高二数学期末考试试卷分析
高二数学试卷分析期末总结
一、试卷分析1. 试卷结构本次期末考试数学试卷共分为选择题、填空题、解答题三个部分,总分150分。
选择题共20题,每题3分,共60分;填空题共10题,每题3分,共30分;解答题共10题,每题10分,共100分。
2. 试题难度本次试卷难度适中,涵盖了高中数学的基本知识点,包括函数、三角函数、数列、立体几何、解析几何等。
试题难度分布合理,既有基础题,也有具有一定难度的题目。
3. 试题特点(1)注重基础知识考查。
试卷中的选择题和填空题主要考查学生对基本概念、基本公式、基本方法的掌握程度。
(2)注重能力培养。
解答题部分,特别是压轴题,注重考查学生的逻辑思维能力、分析问题和解决问题的能力。
(3)注重创新意识。
试卷中部分题目具有一定的创新性,鼓励学生在解题过程中发挥自己的想象力和创造力。
二、成绩分析1. 平均分本次期末考试数学平均分为80分,与上学期期末考试相比,平均分略有提高。
2. 优秀率本次期末考试数学优秀率为30%,与上学期期末考试相比,优秀率有所提高。
3.及格率本次期末考试数学及格率为85%,与上学期期末考试相比,及格率有所提高。
三、期末总结1. 教学方面(1)教师应关注学生的学习情况,及时发现和解决学生在学习过程中遇到的问题。
(2)教师应注重培养学生的数学思维能力,提高学生的解题能力。
(3)教师应关注学生的心理素质,帮助学生克服考试焦虑。
2. 学生方面(1)学生应养成良好的学习习惯,提高学习效率。
(2)学生应注重基础知识的学习,打牢基础。
(3)学生应加强练习,提高解题能力。
3. 家长方面(1)家长应关注孩子的学习情况,与孩子一起制定合理的学习计划。
(2)家长应鼓励孩子参加课外活动,培养孩子的兴趣爱好。
(3)家长应关注孩子的心理素质,帮助孩子树立正确的价值观。
总之,本次期末考试数学成绩整体表现良好,但仍有部分学生存在不足。
在今后的教学中,教师应继续关注学生的需求,提高教学质量,帮助学生取得更好的成绩。
上学期高二数学期末试卷分析
高二数学试卷抽样分析一、总体评价参考人数,及格人数,及格率,最高分,最低分,抽样60份,及格人数人,平均分。
选择题部分错误主要集中在第4、7、10题;第4题是一个三视图的题,学生主要是三视图的特点不清;第7题是直线的倾斜角有关的简单综合,学生的主要错误是概念理解不透,应用能力不强;第10题是一个直线与三角的简单综合问题,学生的主要错误是运用不够灵活。
填空题错误主要集中在第15、16、17题;第15题学生对均值不等式的理解不透、运用不够灵活;第16题是立体几何中的基本判定和性质的综合考察,学生对这些不够熟练;第16题是简单线性规划,大多数对这点知识理解不深,运用不熟。
三、考生答卷存在的主要问题及对今后教学和复习的建议1、加强概念教学,重视基础知识、基本技能训练,要将训练有计划地安排,层层推进,全面过关,从这次学生的答题来看基础题得分尚显不足,这就需要我们的教师在教学活动中引起足够的重视。
2、强化思维训练,培养学生的逻辑思维能力是数学教师的主要任务之一。
教师在教学过程中,应帮助学生弄清知识体系与知识内容,总结知识结构;讲解例题时要帮助学生弄清涉及到的那些知识点,怎样审题,怎样打开思路,运用那些方法和技巧,关键步骤是什么,可能出现的问题是什么,有没有其它方法,这些方法中哪些更常规、更适合。
第17题分析本题主要考察向量点乘坐标运算公式,典型错误和原因分析:1、没有准确掌握公式; 2、审题不清或概念不清,误把数量积当作向量平行;3、正弦函数形式周期最值计算未能准确记忆;4、计算错误。
教学建议:1、落实数学概念、公式和定理的教学,让每一个学生都能准确掌握,不能自觉简单而轻轻带过。
2、督促学生规范解题,减少“会做,但做不全”的情况;3、简单问题简单解,避免小题大做,很多学生要画出准确的图形才答题,实际上是浪费了很多时间,造成隐性失分。
第18题分析本题主要考察中简单的概率。
本以为属于容易题,但是统计结果另人吃惊,尽然有一大部分同学做不来。
高二数学试卷分析
高二数学试卷分析数学教师做好试卷分析可以使学生由害怕考试变为喜欢考试。
下面是店铺为大家整理的高二数学试卷分析,欢迎阅读参考。
高二数学试卷分析一一、命题范围及特点本次期末数学试卷,能以大纲为本,以教材为基准,全面覆盖了高中数学的必修1和必修2的所有知识点,试卷不仅有基础题,也有一定的灵活性的题目,试卷基本上能考查学生对知识的掌握情况,实现体现了新课标的新理念,试卷注重了对学生的思维能力、运算能力、计算能力、解决问题能力的考查,本试卷重视了基础,难度不大,有较强的灵活性。
三、试卷分析本次期末考试试卷共22个小题,三个大题。
第一大题,选择题,共12个小题。
第1小题,集合的概念的题,主要问题对考察集合间的运算。
第2小题,对数函数的定义域,得分率较高,第3小题、4小题是考察函数的单调性和奇偶性问题,对性质掌握较好,正确率高。
第5小题是直线间的关系,垂直的考察。
第6小题是直线与圆的位置关系,包括对称性的考察。
第7题考察线线、线面、面面平行的关系。
第8题是直线与圆的位置关系的考察,容易计算错误。
第9题考察球体的表面积,记住公式即可,比较简单。
第10题零点的考察,比较基础,课本上的此类型的练习比较多。
第11题根据图形计算函数的最值,有一定难度。
第12题考察三视图。
第二大题,填空题,得分率较低。
13小题,基本初等函数的计算。
14小题三视图及面积的考察,15小题,函数的应用。
第16题几何体体积的考察。
第三大题,解答题。
第17小题函数的应用题,牵涉到对数函数的变换。
第18题集合的运算提,牵涉到空间的计算,学生容易忽略。
第19题求解直线方程的问题,比较基础的题目。
第20题考察立体几何,第一小问线面平行,第二小问异面直线的夹角问题,掌握好概念,难度不大。
第21题是直线与圆的方程的考察。
第22题函数单调性、奇偶性、最值的综合考察,有一定难度。
三、建议1、加强概念教学,重视基础知识、基本技能训练,要将训练有计划地安排,层层推进,全面过关,从这次试卷来看,基础题与常规题所占比例是较高的,但从学生的答题来看尚显不足,这就需要我们的教师在教学活动中引起足够的重视。
高二数学期末考试试卷分析
高二数学期末考试试卷分析数学组姜尊烽一、试卷特点:本学期期末试卷的命题坚持课改精神,加强了对学生思维品质的考查.试题以课标和课本为本,考查了数学基础知识、基本技能、基本方法、逻辑思维能力,以及运用所学知识和方法分析问题,解决实际问题的能力。
但对基础知识的考查直接运用的比重较少,搞知识堆积的题型比重较大,这不利于基础掌握能力比较差的学生学习.对基本技能,不考繁杂的内容,这对当前高中数学教学有很好的指导意义。
重视了数学思想的普查。
体现了学生实践能力的考查,让学生解决自己身边的实际问题,体现知识的价值,激发学习的热情。
二、学生答题情况的分析所教授的两个班级考试成绩都不太理想,与学校年级平均成绩差不多,仅仅有7名学生考了及格.三、答题中存在的问题:从答题情况看,只有少部分学生能较好地掌握高中数学的基础知识和基本技能,学生答题中不乏简捷和富有个性的解法.存在的重要问题如下:1、审题不认真细致。
如第4题:不注意在达到结果和a的值还在递减1,应在a=3时结束循环,没有考虑到而导致失分。
2、学生缺乏运用基础知识模型的意识,不会基本方法解题,基本计算能力较差。
如第18、19、20题。
18为求点的轨迹方程基本方法把握不足,19是古典概型和几何概型的基本求法还把握不足,20为利用最小二乘法求回归直线方程中基本计算能力不足。
3、学生缺乏转化的思想。
如第22题不会将向量数量积转化为坐标表示,利用韦达公式解题。
4、学生对基本题型的掌握能力差.如第21题不会对图形建立直角坐标系,及对各点的坐标表示把握不足,不会利用坐标表示来证明垂直和二面角的大小,基本知识点的记忆不足。
5、运算时不注意符号,在符号上出错。
也由于粗心大意或学习习惯不好出现计算错误。
6、不能很好的掌握课堂知识。
如第21题第(1)(2)问只停留在凭感觉做题,做过的题理解不透彻理解不深刻。
7、学生探究归纳综合能力较低。
如第8题不能把简单的三角函数的单调区间与几何概型的求解联系起来,要么对单调区间的求解没有记忆,要么对几何概型的一般求法把握不足,其次两者的综合学生更是摸不着头脑.8、基础不扎实,不能提取题目中的主要信息,不能很好的联系基础知识。
2023-2024学年北京市房山区高二上学期期末考试数学试卷+答案解析
2023-2024学年北京市房山区高二上学期期末考试数学试卷一、单选题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.在复平面内,复数z对应的点的坐标是,则z的共轭复数()A. B. C. D.2.在三棱柱中,D为棱的中点.设,用基底表示向量,则()A. B. C. D.3.两条直线与之间的距离是()A.5B.1C.D.4.设直线l的方向向量为,两个不同的平面的法向量分别为,则下列说法中错误的是()A.若,则B.若,则C.若,则D.若,则5.如图,四棱锥中,底面ABCD是矩形,,平面ABCD,下列叙述中错误的是()A.平面PCDB.C. D.平面平面ABCD6.已知M为抛物线上一点,M到C的焦点F的距离为6,到x轴的距离为4,则()A.6B.4C.2D.17.下列双曲线中以为渐近线的是()A. B. C.D.8.已知点,若直线上存在点P ,使得,则实数k 的取值范围是()A. B.C.D.9.已知双曲线Q 与椭圆有公共焦点,且左、右焦点分别为,,这两条曲线在第一象限的交点为P ,是以为底边的等腰三角形,则双曲线Q 的标准方程为()A.B.C.D.10.如图,在棱长为2的正方体中,P 为线段的中点,Q 为线段上的动点,则下列结论正确的是()A.存在点Q ,使得B.存在点Q ,使得平面C.三棱锥的体积是定值D.存在点Q ,使得PQ 与AD 所成的角为二、填空题:本题共6小题,每小题5分,共30分。
11.若直线与直线垂直,则a 的值为__________.12.复数的实部为__________.13.已知圆则圆的圆心坐标为__________;若圆与圆内切,则__________.14.如图,在正方体中,直线与直线所成角的大小为__________;平面ABCD 与平面夹角的余弦值为__________.15.已知直线,则与的交点坐标为__________;若直线不能围成三角形,写出一个符合要求的实数a的值__________.16.已知曲线,给出下列四个命题:①曲线关于x轴、y轴和原点对称;②当时,曲线共有四个交点;②当时,③当时,曲线围成的区域内含边界两点之间的距离的最大值是3;④当时,曲线围成的区域面积大于曲线围成的区域面积.其中所有真命题的序号是__________.三、解答题:本题共5小题,共60分。
高二数学期末考试试卷分析
高二数学期末考试试卷分析(一)一、总体分析1.难度情况试卷总体难度与思维量适中(理科最高分为136,最低分为10,平均分为58.5;文科最高分为100,最低分为5,平均分为38.6分),其中基础题有:1、2、3、4、6、8、13、17;中档题有:5、7、9、14、18、19、20;中难题有:10、11、15、21;难题有:12、16、22。
2.试题分布情况《解三角形》5、17题;分值比10%。
《数列》8、11、14、18;分值比16%《不等式》1、7、12、21;分值比14%《简单逻辑用语》2、11、16、21;分值比12.7%《圆锥曲线》3、4、6、10、13、15、19、22;分值比36%《空间向量与立体几何》 9、20;分值比11.3%总的来说测试卷中必修五内容的比例约为40%,选修内容试题比例约为60%。
二、部分题目具体分析1、第5题:该题的重要是学生解题时对三角函数诱导公式的运用不够灵活,主要的错误在于不懂计算正弦7502、第11题:主要是对等比数列的性质理解不够。
3、第12题::该题是选择题中得分率最低的题目,主要问题有两个方面:其一是对基本不等式公式的概念和内涵的理解不到位,不能灵活应用;其二是对函数知识的遗忘。
4、第13题:解题时审题不够认真,把双曲线的两顶点的距离看做是焦距。
5、第16题:主要是对概念的掌握不好,漏了对等比数列的每一项都不为0的考虑。
6、第17题:(1)空间概念理解能力差;(2) 正弦定理记忆错误;(3)学生在计算BC长度出现较大的错误;(4)解应用题,忽略结论(没有答);7、第19题:该题典型错误有:(1)把倾斜角当做是斜率;8、第20题典型错误有:(1)对用直线方向向量来求异面直线所成的角掌握不好;(2)不懂求平面的法向量方法;(3)表达混乱、思路不清;9、第21题的典型错误:(1)讨论根式时漏了可以等于0的条件。
(2)不等式组不会求解;(3)表达不规范,充分非必要条件理解不够透彻。
高二期末数学质量分析报告
高二期末数学质量分析报告㈡试卷特点1. 注重基础知识,主干知识的考查试题考查了直线、平面、简单几何体;排列、组合和二项式定理;概率这三章内容。
重点考查线线,线面,面面平行与垂直关系;角与距离问题;排列、组合等记数原理的应用;互斥事件概率,独立事件概率的应用。
覆盖了高二数学下册各个知识点,并对重点知识重点考查。
⒉注重数学思想方法及数学能力的考查本试题通过第5,7,8,9,11,12,14,15,17,19,20,21,22题全面考查了转化思想,分类讨论思想,方程思想及函数思想。
通过第4,5,6,7,8,11,12,14,15,16,17,18,19,20,21,22题全面考查了空间想象能力,逻辑推理能力,运算能力及分析处理问题的能力。
⒊注重数学综合应用,综合探究意识的考查试题注重在知识交汇点考查学生,体现课改的时代精神,如第5题的立体与的排列、组合综合;第6,15题的正三棱锥与正方体的结合;第21题的数列与概率的综合都很好地考查了学生的综合解题能力。
同时,考查了学生的综合探究能力,如第20,22题的第二小问的考查都很好地考查了学生的独创意识。
三、成绩统计本套试卷平均分69.73分,最高分120分,最低分4分,优秀率23.73,及格率59.43,低分率8.96,体现了很好地区分度。
试题难度适中,完成了预想目标。
达到了考查学生,评价教育教学效果的目的。
四、试卷信息反馈⒈基础知识掌握有待深入试卷测试显示出学生对概念内涵理解不深刻,对性质、定理的外延掌握的不明确;如第四题,异面直线公垂线、线面垂直的概念理解不到位,三垂线定理的条件理解不到位。
第八题的球面距离概念的理解,第10题的排列,组合的理解;第16题的线线,线面,面面的距离的理解肤浅,片面;第19题的概率的本质的理解不深入。
⒉学生的数学思维品质有待优化学生在解答过程中题意理解不清晰、不全面,如第17题的常数项,有理项的理解与题意不符;第21题的条件的分析混乱;第18题的公式证明没有明确深入的思维方向。
高二期末考试数学试卷分析
高二期末考试数学试卷分析高二数学阅卷组第1-14题(选择、填空题):1、选择、填空题总体情况比较正常,基础题和常规题正确率较高。
其中出错较多的是第6、8、9、13、14题。
错误原因是:①对逻辑符号的记忆不准,“∀”符号写错的情况比较严重;②填空题答案没有化到最简形式,例如:第13题有不少同学写成“ln12-”。
2、命题思路、背景、考查内容:该试卷中选择、填空题总体反映尚好,基本覆盖并考查了课本中的相关基本知识点、基本数学思想,能较好地反映学生对课本知识的掌握程度,以及基础知识应用的掌握情况。
3、教学建议:①加强数学答题的规范化训练;②强调结果的最简化。
第15题:1、学生正确解答归纳:本题为古典概率题,解法解法较单一,就是寻找基本事件的总数和某事件发生的次数。
2、学生错误解答归纳:①本题的第(2)小题,错误严重。
错误之一:用几何概型;错误之二:落在圆内的整点数不对,不少同学将圆周上的两点算入其中。
②少数同学第(1)小题做不对,即最简单的古典概型未掌握。
3、学生错误解答分析:错用几何概型(用面积比)解答第(2)小题,说明对几何概型理解不透彻,误以为只要画图了就是几何概型,而不理解总的基本事件是可数的有限个等可能事件为古典概型。
将圆周上的整点算入,是对“圆上”、“圆内”理解不准确及审题不够仔细有关。
4、命题思路、背景、考查内容:本题命题较好,命题者对学生可能出现的错误看得透彻,题目虽是很常见的方法最基础的概率题目,却考查了学生对两种概型的理解和掌握程度。
5、教学建议:对新教材中新增加的内容如何讲得到位,如何有效防止学生出现各种问题,需要教师多研究、多探索。
从本题看出新学了几何概型后对古典概型掌握、正确运用负面影响很大,应引起教师们足够的重视。
第16题:1、学生正确解答归纳:都是常规解法。
2、学生错误解答分析:第(1)题解答错误有以下几点:① 未找到求k 的方法;② 找不到a 、b,特别是把椭圆和双曲线中的a 、b 不分;③ 实轴和实半轴概念不清;④ 不作图,对探索解题思路带来障碍。
高二数学期末考试试卷分析
高二数学期末考试试卷分析高二数学期末考试试卷分析本次期末考试数学试卷从总体上考查了高二数学学科的核心知识点,涉及的主要内容包括函数、数列、三角函数、平面向量、不等式等。
试卷结构基本符合高二学生的实际水平,题目难度适中,有一定的区分度,为不同层次的学生提供了公平的考试机会。
在试卷结构方面,试卷分为填空题和解答题两个部分,其中填空题占40分,解答题占60分。
整张试卷的分布符合数学学科的特点,注重考查学生对基础知识的掌握和基本技能的运用。
同时,试卷还注重对数学思维能力和数学应用能力的考查,如解答题中的函数题和数列题,需要学生具备一定的分析问题和解决问题的能力。
在试题内容方面,试卷涉及的知识点较为全面,主要考查了高二数学学科的核心内容。
函数部分考查了函数的定义域、奇偶性、单调性、导数等知识点;数列部分考查了等差数列、等比数列的定义、通项公式、求和公式等知识点;三角函数部分考查了正弦定理、余弦定理的应用;平面向量部分考查了向量的基本运算和坐标表示;不等式部分考查了基本不等式的运用。
在试题难度方面,试卷整体难度适中,不同题型的难度分布较为合理。
其中,填空题的前几道题目较为简单,适合基础较弱的学生完成;解答题的题目难度逐渐递增,最后一题需要学生具备一定的数学思维能力和解题技巧。
在考试中发现的一些问题及建议:1、部分学生在解答题中的题目出现了一些低级错误,如计算错误、公式运用不当等。
建议学生在平时的学习中加强基础知识的掌握,提高解题的准确率。
2、部分学生在解决实际问题时,分析问题的能力还有待提高。
建议教师在平时的教学中多注重培养学生的数学思维能力和应用能力,加强与实际生活的联系。
3、部分学生在不等式部分的解题技巧还有待提高。
建议学生在平时的学习中加强对不等式知识点的掌握,多练习相关的题目,提高解题能力。
总之,本次高二数学期末考试试卷总体上符合学科特点和学生实际水平,考查了高二数学学科的核心知识点和基本技能,同时也注重对数学思维能力和应用能力的考查。
江苏省宿迁市2023-2024学年高二下学期6月期末考试数学试题(解析版)
高二年级调研测试数学本试卷共4页,19小题,满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.将条形码横贴在答题卡上“条形码粘贴处”.2.回答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上.如需改动,先划掉原来的答案,然后再写上新答案.不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算012456C C C ++=( )A. 20B. 21C. 35D. 36【答案】B 【解析】【分析】利用组合数计算公式计算可得结果.【详解】由组合数计算公式可得01245665C C C 152112×++=++=×. 故选:B2. 已知样本数据121x +,221x +,…,21n x +的平均数为5,则131x +,231x +,…,31n x +的平均数为( ) A. 6 B. 7C. 15D. 16【答案】B 【解析】【分析】根据平均数的性质即可得12,,,n x x x …的平均数为2,则可得到新的一组数据的平均数. 【详解】由题意,样本数据121x +,221x +,…,21n x +的平均数为5,设12,,,n x x x …的平均数为x , 即215+=x ,解得2x =,根据平均数性质知131x +,231x +,…,31n x +的平均数为317x +=. 故选:B3. 下表是大合唱比赛24个班级的得分情况,则80百分位数是( ) 得分 7 8 9 10 11 13 14 频数 4246242A. 13.5B. 10.5C. 12D. 13【答案】D 【解析】【分析】根据百分位数的定义求解即可.【详解】因为00248019.2×=,24个班级的得分按照从小到大排序, 可得80百分位数是第20个数为13. 故选:D4. 已知a ,b 为两条不同直线,α,β,γ为三个不同平面,则下列说法正确的是( ) A. 若a b ∥,b α⊂,则//a α B. 若//a α,b α⊂,则//a b C. //αγ,//βγ,则//αβ D. 若αγ⊥,βγ⊥,则//αβ【答案】C 【解析】【分析】由线线、线面、面面的位置关系即可求得本题. 【详解】若//a b ,b α⊂,则//a α或a α⊂,则A 错; 若//a α,b α⊂,则//a b 或a 与b 异面,则B 错;//αγ,//βγ,由平行的传递性可知,//αβ,则C 对;若αγ⊥,βγ⊥,则//αβ或相交.,D 错, 故选:C.5. 已知,,A B C 三点不共线,O 为平面ABC 外一点,下列条件中能确定,,,M A B C 四点共面的是( )的.A. OM OA OB OC =++B. 3OM OA OB BC =−−C. 1123OM OA OB OC =++D. 32OM OA OB BC =−−【答案】D 【解析】【分析】根据空间向量基本定理对选项逐个进行验证即可得出结论.【详解】由空间向量基本定理可知,若,,,M A B C 四点共面,则需满足存在实数,,x y z 使得OM xOA yOB zOC =++,且1x y z ++=, 显然选项A ,C 不成立;对于选项B ,由3OM OA OB BC =−−可得()33OM OA OB OC OB OA OC =−−−=− ,不合题意,即B 错误;对于D ,化简32OM OA OB BC =−−可得()323OM OA OB OC OB OA OB OC =−−−=−− ,满足()()3111+−+−=,可得D 正确; 故选:D6. 已知随机事件A ,B ,3()10P A =,1()2P B =,1(|)3P B A =,则(|)P A B =( ) A.15B.16 C.320D.110【答案】A 【解析】【分析】根据题意,由乘法公式代入计算可得()P AB ,再由条件概率公式,代入计算,即可得到结果. 【详解】因为3()10P A =,1()2P B =,1(|)3P B A =, 则()()131(|)31010P B A P A P AB ×=×==, 则()()1110(|)152P AB P A BP B ===. 故选:A7. 已知9290129(21)x a a x a x a x +=+++⋅⋅⋅+,则682424682222a a a a +++的值为( )A. 255B. 256C. 511D. 512【答案】A 【解析】【分析】利用二项式定理写出展开式的通项,令0x =求出0=1a ,分别令12x =、12x =−,再两式相加可得8202825622a a a +++=,再减去0a 即可. 【详解】令0x =,得0=1a , 令12x =,得93891202389251222222a a a a a a ++++++== , 令12x =−,得38912023********a a a a a a −+−++−= , 两式相加得82028251222a a a+++=, 得8202825622a a a +++= , 则682424682552222a a a a +++=. 故选:A.8. 某工厂有甲、乙、丙3个车间生产同一种产品,其中甲车间的产量占总产量的20%,乙车间占35%,丙车间占45%.已知这3个车间的次品率依次为5%,4%,2%,若从该厂生产的这种产品中取出1件为次 ) A.331000B.1033C.1433D.311【答案】C 【解析】【分析】根据题意,由全概率公式可得抽取到次品的概率,再由条件概率公式代入计算,即可求解. 【详解】记事件A 表示甲车间生产的产品, 记事件B 表示乙车间生产的产品, 记事件C 表示丙车间生产的产品, 记事件D 表示抽取到次品,则()()()0.2,0.35,0.45P A P B P C ===, ()()()0.05,0.04,0.02P D A P D B P D C ===,取到次品的概率为()()()()()()()P D P A P D A P B P D B P C P D C =++0.20.050.350.040.450.020.033=×+×+×=,若取到的是次品,此次品由乙车间生产的概率为:()()()()()()0.350.040.014140.0330.03333P B P D B P BD P B D P D P D ×=====.故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列选项中叙述正确有( )A. 在施肥量不过量的情况下,施肥量与粮食产量之间具有正相关关系B. 在公式1xy=中,变量y 与x 之间不具有相关关系C. 相关系数10.6r =时变量间的相关程度弱于20.8r =−时变量间的相关程度D. 某小区所有家庭年收入x (万元)与年支出y (万元)具有相关关系,其线性回归方程为ˆˆ0.8ybx =+.若20x =,16y =,则ˆ0.76b =. 【答案】ACD 【解析】【分析】AB 的正误,根据相关系数的性质可判断C 的正误,根据回归方程的性质可判断D 的正误.【详解】对于A ,在施肥量不过量的情况下,施肥量越大,粮食产量越高, 故两者之间具有正相关关系,故A 正确.对于B ,变量y 与x 之间函数关系,不是相关关系,故B 错误. 对于C ,因为210.80.6r r =>=,故相关系数10.6r =时变量间的相关程度弱于20.8r =−时变量间的相关程度,故C 正确.对于D ,因为回归直线过(),x y ,故ˆ16200.8b=×+,故ˆ0.76b =,故D 正确. 故选:ACD.10. 已知点(2,3,3)A −−,(2,5,1)B ,(1,4,0)C ,平面α经过线段AB 的中点D ,且与直线AB 垂直,下列选项中叙述正确的有( ) A. 线段AB 的长为36的是B. 点(1,2,1)P −在平面α内C. 线段AB 的中点D 的坐标为(0,4,1)−D. 直线CD 与平面α【答案】BCD 【解析】【分析】由空间两点间的距离公式即可得到线段AB 的长,判断A ;由AB ⊥平面α,垂足为点D ,PD AB ⊥,即可判断B ;由中点坐标公式可得点D 的坐标,判断C ;设直线CD 与平面α所成的角为β,sin cos ,AB CD AB CD AB CDβ⋅==,通过坐标运算可得,判断D.【详解】因为点(2,3,3)A −−,(2,5,1)B , 所以6AB =,故A 错误;设D 点的坐标为(),,x y z ,因为D 为线段AB 的中点,所以2235310,4,1222x y z −++−+======−, 则D 的坐标为(0,4,1)−,故C 正确;因为点(1,2,1)P −,则()1,2,0PD =− ,又()4,2,4AB =,则()()1,2,04,2,40PD AB ⋅=−⋅=,所以PD AB ⊥,即PD AB ⊥, 又AB ⊥平面α,垂足为点D ,即D ∈平面α,所以PD ⊂平面α,故B 正确;由(1,4,0)C ,(0,4,1)D −,得()1,0,1CD =−−,设直线CD 与平面α所成的角为β,则sin cos ,ABβ= ,故D 正确.故选:BCD.11. 甲袋中有2个红球、3个黄球,乙袋中有3个红球、2个黄球,同时从甲、乙两袋中取出2个球交换,分别记交换后甲、乙两个袋子中红球个数的数学期望为()E X 、()E Y ,方差为()D X 、()D Y ,则下列结论正确的是( )A. ()()5E X E Y +=B. ()()E X E Y <C. ()()D X D Y <D. ()()D X D Y =【答案】ABD 【解析】【分析】依题意可知不管如何交换红球个数始终只有5个,易知5X Y +=,利用期望值和方差性质可得A ,D 正确,C 错误;易知随机变量X 的所有可能取值为0,1,2,3,4,写出对应的概率并得出分布列,可得() 2.4E X =,()()5 2.6E Y E X =−=,可得B 正确.【详解】根据题意,记甲、乙两个袋子中红球个数分别为,X Y , 不管如何交换红球个数始终只有5个,易知5X Y +=,对于A ,由期望值性质可得()()()55E X E Y E Y =−=−,即()()5E X E Y +=,所以A 正确; 对于B ,易知随机变量X 的所有可能取值为0,1,2,3,4; 当从甲袋中取出2个红球,乙袋中取出2个黄球后交换,可得()()22222255C C 105C C 100P X P Y ====×=, 当从甲袋中取出1个红球,1个黄球,乙袋中取出2个黄球后交换,或者从甲袋中2个红球,乙袋中取出1个红球,1个黄球后交换,可得()()1111223232222555C C C C C 12314C C C 10025P X P Y ====+×==;当从甲袋中取出1个红球,1个黄球,乙袋中取出1个红球,1个黄球;或者从甲袋中取出2个红球,乙袋中取出取出2个红球;或者从甲袋中取出2个黄球,乙袋中取出取出2个黄球后交换,可得()()1111222223233322222222555555C C C C C C C C 422123C C C C C C 10050P X P Y ====×+×+×==; 当从甲袋中取出2个黄球,乙袋中取出1个红球,1个黄球;或者从甲袋中取出1个红球,1个黄球,乙袋中取出取出2个红球后交换,可得()()21111232323322225555C C C C C C 36932C C C C 10025P X P Y ====×+×==;当从甲袋中取出2个黄球,乙袋中取出2个红球后交换,可得()()22332255C C 941C C 100P X P Y ====×=,随机变量X 的分布列为所以期望值()132******** 2.4100255025100E X =×+×+×+×+×=, 可得()()5 2.6E Y E X =−=,即()()E X E Y <,可得B 正确; 对于C ,D ,由方差性质可得()()()()()251D Y D X D X D X =−=−=,即可得()()D X D Y =,所以C 错误,D 正确. 故选:ABD【点睛】关键点点睛:根据题意可得随机变量满足5X Y +=,利用期望值和方差性质可判断出AD 选项,再求出随机变量X 的分布列可得结论.三、填空题:本题共3小题,每小题5分,共15分.12. 已知随机变量X 服从正态分布()295,N σ,若(80)0.3P X <=,则(95110)P X ≤<=______. 【答案】0.2##15【解析】【分析】根据正态分布的对称性结合已知条件求解即可. 【详解】因为随机变量X 服从正态分布()295,N σ,(80)0.3P X <=, 所以(95110)(8095)0.5(80)0.2P X P X P X ≤<=<<=−<=, 故答案为:0.213. 如图,用四种不同颜色给图中的,,,,A B C D E 五个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色.则不同的涂色方法共有______种.【答案】72 【解析】【分析】由图形可知点E 比较特殊,所以按照分类分步计数原理从点E 开始涂色计算可得结果.【详解】根据题意按照,,,,A B C D E 的顺序分5步进行涂色,第一步,点E 的涂色有14C 种,第二步,点A 的颜色与E 不同,其涂色有13C 种, 第三步,点B 的颜色与,A E 都不同,其涂色有12C 种,第四步,对点C 涂色,当,A C 同色时,点C 有1种选择;当,A C 不同色时,点C 有1种选择; 第五步,对点D 涂色,当,A C 同色时,点D 有2种选择;当,A C 不同色时,点D 有1种选择;根据分类分步计数原理可得,不同的涂色方法共有()111432C C C 121172×+×=种. 故答案为:7214. 如图,已知三棱锥−P ABC 的底面是边长为2的等边三角形,60APB ∠=°,D 为AB 中点,PA CD ⊥,则三棱锥−P ABC 的外接球表面积为______.【答案】20π3##20π3【解析】【分析】设PAB 外接圆的圆心为E ,三棱锥−P ABC 的外接球的球心为O ,连接OE , ABC 的外接圆的圆心为G ,连接OG ,OB ,可证四边形OGDE 为矩形,利用解直角三角形可求外接球半径,故可求其表面积.【详解】因为ABC 为等边三角形,D 为AB 中点,故CD AB ⊥, 而PA CD ⊥,PA AB A = ,,PA AB ⊂平面PAB ,所以CD ⊥平面PAB . 设PAB 外接圆的圆心为E ,三棱锥−P ABC 的外接球的球心为O ,连接,OE BE , 设ABC 的外接圆的圆心为G ,连接OG ,OB , 则OE ⊥平面PAB ,OG CD ⊥故//OE CD ,故,,,O G D E 共面,而DE ⊂平面PAB , 故CD DE ⊥,故四边形OGDE 为矩形.又12sinABBEAPB=×∠13OE DG CD===,故外接球半径为OB=,故外接球的表面积为1520π4π93×=,故答案为:20π3四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步聚.15.在()*23,Nnx n n≥∈的展开式中,第2,3,4项的二项式系数依次成等差数列.(1)证明展开式中不存在常数项;(2)求展开式中所有的有理项.【答案】(1)证明见解析;(2)7128x,4672x,280x,214x.【解析】【分析】(1)根据题意可求得7n=,利用二项展开式的通项可得展开式中不存在常数项;(2)由二项展开式的通项令x的指数为整数即可解得合适的k值,求出所有的有理项.【小问1详解】易知第2,3,4项的二项式系数依次为123C,C,Cn n n,可得132C+C2Cn n n=,即()()()121262n n n n nn−−−+=×,整理得()()270n n−−=,解得7n=或2n=(舍);所以二项式为72x,假设第1k+项为常数项,其中Nk∈,即可得()1777277C 22C kk k kkk k x x −−−−=为常数项,所以1702k k −−=, 解得14N 3k =∉,不合题意; 即假设不成立,所以展开式中不存在常数项; 【小问2详解】由(1)可知,二项展开式的通项()1777277C22C kk k kk k k x x−−−−=可得, 其中的有理项需满足17Z 2k k −−∈,即37Z 2k −∈,且7k ≤;当30,77Z 2k k =−=∈,此时有理项为707772C 128x x =; 当32,74Z 2k k =−=∈,此时有理项为524472C 672x x =; 当34,71Z 2k k =−=∈,此时有理项为3472C 280x x =; 当36,72Z 2k k =−=−∈,此时有理项为16272142C x x−=; 综上可知,展开式中所有的有理项为7128x ,4672x ,280x ,214x . 16. 某校天文社团将2名男生和4名女生分成两组,每组3人,分配到A ,B 两个班级招募新社员. (1)求到A 班招募新社员的3名学生中有2名女生的概率;(2)设到A ,B 两班招募新社员的男生人数分别为a ,b ,记X a b =−,求X 的分布列和方差. 【答案】(1)35(2)85【解析】【分析】(1)由古典概型的概率求解122436C C 3C 5P ==; (2)由题意,X 的可能取值为2,0,2−,算出对应概率()2P X =−,()0P X =,()2P X =,即可列出X 的分布列,再求出()E X ,进而由公式求出方差.【小问1详解】到A 班招募新社员的3名学生中有2名女生的概率为122436C C 3C 5P ==. 【小问2详解】由题意,X 的可能取值为2,0,2−,则()032436C C 12C 5P X =−==,()122436C C 30C 5P X ===,()212436C C 12C 5P X ===, 所以X 的分布列为则()1312020555E X =−×+×+×=, 所以()()()()22213182000205555D X =−−×+−×+−×=. 17. 如图,正三棱柱111ABC A B C 中,D 为AB 的中点.(1)求证:1BC ∥平面1ACD ; (2)当1AA AB的值为多少时,1AB ⊥平面1ACD ?请给出证明. 【答案】(1)证明见答案. (2 【解析】【分析】(1)连接1AC ,交1AC 于点O ,连接DO ,能证出1//BC DO ,则能证出1BC ∥平面1ACD.(2)先把1AB ⊥平面1ACD 当做条件,得出11AB A D ⊥,得出1AA AB的值,过程要正面分析. 【小问1详解】连接1AC ,交1AC 于点O ,连接DO , 因为O 是1AC 的中点,D 为AB 的中点, 所以DO 是1ABC 的中位线,即1//BC DO ,1BC ⊄平面1ACD ,DO ⊂平面1ACD , 所以1BC ∥平面1ACD . 【小问2详解】1AA AB =时,1AB ⊥平面1ACD ,证明如下:因为1AA AB =,11tan A AB ∴∠,111tan AA DA B AD ∠= 1111A AB DA B ∴∠=∠,1112DA B AA D π∠+∠= ,1112A AB AA D π∴∠+∠=,即11AB A D ⊥.因为三棱柱111ABC A B C 为正三棱柱,ABC ∴ 为正三角形,且1AA ⊥平面ABC ,1,CD AB CD AA ∴⊥⊥,1AB AA A ∩=,AB ⊂平面11ABB A ,1AA ⊂平面11ABB A ,CD 平面11ABB A ,因为1AB ⊂平面11ABB A ,所以1AB CD ⊥,1A D CD D = ,1,A D CD ⊂平面1ACD , 1AB ∴⊥平面1ACD .1AA AB∴18. 会员足够多的某知名户外健身俱乐部,为研究不高于40岁和高于40岁两类会员对服务质量的满意度.现随机抽取100名会员进行服务满意度调查,结果如下:年龄段满意度合计满意不满意 不高于40岁 50 20 70 高于40岁 25 5 30 合计7525100(1)问:能否认为,会员不高于40岁和高于40岁年龄结构对服务满意度有关;(2)用随机抽取的100名会员中的满意度频率代表俱乐部所有会员的满意度概率.从所有会员中随机抽取3人,记抽取的3人中,对服务满意的人数为X ,求X 的分布列和数学期望.参考公式:22()()()()()n ad bc a b c d a c b d χ−=++++(其中n a b c d =+++).参考数据:()20P x χ≥ 0.150.10 0.05 0.025 0.010 0.005 0.0010x2.072 2.7063.841 5.024 6.635 7.879 10.828【答案】(1)不能认为会员不高于40岁和高于40岁年龄结构对服务满意度有关. (2)分布列见解析;94. 【解析】【分析】(1)首先根据列联表中的数据结合公式计算2χ值,然后对照表格得到结论;(2)由表格可知,对服务满意的人的概率为34,且33,4X B∼,根据二项分布公式即可求解. 【小问1详解】 由列联表可知:2217100(5052520)100.587255 2.072730630χ××−×<××==≈, 所以不能认为会员不高于40岁和高于40岁年龄结构对服务满意度有关. 【小问2详解】由表格可知,对服务满意人的概率为34,且33,4X B∼, 则0,1,2,3X =,可得:()303110C 464P X ===,()2133191C 4464P X === , ()22331272C 4464P X ===,()3333273C 464P X === , 故X 的分布列如图:可得()39344EX =×=. 19. 如图,在三棱台ABC DEF −中,2AB BC AC ===,1AD DF FC ===,N 为DF 的中点,二面角D AC B −−的大小为θ.(1)求证:AC BN ⊥; (2)若π2θ=,求三棱台ABC DEF −的体积; (3)若A 到平面BCFE cos θ的值. 【答案】(1)证明见解析; (2)78(3)3cos 5θ=−的【解析】【分析】(1)利用三棱柱性质,根据线面垂直的判定定理可得AC ⊥平面BMN ,可证明结论; (2)由二面角定义并利用棱台的体积公式代入计算可得结果;(3)建立空间坐标系,求出平面BCFE 的法向量,利用点到平面距离的向量求法即可得出cos θ的值. 【小问1详解】取AC 的中点为M ,连接,NM BM ;如下图所示:易知平面//ABC 平面DEF ,且平面ABC ∩平面DACF AC =,平面DEF ∩平面DACF DF =; 所以//AC DF ,又因为1AD FC ==, 可得四边形DACF 为等腰梯形,且,M N 分别为,AC DF 的中点,所以MN AC ⊥, 因为2AB BC AC ===,所以BM AC ⊥, 易知BM MN M = ,且,BM MN ⊂平面BMN , 所以AC ⊥平面BMN ,又BN ⊂平面BMN ,所以AC BN ⊥; 【小问2详解】由二面角定义可得,二面角D AC B −−的平面角即为BMN ∠, 当π2θ=时,即π2BMN ∠=,因此可得MN ⊥平面ABC ,可知MN 即为三棱台的高,由1,2ADDF FC AC ====可得MN =;易知三棱台的上、下底面面积分别为DEFABC S S =因此三棱台ABC DEF −的体积为1738V =【小问3详解】由(1)知,BM AC ⊥,MN AC ⊥,二面角D AC B −−的平面角即为()0,πBMN θ∠=∈; 以M 为坐标原点,分别以,MA MB 所在直线为,x y 轴,过点M 作垂直于平面ABC 的垂线为z 轴建立如图所示的空间直角坐标系:可得()()()()1,0,0,1,0,0,,,0,0,0A C B N M θθ −,易知11,0,022NF MC==−,可得12F θθ − ;则()1,cos 2CBCF θθ =设平面BCFE 的一个法向量为(),,n x y z =,所以01cos sin 02n CB x n CF x y z θθ ⋅==⋅=++=, 令1y =,则1cos sin x z θθ−=,可得1cos sin n θθ−=; 显然()2,0,0AC =− ,由A 到平面BCFE,可得AC n n ⋅==,可得21cos 4sin θθ− =;整理得25cos 2cos 30θθ−−=,解得3cos 5θ=−或cos 1θ=; 又()0,πθ∈,可得3cos 5θ=−.【点睛】方法点睛:求解点到平面距离常用方法:(1)等体积法:通过转换顶点,利用体积相等可得点到面的距离;(2)向量法:求出平面的法向量,并利用点到平面距离的向量求法公式计算可得结果;。
高二考试数学质量分析报告,1200字
高二考试数学质量分析报告高二考试数学质量分析报告一、引言数学是一门学科,它在培养学生的逻辑思维能力、分析和解决问题的能力方面具有重要作用。
通过对高二数学考试的质量分析,可以了解学生的数学水平,发现问题所在,并为今后的教学提供参考。
二、分析方法本次数学质量分析主要采用以下方法:1. 对试卷的整体情况进行概述;2. 对各个知识点的掌握情况进行分析;3. 对常见错误和易错题进行总结。
三、试卷整体情况本次高二数学考试试卷难度适中,共分为两个部分:选择题和非选择题。
选择题包括单选题和多选题,非选择题包括填空题、解答题和证明题。
试卷难度适中,题量适宜,在一定程度上能够考查学生的基本知识和思维能力。
四、知识点分析1. 几何知识的掌握情况:大部分学生对几何知识有一定了解,能够正确运用几何定理和几何关系解决问题。
但在一些较难的几何题目中,部分学生对几何知识的应用不够熟练,需要进一步加强。
2. 代数与函数的掌握情况:绝大部分学生在代数与函数方面表现良好,能够正确理解代数概念并运用代数方法解决问题。
但少数学生在复杂的多项式运算和方程的解法上存在困难,并且对函数的图像和性质理解不够深入。
3. 统计与概率的掌握情况:统计与概率部分学生表现良好,能够正确运用统计方法和概率理论解决实际问题。
但仍有部分学生在概率计算过程中出现错误,需要进一步加强对概率的理解和应用。
五、常见错误和易错题总结1. 计算错误:一些学生在计算中容易出现粗心错误,例如运算符号、数值计算等方面的错误。
需要学生加强运算能力和注意细节。
2. 知识点理解错误:一些学生对一些基本的数学概念理解不清,例如函数的定义、概率的计算方法等。
教师应通过多样化的教学方法和实例,帮助学生加深对概念的理解。
3. 错误的解题思路:部分学生对于解题过程中的思路不够清晰,容易走弯路或从题目给出的角度出发,而忽略了其他可能的解题方法。
教师应引导学生培养多角度思考的能力,帮助学生选取合适的解题思路。
高二数学试卷分析期末成绩
本次期末考试,高二年级数学试卷共分为两部分,第一部分为基础题,第二部分为提高题。
试卷整体难度适中,旨在考查学生对高中数学知识的掌握程度和应用能力。
二、成绩分析1. 平均分本次期末考试,高二年级数学平均分为85分,较上学期期末考试提高了5分。
说明大部分学生对数学知识的掌握程度有所提高。
2. 优秀率本次期末考试,优秀率为35%,较上学期期末考试提高了5个百分点。
说明学生在数学学习方面取得了一定的进步。
3. 后进生分析本次期末考试,后进生人数占总人数的15%,较上学期期末考试降低了2个百分点。
说明我们针对后进生的辅导措施取得了一定的成效。
4. 各题得分情况(1)基础题部分基础题部分平均分为70分,其中选择题平均分为18分,填空题平均分为15分,解答题平均分为37分。
选择题和填空题得分相对较高,说明学生在基础知识方面掌握较好。
但解答题得分相对较低,说明学生在解题能力和思维方法上还有待提高。
(2)提高题部分提高题部分平均分为55分,其中选择题平均分为15分,填空题平均分为10分,解答题平均分为30分。
提高题得分相对较低,说明学生在综合运用数学知识解决实际问题的能力上还有待提高。
三、问题及改进措施1. 针对基础题得分较高的学生,要加强提高题的训练,提高学生的解题能力和思维方法。
2. 针对提高题得分较低的学生,要加强基础知识的教学,提高学生对数学知识的掌握程度。
3. 针对后进生,要加强个别辅导,关注他们的学习进度,提高他们的学习兴趣和自信心。
4. 加强课堂互动,提高学生的参与度,让学生在课堂上充分展示自己的思维过程。
5. 定期组织模拟考试,让学生熟悉考试题型和节奏,提高应试能力。
四、总结本次期末考试,高二年级数学成绩整体较好,但仍有部分学生存在不足。
我们将针对存在的问题,采取相应的改进措施,努力提高学生的数学成绩。
高中数学试卷分析失分原因和改进措施4篇
高中数学试卷分析失分原因和改进措施4篇高中数学试卷分析失分原因和改进措施1一.失分主要原因剖析考试失误的原因归纳起来,主要有四个方面:(1)对基础知识的记忆不够清晰和准确,不扎实。
(2)基本技能不够熟练解题缺乏思路,基本解题方法掌握和运用不熟练。
做选择题耗时长而准确率低。
做计算题该得的分得不了,造成无谓失分。
(3)解题不规范,推理不严谨,以偏概全,把特例当一般,忽视题中的隐含条件,这必将会增加失误。
(4)考试一味追求速度,审题马虎,书写潦草,看错写错,丢三落四,求胜心切,操之过急。
二.对策(1)“三基”掌握方面①学生掌握知识不是靠老师把知识塞进头脑中,要靠学生积极主动地学,要把知识的来龙去脉搞清楚才能理解透彻.重视反思和回顾,通过练习加深记忆,加强理解,从而达到灵活运用之目的。
②及时复习巩固,注意新旧知识的联系,提炼方法,总结规律,从而提高学习效率。
(2)学习方法方面智力固然是重要的,但在智力一定的条件下不会自己思考是致命的弱点,多数人在自习课上只是忙于做题,丢掉了复习中一个重要的学习环节——对所做题目进行理性思考,自己不能总结解题规律和技巧,不能优化解题方法,不能系统地掌握所学内容。
掌握学习方法要做到以下几点:1勤于动脑,课堂上认真听老师的分析,领悟其中的道理,形成自己的观点。
2自习课上要做到三思:一思知识提取是否熟练。
题目涉及到哪些知识点,涉及到哪些解题规律、技巧,在脑海中做到快速检索,直至能够熟练提取运用自如。
二思典型习题。
从条件变换到多解优解、概括思路、异题迁移等多个方面进行主体化思考,建立解题模型。
三思存在的弱点。
对出现的错题纠错析因,查析知识和技巧漏洞,整理错题档案,经常翻阅,以防再错。
(3)应试心理方面正确对待学习与考试的关系。
我们学习的目的不是为了考试,是为了掌握知识提高能力,考试是检验你学习的知识扎实与否,能力提高了多少,一旦发现错误、缺点,立即找出问题症结,有利于以后的学习。
2023-2024学年甘肃省陇南一中高二(下)期末数学试卷+答案解析
2023-2024学年甘肃省陇南一中高二(下)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,若,则所有a 的取值构成的集合为()A. B.C. D.N2.已知,若为纯虚数,则()A.B.2C.1D.3.已知向量,,且,则() A.2B.C.2或D.2或4.在某地区的高三第一次联考中,数学考试成绩近似服从正态分布,试卷满分150分,统计结果显示数学成绩高于120分的人数占总人数的,数学考试成绩在80分到100分含80分和100分之间的人数为800,则可以估计参加本次联考的总人数约为()A.1600B.1800C.2100D.24005.已知锐角满足,则()A.B. C.2 D.36.蒙古包是蒙古族牧民居住的一种房子,建设和搬迁很方便,适用于牧业生产和游牧生活.小张对蒙古包非常感兴趣,于是做了一个蒙古包的模型,其三视图如图所示,现在他需要买一些油毡纸铺上去底面不铺,若购买油毡纸一平方米需要30元,则买油毡纸至少要花费的费用约为()A.89元B.110元C.126元D.138元7.已知椭圆C 的长轴的顶点分别为A 、B ,点F 为椭圆C 的一个焦点,若,则椭圆C 的离心率为()A. B.C.D.8.已知,设函数若存在,使得,则a 的取值范围是()A. B.C. D.二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得2分,有选错的得0分。
9.在的展开式中,下列命题正确的是()A.偶数项的二项式系数之和为32B.第3项的二项式系数最大C.常数项为60D.有理项的个数为310.已知等差数列的公差,其前n项和为,则下列说法正确的是()A.是等差数列B.若,则有最大值C.,,成等差数列D.若,,则11.已知函数的定义域为R,,,则()A. B.函数是奇函数C. D.的一个周期为3三、填空题:本题共3小题,每小题5分,共15分。
湖北省武汉市江岸区2024年高二下学期7月期末质检数学试题(解析版)
2023~2024学年度第二学期期末质量检测高二数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合03xA xx =< − ,集合(){}3log11B x x =−<,则A B ∪=( )A. {}03x x << B. {}13x x <<C. {}04x x <<D. {}14x x <<【答案】C 【解析】【分析】由分式不等式的求解方法求集合A ,再由对数函数的性质解不等式求得集合B ,结合并集的概念即可得答案.【详解】因为(){}{}3003A x x x x x =−<=<<,(){}{}{}3log1101314B x x x x x x =−<=<−<=<<, 因此,{}04A Bx x ∪=<<.故选:C.2. 设0,0a b >>,则“()lg 0a b +>”是“()lg 0ab >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】B 【解析】【分析】将对数不等式进行等价变换,结合0a >,0b >,可判断a b +,ab 的取值范围,从而判断()lg a b +与()lg ab 的关系.【详解】因为lg (aa +bb )>0⇔lg (aa +bb )>lg1⇔aa +bb >1,又0,0a b >>, 所以aa +bb ≥2√aabb >1,当且仅当a b =时取等号,即14ab >, 又lg (aabb )>0⇔lg (aabb )>lg1⇔aabb >1, 所以14ab >不能推出1ab >,所以()lg 0a b +>是()lg 0ab >的不充分条件;又aabb >1⇒aabb >14,所以()lg 0a b +>是()lg 0ab >的必要条件, 所以()lg 0a b +>是()lg 0ab >的必要不充分条件. 故选:B.3. 若随机变量(),0.4X B n ,且() 1.2D X =,则()4P X =的值为( )A. 420.4×B. 430.4×C. 420.6×D. 430.6×【答案】B 【解析】【分析】根据二项分布求方差公式得到方程,求出5n =,从而得到()4P X =.【详解】由题意得()0.410.4 1.2n ×−=,解得5n =, ()()44454C 0.410.430.4P X ==⨯-=⨯.故选:B4. 某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( ) 表1表2视力 性别 好 差 总计男 4 16 20 女 12 20 32 总计163652表3智商 性别 偏高 正常 总计男 8 12 20 女 8 24 32 总计 163652表4阅读量 性别 丰富 不丰富 总计男 14 6 20 女 2 30 32 总计 163652A. 成绩B. 视力C. 智商D. 阅读量【答案】D 【解析】【分析】根据公式()()()()()22n ad bc K a b c d a c b d −=++++分别计算得观察值,比较大小即可得结果.【详解】根据公式()()()()()22n ad bc K a b c d a c b d −=++++分别计算得: A.2252(6221014):0.00916363220A K×−×≈×××;2252(4201216): 1.76916363220B K×−×≈×××;2252(824812): 1.316363220C K×−×≈×××;2252(143062):23.4816363220D K×−×≈×××选项D 的值最大,所以与性别有关联的可能性最大,故选D.【点睛】本题主要考查独立性检验的应用,意在考查灵活应用所学知识解决实际问题的能力,属于中档题. 5. 已知0,0x y >>,且满足341x y+=,则( ) A. xy 的最小值为48 B. xy 的最小值为148 C. xy 最大值为48 D. xy 的最大值为148【答案】A 【解析】【分析】对给定式子合理变形,再利用基本不等式求解即可.【详解】由题意得234()xy xy x y =+,所以2291624()xy xy x y xy=++,所以9162424y x xy x y =++≥=48, 当且仅当916yxx y=时取等,此时6,8x y ==,故A 正确. 故选:A6. 定义“等方差数列”:如果一个数列从第二项起,每一项的平方与它的前一项的平方的差都等于同一个常数,那么这个数列就叫做等方差数列,这个常数叫做该数列的方公差.设数列{}n a 是由正数组成的等方差数列,且方公差为2,135a =,则数列11nn a a ++ 的前n 项和n S =( )A.B.C.1D.1−【答案】A 【解析】【分析】借助所给新定义与等差数列定义可得数列{}n a 通项公式,再利用裂项相消法计算即可得解.【详解】由题意可得2212n n a a +−=,则数列{}2n a 是以21a 为首项,2为公差的等差数列, 则()22121n a a n =+−,由135a =,故()22131213125a a =+−=,即11a =(负值舍去), 故()212121n a n n =+−=−,故na =的的则11n n a a +=+12,故12nS =+++ 故选:A.7. 某医院要派2名男医生和4名女医生去A ,B ,C 三个地方义诊,每位医生都必须选择1个地方义诊.要求A ,B ,C 每个地方至少有一名医生,且都要有女医生,同时男医生甲不去A 地,则不同的安排方案为( ) A. 120种 B. 144种 C. 168种 D. 216种【答案】D 【解析】【分析】先求出2名男医生到3地的可能结果,再安排4名女医生,结合分步乘法计数原理计算即可求解. 【详解】设2名男医生分别为甲、乙, 若乙去A ,则甲可能去B 或C ,有2种结果; 若乙去B ,则甲可能去B 或C ,有2种结果; 若乙去C ,则甲可能去B 或C ,有2种结果, 共有6种结果;将4名女医生分配到A ,B ,C 三个地方,分为211三组,可能的结果有21342322C C A 36A =种, 所以满足题意的有636216×=种结果. 故选:D8. 已知定义在R 上的函数()()2e x axf x x a −+=∈R ,设()f x 的极大值和极小值分别为,m n ,则mn 的取值范围是( ) A. e ,2−∞−B.1,2e −∞−C. e ,02−D. 1,02e−【答案】B 【解析】【分析】求出函数的导数,利用导数求出,m n ,结合韦达定理用a 表示mn ,再求出指数函数的值域得解. 【详解】()()()22222e e 21e −+−+−+′′=+−++=−+xaxx ax x ax f x x ax x x ax ,令()221g x x ax =−++,显然函数()g x 的图象开口向下,且()01g =, 则函数()g x 有两个异号零点12,x x ,不妨设120x x <<,有12121,22+==−ax x x x , 而2e 0xax−+>恒成立,则当1x x <或2x x >时,()0f x ′<,当12x x x <<时,()0f x '>,因此函数()f x 在()1,x −∞,()2,x +∞上单调递减,在()12,x x 上单调递增, 又当0x <时,()0f x <恒成立,当0x >时,()0f x >恒成立,且()00f =, 于是()f x 的最大值()22222e −+==x ax m f x x ,最小值()21111e −+=x ax nf x x ,于是()()()222221212121121241212e12e e −−+++−++++===−a x x ax ax x x a x x x x mn x x x x ,由a ∈R ,得[)211,4a−∈−+∞,2141e ,e −∈+∞a ,则2141e,212e −∈−∞−− a ,所以mn 的取值范围是1,2e−∞−. 故选:B.【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知变量x 和变量y 的一组成对样本数据(),i i x y (1,2,,i n =⋅⋅⋅)的散点落在一条直线附近,11ni i x x n ==∑,11ni i y y n ==∑,相关系数为r ,线性回归方程为ˆˆˆybx a =+,则( )参考公式:r =()()()121ˆniii nii x x y y bx x ==−−=−∑∑.A. 当r 越大时,成对样本数据的线性相关程度越强B. 当0r >时,ˆ0b> C. 当1n x x +=,1n y y +=时,成对样本数据(),i i x y (1,2,,,1i n n =⋅⋅⋅+)的相关系数r ′满足r r ′= D. 当1n x x +=,1n y y +=时,成对样本数据(),i i x y (1,2,,,1i n n =⋅⋅⋅+)的线性回归方程ˆˆˆydx c =+满足ˆˆdb = 【答案】BCD 【解析】【分析】根据线性相关、相关系数、线性回归方程等知识,对选项逐一分析,即可得到答案. 【详解】对于A ,当r 越接近1时,成对样本数据的线性相关程度越强,故A 错误;对于B ,当0r >时,成对样本数据正相关,相关系数r 与符号ˆb相同,则ˆ0b >,故B 正确; 对于C ,当1n x x +=,1n y y +=时,将这组数据添加后,,x y 不变,故相关系数r 的表达式中的分子和分母均不变,故C 正确;对于D ,当1n x x +=,1n y y +=时,将这组数据添加后,,x y 不变,故线性回归方程中的斜率的表达式中的分子和分母均不变,所以ˆˆdb =,故D 正确; 综上所述,正确的有B 、C 、D. 故选:BCD.10. 已知(),,a b c a b c <<∈R ,且230a b c ++=,则( ) A. 0<<a c B. ,a c ∃使得22250a c −= C. a c +可能大于0 D.212b c a c +<−+ 【答案】AD 【解析】【分析】对于A ,据已知条件变形即可证明;对于B ,根据已知得50a c +>,得05ac >−>,即可证明;对于C ,据已知条件变形即可证明;对于D ,将条件变形为()2a c b c +=−+,再利用0ca c<+即可证明结论.【详解】对于A ,由a b c <<及230a b c ++=, 得623230a a a a a b c =++<++=,所以a<0, 又023236a b c c c c c =++<++=,所以0c >,A 正确;对于B ,由a b c <<及230a b c ++=,得230a c c ++>,所以50a c +>,得05ac >−>, 所以2225a c >,得22250a c −<,B 错误; 对于C ,由abc <<及230a b c ++=,得33230a c a b c +<++=,所以0a c +<, C 错误.对于D ,由230a b c ++=,得()2a c b c +=−+,所以212b c b c c b c c ca c a c a c a c a c++++==+=−++++++. 因0a c +<,0c >,所以0ca c <+,所以212b c a c +<−+,D 正确. 故选:AD.11. 冒泡排序是一种计算机科学领域的较简单的排序算法,其基本思想是:通过对待排序序列{}12,,,n x x x …从左往右,依次对相邻两个元素{}()1,1,2,,1k k x x k n +=…−比较大小,若1k k x x +>,则交换两个数的位置,使值较大的元素逐渐从左移向右,就如水底下的气泡一样逐渐向上冒,重复以上过程直到序列中所有数都是按照从小到大排列为止.例如:对于序列{}2,1,4,3进行冒泡排序,首先比较{}2,1,需要交换1次位置,得到新序列{}1,2,4,3,然后比较{}2,4,无需交换位置,最后比较{}4,3,又需要交换1次位置,得到新序列{}1,2,3,4最终完成了冒泡排序,同样地,序列{}1,4,2,3需要依次交换{}{}4,2,4,3完成冒泡排序.因此,{}2,1,4,3和{}1,4,2,3均是交换2次的序列.现在对任一个包含n 个不等实数的序列进行冒泡排序()3n ≥,设在冒泡排序中序列需要交换的最大次数为n a ,只需要交换1次的序列个数为n b ,只需要交换2次的序列个数为n c ,则( ) A. 序列{}2,7,1,8是需要交换3次的序列B. ()12n n n a −=为C. 1n b n =−D. 59c =【答案】BCD 【解析】【分析】根据题意,不妨设序列的n 个元素为1,2,3,n ,由题意可判断A 中序列交换次数;再根据等差数列前项和公式即可判断B ;得出只要交换1次的序列的特征即可判断C ;利用累加法求出通项公式即可判断D.【详解】对A ,序列{}2,7,1,8,比较{}2,7,无需交换位置,比较{}7,1,需要交换1次位置,得到新序列{}2,1,7,8,比较{}7,8,无需交换位置,最后比较{}2,1,需要交换1次位置,得到新序列{}1,2,7,8,完成冒泡排序,共需要交换2次,故A 错误;对B ,不妨设序列的n 个元素为1,2,3,n ,交换次数最多的序列为{},1,2,1n n − , 将元素n 冒泡到最右侧,需交换次1n −次, 将元素n -1冒泡到最右侧,需交换次2n −次,,故共需要()()()()()1111122122n n n n n n −+−−−+−+++==,即最大交换次数()12n n n a −=,故正确;对C ,只要交换1次的序列是将{}1,2,3,n 中的任意相邻两个数字调换位置的序列,故有1n −个这样的序列,即1n b n =−,故C 正确;对D ,当n 个元素的序列顺序确定后,将元素n +1添加进原序列, 使得新序列(共n +1个元素)交换次数也是2, 则元素n +1在新序列的位置只能是最后三个位置, 若元素n +1在新序列的最后一个位置,则不会增加交换次数,故原序列交换次数为2(这样的序列有n c 个), 若元素n +1在新序列的倒数第二个位置,则会增加1次交换, 故原序列交换次数为1(这样的序列有个1n b n =−), 若元素n +1在新序列的倒数第三个位置,则会增加2次交换,故原序列交换次数为0(这样的序列有1个),因此,111n n n c c n c n ++−++,所以5432479c c c c =+=+=+,显然20c =, 所以59c =,故D 正确. 故选:BCD.【点睛】关键点点睛:在解与数列新定义相关的题目时,理解新定义是解决本题的关键.三、填空题:本题共3小题,每小题5分,共15分.12. 若函数()()ln ,ex xf x f x =′为()f x 的导函数,则()1f ′的值为______. 【答案】1e##1e − 【解析】【分析】首先求导函数,然后结合导函数的运算法则整理计算即可求得最终结果.【详解】因为()211e ln ln e e x x x x x x x f x −−==′, 所以()11ln1111e ef− ′ ==.故答案为:1e. 13. ()62x x y −+的展开式中53x y 的系数为______.(用数字作答) 【答案】60− 【解析】【分析】根据二项式展开式有关知识求得正确答案.【详解】因为()25323··x y x x y =,而()62x x y −+表示6个因式相乘, 在6个因式中,有2个选2x ,1个x −,3个选y所以()62x x y −+的展开式中含有53x y 项为()()222133643C ?C ?C x x y −, 所以()62x x y −+中含有53x y 项的系数为()213643C ?C ?1?C 60−=−. 故答案为:60−.14. 设,A B 是一个随机试验中的两个事件,且117(),(),()3412P A P B P AB AB ==+=,则()P A B =∣______. 【答案】13【解析】【分析】根据对立事件的概率与互斥事件的概率计算公式求解即可.【详解】因为11(),()34P A P B ==,故()()23,34P A P B ==,因为,AB AB 互斥,所以()0P ABAB =, 所以()()()B P P A AB AB B P A ++=()()()()P B P AB P A P AB =−+−()21234P AB =+− ()11721212P AB =−=, 解得()16P AB =,所以()()()()()()11146|134P AB P B P AB P AB P B P B −−====. 故答案为:13.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15. 已知集合402x M x x−=≥ −,非空集合{123}N x m x m =−<<−∣,(1)若3m =时,求M N ∩;(2)是否存在实数m ,使得R x M ∈ 是R x N ∈ 必要不充分条件?若存在,求实数m 的取值范围;若不恶在,请说朋理由.【答案】(1){23}∣∩=<<M N xx (2)存在,72m >的【解析】【分析】(1)由分式不等式化简{24}M xx =<≤∣,即可由交集的定义求解, (2)将问题转化为M ⫋N ,即可列不等式求解. 【小问1详解】 集合40{24}2x M xx x x−=≥=<≤ −∣当3m =时,非空集合{23}N x x −<<∣ {23}M N x x ∴∩=<<∣【小问2详解】假设存在实数m ,使得R x M ∈ 是R x N ∈ 的必要不充分条件,则R N ⫋R M ,即M ⫋N ,则�2mm −3>41−mm ≤2,解得72m >.故存在实数72m >,使得R x M ∈ 是R x N ∈ 的必要不充分条件. 16. 树人中学对某次高三学生的期末考试成绩进行统计,从全体考生中随机抽取48名学生的数学成绩()x 和物理成绩()y ,得到一些统计数据:484811115280,,6i i i i x y ===∑∑,其中,i i x y 分别表示这48名同学的数学成绩和物理成绩,1,2,,48,i y = 与x 的相关系数0.77r =. (1)求y 关于x 的线性回归方程;(2)从概率统计规律看,本次考试该校高三学生的物理成绩ξ服从正态分布()2,N µσ,用样本平均数y作为µ的估计值,用样本方差2s 作为2σ的估计值.试求该校高三共1000名考生中,物理成绩位于区间()63.05,95.9的人数Z 的数学期望.附:①回归方程ˆˆˆy abx =+中:()()()121ˆˆˆ,niii ni i x x y y b ay bx x x ==−−==−−∑∑②相关系数r =③若()2,N ηµσ,则()()0.68,220.95P P µσηµσµσηµσ−≤≤+≈−≤≤+≈④48221110.9548i i y y =−=≈∑ 【答案】(1)0.4227.8ˆyx +(2)815 【解析】【分析】(1)根据题意,利用公式,求得ˆ0.42b=,得到ˆ27.8a =,即可得到回归方程; (2)根据题意,得到()74,120N η∼,求得(63.0595.9)0.815P η<<=,结合正态分布()74,120Z N ∼,得到()815E Z =,即可求解.【小问1详解】解:由题中数据可得,48481111110,744848i i i i x x y y =====∑∑,由480.77x x y y r−−,可得60.770.411ˆ2b =×=, 可得8ˆ741100.4227.a=−×=,所以回归方程为0.4227.8ˆy x +.【小问2详解】解:由()48482222111174,1204848i i i i y s y y y y ====−=−=∑∑,所以()74,120N η∼, 10.95≈,所以(63.0584.95)0.68,(52.195.9)0.95P P ηη<<=<<=, 所以0.680.95(63.0595.9)0.8152P η+<<==, 因为()1000,0.815ZB ∼,所以()10000.815815E Z =×=, 所以物理成绩位于区间()63.05,95.95的人数Z 的数学期望为815.17. 已知等差数列{}n a 的前n 项利为25,6,45n S a S ==,数列{}n b 的前n 项和为()1312nnT =−. (1)求数列{}n a 和{}n b 的通项公式;(2)设数列{}n c 满足20,21,N ,2,N n n n k k c b n k k ∗∗ =−∈ = =∈ ,求()*1222121n n n a c a c a c n −+++∈N . 【答案】(1)3n a n =,13n n b −=(2)1333n n +−− 【解析】【分析】(1)设出公差,由等差数列通项公式和求和公式基本量计算得到方程,求出首项和公差,得到通项公式,再利用11,1,2n nn S n b S S n −= = −≥ 求出{}n b 的通项公式;(2)变形得到()11222121333213nn n n n a c a c a c n −−+++=+⋅++− ,错位相减法求和,【小问1详解】设{}n a 的公差为d ,由题设得11651045a d a d +=+= ,解得13,3a d ==,所以3n a n =, 当2n ≥时,11113,1n n n n b T T b T −−=−===,也符合上式,所以13n n b −=;【小问2详解】20,21,N ,2,N n n n k k c b n k k ∗∗ =−∈= =∈ , ()1222121113090321n n n n n a c a c a c b b n b −−+++=+++++−()()113321n n b b n b −=+++− ()1333213n n n −+⋅++− ,记()1333213nn W n −+⋅++− ①,则()()121333233213n n W n n −−=+⋅++−+− ②,②-①得,()()()11613232323213212322313n n n n n W n n n −−−=+⋅++⋅−−=+−−=⋅−−− ,故1333n W n +−−,所以11222121333n n n n a c a c a c n +−+++=−−18. (1)如图,在一条无限长的轨道上,一个质点在随机外力的作用下,从位置0出发,每次向左或向右移动一个单位的概率都为12,设移动n 次后质点位于位置n X .(i )求随机变量4X 的概率分布列及()4E X ; (ii )求()n E X ;(2)若轨道上只有0,1,2,n …这1n +个位置,质点向左或右移动一个单位的概率都为12,若在0处,则只能向右移动;现有一个质点从0出发,求它首次移动到n 的次数的期望.【答案】(1)(i )分布列见解析,0;(ii )0;(2)2n . 【解析】【分析】(1)由题意分析出随机变量4X 可能取值,根据独立重复试验概率公式计算相应的概率,从而得出分布列;质点向右移动的次数设为随机变量Y ,则Y 服从二项分布,则随机变量n X 可以用Y 表示,从而求得()n E X ;(2)根据题意先设首次从k 到n 的步数期望为k a ,从而得出101221+−=+=+−k k a a a k k a ,再由1(21)−=+∑n k k 求和,由0na=可得20a n =.【详解】(1)(i )4X 可能取值为4,2,0,2,4−−,()44114216P X =−==, ()131441112C 224P X =−==,.()222441130C 228P X ===, ()313441112C 224P X ===,()44114216P X ===, 所以随机变量4X 的分布列为:()()()4113114202401648416E X ∴=×−+×−+×+×+×=; (ii )设质点n 次移动中向右移动的次数为Y ,显然每移动一次的概率为12,则1,2Y B n∼, ()2n X Y n Y Y n =−−=−,所以()()12202n E X E Y n n n =−=××−=.(2)设首次从k 到n 的步数期望为k a ,则有()()11111122k k k a a a +−=+++,所以112k k k k a a a a +−−=−+,可得1012k k a a k a a +−=+−.又小球在0处,只能向前移动到1,则有011a a −=, 所以1200(21)n n k a a k n −=−=+=∑,又有0n a =,则20a n =.【点睛】关键点点睛:(1)关键是分析出该问题属于独立重复试验,分析求解即可;(2)关键是设首次从k 到n 的步数期望为k a ,从而构造出1012k k a a k a a +−=+−,分析出011a a −=且0n a =,即可求解. 19. 已知函数()1ex x f x +=. (1)求函数()f x 的单调区间;(2)证明()0,x ∈+∞时,12e e ln x x x x f x x −− −≥⋅;(3)若对于任意的()0,x ∈+∞,关于x 的不等式22e 2ln x mx x x x −≥−−恒成立,求实数m 的取值范围. 【答案】(1)增区间为(),0∞−,减区间为[)0,∞+ (2)证明见解析 (3)1,2−∞【解析】【分析】(1)求出导函数,再根据导函数正负求出单调区间即可;(2)证明不等式转化为等价条件,同构为一个函数再根据函数单调性证明.; (3)分类情况讨论转化恒成立问题求参. 【小问1详解】()()()2e 1e e ex x x x x x f x −+−==′, 当0x <时,()0f x ′>;当0x >时,()0f x ′<,()f x ∴的增区间为(),0∞−,减区间为[)0,∞+.【小问2详解】令1ln (0)t x x x =−−>,111x t x x−′=−=, 当01x <<时,0t ′<;当1x >0t ′>,∴当1x =时,min 00t t =∴≥即1ln 0x x −−≥,原不等式等价于2e 1e x tt f x − +≥⋅ ()2e x f t f x −⇔≥,()f x 为()0,∞+上的减函数,2e 0,0x t x−≥>,∴只需证明2e x t x−≤即2ln 2e 1ln e x x x x x x −−−−−≤=1e t t −⇐≤, 令()()()11e 01e t t g t t t g t −−=−≥=−′, 当01t ≤≤时,()0g t ′>,当1t >时,()0g t ′<,()()1min ()100e t g t g g t t −∴==∴≤∴≤∴原不等式成立.【小问3详解】当12m ≤时,由(2)知2e 1ln x x x x −≥−−又0x >,22e ln x x x x x −∴≥−−22ln mx x x x ≥−−,∴原不等式在()0,∞+上恒成立.当12m >时,令()()2ln 110x x x ϕϕ=−−=−< . ()422ln20ϕ=−>,()x ϕ∴在()1,4内必有零点,设为0x ,则002ln x x −=,020e x x −∴=, ()020*******e 12ln 122120x x ax x ax x a x x x −∴+−+=+−+−=−<,0220000e 2ln 0x ax x x x −∴−++<,而0220000e 2ln x ax x x x −<−−,综上所述实数m 的取值范围是1,2−∞.【点睛】方法点睛:证明不等式转化为等价条件,同构为一个函数再根据函数单调性证明.。
数学期末考试试卷分析及改进措施
数学期末考试试卷分析及改进措施一、数学期末考试试卷分析在这次数学期末考试中,我们发现试卷的难度适中,覆盖面广,题型多样,很好地考察了学生对本学期所学知识的掌握情况。
但是,也有一些学生在答题过程中出现了失误,导致分数不尽如人意。
以下是试卷分析:1、基础题部分:大部分同学在此部分表现良好,但对于一些常见错误,如计算失误、审题不清等,仍需注意。
2、中档题部分:此部分涉及的知识点较多,需要学生灵活运用所学知识解决问题。
部分同学在此部分失分较多,主要原因是知识点掌握不牢固,解题方法不熟练。
3、难题部分:此部分主要考察学生的综合运用能力和解题能力。
部分同学在此部分失分严重,主要原因是无法理解题目背景和解题思路,或者解题方法不熟练。
二、改进措施根据以上分析,我们可以得出以下改进措施:1、重视基础知识的学习和巩固:只有打好基础,才能更好地理解和掌握高层次的知识。
因此,学生应该注重基础知识的学习和巩固,避免因基础知识不牢固导致的失分。
2、重视解题方法的训练:解题方法是解决数学问题的关键。
因此,学生应该注重解题方法的训练,掌握各种题型的解题思路和方法,提高解题速度和准确率。
3、重视思维能力的提高:数学是一门需要高度思维能力的学科。
因此,学生应该注重思维能力的提高,学会分析问题、解决问题的方法,培养创新能力和实践能力。
4、重视错题集的使用:错题集是帮助学生找出错误、改正错误、提高解题能力的重要工具。
学生应该注重错题集的使用,及时记录错题,分析错误原因,总结经验教训。
5、重视考试心态的调整:考试心态的好坏直接影响到学生的发挥水平。
因此,学生应该注重考试心态的调整,保持冷静、自信、从容的心态,避免因紧张、焦虑导致的失误。
数学期末考试试卷分析一、试题评价本次试卷注重了对基础知识和基本技能的考查,但减少了死记硬背的内容;了学生学习过程与方法、考察了运用所学数学知识解决简单实际问题的能力;适当降低了试题的难度,体现了由易到难的梯度,有利于不同层次学生的发挥。
高二期末上册数学试卷分析
一、试卷概述本次高二期末上册数学试卷分为选择题、填空题、解答题三个部分,共100分。
试卷内容涵盖了高中数学必修一、必修二、选修1-1、选修1-2等四个模块的知识点,旨在考察学生对高中数学知识的掌握程度和运用能力。
二、试卷分析1.选择题选择题共20题,每题2分,共计40分。
本题主要考察学生对基础知识的掌握程度,包括函数、三角函数、数列、立体几何、解析几何等模块。
整体难度适中,学生在解答过程中需要熟练掌握基础知识,同时注意解题技巧。
2.填空题填空题共10题,每题3分,共计30分。
本题主要考察学生对基础知识的灵活运用,包括函数、三角函数、数列、立体几何、解析几何等模块。
部分题目涉及综合性较强,需要学生在解题过程中灵活运用所学知识。
整体难度适中,学生在解答过程中需要注重逻辑思维和计算能力。
3.解答题解答题共4题,每题15分,共计60分。
本题主要考察学生对高中数学知识的综合运用能力,包括函数、三角函数、数列、立体几何、解析几何等模块。
题目难度逐层递增,学生在解答过程中需要具备较强的逻辑思维和计算能力。
(1)第一题:函数与导数。
本题主要考察学生对函数性质、导数概念及运用导数求函数最值等知识的掌握程度。
题目难度适中,学生在解答过程中需要熟练掌握相关知识点。
(2)第二题:三角函数与数列。
本题主要考察学生对三角函数、数列等知识的综合运用能力。
题目难度适中,学生在解答过程中需要灵活运用所学知识,解决实际问题。
(3)第三题:立体几何与解析几何。
本题主要考察学生对立体几何、解析几何等知识的掌握程度。
题目难度适中,学生在解答过程中需要具备较强的空间想象能力和计算能力。
(4)第四题:概率与统计。
本题主要考察学生对概率与统计知识的掌握程度,包括古典概型、几何概型、离散型随机变量等。
题目难度适中,学生在解答过程中需要熟练掌握相关知识点。
三、总结本次高二期末上册数学试卷整体难度适中,考察了学生对高中数学知识的掌握程度和运用能力。
高二数学期末考试试卷分析
高二数学期末考试试卷分析本套试卷给人的第一感觉就是“不难”“常规”。
本套试卷考试的内容是必修模块的内容,命题时强调对于主干内容重点考察,不刻意追求覆盖。
从题目上看,没在客观题部分设置难度很大的试题,意在让学生以比较平稳的心态进入到主观题的答题中;同时在主观题部分,基本上都是低起点,宽入口,设置多问,阶梯递进,让不同层次的学生都能在解题中获得相应的分数。
一、下面就主干知识的考察题型进行分析1、集合部分文理都设置了一大一小两题,重点考察集合的写出,集合的交、并、补;两个集合之间的关系。
学生总体来说做的还不错,出错的部分多为对集合的写出有点问题,二次函数、二次不等式、二次函数之间的关系没有理清楚。
2、三角函数文理都设置了一大一小两个小题,重点考察三角函数的恒等变形,图像的性质、解三角形等常规问题学生出错的原因是对于图像的掌握不到位,对于三角函数的周期认识不清,第二问考察了三角函数的单调区间有的学生没有写成区间的形式导致失分。
3、解析几何平面解析几何的命题特点题型相对稳定,考察一个大题,考察直线方程的写出,直线和圆的位置关系,弦长问题。
学生失分的原因是没有考察直线斜率不存在的可能,导致失分。
4、立体几何文科设置了一大一小两个小题,理科设置了两小一大三个题目,以垂直关系为核心,考察空间想象能力、推理论证能力。
文科侧重考查直线和平面的位置关系的判断,理科侧重考察直线和平面的位置关系的判断,计算距离、二面角等问题。
学生出错的理由是空间的想象能力有点欠妥,对定理的掌握模棱两可,导致证明过程写的不够详细,导致失分。
5、数列文理科都设置了一大一小两个小题,文理科差异明显,文科两问,理科三问,考察等差、等比数列的判断,数列的性质,通项公式、前n 项和等知识点,综合性强,抽象性很强,难度较大。
6、函数文理都设置了一大两个小题,小题着重考察函数的解析式、单调性,奇偶性,周期性。
大题文理科差异很大,文科重点考察函数的周期性、奇偶性,抽象函数的函数值;抽象不等式的解法问题,学生很难得分;理科重点考察函数的奇偶性,周期性,函数解析式的写出,周期问题的解决;比较抽象,学生很难得分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学期末考试试卷分析
一、总体分析
1.难度情况
试卷总体难度与思维量适中理科最高分为136,最低分为10,平均分为58.5;文科最
高分为100,最低分为5,平均分为38.6分,其中基础题有:1、2、3、4、6、8、13、17;中档题有:5、7、9、14、18、19、20;中难题有:10、11、15、21;难题有:12、16、22。
2.试题分布情况
《解三角形》5、17题;分值比10%。
《数列》8、11、14、18;分值比16%
《不等式》1、7、12、21;分值比14%
《简单逻辑用语》2、11、16、21;分值比12.7%
《圆锥曲线》3、4、6、10、13、15、19、22;分值比36%
《空间向量与立体几何》 9、20;分值比11.3%
总的来说测试卷中必修五内容的比例约为40%,选修内容试题比例约为60%。
二、部分题目具体分析
1、第5题:该题的重要是学生解题时对三角函数诱导公式的运用不够灵活,主要的
错误在于不懂计算正弦750
2、第11题:主要是对等比数列的性质理解不够。
3、第12题::该题是选择题中得分率最低的题目,主要问题有两个方面:其一是对
基本不等式公式的概念和内涵的理解不到位,不能灵活应用;其二是对函数知识的遗忘。
4、第13题:解题时审题不够认真,把双曲线的两顶点的距离看做是焦距。
5、第16题:主要是对概念的掌握不好,漏了对等比数列的每一项都不为0的考虑。
6、第17题:1空间概念理解能力差;
2 正弦定理记忆错误;
3学生在计算BC长度出现较大的错误;
4解应用题,忽略结论没有答;
7、第19题:该题典型错误有:
1把倾斜角当做是斜率;
8、第20题典型错误有:
1对用直线方向向量来求异面直线所成的角掌握不好;
2不懂求平面的法向量方法;
3表达混乱、思路不清;
9、第21题的典型错误:
1讨论根式时漏了可以等于0的条件。
2不等式组不会求解;
3表达不规范,充分非必要条件理解不够透彻。
三、教学建议
从整个试卷来看,考查的都是基础知识、基本技能和基本能力。
运用已学的知识解决题目。
体现新课程教学的要求,要让学生把书读活,不是机械的模仿。
现就教学中作这样几点建议
1要重视课本和课程标准教学要求。
尽管高考考什么现在还不明确,但是课本是依据课标编写,涉及学科基础知识、基本技能和能力要求的有效载体,是教与学的主要指导用书,更是所有命题者的依据,怎么变都不会脱离这个根本。
2平时教学应注重基础,让所有学生掌握最基本的数学知识和基本技能,让学生真正理解、掌握、记忆到位。
这种基础上的引申才有意义,否则学生学得吃力,效果也不好,学生也会慢慢失去学习的兴趣。
引申过程要设置好台阶,让学生跳一跳够的着。
3、运算能力是学生必须具备的主要数学能力之一,也是近几年高考考查的重点和难点。
由于学生在小学初中阶段运算要求降低,特别是计算器的使用使得相当的学生对常见繁琐的运算及化简不够细心、缺乏耐心和信心,错误频繁发生,与新课程对数学教育的定位相差甚远。
所以在平时的教学过程中要结合教学实际有意识地安排运算训练内容,提高训练要求,严格禁止学生使用计算器;
4、要切实加强思维训练,努力提高学生的思维品质。
提出问题、分析和解决问题的能力,形成理性思维等是高中数学课程标准明确提出的要求。
从测试情况看相当一部分学生在遇到比较陌生的题目背景下还能不看到问题的本质,建立恰当的数学模型或找到比较
优化的解题思路和解题方法;还有部分学生有时知道解题的过程或结果但不能明确的表达,比如建立空间直角坐标系的说明、得到点的坐标不能明确的说明点在图形中的位置等等。
1. 试题特点
1 注重基础知识、基本技能的考查,符合高考命题的意图和宗旨。
让不同的考生掌握不同层次的数学,让几乎所有的考生都能感受到成功的喜悦。
本次
高二试卷特注重基础知识的考查,22道题中有5道题占31分得分率在90%以上,有6题
占36分得分率在80%--90%之间,有4题占25分得分率在70%--80%之间。
这样让所有同
学对数学学习有了更强的信心。
2 注重能力考查
初等数学的基础知识是学生进入高等学校继续学习的基础,也是参加社会实践的必备
知识.考查学生基础知识的掌握程度,是高考的重要目标之一.要善于知识之间的联系,善
于综合应用,支离破碎的知识是不能形成能力的.考查时,既要注重综合性,又兼顾到全面,更注意突出重点.整个试卷前21题的计算量不大,体现多考一点“想”,少考一点“算”,不追求大的运算量,注重考查数学思想和基本方法以及灵活地解决问题能力,但
第22题的计算过繁,使绝大多数的学生在此处失掉过多的分,没有针对性地考察解析几
何中的运算能力。
3 注重数学应用,力求展现创新空间
解答数学应用题,是分析问题和解决问题能力的重要表现,能反映出学生的创新意识
和实践能力.第21题联系了生产方面的实际问题,试题的表述基本符合学生实际情况,考
查了学生的应用能力,并有一定的灵活性,也考查了学生的解决实际问题的能力。
2.考试结果
经抽样抽样270份统计分析,总体情况大致是:均分:108.7分; 优秀人数51,优秀
率18.9%;及格人数223,及格率82.6%。
3.试题及学生错误分析
第4题,很多同学选D,原因主要是审题不清,误认为P点是圆上一点。
第10题,主要错误原因在于对a,b认识不清,若a,b以具体数字出现,学生就会理
解渐近线确定,双曲线方程不唯一,由于题中以字母出现,学生误以为答案C就代表共渐
近线的双曲线。
第13题,主要错误在于1审题不清;2到角公式用错;
第15题,主要错误在于基本知识点掌握不牢固,二元一次不等式表示平面区域,而
直线将平面分成了三部分;
第16题,主要错误在于学生对圆的性质掌握得不是很好,圆与双曲线知识综合运用能力较差;
第17题,主要错误在于少数同学运算不当及基本技能不是很强;
第18题,主要错误在于1没有能够熟练运用圆的性质来解决圆的相关问题;2有很多同学丢开了圆的特殊性质,而用直线与二次曲线相交的一般方法来解决问题时,弦长公式又记错;
第19题,主要错误在于部分同学书写错误,证明不合乎逻辑,把要证的结论又当条件用;
第20题,主要错误在于1少数同学对直接法求轨迹方程掌握得不是很好;2不少同学直接当作椭圆的标准方程来处理;3学生的运算能力不是太强,弦长公式记错;4对直线与圆锥曲线问题的处理方法掌握的也不是很好;
第21题,主要错误在于1实际问题的自然约束条件“ ”错误或漏写;2不能很正确、规范地作出可行域;3求目标函数的最值过程中,表述不规范或没有表述,4解完应用题后没有作答;
第22题,主要错误在于第2小题的运算繁,学生畏难情绪重,怕算;学生没有掌握好基本方法。
3.思考与建议
从本次考试可以看出,整体质量是还不容乐观.低分率也不小,一些稳得分的题目还是有很多学生错,这反映了学生的基础不够扎实,数学能力是不强的,有一些知识还没有真正掌握.平时教学建议如下:
1平时教学应注重基础,让所有学生掌握最基本的数学知识和基本技能。
如:基本概念、公式、定理、定义的教学就应注重基础,让学生真正理解、掌握、记忆到位。
2平时讲解数学例题时有意识地透数学思想方法,让学生逐渐养成数学地思考数学问题的习惯。
3要注重培养学生良好的学习习惯、思维习惯和作业习惯,强化解题规范的要求。
4要着重培养学生熟练、准确的运算能力,解析几何问题的运算较繁,应提倡学生寻找最简的处理方法,更要让学生多体会运算当中的技巧。
5应注重培养学生解决实际问题的能力,让学生体验数学的巨大作用,激发学生学习数学的热情。
6要注重培养学生独立思考问题、解决问题的能力能力;让学生会思考、会解题、会质疑、会反思、会归纳,从而提高学生分析问题和解决问题的能力,提升学生的数学素养,大面积提高教学质量。
的人
感谢您的阅读,祝您生活愉快。