代,对于开关电源技术的集中化研究开始于上世纪90年代,当时使用的开关电源是基于DC/DC转换器,并采用脉冲宽度调制方式来实现功能,随后还有许多新型电源材料逐渐问世,包括高频磁性材料以及半导体材料,这些材料的应用也使得开关电源的频率得到进一步增长,当前,国内外的开关电源技术都已经实现市场化发展,国内自主研发的开关电源变压器装置也逐渐变多,但大部分变压器的频率较小,高频开关电源变压器的研究还有待加强,近年来,随着对高频开关电源变压器的研究力度加大,该项技术的发展也得到了跨越式的进步[2]。

高频变压器的设计方法和分布参数模型介绍

高频变压器的设计方法和分布参数模型介绍

Dianqi Gongcheng yu Zidonghua ♦电气工程与自动化高频变压器的设计方法和分布参数模型介绍陈尊杰1夏书生1钱峰1田煜2金平2(1.国网新源水电有限公司新安江水力发电厂,浙江杭州311608;2•河海大学,江苏南京210000)摘要:随着用户对用电质量和安全可靠性的要求越来越高,加上当前对变压器小型化、轻便化的要求,传统电力变压器已不能满足社会发展的需求。

研究表明,通过电力电子技术和变压器的 ,可 传统 压器质量 大 陷’高频变压器作为电力电子变压器(PET )的核心器件, 传 的作用,在未来有着很大的发展空间’现主要介绍高频变压器的设计方法和型,对高频 压器损耗和有重要作用°关键词:电力 子变压器(PET );高频变压器 型0引C来,可能有高 和可电能质量等优点的电力电子变压器(Power Electronic Trans ­former , PET ),为能 网的的研究 叭高频压器PET 的核 , 的高频 压器性能的 , 的 高频压器 和效率’因此,高频压器的和型 ,研Z °1电力电子变压器介绍1997年,来自美国德州农工大学的Moonshik Kang 博士设AC /AC的PET , 压器 的能 1示’ 其样机启发,研究人员大都认可这既能降低变压器 的 和重量,还备更高的传能力和 的"2#°中高压交流DCAC低压交流AC/DC ACZAC高频交流高频变压器高频交流直流端口图1基于AC /AC 变换的PET 结构图2高频变压器的设计压器时,既要考虑 能 的难易,也要考虑建造、运行与维修成本,工作性能素’成本素包括压器 的 和量、材料 艺的经济性,工作性能素 压器的输出、最高工作、特温环境应用时可允许的最大温升’常用的 软件自动 、面 AP 、几何系KG 都能满足 压器的要求’软件,只需要 .压器参,便可通过内置算 动进行 ,简单便’但 本文的研究对象不是传统压器,使用材料不软件库中,难使用软件 高频压器’ 相对,AP 有成型的计算过程和 论依据,不 材料限制,也更常用, 本文 选择AP高频压器’2.1磁芯材料选择及其尺寸计算根据额压!N 、流"n 和磁通密度#m ,结合Ansys 仿真来选择磁芯材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高频链中高频变压器的分析与设计文章作者:四川成都西南交通大学龙海峰郭世明江苏南京国电南京自动化股份有限公司呙道静文章类型:设计应用文章加入时间:2004年9月6日14:54文章出处:电源技术应用摘要:高频链逆变技术用高频变压器代替传统逆变器中笨重的工频变压器,大大减小了逆变器的体积和重量。

在高频链的硬件电路设计中,高频变压器是重要的一环。

叙述了高频变压器的设计过程。

实验结果证明该设计满足要求。

关键词:高频链;高频变压器;逆变器引言MESPELAGE于1977年提出了高频链逆变技术的新概念[1]。

高频链逆变技术与常规的逆变技术最大的不同,在于利用高频变压器实现了输入与输出的电气隔离,减小了变压器的体积和重量。

近年来,高频链技术引起人们越来越多的兴趣。

1 概述图1是传统的逆变器框图。

其缺点是采用了笨重庞大的工频变压器和滤波电感,导致效率低,噪音大,可靠性差。

另外,谐波含量大,波形畸变严重,与要求的优质正弦波相差甚远。

图2所示为电压源高频链逆变器的框图,该方案是当今研究的最先进方案[2],也是本文中采用的方案。

采用此方案有其一系列的优点,诸如,以小型的高频变压器替代工频变压器;只有两级功率变换;正弦波质量高;控制灵活等。

高频变压器是高频链的核心部件,肩负着隔离和传输功率的重任,其性能好坏直接决定逆变器的性能好坏。

不合格的变压器温升高,效率低,漏感严重,输出波形畸变大,直接影响电路的稳定性和可靠性,甚至损坏开关器件,导致实验失败。

2 高频变压器的设计设计高频变压器首先应该从磁芯开始。

开关电源变压器磁芯多是在低磁场下使用的软磁材料,它有较高磁导率,低的矫顽力,高的电阻率。

磁导率高,在一定线圈匝数时,通过不大的激磁电流就能承受较高的外加电压,因此,在输出一定功率要求下,可减轻磁芯体积。

磁芯矫顽力低,磁滞面积小,则铁耗也少。

高的电阻率,则涡流小,铁耗小。

各种磁芯物理性能及价格比如表1所列。

铁氧体材料是复合氧化物烧结体,电阻率很高,适合高频下使用,但Bs值比较小,常使用在开关电源中。

本文采用的就是铁氧体材料。

表1 各种磁芯特性比较表磁芯类型非晶合金薄硅钢片坡莫合金铁氧体铁损低高中低磁导率高低高中饱和磁密高高中低温度影响中小小中加工难易易易价格中低中低高频变压器的设计通常采用两种方法[3]:第一种是先求出磁芯窗口面积AW与磁芯有效截面积Ae的乘积AP(AP=AW×Ae,称磁芯面积乘积),根据AP值,查表找出所需磁性材料之编号;第二种是先求出几何参数,查表找出磁芯编号,再进行设计。

本文详细讨论如何用AP法设计高频变压器。

原边NP匝,副边Ns匝的变压器,在NP匝上以电压V1开关工作时,根据法拉第定律,有V1=KffsNPBWAe (1)式中:Kf为波形系数,即有效值和平均值之比,正弦波为4.44,方波为4;fs为工作频率;BW为工作磁通密度。

NP=V1/(KffsBwAe) (2)铁芯窗口面积AW乘以窗口使用系数Ko(一般取04)为有效面积,该面积为原边绕组NP占据的窗口面积NPAP′与副边绕组Ns占据的窗口面积NsAs′之和,即KoAW=NPAP′+NsAs′(3)式中:AP′及As′分别为原、副边绕组每匝的截面积。

每匝所占用面积与流过该匝的电流值I和电流密度J有关,如式(4)所示。

AP′=I1/JAs′=I2/J (4)将式(4)代入式(3),则得KoAW=(V1/KffsBwAe)I1/J+(V2/KffsBwAc)(I2/J)即AWAe=(V1I1+V2I2)/(KoKffsBwJ) (5)电流密度J直接影响到温升,亦影响到AWAe,其关系可用式(6)表示。

J=KJ(AWAe)X (6)式中:KJ为电流密度系数;X为常数,由所用磁芯确定。

若变压器的视在功率PT=V1I1+V2I2,则AWAe=(PT)/(KoKffsBwJ(AWAe)x即AP=(PT×10 4)/(KoKffsBwKJ)(1/1+X) (7)式中:AP单位为cm4,其余的单位为国际单位制。

视在功率随线路结构不同而不同。

如图3所示。

变压器效率为η,则在图3(a)中PT=Po+Pi=Po+Po/η=Po(1+1/η)在图3(b)中在图3(c)中本文采用图3(b)的结构,VDC=24V,Po=250W,设η=0.95,则若采用E型磁芯,允许温升25℃,则有KJ=323,X=-0.14。

饱和磁密约为0.35T,考虑到高温时饱和磁密会下降,同时,为了防止合闸瞬间高频变压器饱和,取饱和磁密的1/3为变压器的工作磁密,即BW=0.117T。

工作频率为20kHz,由式(7)可得取10%的裕度,即AP=6.65×(1+10%)≈7.28cm4,查手册选取E17铁氧体磁芯,其AW=2.56cm2,Ae=3.80cm2,AP=9.73cm4,满足要求。

确定磁芯材料后,则其他参数计算如下:1)原边绕组匝数NPNP=(V1)/(KffsBwAe)≈7匝;2)原边电流IPIP=(Po)/(VDCη)≈10.96A;3)电流密度JJ=KJ(AWAe)x=234.9A/cm2;4)原边绕组裸线面积AXPAXP=Ip/J≈0.04666cm2;5)副边绕组匝数Ns逆变器工作时占空比D=0.75,幅值为根号2 220V,则Ns=(NpV2)/D V1=120.99≈121匝6)副边绕组裸线面积AXS注意中间抽头变压器Io须乘0.707的校正系数,则AXS=(Io×0.707)/J=(Po×0.707)/(Vo×J)=(250×0.707)/(220×234.9)=0.00342cm2。

3 实验结果实验采用图3(b)的结构,参数如下:输入电压DC24V;开关频率20kHz;占空比D=0.75;输出电压AC220V;输出功率250W;输出频率50Hz;变压器磁芯E17铁氧体磁芯;原边绕组匝数7匝;副边绕组匝数121匝。

该高频链工作稳定可靠,噪声很小,实验结果证明该高频变压器满足实际要求。

4 结语1)设计中,在最大输出功率时,磁芯中的磁感应强度不应达到饱和,以免在大信号时产生失真。

2)在瞬变过程中,高频链漏感和分布电容会引起浪涌电流和尖峰电压及脉冲顶部振荡,使损耗增加,严重时会造成开关管损坏。

同时,输出绕组匝数多,层数多时,应考虑分布电容的影响,降低分布电容有利于抑制高频信号对负载的干扰。

对同一变压器同时减少分布电容和漏感是困难的,应根据不同的工作要求,保证合适的电容和电感。

3)本文采用的工作频率为20kHz,由于工作频率较高,趋肤效应影响比较大,因此,在设计时应注意趋肤效应引起的有效面积的减少。

变压器的漏感应该是线圈所产生的磁力线不能都通过次级线圈,因此产生漏磁的电感称为漏感。

变压器的基本知识变压器几乎在所有的电子产品中都要用到,它原理简单但根据不同的使用场合(不同的用途)变压器的绕制工艺会有所不同的要求。

变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E型和C型铁心。

一、变压器的基本原理图1是变压器的原理简体图,当一个正弦交流电压U1加在初级线圈两端时,导线中就有交变电流I1并产生交变磁通ф1,它沿着铁心穿过初级线圈和次级线圈形成闭合的磁路。

在次级线圈中感应出互感电势U2,同时ф1也会在初级线圈上感应出一个自感电势E1,E1的方向与所加电压U1方向相反而幅度相近,从而限制了I1的大小。

为了保持磁通ф1的存在就需要有一定的电能消耗,并且变压器本身也有一定的损耗,尽管此时次级没接负载,初级线圈中仍有一定的电流,这个电流我们称为“空载电流”。

如果次级接上负载,次级线圈就产生电流I2,并因此而产生磁通ф2,ф2的方向与ф1相反,起了互相抵消的作用,使铁心中总的磁通量有所减少,从而使初级自感电压E1减少,其结果使I1增大,可见初级电流与次级负载有密切关系。

当次级负载电流加大时I1增加,ф1也增加,并且ф1增加部分正好补充了被ф2所抵消的那部分磁通,以保持铁心里总磁通量不变。

如果不考虑变压器的损耗,可以认为一个理想的变压器次级负载消耗的功率也就是初级从电源取得的电功率。

变压器能根据需要通过改变次级线圈的圈数而改变次级电压,但是不能改变允许负载消耗的功率。

二、变压器的损耗当变压器的初级绕组通电后,线圈所产生的磁通在铁心流动,因为铁心本身也是导体,在垂直于磁力线的平面上就会感应电势,这个电势在铁心的断面上形成闭合回路并产生电流,好象一个旋涡所以称为“涡流”。

这个“涡流”使变压器的损耗增加,并且使变压器的铁心发热变压器的温升增加。

由“涡流”所产生的损耗我们称为“铁损”。

另外要绕制变压器需要用大量的铜线,这些铜导线存在着电阻,电流流过时这电阻会消耗一定的功率,这部分损耗往往变成热量而消耗,我们称这种损耗为“铜损”。

所以变压器的温升主要由铁损和铜损产生的。

由于变压器存在着铁损与铜损,所以它的输出功率永远小于输入功率,为此我们引入了一个效率的参数来对此进行描述,η=输出功率/输入功率。

三、变压器的材料要绕制一个变压器我们必须对与变压器有关的材料要有一定的认识,为此这里我就介绍一下这方面的知识。

1、铁心材料:变压器使用的铁心材料主要有铁片、低硅片,高硅片,的钢片中加入硅能降低钢片的导电性,增加电阻率,它可减少涡流,使其损耗减少。

我们通常称为加了硅的钢片为硅钢片,变压器的质量所用的硅钢片的质量有很大的关系,硅钢片的质量通常用磁通密度B来表示,一般黑铁片的B值为6000-8000、低硅片为9000-11000,高硅片为12000-16000,2、绕制变压器通常用的材料有漆包线,沙包线,丝包线,最常用的漆包线。

对于导线的要求,是导电性能好,绝缘漆层有足够耐热性能,并且要有一定的耐腐蚀能力。

一般情况下最好用Q2型号的高强度的聚脂漆包线。

3、绝缘材料在绕制变压器中,线圈框架层间的隔离、绕阻间的隔离,均要使用绝缘材料,一般的变压器框架材料可用酚醛纸板制作,层间可用聚脂薄膜或电话纸作隔离,绕阻间可用黄腊布作隔离。

4、浸渍材料:变压器绕制好后,还要过最后一道工序,就是浸渍绝缘漆,它能增强变压器的机械强度、提高绝缘性能、延长使用寿命,一般情况下,可采用甲酚清漆作为浸渍材料。

电工学名词解释要学好电工技术必须要对在电工学上的一些物理量的概念有所理解,为此本人将一些常用的电工学名词汇总并作注解:1、电阻率---又叫电阻系数或叫比电阻。

是衡量物质导电性能好坏的一个物理量,以字母ρ表示,单位为欧姆*毫米平方/米。

在数值上等于用那种物质做的长1米截面积为1平方毫米的导线,在温度20C时的电阻值,电阻率越大,导电性能越低。

则物质的电阻率随温度而变化的物理量,其数值等于温度每升高1C时,电阻率的增加与原来的电阻电阻率的比值,通常以字母α表示,单位为1/C。

相关文档
最新文档