实验一 声光调制实验
声光调制实验报告
声光调制实验一.实验目的1.理解声光作用和声光调制器的基本原理.2.掌握及调制出布拉格衍射.3.观察交流信号及音频信号调制特性.二.实验仪器可调半导体激光、声光晶体盒、声光调制电源及滑座和旋转平台.三.实验原理1.声光互作用声光互作用效应是当超声波传到声光介质内,声光介质发生形变,导致介质的光学性能产生改变,即介质的折射率发生变化的现象。
在超声波的作用下,声光介质的光学折射率发生空间周期性的变化,相当于介质内形成了一个折射率光栅,当激光通过介质是发生衍射。
声光衍射使光波在通过介质后的光学特性发生改变,即光波的传播方向,强度,相位,频率发生了改变。
2.声光器件的基本原理声光调制的工作原理:声光调制是利用声光效应将信息加载于光频载波的一种物理过程。
调制信号是以信号( 调辐) 形式作用于电- 声换能器上,电- 声换能器将相应的电信号转化为变化的超声场,当光波通声光介质时,由于声光作用,使光载波受到调制而成为“携带”信息的强度调制波。
分拉曼—纳斯型声光调制器和布拉格声光调制器。
拉曼—纳斯型声光调制器特点:工作声源频率低于 10MHz只限于低频工作,带宽较小。
布拉格声光调制器特点:衍射效率高,调制带宽较宽。
其中调制带宽是声光调制器的一个重要参量,它是衡量能否无畸变地传输信息的一个重要指标,它受布拉格带宽的限制。
对于给定入射角和波长的光波,只有一个确定的频率和波矢的声波才能满足布拉格条件。
当采用有限的发散光束和声波场时,波束的有限角将会扩展,因此,在一个有限的声频范围内才能产生布拉格衍射。
3.拉曼—纳斯衍射和布拉格衍射(1)布拉格衍射当声波频率较高,声波作用长度较大,而且光束与声波波面间以一定的角斜入射时,光波在介质中要穿过多个声波面,故介质具有“体光栅”的性质。
当入射光与声波面间夹角满足一定条件时,介质内各级衍射光会相互干涉,各高级次衍射光将互相抵消,只出现0 级和+1 级或(-1 级)(视入射光的方向而定)衍射光,即产生布拉格衍射。
声光调制实验(数据处理)
实验1:光偏振性实验
光偏振性实验实验数据表(1)
其中:=,=5.57 下图(1)为上述表(1)测试光强与计算光强的对比图,由图可以很好说明光的偏振光强符合马吕斯定律
图(1)测试光强与计算光强对比图
实验4:声光调制的幅度特性
由数据表可绘制下图:
光强—调制电压关系曲线图
实验7:声光调制频率偏转特性
数据记录与处理表
零级光位置=9.756mm
F为调制频率
为一级光位置
一级光与零级光距离
声光调制偏转角
为衍射光强
偏转角—调制频率关系曲线图
从图中可以看出偏转角—调制频率呈线性关系
由线性回归分析可得:-0.00164+0.000137*F (1)下图为衍射光强与调制频率的关系曲线图
实验8:测量声光调制器的衍射效率
=1.01/3.67=27.5%
实验9:测量超声波的波速
由公式(1)可得
声速:=4744m/s
其中:λ。
声光调Q实验报告
YAG激光器声光调Q及其参数测量电子科学与技术101班唐衣可俊 20100310391、实验原理声光调Q是利用光的衍射效应实现调Q的。
利用光的衍射现象,使光束偏离,达到声光调Q的目的。
一束光通过由声控的相位光栅时,就会发生衍射,这就是声光效应。
在激光器的光学谐振腔中,放入一个声光调制器,当有超声场作用在调制器上时,由于声光效应,激光束就会发生衍射,偏离谐振腔,从而使激光停止振荡。
当超声波消失后,损耗消失,形成振荡,产生巨脉冲输出,完成超声调Q作用。
图4-1 布拉格衍射在激光器中采用声光调Q技术,主要是利用布拉格衍射型。
因为当超声波的功率足够时,这种衍射可使入射光全部转移到+1或-1级上,且有较高的转换效率。
布拉格衍射现象见图4-1。
在采取布拉格衍射时,入射角称为布拉格角,其满足下式:(4-2)式中:为光在介质中的波长,为声波波长,声波波数,为入射光波波数。
声光调Q中的调制元件是一个由布拉格衍射型的声光调制器,图4-2是调制盒的结构示意图。
调制盒共有四部分组成,第一部分是高频驱动源;第二部分是超声波换能器,在这里将电信号变为超声波;第三部分是声光介质,声场与光场在这里发生相互作用;第四部分是吸声器。
图4-2 声光调Q盒结构示意图超声波的产生有多种方法,如机械振动、气流振动、液体高逆流动以及电振动等。
而激光器用的超声波发生器大都采用高频电信号发生器,也很容易人工控制、产生或消失,而且具有很短的滞后时间,这是调Q所必须的。
图4-4 声光调Q装置图图4-4是声光调Q装置图。
在连续YAG激光器的光学谐振腔内放有声光调制盒和光阑,光阑的通光孔径为2~3mm可调,其作用是限制多模,且使光束全部通过声光作用区。
光学谐振腔一端为全反镜,另一端是透过率T为5%的左右的输出镜。
低透过率是为了使激光器有低的阈值。
激光晶体选用为5×70mm的YAG 晶体。
要求激光晶体有低的阈值,高的转换效率,晶体棒的两端要修磨成几个负光圈,减少热效应引起的输出功率下降。
声光调制实验
GCS-DSTZ声光调制实验
声光调制实验
用途:
声光效应是指光通过某一受到超声波扰动的介质时发生衍射现象,这种现象是光波与介质中声波相互作用的结果。
声光效应为控制激光束的频率、方向和强度提供了一个有效的手段。
利用声光效应制成的声光器件,如声光调制器、声光偏转器、和可调谐滤光器等,在激光技术、光信号处理和集成光通讯技术等方面有着重要的应用。
基本原理:
当压电换能器产生的超声波信号在介质中传播时,会在介质中产生周期性应变场,使介质的光学参数(例如折射率)产生周期性的变化,形成体光栅。
当激光束以布拉格角度通过光栅时,衍射光能量相对集中于一级衍射波中,称为布拉格衍射。
当外加文字、图像或其它信号输入换能器驱动电源的调制接口端时,衍射光光强将随此信号变化,从而达到控制激光输出特性的目的。
当声-光作用距
离较短时,形成多级衍射光,称拉曼-纳斯衍射。
实验目的:
(1)了解声光效应的原理。
(2)了解拉曼-纳斯衍射和布拉格衍射的实验条件和特点。
(3)测量声光偏转和声光调制曲线。
(4)完成模拟通信实验仪器的安装及调试。
知识点:
声光效应、布拉格衍射、体光栅、拉曼-纳斯衍射、声光调制。
原理示意图:
技术指标
主要配置。
实验一声光调制实验解析
实验一 声光调制实验早在本世纪30年代就开始了声光衍射的实验研究。
60年代激光器的问世为声光衍射现象的研究提供了良好的光源,促进了声光效应理论和应用研究的迅速发展。
声光效应为控制激光束的频率、方向和强度提供了一个有效的手段。
利用声光效应制成的声光器件,如声光调制器、声光偏转器和可调谐滤光器等,在激光技术、光信号处理和集成光通讯技术等方面有着重要应用。
声光效应已广泛应用于声学、光学和光电子学。
近年来,随着声光技术的不断发展,人们已广泛地开始采用声光器件在激光腔内进行锁膜或作为连续器件的Q 开关。
由于声光器件具有输入电压低驱动功率小、温度稳定性好、能承受较大光功率、光学系统简单、响应时间快、控制方便等优点,加之新一代的优质声光材料的发现,使声光器件具有良好的发展前景,它将不断地满足工业、科学、军事等方面的需求。
一、实验目的1、掌握声光调制的基本原理。
2、了解声光器件的工作原理。
3、了解布拉格声光衍射和拉曼—奈斯声光衍射的区别。
4、观察布拉格声光衍射现象。
二、实验原理(一)声光调制的物理基础1、弹光效应若有一超声波通过某种均匀介质,介质材料在外力作用下发生形变,分子间因相互作用力发生改变而产生相对位移,将引起介质内部密度的起伏或周期性变化,密度大的地方折射率大,密度小的地方折射率小,即介质折射率发生周期性改变。
这种由于外力作用而引起折射率变化的现象称为弹光效应。
弹光效应存在于一切物质。
2、声光栅当声波通过介质传播时,介质就会产生和声波信号相应的、随时间和空间周期性变化的相位。
这部分受扰动的介质等效为一个“相位光栅”。
其光栅常数就是声波波长λs ,这种光栅称为超声光栅。
声波在介质中传播时,有行波和驻波两种形式。
特点是行波形成的超声光栅的栅面在空间是移动的,而驻波场形成的超声光栅栅面是驻立不动的。
当超声波传播到声光晶体时,它由一端传向另一端。
到达另一端时,如果遇到吸声物质,超声波将被吸声物质吸收,而在声光晶体中形成行波。
实验一 声光调制实验资料
实验一 声光调制实验早在本世纪30年代就开始了声光衍射的实验研究。
60年代激光器的问世为声光衍射现象的研究提供了良好的光源,促进了声光效应理论和应用研究的迅速发展。
声光效应为控制激光束的频率、方向和强度提供了一个有效的手段。
利用声光效应制成的声光器件,如声光调制器、声光偏转器和可调谐滤光器等,在激光技术、光信号处理和集成光通讯技术等方面有着重要应用。
声光效应已广泛应用于声学、光学和光电子学。
近年来,随着声光技术的不断发展,人们已广泛地开始采用声光器件在激光腔内进行锁膜或作为连续器件的Q 开关。
由于声光器件具有输入电压低驱动功率小、温度稳定性好、能承受较大光功率、光学系统简单、响应时间快、控制方便等优点,加之新一代的优质声光材料的发现,使声光器件具有良好的发展前景,它将不断地满足工业、科学、军事等方面的需求。
一、实验目的1、掌握声光调制的基本原理。
2、了解声光器件的工作原理。
3、了解布拉格声光衍射和拉曼—奈斯声光衍射的区别。
4、观察布拉格声光衍射现象。
二、实验原理(一)声光调制的物理基础1、弹光效应若有一超声波通过某种均匀介质,介质材料在外力作用下发生形变,分子间因相互作用力发生改变而产生相对位移,将引起介质内部密度的起伏或周期性变化,密度大的地方折射率大,密度小的地方折射率小,即介质折射率发生周期性改变。
这种由于外力作用而引起折射率变化的现象称为弹光效应。
弹光效应存在于一切物质。
2、声光栅当声波通过介质传播时,介质就会产生和声波信号相应的、随时间和空间周期性变化的相位。
这部分受扰动的介质等效为一个“相位光栅”。
其光栅常数就是声波波长λs ,这种光栅称为超声光栅。
声波在介质中传播时,有行波和驻波两种形式。
特点是行波形成的超声光栅的栅面在空间是移动的,而驻波场形成的超声光栅栅面是驻立不动的。
当超声波传播到声光晶体时,它由一端传向另一端。
到达另一端时,如果遇到吸声物质,超声波将被吸声物质吸收,而在声光晶体中形成行波。
声光调q实验报告
声光调q实验报告1. 实验目的本实验旨在通过声光调q实验,探究声音在空气中的传播规律,并研究声音的频率对声音质量的影响。
2. 实验器材- 调频器- 音叉- 光物体- 麦克风- 音频分析仪3. 实验原理声音是由物质的振动产生的机械波,通过空气传播。
可以用频率(频率越高,声音越尖锐)和振幅(振幅越大,声音越响亮)来定量描述声音。
而光是由电磁波产生的,速度在真空中为光速。
实验中利用调频器生成一定频率的声音信号,并用麦克风接收声音信号。
在调频器中,通过调节不同频率,可产生不同音调的声音。
为了定量分析声音的频率,可使用音频分析仪。
同时,利用光物体产生不同频率的光波,通过研究位于光物体处的探测光电池产生的电流信号来分析光波频率的变化。
4. 实验步骤1. 将音叉固定在一个合适的支架上,使其能够自由振动。
调整调频器的频率,使麦克风接收到音叉振动产生的声音信号。
2. 使用音频分析仪,测量接收到的声音信号的频率,并记录下来。
3. 将光物体放置在光电池前方,调节光物体的频率,使光电池能够接收到光波。
记录下光电池接收到的光波的频率。
4. 分析并比较声音信号和光波信号的频率。
5. 实验结果与分析实验数据如下:信号种类频率(Hz)-声音440光波 5 ×10^14从实验数据中可以得出以下结论:1. 声音频率为440Hz,对应了一个特定的音调,这是因为音叉的振动频率为440Hz。
2. 光波频率为5 ×10^14Hz,这是因为光物体发射的光波频率为5 ×10^14Hz。
3. 声音信号和光波信号的频率相差太大,无法直接比较二者的频率。
6. 结论通过声光调q实验,我们可以观察到声音在空气中的传播规律,并研究声音的频率对声音质量的影响。
实验中,我们调节了声音信号和光波信号的频率,并通过音频分析仪和光电池记录了实验数据。
通过分析实验数据,我们得出了声音信号和光波信号的频率不可直接比较的结论。
实验结果对于深入理解声音和光波的特性以及它们在现实生活中的应用具有重要意义。
实验一声光调制实验解析
实验一 声光调制实验早在本世纪30年代就开始了声光衍射的实验研究。
60年代激光器的问世为声光衍射现象的研究提供了良好的光源,促进了声光效应理论和应用研究的迅速发展。
声光效应为控制激光束的频率、方向和强度提供了一个有效的手段。
利用声光效应制成的声光器件,如声光调制器、声光偏转器和可调谐滤光器等,在激光技术、光信号处理和集成光通讯技术等方面有着重要应用。
声光效应已广泛应用于声学、光学和光电子学。
近年来,随着声光技术的不断发展,人们已广泛地开始采用声光器件在激光腔内进行锁膜或作为连续器件的Q 开关。
由于声光器件具有输入电压低驱动功率小、温度稳定性好、能承受较大光功率、光学系统简单、响应时间快、控制方便等优点,加之新一代的优质声光材料的发现,使声光器件具有良好的发展前景,它将不断地满足工业、科学、军事等方面的需求。
一、实验目的1、掌握声光调制的基本原理。
2、了解声光器件的工作原理。
3、了解布拉格声光衍射和拉曼—奈斯声光衍射的区别。
4、观察布拉格声光衍射现象。
二、实验原理(一)声光调制的物理基础1、弹光效应若有一超声波通过某种均匀介质,介质材料在外力作用下发生形变,分子间因相互作用力发生改变而产生相对位移,将引起介质内部密度的起伏或周期性变化,密度大的地方折射率大,密度小的地方折射率小,即介质折射率发生周期性改变。
这种由于外力作用而引起折射率变化的现象称为弹光效应。
弹光效应存在于一切物质。
2、声光栅当声波通过介质传播时,介质就会产生和声波信号相应的、随时间和空间周期性变化的相位。
这部分受扰动的介质等效为一个“相位光栅”。
其光栅常数就是声波波长λs ,这种光栅称为超声光栅。
声波在介质中传播时,有行波和驻波两种形式。
特点是行波形成的超声光栅的栅面在空间是移动的,而驻波场形成的超声光栅栅面是驻立不动的。
当超声波传播到声光晶体时,它由一端传向另一端。
到达另一端时,如果遇到吸声物质,超声波将被吸声物质吸收,而在声光晶体中形成行波。
声光调制实验报告
一、实验目的1. 理解声光调制的基本原理和过程;2. 掌握声光调制器的构造和工作原理;3. 熟悉声光调制实验的操作方法和注意事项;4. 通过实验,验证声光调制在实际应用中的效果。
二、实验原理声光调制是一种利用声波对光波进行调制的方法。
当声波在介质中传播时,会引起介质的弹性应变,导致介质的折射率发生周期性变化,从而在光波传播过程中产生衍射现象。
声光调制器正是利用这一原理,通过调节声波的频率、幅度和相位,实现对光波的调制。
三、实验仪器与设备1. 声光调制器;2. 光源;3. 光功率计;4. 信号发生器;5. 电脑及实验软件;6. 电缆线。
四、实验步骤1. 连接声光调制器、光源、光功率计、信号发生器和电脑等设备;2. 打开电脑,运行实验软件;3. 调整光源输出功率,使其达到预设值;4. 调节信号发生器的频率、幅度和相位,分别进行以下实验:(1)频率调制:观察光功率计的读数变化,分析频率调制效果;(2)幅度调制:观察光功率计的读数变化,分析幅度调制效果;(3)相位调制:观察光功率计的读数变化,分析相位调制效果;5. 记录实验数据,分析实验结果。
五、实验结果与分析1. 频率调制实验:当信号发生器的频率与声光调制器的共振频率相匹配时,光功率计的读数发生明显变化,说明频率调制效果较好。
2. 幅度调制实验:当信号发生器的幅度变化时,光功率计的读数也随之变化,说明幅度调制效果较好。
3. 相位调制实验:当信号发生器的相位变化时,光功率计的读数也随之变化,说明相位调制效果较好。
六、实验总结1. 通过本次实验,我们了解了声光调制的基本原理和过程;2. 掌握了声光调制器的构造和工作原理;3. 熟悉了声光调制实验的操作方法和注意事项;4. 验证了声光调制在实际应用中的效果。
本次实验表明,声光调制技术具有调制效果好、频率范围宽、非线性失真小等优点,在光通信、光纤传感等领域具有广泛的应用前景。
在实验过程中,我们要注意以下几点:1. 实验前要熟悉实验原理和仪器设备;2. 实验过程中要严格按照实验步骤进行操作;3. 注意安全,防止意外事故发生;4. 实验结束后,认真整理实验器材,清理实验场地。
声光调制实验
声光调制实验【实验目的】1、了解声光调制实验原理;2、研究声场与光场相互作用的物理过程;3、测量声光效应的幅度特性和偏转特性。
【实验仪器及装置】声光调制实验仪(半导体激光器、声光调制晶体、光电接收等)、示波器。
图5.1 所示为声光调制实验仪的结构框图。
由图可见,声光调制实验系统由光路与电路两大单元组成。
图5.1 声光调制实验系统框图一、光路系统由激光管(L)、声光调制晶体(AOM)与光电接收(R)、CCD接收等单元组装在精密光具座上,构成声光调制仪的光路系统。
二、电路系统除光电转换接收部件外,其余电路单元全部组装在同一主控单元之中。
图5.2 主控单元前面板图5.2为电路单元的仪器前面板图,各控制部件的作用如下:∙电源开关控制主电源,按通时开关指示灯亮,同时对半导体激光器供电。
∙解调输出插座解调信号的输出插座,可送示波器显示。
∙解调幅度旋钮用于调节解调监听与信号输出的幅度。
∙载波幅度旋钮用于调节声光调制的超声信号功率。
∙载波选择开关用于对声光调制超声源的选择:关——无声光调制80MHz——使用80MHz晶振的声光调制Ⅰ——60~80MHz 声光调制Ⅱ——80~100MHz 声光调制∙载波频率旋钮用以调节声光调制的超声信号频率。
∙调制监视插座将调制信号输出到示波器显示的插座。
(输出波形既可与解调信号进行比较,也可呈现出射光的能量分布状态)∙外调输入插座用于对声光调制的载波信号进行音频调制的插座。
(插入外来信号时1kHz内置的音频信号自动断开)∙调制幅度旋钮用以调节音频调制信号的幅度。
∙接收光强指示数字显示经光电转换后光信号大小。
∙载波电压指示数字显示声光调制的超声信号幅度。
∙载波频率指示数字显示声光调制的超声信号频率。
图5.3 控制单元后面板图5.3为电路单元的仪器后面板图,板面各插座的功能如下:∙交流电源右侧下部为标准三芯电源插座,用以连接220V交流市电,插座上方系保护电源用的熔丝。
∙至接收器与光电接收器连接的接口插座。
声光调制实验报告总结
声光调制实验报告总结一、引言声光调制实验是光学与声学相结合的一种技术实验,通过将声音信号转换为光信号,实现声音的远距离传输和调制。
本次实验旨在研究声光调制技术的基本原理和应用。
二、实验装置及步骤1. 实验装置:- 声光转换器(声光晶体)- 光电盒- 函数发生器- 示波器- 多功能信号发生器- 光学平行板2. 实验步骤:- 连接实验装置,确保每个设备正确连接。
- 将示波器连接到光电盒的输出端。
- 将函数发生器连接到多功能信号发生器。
- 调节函数发生器产生幅度为1V的声音信号。
- 起始频率10kHz,终止频率100kHz,以10kHz的间隔循环,通过多功能信号发生器连续改变声音信号的频率。
- 观察示波器波形和光电盒输出光的变化。
三、实验结果与分析在实验中,我们改变了声音信号的频率,并观察了示波器波形和光电盒输出光的变化。
实验结果显示,随着声音信号频率的增加,示波器上的波形变得更加复杂,光电盒输出光也出现了明显的变化。
根据实验过程和结果,我们可以得出以下结论:1. 随着声音信号频率的增加,声光转换器的光输出也增大,即声光转换的效果随声音信号频率的增加而增强。
2. 高频声光转换的效果明显好于低频,这是因为高频声音信号在光学晶体中的折射率与低频信号相比变化更大,从而产生更明显的声光转换。
3. 在光电盒中观察到的光变化与声音信号的振幅和频率有关,频率越高光强度的变化越明显。
4. 在低频情况下,光电盒输出的光强度线性增加,而在高频情况下,增加的幅度减小。
四、实验应用声光调制技术具有广泛的应用前景,主要体现在以下几个方面:1. 音频通信:声光调制技术可以将声音信号转换为光信号进行传输,实现远距离通信。
这在通信领域有着很大的应用潜力。
2. 光学传感器:声光调制技术可以应用于光学传感器中,将声音信号转换为光信号,从而实现对声音的实时监测和测量。
3. 光纤通信:光纤通信是一种常见的高速通信方式,声光调制技术可以用于光纤通信系统的信号调制,提高通信质量和速度。
近代物理实验声光调制及光速测量
(二)光速测量部分:本实验有两种测定光 速的方法, 1、斜率法:
调节移相器,测出不同x值时的ø值,作ø-x关 系曲线,关系曲线应为一条直线,用最小二 乘法求出斜率m,相关系数r和标准误差。 2、半波长法: 在导轨上移动角锥位置,去x1和x2,用示 波器观察,调节移相器,使之满足
2 s x1 n c 2 s 2 x2 ( n 1) c 1
目录
1 2 3
实验背景; 实验目的;
实验原理;
实验内容。
4
实验背景
光速是物理学中一个最基本的常数。随着科学的 发展,产生各种对其测量的方法,主要精确的有微 波谐振腔法、激光测距法及非线性激光光谱法等。 尽管光速测量已达到很精确,但在实验室条件下, 采用各种新颖的方法开展对光速测量的研究仍然是 十分有意义的。 1922年 Brillouin 预言了声波对光的衍射效应,并 得到实验的证实。声对光发生的散射,提供了一种 方便的控制光束频率、光强和传播方向的办法,本 实验即利用声光调制的效应来对光速进行测量。
实验目的
一、通过对声光调制器的理论认识和实
际操作,使学生明白进行光速测量时要对 频率很高的光作怎样的处理和如何处理; 二、掌握一定的非线性光学的实验基础。
实验原理
(一)声光调制器:声波由材料的密度,或是应变的 正弦式扰动所组成.介质中传播的超声波造成介质的 局部压缩和伸张.这种弹性应变使介质的折射率按声 波的时间和空间周期性地发生改变,当光通过时就 会发生衍射、散射现象,这种光被声作用的现象称 为声光效应。 介质的行波和驻 波都使介质折射率在 空间周期性变化,这 相当于位相光栅。驻 波所形成的声光栅是 固定在空间的。假若 超声频率为f,那么光栅出现和消失的次数则为2f, 因而光通过该介质所得到的调制光,其光强变化频 率为声频率的2倍。
声光调制实验实验报告
一、实验目的1. 理解声光调制的基本原理和过程。
2. 掌握声光调制器的构造和操作方法。
3. 通过实验验证声光调制器的调制效果,并分析调制质量。
二、实验原理声光调制是一种利用声波对光波进行调制的方法。
当光波通过一个受到超声波扰动的介质时,光波的相位和强度会受到调制。
这种调制方法具有调制速度快、频带宽、抗干扰能力强等优点。
声光调制器主要由声光介质、电声换能器、吸声装置及驱动电源等组成。
当超声波在介质中传播时,将引起介质的弹性应变作时间上和空间上的周期性变化,导致介质的折射率也发生相应的变化。
当光束通过有超声波的介质后,就会产生衍射现象,从而实现光波的调制。
三、实验器材1. 声光调制器2. 激光器3. 光功率计4. 滤光片5. 调制信号发生器6. 吸声装置7. 驱动电源8. 信号线四、实验步骤1. 将声光调制器安装在实验平台上,调整激光器光路,使激光束垂直照射到声光介质上。
2. 将调制信号发生器输出信号连接到电声换能器,调节电声换能器的输出功率,使超声波在介质中产生稳定的调制效果。
3. 将激光束通过滤光片,调整光功率计,记录激光束的原始功率。
4. 改变调制信号发生器的输出频率,观察光功率计的示数变化,记录调制效果。
5. 调整调制信号发生器的输出幅度,观察光功率计的示数变化,记录调制效果。
6. 在实验过程中,注意观察吸声装置的作用,确保实验环境中的声波对调制效果的影响降至最低。
五、实验结果与分析1. 在实验过程中,当调制信号发生器的输出频率为f1时,光功率计的示数出现明显变化,说明调制效果较好。
当调制信号发生器的输出频率为f2时,光功率计的示数变化不明显,说明调制效果较差。
2. 当调制信号发生器的输出幅度为A1时,光功率计的示数出现明显变化,说明调制效果较好。
当调制信号发生器的输出幅度为A2时,光功率计的示数变化不明显,说明调制效果较差。
3. 通过实验,验证了声光调制器在调制信号频率和幅度方面的调制效果。
声光调制实验
声光调制实验【实验目的】1、了解声光调制实验原理;2、研究声场与光场相互作用的物理过程;3、测量声光效应的幅度特性与偏转特性。
【实验仪器及装置】声光调制实验仪(半导体激光器、声光调制晶体、光电接收等)、示波器。
图5、1 所示为声光调制实验仪的结构框图。
由图可见,声光调制实验系统由光路与电路两大单元组成。
图5、1 声光调制实验系统框图一、光路系统由激光管(L)、声光调制晶体(AOM)与光电接收(R)、CCD接收等单元组装在精密光具座上,构成声光调制仪的光路系统。
二、电路系统除光电转换接收部件外,其余电路单元全部组装在同一主控单元之中。
图5、2 主控单元前面板图5、2为电路单元的仪器前面板图,各控制部件的作用如下:•电源开关控制主电源,按通时开关指示灯亮,同时对半导体激光器供电。
•解调输出插座解调信号的输出插座,可送示波器显示。
•解调幅度旋钮用于调节解调监听与信号输出的幅度。
•载波幅度旋钮用于调节声光调制的超声信号功率。
•载波选择开关用于对声光调制超声源的选择:关——无声光调制80MHz——使用80MHz晶振的声光调制Ⅰ——60~80MHz 声光调制Ⅱ——80~100MHz 声光调制•载波频率旋钮用以调节声光调制的超声信号频率。
•调制监视插座将调制信号输出到示波器显示的插座。
(输出波形既可与解调信号进行比较,也可呈现出射光的能量分布状态)•外调输入插座用于对声光调制的载波信号进行音频调制的插座。
(插入外来信号时1kHz内置的音频信号自动断开)•调制幅度旋钮用以调节音频调制信号的幅度。
•接收光强指示数字显示经光电转换后光信号大小。
•载波电压指示数字显示声光调制的超声信号幅度。
•载波频率指示数字显示声光调制的超声信号频率。
图5、3 控制单元后面板图5、3为电路单元的仪器后面板图,板面各插座的功能如下:•交流电源右侧下部为标准三芯电源插座,用以连接220V交流市电,插座上方系保护电源用的熔丝。
•至接收器与光电接收器连接的接口插座。
声光调制实验报告模板
一、实验目的1.了解声光效应的原理。
2.了解喇曼-纳斯衍射和布喇格衍射的实验条件和特点。
3.测量声光偏转和声光调制曲线。
4.完成声光通信实验光路的安装及调试。
二、学史背景声光效应是指光通过某一受到超声波扰动的介质时发生衍射的现象,这种现象是光波与介质中声波相互作用的结果。
早在本世纪30年代就开始了声光衍射的实验研究。
60年代激光器的问世为声光现象的研究提供了理想的光源,促进了声光效应理论和应用研究的迅速发展。
声光效应为控制激光束的频率、方向和强度提供了一个有效的手段。
利用声光效应制成的声光器件,如声光调制器、声光偏转器、和可调谐滤光器等,在激光技术、光信号处理和集成光通讯技术等方面有着重要的应用。
三、实验原理当超声波在介质中传播时,将引起介质的弹性应变作时间和空间上的周期性的变化,并且导致介质的折射率也发生相应变化。
当光束通过有超声波的介质后就会产生衍射现象,这就是声光效应。
有超声波传播的介质如同一个相位光栅。
声光效应有正常声光效应和反常声光效应之分。
在各项同性介质中,声-光相互作用不导致入射光偏振状态的变化,产生正常声光效应。
在各项异性介质中,声-光相互作用可能导致入射光偏振状态的变化,产生反常声光效应。
反常声光效应是制造高性能声光偏转器和可调滤波器的基础。
正常声光效应可用喇曼-纳斯的光栅假设作出解释,而反常声光效应不能用光栅假设作出说明。
在非线性光学中,利用参量相互作用理论,可建立起声-光相互作用的统一理论,并且运用动量匹配和失配等概念对正常和反常声光效应都可作出解释。
本实验只涉及到各项同性介质中的正常声光效应。
设声光介质中的超声行波是沿y 方向传播的平面纵波,其角频率为s w ,波长为s λ波矢为s k 。
入射光为沿x 方向传播的平面波,其角频率为w ,在介质中的波长为λ,波矢为k 。
介质内的弹性应变也以行波形式随声波一起传播。
由于光速大约是声速的510倍,在光波通过的时间内介质在空间上的周期变化可看成是固定的。
电光声光调制_实验报告
一、实验目的1. 理解电光调制和声光调制的原理及基本过程。
2. 掌握电光调制器和声光调制器的实验操作方法。
3. 分析实验数据,验证电光调制和声光调制的基本特性。
二、实验原理1. 电光调制原理电光调制是利用电光效应,即某些晶体在外加电场的作用下,其折射率将发生变化,从而改变光波的传输特性。
电光调制器主要由调制晶体、电极、光源和探测器组成。
当电场施加在调制晶体上时,光波的强度、相位或偏振状态会发生变化,从而实现对光信号的调制。
2. 声光调制原理声光调制是利用声光效应,即光波在介质中传播时,被超声波场衍射或散射的现象。
声光调制器主要由声光介质、电声换能器、吸声(或反射)装置及驱动电源等组成。
当超声波在介质中传播时,会引起介质的弹性应变,从而形成折射率光栅,使光波发生衍射现象。
通过控制超声波的强度、频率和相位,可以实现对光信号的调制。
三、实验仪器与装置1. 电光调制实验实验仪器:电光调制器、光源、探测器、示波器、信号发生器、直流电源等。
实验装置:将光源发出的光束通过调制晶体,然后经探测器接收,通过示波器观察调制后的光信号。
2. 声光调制实验实验仪器:声光调制器、光源、探测器、示波器、信号发生器、超声波发生器等。
实验装置:将光源发出的光束通过声光介质,然后经探测器接收,通过示波器观察调制后的光信号。
四、实验步骤1. 电光调制实验(1)将光源发出的光束通过调制晶体,调节直流电源,使电场施加在调制晶体上。
(2)观察示波器上的光信号,记录调制后的光信号波形。
(3)改变调制信号频率和幅度,观察调制效果。
2. 声光调制实验(1)将光源发出的光束通过声光介质,调节超声波发生器,产生超声波。
(2)观察示波器上的光信号,记录调制后的光信号波形。
(3)改变超声波频率和强度,观察调制效果。
五、实验数据与分析1. 电光调制实验(1)记录调制后的光信号波形,分析调制频率、幅度与调制效果的关系。
(2)分析电光调制器的调制带宽、调制深度等特性。
声光实验
实验一声光调制器一、实验目的1、掌握声光调制器的工作原理和使用方法。
2、巩固书上所学的关于声光调制器的应用原理、范围。
二、实验仪器1、声光调制器实验仪1台2、半导体激光器或He-Ne激光器1台35V、24V直流电源各1台4 单踪5MHz示波器1台三、实验原理和电路说明声光调制器实验仪由线性声光调制器及驱动电源两部分组成。
驱动电源产生150MHZ频率的射频功率信号加入线性声光调制器,压电换能器将射频功率信号转变为超声信号,当激光束以布拉格角度通过时,由于声光互作用效应,激光束发生衍射(如图1所示)。
外加文字和图像信号以0.5~~5.5V 电平输入驱动电源的调制接口“输入”端,衍射光光强将随此信号变化,从而达到控制激光输出特性的目的,如图2所示。
线性声光调制器由声光介质(钼酸铅晶体)和压电换能器(铌酸锂晶体)、阻抗匹配网络组成。
声光介质两通光面镀有0.6328 um(或者其他)光波长的光学增透膜。
整个器件由铝制外壳安装。
驱动电源由振荡器、转换电路、锯齿波电路、线形电压放大电路、功率放大电路组成。
驱动电源的工作电压:±15V (黑正、白负、包线为地,注意!!) ; 外输入调制信号由“输入”端输入(控制开关拨向“调制”) ,直流工作电压范围为:0.5~~5.5V ; 衍射效率大小由工作电压大小决定。
“输出端”输出驱动功率,用高频电缆线与声光器件相联后,驱动电源的输入电源才接通±15V电源。
驱动电源的外形图,如图4所示。
图1 布拉格衍射原理图图2 衍射光光强将随此信号变化情况五、实验内容与步骤1、显示声光调制波形,观察声光调制偏转现象2、测试声光调制幅度特性3、显示入射光与衍射光的能量分布4、测试声光频率偏转特性5、测试声光调制衍射效率、带宽等参数6、测量超声波在介质中的声速7、模拟声光调制的光通讯实验研究与演示五、实验报告1、整理实验数据,画出相应的数据表格和波形图。
图3 载波电压与接收光强图4 布拉格衍射2、线性声光调制器由哪些部分组成?各部分的作用是什么?线性声光调制器是由声光介质和换能器组成。
《物理光学基础》实验指导书--声光调制器实验和电光调制器实验2
物理光学实验报告学院: 信息与通信工程学院班级:学号:姓名:日期: 2012年5月3日实验一声光调制器一、实验目的1.掌握声光调制器的工作原理和使用方法。
2.巩固书上所学的关于声光调制器的应用原理、范围。
二、实验仪器1.声光调制器实验仪1台2.半导体激光器或He-Ne激光器1台35V、24V直流电源各1台4 单踪5MHz示波器1台三、实验原理和电路说明声光调制器实验仪由线性声光调制器及驱动电源两部分组成。
驱动电源产生150MHZ频率的射频功率信号加入线性声光调制器, 压电换能器将射频功率信号转变为超声信号, 当激光束以布拉格角度通过时, 由于声光互作用效应, 激光束发生衍射(如图1所示)。
外加文字和图像信号以0.5~~5.5V电平输入驱动电源的调制接口“输入”端, 衍射光光强将随此信号变化, 从而达到控制激光输出特性的目的, 如图2所示。
线性声光调制器由声光介质(钼酸铅晶体)和压电换能器(铌酸锂晶体)、阻抗匹配网络组成。
声光介质两通光面镀有0.6328 um(或者其他)光波长的光学增透膜。
整个器件由铝制外壳安装。
驱动电源由振荡器、转换电路、锯齿波电路、线形电压放大电路、功率放大电路组成。
驱动电源的工作电压:±15V (黑正、白负、包线为地, 注意!!) ; 外输入调制信号由“输入”端输入(控制开关拨向“调制”) , 直流工作电压范围为:0.5~~5.5V ; 衍射效率大小由工作电压大小决定。
“输出端”输出驱动功率,用高频电缆线与声光器件相联后, 驱动电源的输入电源才接通±15V电源。
驱动电源的外形图, 如图4所示。
图1 布拉格衍射原理图图2 衍射光光强将随此信号变化情况五、实验内容与步骤1.显示声光调制波形, 观察声光调制偏转现象2.测试声光调制幅度特性3.显示入射光与衍射光的能量分布4.测试声光频率偏转特性5.测试声光调制衍射效率、带宽等参数6.测量超声波在介质中的声速7、模拟声光调制的光通讯实验研究与演示五、实验报告1.整理实验数据, 画出相应的数据表格和波形图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 声光调制实验早在本世纪30年代就开始了声光衍射的实验研究。
60年代激光器的问世为声光衍射现象的研究提供了良好的光源,促进了声光效应理论和应用研究的迅速发展。
声光效应为控制激光束的频率、方向和强度提供了一个有效的手段。
利用声光效应制成的声光器件,如声光调制器、声光偏转器和可调谐滤光器等,在激光技术、光信号处理和集成光通讯技术等方面有着重要应用。
声光效应已广泛应用于声学、光学和光电子学。
近年来,随着声光技术的不断发展,人们已广泛地开始采用声光器件在激光腔内进行锁膜或作为连续器件的Q 开关。
由于声光器件具有输入电压低驱动功率小、温度稳定性好、能承受较大光功率、光学系统简单、响应时间快、控制方便等优点,加之新一代的优质声光材料的发现,使声光器件具有良好的发展前景,它将不断地满足工业、科学、军事等方面的需求。
一、实验目的1、掌握声光调制的基本原理。
2、了解声光器件的工作原理。
3、了解布拉格声光衍射和拉曼—奈斯声光衍射的区别。
4、观察布拉格声光衍射现象。
二、实验原理(一)声光调制的物理基础1、弹光效应若有一超声波通过某种均匀介质,介质材料在外力作用下发生形变,分子间因相互作用力发生改变而产生相对位移,将引起介质内部密度的起伏或周期性变化,密度大的地方折射率大,密度小的地方折射率小,即介质折射率发生周期性改变。
这种由于外力作用而引起折射率变化的现象称为弹光效应。
弹光效应存在于一切物质。
2、声光栅当声波通过介质传播时,介质就会产生和声波信号相应的、随时间和空间周期性变化的相位。
这部分受扰动的介质等效为一个“相位光栅”。
其光栅常数就是声波波长λs ,这种光栅称为超声光栅。
声波在介质中传播时,有行波和驻波两种形式。
特点是行波形成的超声光栅的栅面在空间是移动的,而驻波场形成的超声光栅栅面是驻立不动的。
当超声波传播到声光晶体时,它由一端传向另一端。
到达另一端时,如果遇到吸声物质,超声波将被吸声物质吸收,而在声光晶体中形成行波。
由于机械波的压缩和伸长作用,则在声光晶体中形成行波式的疏密相间的构造,也就是行波形式的光栅。
当超声波传播到声光晶体时,它由一端传向另一端。
如果遇见反声物质,超声波将被反声物质反射,在返回途中和入射波叠加而在声光晶体中形成驻波。
由于机械波压缩伸长作用,在声光晶体中形成驻波形式的疏密相同的构造,也就是驻波形式的光栅。
首先考虑行波的情况,设平面纵声波在介质中沿x 方向传播,声波扰动介质中的质点位移可写成()x k t u u s s -=ωcos 01 (1)μ0是质点振动的振幅,ωs 是声波频率,k s 是声波波矢量的模。
相应的应变场是()x k t k u xu S s s s -=∂∂-=ωsin 01 (2) 对各向同性介质,折射率分布为()()x k t n n t x n s s -∆+=ωsin , (3)声行波在某一瞬间是对介质的作用情况如图1所示。
图中密集区(黑)表示介质受到压缩,密度增大,相应的折射率也增大;稀疏区(白)表示介质密度变小,折射率减小。
介质折射率n 增大或减小呈现交替变化,变化周期是声波周期,同时又以声速s s s k v ω=向前传播。
图1 声行波形成的超声光栅对于驻波的情况,考虑两个相向传播的同频声行波的叠加,质点位移可以写成)sin()cos(201t x k u u s s ω= (4)而介质折射率为 ())sin()sin(,t x k n n t x n s s ω∆+= (5)图2 声驻波形成的超声光栅 因驻波效应(5)式中的n ∆应是(3)式的2倍。
图2给出了声驻波情况下介质折射率的变化情况,其中在图中的曲线t+T s /4和t+3T s /4表示左、右行波。
从图中可见,声波在一个周期T s 之内,介质呈现两层疏密层结构,在波节处介质密度保持不变,因而在波腹处折射率每隔半个周期T s /2就变化一次。
这样,作为超声光栅,它将交替出现和消失,其交替变化的频率为原驻波周期的二倍,即2ωs 。
3、声光效应声光效应是指光波在介质中传播时,被超声波场衍射或散射的现象。
由于声波是一种弹性波,声波在介质中传播会产生弹性应力或应变,这种现象称为弹光效应。
介质弹性形变导致介质密度交替变化,从而引起介质折射率的周期变化,并形成折射率光栅。
当光波在介质中传播时,就会发生衍射现象,衍射光的强度、频率和方向等将随着超生场的变化而变化。
声光调制就是基于这种效应来实现其光调制及光偏转的。
4、声光衍射分类根据声波频率的高低和声光作用的超声场长度的大小的不同,声光效应可以分为拉曼-奈斯声光(Ram-Nath)衍射和布拉格(Bragg)衍射两种。
(1)区分拉曼-奈斯衍射和布拉格衍射的定量标准:从理论上说,拉曼-奈斯衍射和布拉格衍射是在改变声光衍射参数时出现的两种极端情况。
影响出现两种衍射情况的主要参数是声波长Ω、光束入射角1θ及声光作用距离L 。
为了给出区分两种衍射的定量标准,特引入参数G 来表征22/cos 2/cos s i s i G k L k L θπλλθ== (6)当L 小且λs 大(G <<1)时,为拉曼-奈斯衍射;而当L 大且λs 小(G >>1)时,为布拉格衍射。
为了寻求一个实用标准,即当G 参数大到一定值后,除0级和+1级外,其他各级衍射光的强度都很小,可以忽略不计。
达到这种情况时即认为已进入布拉格衍射区。
经过多年的实践,现已普遍采用下列定量标准:(a) G ≥4π时为布拉格衍射区(b) G <π时为拉曼-奈斯衍射区为便于应用,又引入量L 0=λs cos θi /λ≈λs 2/λ,则G=2πL/L 0。
因此,上面的定量标准可以写成: (a) L ≥2L 0 为布拉格衍射区(b) L ≤L 0/2 为拉曼-奈斯衍射区式中,L 0称为声光器件的特征长度。
引入了参数L 0可使器件的设计十分简便。
由于λs =νs /ƒs 和λ=λ0/n ,故L 0不仅与介质的性质(νs 和n )有关,而且与工作条件(ƒs 和λ0)有关。
事实上,L 0反映了声光互作用的主要特征。
产生条件上的区别:表1 拉曼-奈斯衍射和布拉格衍射产生条件上的区别现象上的区别:(1) 拉曼-奈斯声光衍射拉曼-奈斯声光衍射的结果,使光波在原场分成一组衍射光,它们分别对应于确定的衍射角θm(即传播方向)和衍射强度,这一组光是离散型的。
各级衍射光对称的分布在零级衍射光两侧,且同级次衍射光的强度相等。
这是拉曼-奈斯衍射的主要特征之一。
另外,无吸收时衍射光各级极值光强之和等于入射光强,即光功率是守恒的。
(2)布拉格声光衍射如果声波频率较高,且声光作用长度较大,此时的声扰动介质也不再等效于平面位相光栅,而形成了立体位相光栅。
这时,相对声波方向以一定角度入射的光波,其衍射光在介质内相互干涉,使高级衍射光相互抵消,只出现0级和 1级的衍射光,简言之,我们在屏上观察到的是0级光斑和+1级光非常亮或者0级光斑和-1级光很亮,而其它各级的光强却非常弱。
(二)声光调制原理1、声光调制器的组成声光调制其实由声光介质、电-声换能器、吸声(或反射)装置、耦合介质及驱动电源等所组成。
如图3所示:图3声光调制器(1)声光介质声光介质是声光互作用的场所。
当一束光通过变化的超声场时,由于光和超声场的作用,其出射光就具有随时间变化的各级衍射光,利用衍射光的强度随超声波强度的变化而变化的性质,就可以制成光强度调制器。
(2)电-声换能器(又称超声发生器)它是利用某些压电晶体(石英、LiNbO3等)或压电半导体(CdS,ZnO等)的反压电效应,在外加电场作用下产生机械振动而形成超声波,所以它起着将电功率转换成声功率的作用。
(3)吸声(或反射)装置它放置在超声元的对面,用以吸收已通过介质的声波(工作于行波状态),以免返回介质产生干扰,但要使超声场工作在驻波状态,则需要将吸声装置换成声反射装置。
(4)驱动电源它用以产生调制电信号施加于电-声换能器的两端电极上,驱动声光调制器(换能器)工作。
(5)耦合介质为了能较小损耗地将超声能量传递到声光介质中去,换能器的声阻抗应该尽量接近介质的声阻抗,这样可以减小两者接触界面的反射损耗。
实际上,调制器都是在两者之间加一过渡层耦合介质,它起三个作用:低损耗传能,粘结和电极的作用。
声光调制是利用声光效应将信息加载于光频载波上的一种物理过程。
调制信号是以电信号(调幅)形式作用于电声换能器上而转化为以电信号形式变化的超声场,当光波通过声光介质时,由于声光作用,使光载波受到调制而成为“携带”信息的强度调制波。
2、布拉格声光调制如果声波频率较高,且声光作用长度较大,而且光束与声波波面间以一定的角度斜入射时,光波在介质中要穿过多个声波面,故介质具有“体光栅”的性质。
当入射光与声波面间夹角满足一定条件时,介质内各级衍射光将互相抵消,只出现0级和±1级衍射光,即产生布拉格声光衍射,如图4所示。
因此,若能合理选择参数,超声场足够强,可使入射光能量几乎全部转移到+1级和-1级衍射极值上。
因而光束能量可以得到充分利用,因此,利用布拉格衍射效应制成的声光器件可以获得较高的效率。
λ声波入射光ω衍射光非衍射光2θω1+ω图4 布拉格声光衍射下面从波的干涉加强条件来推导布拉格方程。
为此,可把声波通过的介质近似看作许多相距λs 的部分反射、部分透射的镜面。
对于行波场,这些镜面将以速度νs 沿x 方向移动(因为ωm <<ωc 所以在某一瞬间,超声场可近似看成是静止的,因而对衍射光的分布没影响)。
对驻波超声场则完全是不动的。
当平面波以θi 入射至声波场,在B 、C 、E 各点处部分反射,产生衍射光。
各衍射光相干增强的条件是它们之间的光程差应为其波长的整数倍,或者说必须同相位。
图5表示在同一镜面上的衍射情况,入射光在B 、C 点的反射光同相位的条件必须使光程差AC-BD 等于光波波长的整数倍,即(cos cos )i d x m n λθθ-= (0,1)m =± (7)要使声波面上所有点同时满足这以条件,只有使i d θθ= (8)即入射角等于衍射角才能实现。
对于相距λs 的两个不同的镜面上的衍射情况,由上下面反射的反射光具有同相位的条件,其光程差FE+EG 必须等于光波波长的整数倍,即(cos cos )s i d n λλθθ+=(9)考虑到i d θθ=,所以 2sin B nλλθ=或 sin 22B s s sf n nv λλθλ== (10) 式中,θi =θd =θB ,θB 称为布拉格角。
可见,只有入射角等于布拉格角θB 时,在声波面上的光波才具有同相位,满足相干加强的条件,得到衍射极值,上式称为布拉格方程。
由于发生布拉格声光衍射时,声光相互作用长度较大,属于体光栅情况。