声光调制实验(数据处理)

合集下载

声光调制实验报告

声光调制实验报告

声光调制实验一.实验目的1.理解声光作用和声光调制器的基本原理.2.掌握及调制出布拉格衍射.3.观察交流信号及音频信号调制特性.二.实验仪器可调半导体激光、声光晶体盒、声光调制电源及滑座和旋转平台.三.实验原理1.声光互作用声光互作用效应是当超声波传到声光介质内,声光介质发生形变,导致介质的光学性能产生改变,即介质的折射率发生变化的现象。

在超声波的作用下,声光介质的光学折射率发生空间周期性的变化,相当于介质内形成了一个折射率光栅,当激光通过介质是发生衍射。

声光衍射使光波在通过介质后的光学特性发生改变,即光波的传播方向,强度,相位,频率发生了改变。

2.声光器件的基本原理声光调制的工作原理:声光调制是利用声光效应将信息加载于光频载波的一种物理过程。

调制信号是以信号( 调辐) 形式作用于电- 声换能器上,电- 声换能器将相应的电信号转化为变化的超声场,当光波通声光介质时,由于声光作用,使光载波受到调制而成为“携带”信息的强度调制波。

分拉曼—纳斯型声光调制器和布拉格声光调制器。

拉曼—纳斯型声光调制器特点:工作声源频率低于 10MHz只限于低频工作,带宽较小。

布拉格声光调制器特点:衍射效率高,调制带宽较宽。

其中调制带宽是声光调制器的一个重要参量,它是衡量能否无畸变地传输信息的一个重要指标,它受布拉格带宽的限制。

对于给定入射角和波长的光波,只有一个确定的频率和波矢的声波才能满足布拉格条件。

当采用有限的发散光束和声波场时,波束的有限角将会扩展,因此,在一个有限的声频范围内才能产生布拉格衍射。

3.拉曼—纳斯衍射和布拉格衍射(1)布拉格衍射当声波频率较高,声波作用长度较大,而且光束与声波波面间以一定的角斜入射时,光波在介质中要穿过多个声波面,故介质具有“体光栅”的性质。

当入射光与声波面间夹角满足一定条件时,介质内各级衍射光会相互干涉,各高级次衍射光将互相抵消,只出现0 级和+1 级或(-1 级)(视入射光的方向而定)衍射光,即产生布拉格衍射。

声学实验的数据处理

声学实验的数据处理

声学实验的数据处理一、实验目的本实验主要是针对不同频率及电平下的声波信号采集,通过分析和处理数据得到声波在不同条件下的声特性,如频率响应、声压级等,进一步加深对声学理论的认识。

二、实验器材1.计算机2.信号发生器3.声卡4.麦克风5.电脑插板6.万用表三、实验步骤1.将信号发生器与声卡连接,选择任一声波信号频率,通过金属挡板防止信号干扰,然后将信号输入到计算机中,记录相应数据。

2.更换频率,重复步骤1,得出相应数据。

3.将麦克风与声卡连接,调节电平生成不同强度的声波,重复步骤1得出相应数据。

4.利用万用表对电源、麦克风等电器设备的电压、电流进行测量,并根据相关公式处理得出相应实验数据。

5.结合实验数据进行分析、计算得出声波在不同条件下的声特性。

四、实验注意事项1.实验结束后,应将实验器材清理干净并归还。

2.在进行实验时,应注意安全,防止电器设备损坏。

3.在实验过程中,应尽可能减少干扰因素,确保实验数据的准确性。

五、实验结论通过本次实验,我们可得出以下结论:1.声波在不同频率下的波长和声速不同,在分析声波信号时应注意频率影响。

2.声波的强度与产生它的电平有关,强度等级随着电平的变化而变化。

3.当声波通过不同介质时,其传播速度以及频率响应等也会发生变化,需要结合具体情况进行分析。

六、实验拓展与应用声学实验作为一门基础课程,对于声学、电子等专业学习具有重要意义。

通过实验我们可以更好地理解声学理论,进一步掌握数据采集与处理方法,为之后的科学研究打下良好的基础。

在实际应用中,声学技术常用于音响、语音识别、语音合成等领域中,可涉及到产品研发、音乐制作等多个方面。

光调制演示实验报告(3篇)

光调制演示实验报告(3篇)

第1篇一、实验目的1. 理解光调制的原理和过程。

2. 学习使用光调制器进行信号调制。

3. 分析调制信号的频率、幅度和相位变化。

4. 掌握光调制在通信系统中的应用。

二、实验原理光调制是利用光波来携带信息的一种技术,它通过改变光波的某一参数(如幅度、频率、相位等)来实现信息的传输。

本实验中,我们主要研究幅度调制(AM)和频率调制(FM)两种调制方式。

1. 幅度调制(AM):在AM调制中,信息信号(如声音、图像等)与载波信号相乘,产生一个调制信号。

调制信号的幅度随信息信号的变化而变化,而频率和相位保持不变。

2. 频率调制(FM):在FM调制中,信息信号与载波信号的频率相乘,产生一个调制信号。

调制信号的频率随信息信号的变化而变化,而幅度和相位保持不变。

三、实验仪器与设备1. 光源:激光器或LED光源2. 调制器:光调制器(如光强度调制器、相位调制器等)3. 信号发生器:用于产生信息信号4. 光探测器:用于检测调制后的光信号5. 数据采集与分析系统:用于分析调制信号的频率、幅度和相位变化四、实验步骤1. 搭建实验系统:将光源、调制器、信号发生器、光探测器和数据采集与分析系统连接成一个完整的实验系统。

2. 进行幅度调制实验:a. 设置信号发生器产生一个低频正弦波信号作为信息信号。

b. 将信息信号输入到光调制器,调节调制器参数,使信息信号与载波信号进行AM调制。

c. 将调制后的光信号输入到光探测器,采集调制信号的频率、幅度和相位变化。

3. 进行频率调制实验:a. 设置信号发生器产生一个低频正弦波信号作为信息信号。

b. 将信息信号输入到光调制器,调节调制器参数,使信息信号与载波信号进行FM调制。

c. 将调制后的光信号输入到光探测器,采集调制信号的频率、幅度和相位变化。

4. 分析实验数据:使用数据采集与分析系统对实验数据进行处理和分析,得到调制信号的频率、幅度和相位变化曲线。

五、实验结果与分析1. 幅度调制实验结果:实验结果显示,调制信号的幅度随信息信号的变化而变化,而频率和相位保持不变。

声光调制实验

声光调制实验

声光调制实验【实验目的】1、了解声光调制实验原理;2、研究声场与光场相互作用的物理过程;3、测量声光效应的幅度特性和偏转特性。

【实验仪器及装置】声光调制实验仪(半导体激光器、声光调制晶体、光电接收等)、示波器。

图5.1 所示为声光调制实验仪的结构框图。

由图可见,声光调制实验系统由光路与电路两大单元组成。

图5.1 声光调制实验系统框图一、光路系统由激光管(L)、声光调制晶体(AOM)与光电接收(R)、CCD接收等单元组装在精密光具座上,构成声光调制仪的光路系统。

二、电路系统除光电转换接收部件外,其余电路单元全部组装在同一主控单元之中。

图5.2 主控单元前面板图5.2为电路单元的仪器前面板图,各控制部件的作用如下:∙电源开关控制主电源,按通时开关指示灯亮,同时对半导体激光器供电。

∙解调输出插座解调信号的输出插座,可送示波器显示。

∙解调幅度旋钮用于调节解调监听与信号输出的幅度。

∙载波幅度旋钮用于调节声光调制的超声信号功率。

∙载波选择开关用于对声光调制超声源的选择:关——无声光调制80MHz——使用80MHz晶振的声光调制Ⅰ——60~80MHz 声光调制Ⅱ——80~100MHz 声光调制∙载波频率旋钮用以调节声光调制的超声信号频率。

∙调制监视插座将调制信号输出到示波器显示的插座。

(输出波形既可与解调信号进行比较,也可呈现出射光的能量分布状态)∙外调输入插座用于对声光调制的载波信号进行音频调制的插座。

(插入外来信号时1kHz内置的音频信号自动断开)∙调制幅度旋钮用以调节音频调制信号的幅度。

∙接收光强指示数字显示经光电转换后光信号大小。

∙载波电压指示数字显示声光调制的超声信号幅度。

∙载波频率指示数字显示声光调制的超声信号频率。

图5.3 控制单元后面板图5.3为电路单元的仪器后面板图,板面各插座的功能如下:∙交流电源右侧下部为标准三芯电源插座,用以连接220V交流市电,插座上方系保护电源用的熔丝。

∙至接收器与光电接收器连接的接口插座。

实验一 声光调制实验资料

实验一   声光调制实验资料

实验一 声光调制实验早在本世纪30年代就开始了声光衍射的实验研究。

60年代激光器的问世为声光衍射现象的研究提供了良好的光源,促进了声光效应理论和应用研究的迅速发展。

声光效应为控制激光束的频率、方向和强度提供了一个有效的手段。

利用声光效应制成的声光器件,如声光调制器、声光偏转器和可调谐滤光器等,在激光技术、光信号处理和集成光通讯技术等方面有着重要应用。

声光效应已广泛应用于声学、光学和光电子学。

近年来,随着声光技术的不断发展,人们已广泛地开始采用声光器件在激光腔内进行锁膜或作为连续器件的Q 开关。

由于声光器件具有输入电压低驱动功率小、温度稳定性好、能承受较大光功率、光学系统简单、响应时间快、控制方便等优点,加之新一代的优质声光材料的发现,使声光器件具有良好的发展前景,它将不断地满足工业、科学、军事等方面的需求。

一、实验目的1、掌握声光调制的基本原理。

2、了解声光器件的工作原理。

3、了解布拉格声光衍射和拉曼—奈斯声光衍射的区别。

4、观察布拉格声光衍射现象。

二、实验原理(一)声光调制的物理基础1、弹光效应若有一超声波通过某种均匀介质,介质材料在外力作用下发生形变,分子间因相互作用力发生改变而产生相对位移,将引起介质内部密度的起伏或周期性变化,密度大的地方折射率大,密度小的地方折射率小,即介质折射率发生周期性改变。

这种由于外力作用而引起折射率变化的现象称为弹光效应。

弹光效应存在于一切物质。

2、声光栅当声波通过介质传播时,介质就会产生和声波信号相应的、随时间和空间周期性变化的相位。

这部分受扰动的介质等效为一个“相位光栅”。

其光栅常数就是声波波长λs ,这种光栅称为超声光栅。

声波在介质中传播时,有行波和驻波两种形式。

特点是行波形成的超声光栅的栅面在空间是移动的,而驻波场形成的超声光栅栅面是驻立不动的。

当超声波传播到声光晶体时,它由一端传向另一端。

到达另一端时,如果遇到吸声物质,超声波将被吸声物质吸收,而在声光晶体中形成行波。

声光调q实验报告

声光调q实验报告

声光调q实验报告1. 实验目的本实验旨在通过声光调q实验,探究声音在空气中的传播规律,并研究声音的频率对声音质量的影响。

2. 实验器材- 调频器- 音叉- 光物体- 麦克风- 音频分析仪3. 实验原理声音是由物质的振动产生的机械波,通过空气传播。

可以用频率(频率越高,声音越尖锐)和振幅(振幅越大,声音越响亮)来定量描述声音。

而光是由电磁波产生的,速度在真空中为光速。

实验中利用调频器生成一定频率的声音信号,并用麦克风接收声音信号。

在调频器中,通过调节不同频率,可产生不同音调的声音。

为了定量分析声音的频率,可使用音频分析仪。

同时,利用光物体产生不同频率的光波,通过研究位于光物体处的探测光电池产生的电流信号来分析光波频率的变化。

4. 实验步骤1. 将音叉固定在一个合适的支架上,使其能够自由振动。

调整调频器的频率,使麦克风接收到音叉振动产生的声音信号。

2. 使用音频分析仪,测量接收到的声音信号的频率,并记录下来。

3. 将光物体放置在光电池前方,调节光物体的频率,使光电池能够接收到光波。

记录下光电池接收到的光波的频率。

4. 分析并比较声音信号和光波信号的频率。

5. 实验结果与分析实验数据如下:信号种类频率(Hz)-声音440光波 5 ×10^14从实验数据中可以得出以下结论:1. 声音频率为440Hz,对应了一个特定的音调,这是因为音叉的振动频率为440Hz。

2. 光波频率为5 ×10^14Hz,这是因为光物体发射的光波频率为5 ×10^14Hz。

3. 声音信号和光波信号的频率相差太大,无法直接比较二者的频率。

6. 结论通过声光调q实验,我们可以观察到声音在空气中的传播规律,并研究声音的频率对声音质量的影响。

实验中,我们调节了声音信号和光波信号的频率,并通过音频分析仪和光电池记录了实验数据。

通过分析实验数据,我们得出了声音信号和光波信号的频率不可直接比较的结论。

实验结果对于深入理解声音和光波的特性以及它们在现实生活中的应用具有重要意义。

声光调制实验报告

声光调制实验报告

一、实验目的1. 理解声光调制的基本原理和过程;2. 掌握声光调制器的构造和工作原理;3. 熟悉声光调制实验的操作方法和注意事项;4. 通过实验,验证声光调制在实际应用中的效果。

二、实验原理声光调制是一种利用声波对光波进行调制的方法。

当声波在介质中传播时,会引起介质的弹性应变,导致介质的折射率发生周期性变化,从而在光波传播过程中产生衍射现象。

声光调制器正是利用这一原理,通过调节声波的频率、幅度和相位,实现对光波的调制。

三、实验仪器与设备1. 声光调制器;2. 光源;3. 光功率计;4. 信号发生器;5. 电脑及实验软件;6. 电缆线。

四、实验步骤1. 连接声光调制器、光源、光功率计、信号发生器和电脑等设备;2. 打开电脑,运行实验软件;3. 调整光源输出功率,使其达到预设值;4. 调节信号发生器的频率、幅度和相位,分别进行以下实验:(1)频率调制:观察光功率计的读数变化,分析频率调制效果;(2)幅度调制:观察光功率计的读数变化,分析幅度调制效果;(3)相位调制:观察光功率计的读数变化,分析相位调制效果;5. 记录实验数据,分析实验结果。

五、实验结果与分析1. 频率调制实验:当信号发生器的频率与声光调制器的共振频率相匹配时,光功率计的读数发生明显变化,说明频率调制效果较好。

2. 幅度调制实验:当信号发生器的幅度变化时,光功率计的读数也随之变化,说明幅度调制效果较好。

3. 相位调制实验:当信号发生器的相位变化时,光功率计的读数也随之变化,说明相位调制效果较好。

六、实验总结1. 通过本次实验,我们了解了声光调制的基本原理和过程;2. 掌握了声光调制器的构造和工作原理;3. 熟悉了声光调制实验的操作方法和注意事项;4. 验证了声光调制在实际应用中的效果。

本次实验表明,声光调制技术具有调制效果好、频率范围宽、非线性失真小等优点,在光通信、光纤传感等领域具有广泛的应用前景。

在实验过程中,我们要注意以下几点:1. 实验前要熟悉实验原理和仪器设备;2. 实验过程中要严格按照实验步骤进行操作;3. 注意安全,防止意外事故发生;4. 实验结束后,认真整理实验器材,清理实验场地。

声光调制实验报告总结

声光调制实验报告总结

声光调制实验报告总结一、引言声光调制实验是光学与声学相结合的一种技术实验,通过将声音信号转换为光信号,实现声音的远距离传输和调制。

本次实验旨在研究声光调制技术的基本原理和应用。

二、实验装置及步骤1. 实验装置:- 声光转换器(声光晶体)- 光电盒- 函数发生器- 示波器- 多功能信号发生器- 光学平行板2. 实验步骤:- 连接实验装置,确保每个设备正确连接。

- 将示波器连接到光电盒的输出端。

- 将函数发生器连接到多功能信号发生器。

- 调节函数发生器产生幅度为1V的声音信号。

- 起始频率10kHz,终止频率100kHz,以10kHz的间隔循环,通过多功能信号发生器连续改变声音信号的频率。

- 观察示波器波形和光电盒输出光的变化。

三、实验结果与分析在实验中,我们改变了声音信号的频率,并观察了示波器波形和光电盒输出光的变化。

实验结果显示,随着声音信号频率的增加,示波器上的波形变得更加复杂,光电盒输出光也出现了明显的变化。

根据实验过程和结果,我们可以得出以下结论:1. 随着声音信号频率的增加,声光转换器的光输出也增大,即声光转换的效果随声音信号频率的增加而增强。

2. 高频声光转换的效果明显好于低频,这是因为高频声音信号在光学晶体中的折射率与低频信号相比变化更大,从而产生更明显的声光转换。

3. 在光电盒中观察到的光变化与声音信号的振幅和频率有关,频率越高光强度的变化越明显。

4. 在低频情况下,光电盒输出的光强度线性增加,而在高频情况下,增加的幅度减小。

四、实验应用声光调制技术具有广泛的应用前景,主要体现在以下几个方面:1. 音频通信:声光调制技术可以将声音信号转换为光信号进行传输,实现远距离通信。

这在通信领域有着很大的应用潜力。

2. 光学传感器:声光调制技术可以应用于光学传感器中,将声音信号转换为光信号,从而实现对声音的实时监测和测量。

3. 光纤通信:光纤通信是一种常见的高速通信方式,声光调制技术可以用于光纤通信系统的信号调制,提高通信质量和速度。

声光调制实验实验报告

声光调制实验实验报告

一、实验目的1. 理解声光调制的基本原理和过程。

2. 掌握声光调制器的构造和操作方法。

3. 通过实验验证声光调制器的调制效果,并分析调制质量。

二、实验原理声光调制是一种利用声波对光波进行调制的方法。

当光波通过一个受到超声波扰动的介质时,光波的相位和强度会受到调制。

这种调制方法具有调制速度快、频带宽、抗干扰能力强等优点。

声光调制器主要由声光介质、电声换能器、吸声装置及驱动电源等组成。

当超声波在介质中传播时,将引起介质的弹性应变作时间上和空间上的周期性变化,导致介质的折射率也发生相应的变化。

当光束通过有超声波的介质后,就会产生衍射现象,从而实现光波的调制。

三、实验器材1. 声光调制器2. 激光器3. 光功率计4. 滤光片5. 调制信号发生器6. 吸声装置7. 驱动电源8. 信号线四、实验步骤1. 将声光调制器安装在实验平台上,调整激光器光路,使激光束垂直照射到声光介质上。

2. 将调制信号发生器输出信号连接到电声换能器,调节电声换能器的输出功率,使超声波在介质中产生稳定的调制效果。

3. 将激光束通过滤光片,调整光功率计,记录激光束的原始功率。

4. 改变调制信号发生器的输出频率,观察光功率计的示数变化,记录调制效果。

5. 调整调制信号发生器的输出幅度,观察光功率计的示数变化,记录调制效果。

6. 在实验过程中,注意观察吸声装置的作用,确保实验环境中的声波对调制效果的影响降至最低。

五、实验结果与分析1. 在实验过程中,当调制信号发生器的输出频率为f1时,光功率计的示数出现明显变化,说明调制效果较好。

当调制信号发生器的输出频率为f2时,光功率计的示数变化不明显,说明调制效果较差。

2. 当调制信号发生器的输出幅度为A1时,光功率计的示数出现明显变化,说明调制效果较好。

当调制信号发生器的输出幅度为A2时,光功率计的示数变化不明显,说明调制效果较差。

3. 通过实验,验证了声光调制器在调制信号频率和幅度方面的调制效果。

声光调制实验

声光调制实验

声光调制实验一、实验目的1. 了解声光效应的原理。

2. 了解喇曼—纳斯衍射和布喇格衍射的实验条件和特点。

3. 测量声光偏转和声光调制曲线以及声速的计算。

二、实验仪器SGT-1型声光效应实验仪三、实验原理当声波在某些介质中传播时,会随时间和空间的周期性的弹性应变,造成介质密度(或光折射率)的周期性变化。

介质随超声应变与折射率变化的这一特性,可使光在介质中传播时发生衍射,从而产生声光效应;存在于超声波中的此类介质可视为一种有声波形成的位相光栅(称为声光栅),其光栅的栅距(光栅常数)以为声波波长。

当一束平行光束通过声光介质时,光波就会被该光栅所衍射而改变光的传播方向,并使光强在空间做重新分布。

声光器件由声光介质和换能器两部分组成。

前者常用的有钼酸铅(PM )、氧化锑等,后者为有射频压电换能器组成的超声波发生器。

理论分析指出,当入射角(入射光与超声波面间的夹角)θ满足一下条件,衍射最强。

2sin 422S s K N N N k πλλθλπλ⎛⎫⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(1) 式中N 为衍射光的级数,λ,k 分别为入射光的波长和波数k=2π/λ, λs,与K 分别为超声波的波长和波数K=2π/λs声光衍射主要分为布拉格衍射和喇曼-奈斯衍射两种。

前者通常声频较高,声光作用程较长;后者则反之。

由于布拉格衍射效率较高,故一般声光器件主要工作在仅出现一级光(N=1)的布拉格区。

满足布拉格衍射条件是:sin 2B sFv λθ=(2)(式中的F 和Vs 分别为超声波的频率与速度,λ为光波的波长) 当满足入射角θ较小,且θ=B θ的布拉格衍射条件下,由(1)式可知,此时B θ≈K/2k,并有最强的正一级(或负一级)的衍射光呈现。

入射角θ与衍射角B θ之和称为偏转角d θ,由(2)式:2d B B s sK F k V λλθθθθλ=+==== 由此可见,当声波频率F 改变时,衍射光的方向亦将随之线性地改变。

声光调Q实验报告

声光调Q实验报告

YAG激光器声光调Q及其参数测量电子科学与技术101班唐衣可俊 20100310391、实验原理声光调Q是利用光的衍射效应实现调Q的。

利用光的衍射现象,使光束偏离,达到声光调Q的目的。

一束光通过由声控的相位光栅时,就会发生衍射,这就是声光效应。

在激光器的光学谐振腔中,放入一个声光调制器,当有超声场作用在调制器上时,由于声光效应,激光束就会发生衍射,偏离谐振腔,从而使激光停止振荡。

当超声波消失后,损耗消失,形成振荡,产生巨脉冲输出,完成超声调Q作用。

图4-1 布拉格衍射在激光器中采用声光调Q技术,主要是利用布拉格衍射型。

因为当超声波的功率足够时,这种衍射可使入射光全部转移到+1或-1级上,且有较高的转换效率。

布拉格衍射现象见图4-1。

在采取布拉格衍射时,入射角称为布拉格角,其满足下式:(4-2)式中:为光在介质中的波长,为声波波长,声波波数,为入射光波波数。

声光调Q中的调制元件是一个由布拉格衍射型的声光调制器,图4-2是调制盒的结构示意图。

调制盒共有四部分组成,第一部分是高频驱动源;第二部分是超声波换能器,在这里将电信号变为超声波;第三部分是声光介质,声场与光场在这里发生相互作用;第四部分是吸声器。

图4-2 声光调Q盒结构示意图超声波的产生有多种方法,如机械振动、气流振动、液体高逆流动以及电振动等。

而激光器用的超声波发生器大都采用高频电信号发生器,也很容易人工控制、产生或消失,而且具有很短的滞后时间,这是调Q所必须的。

图4-4 声光调Q装置图图4-4是声光调Q装置图。

在连续YAG激光器的光学谐振腔内放有声光调制盒和光阑,光阑的通光孔径为2~3mm可调,其作用是限制多模,且使光束全部通过声光作用区。

光学谐振腔一端为全反镜,另一端是透过率T为5%的左右的输出镜。

低透过率是为了使激光器有低的阈值。

激光晶体选用为5×70mm的YAG 晶体。

要求激光晶体有低的阈值,高的转换效率,晶体棒的两端要修磨成几个负光圈,减少热效应引起的输出功率下降。

声光调制实验报告模板

声光调制实验报告模板

一、实验目的1.了解声光效应的原理。

2.了解喇曼-纳斯衍射和布喇格衍射的实验条件和特点。

3.测量声光偏转和声光调制曲线。

4.完成声光通信实验光路的安装及调试。

二、学史背景声光效应是指光通过某一受到超声波扰动的介质时发生衍射的现象,这种现象是光波与介质中声波相互作用的结果。

早在本世纪30年代就开始了声光衍射的实验研究。

60年代激光器的问世为声光现象的研究提供了理想的光源,促进了声光效应理论和应用研究的迅速发展。

声光效应为控制激光束的频率、方向和强度提供了一个有效的手段。

利用声光效应制成的声光器件,如声光调制器、声光偏转器、和可调谐滤光器等,在激光技术、光信号处理和集成光通讯技术等方面有着重要的应用。

三、实验原理当超声波在介质中传播时,将引起介质的弹性应变作时间和空间上的周期性的变化,并且导致介质的折射率也发生相应变化。

当光束通过有超声波的介质后就会产生衍射现象,这就是声光效应。

有超声波传播的介质如同一个相位光栅。

声光效应有正常声光效应和反常声光效应之分。

在各项同性介质中,声-光相互作用不导致入射光偏振状态的变化,产生正常声光效应。

在各项异性介质中,声-光相互作用可能导致入射光偏振状态的变化,产生反常声光效应。

反常声光效应是制造高性能声光偏转器和可调滤波器的基础。

正常声光效应可用喇曼-纳斯的光栅假设作出解释,而反常声光效应不能用光栅假设作出说明。

在非线性光学中,利用参量相互作用理论,可建立起声-光相互作用的统一理论,并且运用动量匹配和失配等概念对正常和反常声光效应都可作出解释。

本实验只涉及到各项同性介质中的正常声光效应。

设声光介质中的超声行波是沿y 方向传播的平面纵波,其角频率为s w ,波长为s λ波矢为s k 。

入射光为沿x 方向传播的平面波,其角频率为w ,在介质中的波长为λ,波矢为k 。

介质内的弹性应变也以行波形式随声波一起传播。

由于光速大约是声速的510倍,在光波通过的时间内介质在空间上的周期变化可看成是固定的。

电光声光调制_实验报告

电光声光调制_实验报告

一、实验目的1. 理解电光调制和声光调制的原理及基本过程。

2. 掌握电光调制器和声光调制器的实验操作方法。

3. 分析实验数据,验证电光调制和声光调制的基本特性。

二、实验原理1. 电光调制原理电光调制是利用电光效应,即某些晶体在外加电场的作用下,其折射率将发生变化,从而改变光波的传输特性。

电光调制器主要由调制晶体、电极、光源和探测器组成。

当电场施加在调制晶体上时,光波的强度、相位或偏振状态会发生变化,从而实现对光信号的调制。

2. 声光调制原理声光调制是利用声光效应,即光波在介质中传播时,被超声波场衍射或散射的现象。

声光调制器主要由声光介质、电声换能器、吸声(或反射)装置及驱动电源等组成。

当超声波在介质中传播时,会引起介质的弹性应变,从而形成折射率光栅,使光波发生衍射现象。

通过控制超声波的强度、频率和相位,可以实现对光信号的调制。

三、实验仪器与装置1. 电光调制实验实验仪器:电光调制器、光源、探测器、示波器、信号发生器、直流电源等。

实验装置:将光源发出的光束通过调制晶体,然后经探测器接收,通过示波器观察调制后的光信号。

2. 声光调制实验实验仪器:声光调制器、光源、探测器、示波器、信号发生器、超声波发生器等。

实验装置:将光源发出的光束通过声光介质,然后经探测器接收,通过示波器观察调制后的光信号。

四、实验步骤1. 电光调制实验(1)将光源发出的光束通过调制晶体,调节直流电源,使电场施加在调制晶体上。

(2)观察示波器上的光信号,记录调制后的光信号波形。

(3)改变调制信号频率和幅度,观察调制效果。

2. 声光调制实验(1)将光源发出的光束通过声光介质,调节超声波发生器,产生超声波。

(2)观察示波器上的光信号,记录调制后的光信号波形。

(3)改变超声波频率和强度,观察调制效果。

五、实验数据与分析1. 电光调制实验(1)记录调制后的光信号波形,分析调制频率、幅度与调制效果的关系。

(2)分析电光调制器的调制带宽、调制深度等特性。

实验三 晶体的声光调制实验

实验三 晶体的声光调制实验

实验三晶体的声光调制实验一、实验目的(1) 了解声光效应的原理。

(2) 了解喇曼一纳斯衍射和布喇格衍射的实验条件和特点。

(3) 测量声光偏转和声光调制曲线。

(4) 完成声光通信实验光路的安装及调试。

二、实验原理当超声波在介质中传播时,将引起介质的弹性应变作时伺和空间上的周期性的变化,并且导致介质的折射率也发生相应变化。

当光束通过有超声波的介质后就会产生衍射现象,这就是声光效应。

有超声波传播的介质如同一个相位光栅。

声光效应有正常声光效应和反常声光效应之分。

在各向同性介质中,声一光相互作用不导致入射光偏振状态的变化,产生正常声光效应。

在各项异性介质中,声一光相互作用可能导致入射光偏振状态的变化,产生反常声光效应。

反常声光效应是制造高性能声光偏转器和可调滤波器的基础。

正常声光效应可用喇曼一纳斯的光栅假设作出解释,而反常声光效应不能用光栅假设作出说明。

在非线性光学中,利用参量相互作用理论,可建立起声一光相互作用的统一理论,并且运用动量匹配和失配等概念对正常和反常声光效应都可作出解释。

本实验只涉及到各向同性介质中的正常声光效应。

设声光介质中的超声行波是沿少方向传播的平面纵波,有超声波存在的介质起一平面相位光栅的作用。

当声光作用的距离满足L>2λs/λ,而且光束相对于超声波波面以某一角度入射时,在理想情况下除了0级之外,只出现1级或一1级衍射。

这种衍射与晶体对尤光的布喇格衍射很类似,故称为布喇格衍射。

能产生这种衍射的光束入射角称为布喇格角。

此时有超声波存在的介质起体积光栅的作用。

通过改变超声波的频率和功率,可分别实现对激光束方向的控制和强度的调制,这是声光偏转器和声光调制器的基础。

从(10)式可知,超声光栅衍射会产生频移,因此利用声光效应还可以制成频移器件。

超声频移器在计量方面有重要应用,如用于激光多普勒测速仪。

以上讨论的是超声行波对光波的衍射。

实际上,超声驻波对光波的衍射也产生喇曼一纳斯衍射和布喇格衍射,而且各衍射光的方位角和超声频率的关系与超声行波的相同。

光电子学声光效应实验

光电子学声光效应实验

实验名称:声光调制实验一、预习部分(可附页)预习成绩:声波是一种弹性波(纵向应力波),在介质中传播时,它使介质产生相应的弹性形变,从而激起介质中各质点沿声波的传播方向振动,引起介质的密度呈疏密相间的交替变化,因此,介质的折射率也随着发生相应的周期性变化。

超声场作用的这部分如同一个光学的“相位光栅”,该光栅间距(光栅常数)等于声波波长。

当光波通过此介质时,就会产生光的衍射。

衍射光的强度、频率、方向等都随着超声场的变化而变化。

声波在介质中传播分为行波和驻波两种形式。

声光晶体的另外一侧为吸收材料时,产生的为行波;当圣光晶体的另一侧为反射时,产生的将是驻波。

声光衍射分为两种,布拉格衍射和拉曼-奈斯衍射。

当声光作用的距离满足L>2λS2/λ(L为作用长度;λΛ为声波长;λ为光波长),而且光束相对于超声波波面以某一角度斜入射时,在理想情况下除了0级之外,只出现1级或者-1级衍射,这种衍射与晶体对X光的布拉格衍射很类似,故称为布拉格衍射。

拉曼—奈斯衍射发生在声频比较低、声波与光波作用长度比较小的情况下,即满足条件/LλλΛ≤(L为作用长度;λΛ为声波长;λ为光波长)。

拉曼—奈斯衍射又可分为行波型和驻波型两种。

对于行波型器件可视为光栅常数为声波长λΛ的相位光栅。

因为,声频比光频小几个数量级,对光波传播,可视为λΛ不变的光栅。

声光调制器声光调制器由电源、电声换能器、声介质、声吸收体(或反射体)。

一般将输入的信号源加载在驱动电源上,通过电源的变化,使得电声换能器输出的能量发生改变。

电声换能器一般具有压电效应的晶体如压电石英中加以一定频率变化的电场后,由于反压电效应晶体发生形变,可以得到一定频率(>107Hz)的机械振动。

这种晶体作为电声换能器把电能转换为机械弹性波(即超声波)。

这种波在晶体周围的声介质中以声速传播。

超声波是一种纵向机械应力波,它在声介质中引起弹性应变,使介质的密度有压缩和放松的周期性变化。

于是在这个区域中,介质的折射率也相应地作周期性变化。

实验一声光调制实验解析

实验一声光调制实验解析

实验⼀声光调制实验解析实验⼀声光调制实验早在本世纪30年代就开始了声光衍射的实验研究。

60年代激光器的问世为声光衍射现象的研究提供了良好的光源,促进了声光效应理论和应⽤研究的迅速发展。

声光效应为控制激光束的频率、⽅向和强度提供了⼀个有效的⼿段。

利⽤声光效应制成的声光器件,如声光调制器、声光偏转器和可调谐滤光器等,在激光技术、光信号处理和集成光通讯技术等⽅⾯有着重要应⽤。

声光效应已⼴泛应⽤于声学、光学和光电⼦学。

近年来,随着声光技术的不断发展,⼈们已⼴泛地开始采⽤声光器件在激光腔内进⾏锁膜或作为连续器件的Q 开关。

由于声光器件具有输⼊电压低驱动功率⼩、温度稳定性好、能承受较⼤光功率、光学系统简单、响应时间快、控制⽅便等优点,加之新⼀代的优质声光材料的发现,使声光器件具有良好的发展前景,它将不断地满⾜⼯业、科学、军事等⽅⾯的需求。

⼀、实验⽬的1、掌握声光调制的基本原理。

2、了解声光器件的⼯作原理。

3、了解布拉格声光衍射和拉曼—奈斯声光衍射的区别。

4、观察布拉格声光衍射现象。

⼆、实验原理(⼀)声光调制的物理基础1、弹光效应若有⼀超声波通过某种均匀介质,介质材料在外⼒作⽤下发⽣形变,分⼦间因相互作⽤⼒发⽣改变⽽产⽣相对位移,将引起介质内部密度的起伏或周期性变化,密度⼤的地⽅折射率⼤,密度⼩的地⽅折射率⼩,即介质折射率发⽣周期性改变。

这种由于外⼒作⽤⽽引起折射率变化的现象称为弹光效应。

弹光效应存在于⼀切物质。

2、声光栅当声波通过介质传播时,介质就会产⽣和声波信号相应的、随时间和空间周期性变化的相位。

这部分受扰动的介质等效为⼀个“相位光栅”。

其光栅常数就是声波波长λs ,这种光栅称为超声光栅。

声波在介质中传播时,有⾏波和驻波两种形式。

特点是⾏波形成的超声光栅的栅⾯在空间是移动的,⽽驻波场形成的超声光栅栅⾯是驻⽴不动的。

当超声波传播到声光晶体时,它由⼀端传向另⼀端。

到达另⼀端时,如果遇到吸声物质,超声波将被吸声物质吸收,⽽在声光晶体中形成⾏波。

实验五 声光调制实验(修订)

实验五 声光调制实验(修订)

数据记录
• 1、声光调制幅度特性 (Id为一级衍射光光强)
载波幅度Um(V) 0 0.5 1 1.5 2 2.5
一级衍射光光强Id
载波幅度Um(V) 3 3.5 4 4.5 5 5.5
一级衍射光光强Id
数据记录
• 2、声光调制频率偏转特性(θd~F ) • 零级光位置d0= ; • 声光调制器与接收孔间的距离L=
布拉格衍射
F Sin 2 s
• (式中F与VS分别为超声波的频率与速度, 为光波的波长) • 当满足入射角θi较小,且θi= θB的布拉格衍 射条件下,此时有最强的正一级(或负一 级)的衍射光呈现。
偏转角
• 入射(掠射)角θi与衍射角θB之和称为偏转 角θd K
d i B 2 B


实验注意事项

• •
4、调节半导体激光器功率时,不要用力 过大而损坏功率调节旋钮。 5、调节载物平台的转向应在±10°以内。 6、实验数据的单位和精度要求:角度单 位为rad,螺旋测微器和标尺都需要估读 一位。
载波频率F(MHz) 一级衍射光位置d1 距离d=| d1 - d0 | 60 70 80 90 100

偏转角θd≈ d/L
数据记录
• 2、声光调制频率偏转特性(Id~F ) • 改变频率时应随时调节“载波幅度”旋钮, 以尽量保持调制幅度(载波电压表指示读数) 一致。如1、2、3等。
载波频率F(MHz)
一级衍射光光强Id 载波频率F(MHz) 一级衍射光光强Id 80 82 84 86 88 90 92 94 96 98 10 0
60
62
64
66
68
70
72

声光调制实验

声光调制实验

GCS-DSTZ声光调制实验
声光调制实验
用途:
声光效应是指光通过某一受到超声波扰动的介质时发生衍射现象,这种现象是光波与介质中声波相互作用的结果。

声光效应为控制激光束的频率、方向和强度提供了一个有效的手段。

利用声光效应制成的声光器件,如声光调制器、声光偏转器、和可调谐滤光器等,在激光技术、光信号处理和集成光通讯技术等方面有着重要的应用。

基本原理:
当压电换能器产生的超声波信号在介质中传播时,会在介质中产生周期性应变场,使介质的光学参数(例如折射率)产生周期性的变化,形成体光栅。

当激光束以布拉格角度通过光栅时,衍射光能量相对集中于一级衍射波中,称为布拉格衍射。

当外加文字、图像或其它信号输入换能器驱动电源的调制接口端时,衍射光光强将随此信号变化,从而达到控制激光输出特性的目的。

当声-光作用距
离较短时,形成多级衍射光,称拉曼-纳斯衍射。

实验目的:
(1)了解声光效应的原理。

(2)了解拉曼-纳斯衍射和布拉格衍射的实验条件和特点。

(3)测量声光偏转和声光调制曲线。

(4)完成模拟通信实验仪器的安装及调试。

知识点:
声光效应、布拉格衍射、体光栅、拉曼-纳斯衍射、声光调制。

原理示意图:
技术指标
主要配置。

晶体声光调制实验报告

晶体声光调制实验报告

晶体声光调制实验报告竭诚为您提供优质文档/双击可除晶体声光调制实验报告篇一:实验十三晶体声光效应与声光调制实验实验十三晶体声光效应与声光调制实验当光波通过受到超声波扰动的介质时会发生衍射现象,这种现象被称为声光效应,它是光波与介质中声波相互作用的结果。

声光效应可以用于控制激光束的频率、方向和强度,利用声光效应制成的各种声光器件,如声光调制器、声光偏转器和可调谐滤光器等,在激光技术、光信息处理和集成光通信技术等方面有着重要的应用。

一、实验目的1.掌握声光效应的原理和实验规律;2.观察喇曼-奈斯(Ranman—nath)衍射的实验条件和特点;3.利用声光效应测量声波在介质中的传播速度;4.测量声光器件的衍射效率和带宽;5.了解声光效应在新技术中的应用;二、实验原理当超声波在介质中传播时,将引起介质的弹性应变作时间上和空间上的周期性变化,并且导致介质的折射率也发生相应的变化。

当光束通过有超声波的介质后就会产生衍射现象,这就是声光效应。

有超声波传播的介质如同一个相位光栅。

根据超声波频率的高低或声光相互作用长度的长短,可以将光与弹性声波作用产生的衍射分为两种类型,即喇曼—奈斯型衍射和布拉格型衍射。

1.喇曼-奈斯衍射当超声波频率较低、声光相互作用距离较小时,即2l?s20平面光波沿z轴入射,就相当于通过一个相位光栅,将产生喇曼-奈斯衍射,如图2所示。

根据相关理论可以证明以下结论:(1)各级衍射角θ满足下列关系:sin??m??0(1)s其中,λ0为入射激光波长,λs为超声波波长,m=0,±1,±2,±3,?。

(2)各级衍射光强与入射光强之比为:Im2?Jm(?)(2)I入其中,Jm(?)为m阶贝塞尔函数,??光强是对称分布的。

(3)各级衍射光的频率由于产生了多普勒频移而各不相同,各级衍射光的频率为2??022(?)?J??),所以零级极值两侧的?L。

因为Jmm(?0?m?s。

2.布拉格衍射当超声波频率较高,声光相互作用距离较大,满足l?2?2s并且光束与声波波面间保持一定的角度入射时,将产生布拉格衍射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验1:光偏振性实验
光偏振性实验实验数据表(1)
其中:=,=5.57 下图(1)为上述表(1)测试光强与计算光强的对比图,由图可以很好说明光的偏振光强符合马吕斯定律
图(1)测试光强与计算光强对比图
实验4:声光调制的幅度特性
由数据表可绘制下图:
光强—调制电压关系曲线图
实验7:声光调制频率偏转特性
数据记录与处理表
零级光位置=9.756mm
F为调制频率
为一级光位置
一级光与零级光距离
声光调制偏转角
为衍射光强
偏转角—调制频率关系曲线图
从图中可以看出偏转角—调制频率呈线性关系
由线性回归分析可得:-0.00164+0.000137*F (1)下图为衍射光强与调制频率的关系曲线图
实验8:测量声光调制器的衍射效率
=1.01/3.67=27.5%
实验9:测量超声波的波速
由公式(1)可得
声速:=4744m/s
其中:λ。

相关文档
最新文档