九年级数学上册 第25章《随机事件的概率》(第2课时)概率及其意义导学案(无答案)(新版)华东师大版
九年级数学上册第25章随机事件的概率25.2随机事件的概率25.2.4列举所有机会均等的结果导学案
![九年级数学上册第25章随机事件的概率25.2随机事件的概率25.2.4列举所有机会均等的结果导学案](https://img.taocdn.com/s3/m/821c09ed3968011ca2009109.png)
九年级数学上册第25章随机事件的概率25.2 随机事件的概率25.2.4 列举所有机会均等的结果导学案(无答案)(新版)华东师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第25章随机事件的概率25.2 随机事件的概率25.2.4 列举所有机会均等的结果导学案(无答案)(新版)华东师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第25章随机事件的概率25.2 随机事件的概率25.2.4 列举所有机会均等的结果导学案(无答案)(新版)华东师大版的全部内容。
25。
2。
4 列举所有机会均等的结果【学习目标】会用树状图或列表法求复杂情况下随机事件是概率【学习重难点】会用树状图或列表法求复杂情况下随机事件是概率【学习过程】一、课前准备1.什么是概率?,就叫这个事件的概率。
2.计算概率关键要注意两点:一是要清楚我们所关注的是哪个或哪些结果(m);二是要清楚所有机会均等的结果(n)。
3.概率的计算方法:P=二、学习新知自主学习:例4、抛掷一枚普通的硬币3次.有人说连续掷出三个正面和先掷出两个正面再掷出一个反面的概率是一样的.你同意吗?在分析这一问题的过程中,我们采用了画图的方法.这幅图好像一棵倒立的树,因此我们常把它称为树状图,也称树形图、树图.它可以帮助我们分析问题,而且可以避免重复和遗漏,既直观又条理分明.思考有的同学认为:抛三枚普通硬币,硬币落地后只可能出现4种情况:(1) 全是正面;(2)两正一反;(3)两反一正;(4) 全是反面.因此这四个事件出现的概率相等.你同意这种说法吗?为什么?问题5、口袋中装有1个红球和2个白球,搅匀后从中摸出1个球,会出现哪些可能的结果?甲说,摸出的不是红球就是白球,因此摸出红球和摸出白球这两个事件是等可能的.乙说,如果给小球编号,就可以说:摸出红球,摸出白1球,摸出白2球,这三个事件是等可能的.你认为哪种说法比较有理呢? ,如果将摸出的第一个球放回搅匀再摸出第二个球,两次都摸到的球有三个结果(1)都是红球(2)都是白球(3)一红一白这三个事件发生的概率相等吗?为什么?问题6掷两枚普通的正六面体骰子,所得点数之积有多少种可能?点数之积为多少的概率最大,其数值是多少?问题7 “石头、剪刀、布”是一个广为流传的游戏,游戏时甲乙双方每次做“石头”、“剪刀"、“布”三种手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头",同种手势不分胜负须继续比赛.假定甲乙两人每次都是等可能地做这三种手势,那么一次比赛时两人做同种手势(即不分胜负)的概率是多少?实例分析:例4:抛掷一枚普通的硬币3次.有人说连续掷出三个正面和先掷出两个正面再掷出一个反面的概率是一样的.你同意吗?【随堂练习】1。
2024-2025学年华师版初中数学九年级(上)教案第25章随机事件的概率25.2.2频率与概率
![2024-2025学年华师版初中数学九年级(上)教案第25章随机事件的概率25.2.2频率与概率](https://img.taocdn.com/s3/m/5de3800b7f21af45b307e87101f69e314232fa59.png)
第25章 随机事件的概率25.2 随机事件的概率2 频率与概率教学目标1.知道通过大量重复试验,可以用频率估计概率.2.掌握用列表法、画树状图法求简单事件概率的方法.3.运用频率估计概率解决实际问题.教学重难点重点:掌握用列表法、画树状图法求简单事件概率的方法. 难点:由试验得出的频率与理论分析得出的概率之间的关系.教学过程复习巩固概率:一个事件发生的可能性叫做该事件的概率. ()所有机会均等的结果关注结果发生数事件发生=P .导入新课【问题1】抛掷一枚均匀的硬币,硬币落下后,会出现两种情况:一种是正面朝上,另一种是正面朝下.你认为正面朝上和正面朝下的可能性相同吗? 学生讨论,师归纳总结引出课题:25.2 随机事件的概率2 频率与概率探究新知探究点一 频率与概率的关系 活动1(学生互动,教师点评) 请同学们拿出准备好的硬币:(1)同桌两人做20次掷硬币的游戏,并将数据填在下表中:(2)各组分工合作,分别累计正面朝上的次数到20、40、60、80、100、120、140、160、180、200次,并完成下表:教学反思(3)请同学们根据已填的表格,完成下面的折线统计图(4)观察上面的折线统计图,你发现了什么规律? 结论:(学生回答,老师点评)当抛掷硬币的次数很多时,出现正面的频率值是稳定的,接近于常数0.5,在它左右摆动.无论是掷质地均匀的硬币还是掷图钉,在试验次数很大时正面朝上(钉尖朝上)的频率都会在一个常数附近摆动,这就是频率的稳定性.【总结】(老师点评总结)1. 对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总是在一个固定数的附近摆动,显示出一定的稳定性.在大量重复进行同一试验时,事件A 发生的频率mn 总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记做P (A )=mn.一般地,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.2. 频率与概率的关系概率是频率的稳定值,而频率是概率的近似值. 【即学即练】(小组讨论,老师点评)某篮球队教练记录该队一名主力前锋练习罚篮的结果如下: (2)比赛中该前锋队员上篮得分并造成对手犯规,罚篮一次,估计这次他能罚中的概率.【解】(1)表格中从左往右依次为0.900,0.750,0.867,0.787,0.805,0.797,0.805,0.802教学反思(2)从表中的数据可以发现,随着练习次数的增加,该前锋罚篮命中的频率稳定在0.8左右,所以估计他这次能罚中的概率为0.8.探究点二 列表法或树状图法求概率【问题2】小明、小凡和小颖周末都想去看电影,但只有一张电影票.三人决定一起做游戏,谁获胜谁就去看电影.游戏规则如下:连续抛掷两枚均匀的硬币,若两枚硬币都正面朝上,则小明获胜;若都反面朝上,则小颖获胜;若一枚正面朝上、一枚反面朝上,则小凡获胜.你认为这个游戏公平吗?活动2(学生互动,教师点评)让学生每人抛掷硬币(课前准备好)20次,并记录每次的试验结果,通过观察自己的结果说明游戏是否公平.5个学生为一个小组,把5个人的试验结果数据汇总,得到小组试验数据100次,依次累计各组的试验数据,得到试验200次、300次、400次、500次…时的试验结果,全班一起填写上表.通过做试验让学生思考从试验中有哪些发现. (学生总结,教师点评) 从试验中我们发现,试验次数较大时,试验频率基本稳定,而且在一般情况下,“一枚正面朝上,一枚反面朝上”发生的概率大于其他两个事件发生的概率.所以,这个游戏不公平,它对小凡比较有利.【合作探究】议一议:在上面抛掷硬币的试验中,(1)抛掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样? (2)抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)在第一枚硬币正面朝上的情况下,抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?问题1:上述问题中一次试验涉及几个因素?你是用什么方法不重复、不遗漏地列出所有可能结果的?先让学生讨论,然后找学生代表叙述自己的解答过程,最后教师给出标准答案.总共有 4 种结果,每种结果出现的可能性相同.其中, 小明获胜的结果有 1 种:(正,正).所以小明获胜的概率是14.教学反思小颖获胜的结果有 1 种:(反,反).所以小颖获胜的概率是14.小凡获胜的结果有 2 种:(正,反),(反,正).所以小凡获胜的概率是24=12. 因此,这个游戏对三人是不公平的. 问题2:利用树状图或表格的优点是什么?什么时候用树状图比较方便?什么时候用表格比较方便?(学生总结,教师点评)当试验包含两步时,列表和画树状图都可以,当试验包含三步或三步以上时,画树状图比较方便.典例讲解(学生交流,老师点评)例1 如图,甲为三等分数字转盘,乙为四等分数字转盘.同时自由转动两个转盘,用列举的方法求两个转盘指针指向的数字均为奇数的概率.【解】列表如下:乙甲 1 2 3 41 (1,1) (1,2) (1,3) (1,4)2 (2,1) (2,2) (2,3) (2,4) 3(3,1) (3,2) (3,3) (3,4)由表格可知,一共有12种等可能的结果.其中两个转盘指针指向的数字均为奇数的有4种,故P (均为奇数)=412=13. 【总结】1.列表法就是把要求的对象用表格一一表示出来分析求解的方法.当一次试验要涉及两个元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表的方法.2.当一次试验要涉及两个以上的元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用画树状图的方法.例2 准备两组相同的牌,每组两张,两张牌的牌面数字分别是1和2.从每组牌中各摸出一张,称为一次试验.(1)一次试验中两张牌的牌面数字之和可能有哪些值? (2)两张牌的牌面数字之和等于3的概率是多少?【探索思路】 (引发学生思考)一张牌有几种结果?一次试验涉及几个元素? 【解】通过画树状图的方法表示出所有可能的结果:教学反思(1)由树状图可知,两张牌的牌面数字之和可能是2,3,4. (2)总共有4种等可能的结果,两张牌的牌面数字之和为3的结果有2种,因此P (两张牌的牌面数字之和等于3)=24=12.【题后总结】在一次试验中,如果可能出现的结果比较多,且各种结果出现的可能性相等,那么我们可以利用树状图或表格不重复、不遗漏地列出所有可能的结果,从而求出某些事件发生的概率.【即学即练】 【互动】(小组讨论)经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是( )A.19B.16C.13D.12由表格知,一共有9种等可能的情况,其中两辆汽车经过这个十字路口全部继续直行的有一种,所以两辆汽车经过这个十字路口全部继续直行的概率是19.【答案】A课堂练习1.“六一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展抽奖活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据:教学反思A.当n很大时,指针落在“铅笔”区域的频率大约是0.70B.假如你去转动转盘一次,获得铅笔的概率大约是0.70C.如果转动转盘2 000次,指针落在“文具盒”区域的次数大约有600次D.如果转动转盘10次,一定有3次获得文具盒2.两个正四面体骰子的各面上分别标有数字1,2,3,4,若同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为( )A.14B.316C.34D.383.把1枚质地均匀的普通硬币重复掷两次,落地后两次都是正面朝上的概率是( )A.1B.12C.13D.144.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是( )A.0B.13C.23D.15.现有两个不透明的袋子,其中一个装有标号分别为1、2的两个小球,另一个装有标号分别为2、3、4的三个小球,小球除标号外其他均相同.从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是( )A.12B.13C.14D.16参考答案1.D【解析】A.由题意知A选项不符合题意;由A可知,转动转盘一次,获得铅笔的概率大约是0.70,故B选项不符合题意;C.指针落在“文具盒”区域的概率大约为0.30,转动转盘2 000次,指针落在“文具盒”区域的次数大约有2 000×0.3=600(次),故C选项不符合题意;D.随机事件,结果不确定,故D选项符合题意.2.A【解析】同时投掷两个正四面体骰子,有(1,1) , (1,2) , (1,3) , (1,4) , (2,1) , (2,2) , (2,3) , (2,4) , (3,1) , (3,2) ,(3,3) , (3,4) , (4,1) , (4,2) , (4,3),(4,4)共16种结果,点数之和等于5的有(1,4) , (2,3) , (3,2) , (4,1)共4种情况,所以P(点数之和等于5)=416=14.3.D【解析】画树状图如图所示.∴P(两次都是正面朝上)=1 4 .4.B【解析】随机从1,2,-3中抽取两个数相乘,积的结果共有1×2=2,1×(-3)= -3,2×(-3)=-6三种,所以积为正数的概率是1 3 .5.D【解析】画树状图,如图所示.教学反思由图可知共有6种等可能结果,其中标号相同的只有1种,所以两球标号恰好相同的概率是1 6 .课堂小结(学生总结,老师点评)一、频率与概率的关系概率是频率的稳定值,而频率是概率的近似值.二、用列表法或树状图法求概率(1)列表法就是把要求的对象用表格一一表示出来分析求解的方法.当一次试验要涉及两个元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表的方法.(3)当一次试验要涉及两个以上元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用画树状图的方法.布置作业教材第147页练习题,第153页习题25.2第3,4题.板书设计课题25.2 随机事件的概率2 频率与概率【问题1】一、频率与概率的关系例1【问题2】二、用列表法或树状图法求概率例2教学反思。
人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案
![人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案](https://img.taocdn.com/s3/m/61067a1bff4733687e21af45b307e87101f6f83f.png)
人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案一. 教材分析本节课的主要内容是随机事件与概率的初步概念。
学生需要了解随机事件的定义,以及如何用概率来描述事件的可能发生性。
教材通过大量的实例来帮助学生理解概率的概念,并培养学生的实际应用能力。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于一些基本的概念和原理能够理解和掌握。
但是,由于概率是一个相对抽象的概念,对于一些学生来说,理解起来可能会有难度。
因此,在教学过程中,需要通过大量的实例和实际操作来帮助学生理解和掌握概率的概念。
三. 教学目标1.了解随机事件的定义,理解必然事件、不可能事件和不确定事件的概念。
2.掌握概率的基本计算方法,能够计算简单事件的概率。
3.能够运用概率的知识解决实际问题。
四. 教学重难点1.随机事件的定义和分类。
2.概率的计算方法。
3.概率在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,通过提出问题,引导学生思考和探索,培养学生的思维能力。
2.使用多媒体教学,通过动画和实例的展示,帮助学生直观地理解概率的概念。
3.采用分组讨论的教学方法,让学生通过合作和交流,共同解决问题,培养学生的团队协作能力。
六. 教学准备1.多媒体教学设备。
2.教学课件和教学素材。
3.分组讨论的准备。
七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生思考事件的可能发生性,并引入随机事件的定义。
2.呈现(10分钟)介绍必然事件、不可能事件和不确定事件的概念,并通过实例进行解释和展示。
3.操练(10分钟)让学生进行一些简单的概率计算练习,如抛硬币实验的概率计算,以及一些简单的实际问题的概率计算。
4.巩固(10分钟)通过一些实际问题,让学生运用概率的知识进行解决,巩固所学的知识。
5.拓展(10分钟)引导学生思考概率在实际生活中的应用,如彩票、赌博等,让学生了解概率在生活中的重要性。
九年级数学上册 第25章 随机事件的概率 25.2 随机事件的概率 25.2.3 频率与概率导学案(无答案)(新版)华
![九年级数学上册 第25章 随机事件的概率 25.2 随机事件的概率 25.2.3 频率与概率导学案(无答案)(新版)华](https://img.taocdn.com/s3/m/4d0e29346bd97f192279e932.png)
25.2.3 频率与概率【学习目标】1、理解实验次数较大时实验频率趋与稳定这一规律。
2、结合具体情景掌握如何用频率估计概率。
3、通过概率计算进一步比较概率与频率之间的关系。
【学习重难点】 用频率估计概率的意义 【学习过程】 一、课前准备1、估算幼苗的移植成活率,运输中柑橘完好的概率,种子的发芽率等事例中,都利用了( )的方法来计算。
2、在种子发芽率的实验中,科研人员经过大量实验得到不同数量的种子,发芽的频率都约是0.78,则可以估计种子发芽率是 ( ) ,从而可估计200千克的种子约有 ( )千克种子发芽。
3、假设某树林中10×10的面积上有9棵红枫树,整个树林面积市是2300 ,请你估计整个树林中总共有多少棵红枫树?得到红球的概率为21,得到黑球的概率为51,是求这20个球 中黄球共有多少个?二、学习新知 自主学习:问题 :某商场设立了一个可以自由转动的转盘,并归定顾客购物10元以上就能祸得一次转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品。
下表是活动进行中的一组统计数据:(图中灰色区域为可乐)(1)计算并完成表格。
(2)请估计当n很大时,频率将会接近多少?(3)假如你转动该转盘一次,你获得该铅笔的概率约是多少?(4)在该转盘中,标有铅笔的区域的扇形的圆心角是多少(精确到1度)?思考:1、在做从复实验时,随着实验次数的增多年,事件发生的概率有什么变化趋势?2、利用频率估计概率的前提条件是什么?3、通过上面问题的解答,你认为频率概率之间有什么关系?实例分析:例1、将一枚图钉随意向上抛起,求图钉落定后钉尖触地的概率解:【随堂练习】1、某校招收实验班的学生,从每5个报名的学生中录取3人,如果有100名报名,则有()人可能被录取。
2、一箱灯泡有24个,灯泡的合格率是0.98,则小亮从中任意拿出一只灯炮是次品的概率是()3、某城市有400万人,随机调查了2000人,其中有450人看该城市的“家庭”节目,若在该城市随便问一个人,他看该节目的概率大约是()4、一个数字转盘,上面从1到15共有15个数字,当某人无数次转动转盘时,中间的指针指向数字7的概率是()。
人教版九年级数学上册25.1.1随机事件与概率(第2课时)导学案
![人教版九年级数学上册25.1.1随机事件与概率(第2课时)导学案](https://img.taocdn.com/s3/m/abd1ed2de87101f69e3195bb.png)
《概率初步》25.1.1.2随机事件导学案学习目标:1、随机事件发生可能性的大小。
2、经历“猜测——试验并收集数据——分析试验结果”的活动过程,体会随机事件发生的可能性的大小。
3、由简单的生活实践,感受理论和实践的联系,体会数学来源于生活,又指导生活实践。
【重点】随机事件可能性的大小。
【难点】由实践操作方法确定随机事件发生的可能性的大小。
学习过程:一、自主学习(一)复习巩固1.必然事件是指写出两个是必然事件:2、不可能事件是指:写出两个是不可能事件:必然事件与不可能事件统称为:3、怎样的事件称为随机事件呢?举例说明:(二)自主探究1、桌面上倒扣着背面图案相同的6张扑克牌,其中4张黑桃、2张红桃,随机地抽取1张. (1)这张牌是黑桃还是红桃?(2)如果两种花色都有可能被摸出,那么摸出黑桃和红桃的可能性一样大吗?(3)如果要使摸出黑桃还是红桃黑桃和红桃的可能性一样大,你有办法吗?2、上面的摸牌活动中,“抽出黑桃”和“抽出红桃”是两个随机事件. 一次抽牌可能发生“抽出黑桃”,也可能发生“抽出红桃”,事先不能确定哪个事件发生,但是,由于两种牌的数量不等,所以事实上“抽出黑桃”和“抽出红桃”的可能性的大小是不一样的,“抽出黑桃”的可能性大于“抽出红桃”的可能性.(三)、归纳总结:现实世界中存在有事件、事件和事件。
事件也称偶然性事件,随机事件发生的是有的,不同的随机事件发生的不同。
(四)自我尝试:1、能否通过改变桌面上某种花色的牌的数量,使“抽出黑桃”和“抽出红桃”的可能性大小相同?2、你能列举一些生活中的随机事件的例子吗?你能列举一些在同样条件下重复进行试验时,不可能发生或必然发生的事件吗?二、教师点拔1、本节学习的数学知识是随机事件发生的;2、本节学习的数学方法是实践操作和合理想象。
3、请用“一定”、“很可能”、“可能性极小”、“可能”、“不太可能”、“不可能”等语言来描述下列事件的可能性:⑴买10注数字型彩票,获得特等奖;⑵袋中有20个球,1个白球,19个红球,任取一球摸到白球;⑶掷一枚均匀骰子,4点朝上;⑷100件产品中有2件次品,98件正品,从中任取一件刚好是正品;⑸早晨太阳从东方升起;⑹小刚跳高,能跳6米高。
2024年人教版九年级数学上册教案及教学反思第25章25.1.2 概 率
![2024年人教版九年级数学上册教案及教学反思第25章25.1.2 概 率](https://img.taocdn.com/s3/m/cb241e7cabea998fcc22bcd126fff705cd175c07.png)
25.1 随机事件与概率25.1.2 概率一、教学目标【知识与技能】1.了解什么是概率,认识概率是反映随机事件发生可能性大小的量.2.了解频率可以看作为事件发生概率的估计值,了解必然事件和不可能事件的概率.3.理解概率反映可能性大小的一般规律.【过程与方法】通过试验得出和理解概率的意义,正确鉴别有限等可能性事件,了解简单事件发生概率的计算方法.【情感态度与价值观】通过分析探究简单随机事件的概率,培养学生良好的动脑习惯,提高运用数学知识解决实际问题的意识,激发学习兴趣,体验数学的应用价值.二、课型新授课三、课时1课时四、教学重难点【教学重点】1.正确理解有限等可能性.2.用概率定义求简单随机事件的概率.【教学难点】正确理解有限等可能性,准确计算随机事件的概率.五、课前准备课件、图片等.六、教学过程(二)导入新课篮球比赛中,裁判员一般是通过掷硬币决定哪个队先发球,这样的游戏公平吗?为什么?(出示课件2)学生思考并交流.出示课件3,4:5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序,签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签,请考虑以下问题:教师问:抽到的序号有几种可能的结果?学生答:每次抽签的结果不一定相同,序号1,2,3,4,5都有可能抽到,共有5种可能的结果,但是事先不能预料一次抽签会出现哪一种结果.教师问:抽到的序号小于6吗?学生答:抽到的序号一定小于6;教师问:抽到的序号会是0吗?学生答:抽到的序号不会是0.想一想:能算出抽到每个数字的可能数值吗?(板书课题)(二)探索新知探究一概率的定义出示课件6:活动1 抽纸团从分别有数字1、2、3、4、5的五个纸团中随机抽取一个,这个纸团里的数字有5种可能,即1、2、3、4、5.师生共同分析:因为纸团看上去完全一样,又是随机抽取,所以每个数字被表示每一个数字被抽到的可能性大抽取的可能性大小相等,所以我们可以用15小.出示课件7:活动2 掷骰子掷一枚骰子,向上一面的点数有6种可能,即1、2、3、4、5、6.师生共同分析:因为骰子形状规则、质地均匀,又是随机掷出,所以每种点表示每一种点数出现的可能性大小.数出现的可能性大小相等.我们用16教师归纳:(出示课件8)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).例如:“抽到1”事件的概率:P(抽到1)=1.5探究二简单概率的计算出示课件9:试验1:抛掷一个质地均匀的骰子.教师问:它落地时向上的点数有几种可能的结果?学生答:6种.教师问:各点数出现的可能性会相等吗?学生答:相等.教师问:各点数出现的可能性大小是多少?学生答:1.6出示课件10:试验2:掷一枚硬币,落地后:教师问:会出现几种可能的结果?学生答:两种.教师问:正面朝上与反面朝上的可能性会相等吗?学生答:相等.教师问:正面朝上的可能性有多大呢?学生答:1.2出示课件11:上述试验都具有什么样的共同特点?师生共同解答:具有两个共同特征:⑴每一次试验中,可能出现的结果只有有限个;⑵每一次试验中,各种结果出现的可能性相等.教师强调:在这些试验中出现的事件为等可能事件.出示课件12:教师归纳:具有上述特点的试验,我们可以用事件所包含的各种可能的结果数在全部可能的结果数中所占的比,来表示事件发生的概率.出示课件13:一个袋中有5个球,分别标有1、2、3、4、5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球.教师问:会出现哪些可能的结果?学生答:1、2、3、4、5.教师问:每个结果出现的可能性相同吗?猜一猜它们的概率分别是多少?学生答:相同;1.5出示课件14,15:教师归纳:一般地,如果一个试验有n个可能的结果,并且它们发生的可能性都相等.事件A包含其中的m个结果,那么事件A发生的概率为:().m=p An事件发生的可能性越大,它的概率越接近于1;反之,事件发生的可能性越小,它的概率越接近于0.即:0≤P(A)≤1.特别地:当A为必然事件时,P(A)=1,当A为不可能事件时,P(A)=0.出示课件16:例1 任意掷一枚质地均匀骰子.(1)掷出的点数大于4的概率是多少?(2)掷出的点数是偶数的概率是多少?师生共同分析:任意掷一枚质地均匀的骰子,所有可能的结果有6种:掷出的点数分别是1、2、3、4、5、6,因为骰子是质地均匀的,所以每种结果出现的可能性相等.师生共同解答:(出示课件17)解:(1)掷出的点数大于4的结果只有2种:掷出的点数分别是5、6.所以P(掷出的点数大于4)=21;=63(2)掷出的点数是偶数的结果有3种:掷出的点数分别是2、4、6.所以P(掷出的点数是偶数)=21=.63教师强调:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.巩固练习:(出示课件18)掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.学生自主解决,一生板演:解:(1)点数为2有1种可能,因此P(点数为2)=1;6(2)点数为奇数有3种可能,即点数为1,3,5,因此P(点数为奇数)=1;2(3)点数大于2且小于5有2种可能,即点数为3,4,因此P(点数大于2且小于5)=1.3出示课件19:例2 袋中装有3个球,2红1白,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽取1个球,抽到红球的概率是多少?学生独立思考后师生共同解答.解:抽出的球共有三种等可能的结果:红1、红2、白,三个结果中有两个结果使得事件A(抽得红球)发生,故抽得红球这个事件的概率为:P(抽到红球)=2.3巩固练习:(出示课件20)袋子里有1个红球,3个白球和5个黄球,每一个球除颜色外都相同,从中任意摸出一个球,则P(摸到红球)= ;P(摸到白球)= ;P(摸到黄球)= .学生独立思考后口答:19;13;59.出示课件21:例3 如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红黄绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向其右边的扇形)求下列事件的概率.(1)指向红色;(2)指向红色或黄色;(3)不指向红色.学生观察交流后师生共同解答.(出示课件22)解:一共有7种等可能的结果.(1)指向红色有3种等可能的结果,P(指向红色)=37;(2)指向红色或黄色一共有5种等可能的结果,P(指向红或黄)=57;(3)不指向红色有4种等可能的结果,P(不指向红色)=4.7巩固练习:(出示课件23)如图是一个转盘.转盘分成8个相同的部分,颜色分为红、绿、黄三种.指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个图形的交线时,当作指向其右边的图形).求下列事件的概率:(1)指针指向红色;(2)指针指向黄色或绿色.学生观察思考后独立解答:⑴14;⑵34.出示课件24,25:例4 如图是计算机中“扫雷”游戏的画面.在一个有9×9的方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B 区域.数字3表示在A区域有3颗地雷.下一步应该点击A区域还是B区域?教师问:可能出现哪些点数?师生共同分析:第二步怎样走取决于踩在哪部分遇到地雷可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小就可以了.3解:A 区域的方格总共有8个,标号3表示在这8个方格中有3个方格各藏有1颗地雷.因此,点击A 区域的任一方格,遇到地雷的概率是38; B 区域方格数为9×9-9=72.其中有地雷的方格数为10-3=7.因此,点击B 区域的任一方格,遇到地雷的概率是772; 由于38>772,即点击A 区域遇到地雷的可能性大于点击B 区域遇到地雷的可能性,因而第二步应该点击B 区域.巩固练习:(出示课件26)小红和小明在操场上做游戏,他们先在地上画了半径分别为2m 和3m 的同心圆(如下图),然后蒙上眼睛,并在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内(半径为3m 的圆内)不算.你认为游戏公平吗?为什么?学生独立思考交流后自主解答,一生板演.解:不公平,因为P (小红胜)=9π4π59π9-=, P (小明胜)=.49所以小红胜的可能性更大.(三)课堂练习(出示课件27-34)1.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°、90°、210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.16B.14C.13D.7122.掷一枚质地均匀的骰子,向上一面的点数为5的概率是______.3.从一副扑克牌(除去大小王)中任抽一张.P(抽到红心)=______;P(抽到黑桃)=______;P(抽到红心3)=______;P(抽到5)=______.4.将A、B、C、D、E这五个字母分别写在5张同样的纸条上,并将这些纸条放在一个盒子中.搅匀后从中任意摸出一张,会出现哪些可能的结果?它们是等可能的吗?5.一个桶里有60个弹珠——一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?6.某种彩票投注的规则如下:你可以从00~99中任意选取一个整数作为投注号码,中奖号码是00~99之间的一个整数,若你选中号码与中奖号码相同,即可获奖.请问中奖号码中两个数字相同的机会是多少?7.有7张纸签,分别标有数字1、1、2、2、3、4、5,从中随机地抽出一张,求:(1)抽出标有数字3的纸签的概率;(2)抽出标有数字1的纸签的概率;(3)抽出标有数字为奇数的纸签的概率.8.如图所示,转盘被等分为16个扇形.请在转盘的适当地方涂上颜色,使得自由转动这个转盘,当它停止转动时,指针落在红色区域的概率为38.你还能再举出一个不确定事件,使得它发生的概率也是38吗?参考答案:1.B2.1 6解析:掷一枚质地均匀的骰子,向上一面的点数为5的概率是:16.3.1 4;14;⑶152;⑷113.4.解:出现A、B、C、D、E五种结果.它们是等可能的.5.解:拿出白色弹珠的概率是1-35%-25%=40%;红色弹珠有60×35%=21;蓝色弹珠有60×25%=15;白色弹珠有60×40%=24.6.解:P (中奖号码数字相同)=110. 7.解:⑴P (数字3)=17; ⑵P (数字1)=27; ⑶P (数字为奇数)=47.8.解:选择任意六块涂色;8张卡片分别写上1,2,3,…,8,任意抽一张,抽到的数比4小的概率为38.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流 .(五)课前预习预习下节课(25.2第1课时)的相关内容.七、课后作业配套练习册内容八、板书设计:一般地,如果一个试验有n 个等可能的结果,事件A 包含其中的m 个结果,那么事件A 发生的概率为:().m P A n(0≤P (A )≤1) 九、教学反思:1.用学生喜欢的抽签,抽纸团和掷骰子试验,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索、合作交流此类型概率的求法,利用学生掌握本节课的知识,学生在解决问题的过程中,发展了思维能力,增强思维的缜密性,并且培养了学生解决问题的信心.2.在概率的古典定义基础上,教科书给出了概率的取值范围为0-1的性质,事件发生的可能性越大,它的概率越接近1,其中必然事件的概率为1,不可能事件的概率为0,两个确定事件可以看作特殊的随机事件.。
2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.1 随机事件教案
![2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.1 随机事件教案](https://img.taocdn.com/s3/m/e765cb36571252d380eb6294dd88d0d233d43cb9.png)
25.1随机事件与概率25.1.1随机事件一、教学目标【知识与技能】1.理解必然发生的事件,不可能发生的事件,随机事件的概念,掌握判断随机事件的方法.2.了解随机事件发生的可能性有大有小,并会对随机事件发生的可能性大小做出判断.【过程与方法】通过本节课的学习,会根据经验判断一个简单事件是属于必然事件,不可能事件还是随机事件.【情感态度与价值观】感受数学与现实生活的联系,积极参与对数学问题的探讨,利用数学的思维方式解决现实问题.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】随机事件的特点,会判断现实生活中的随机事件.【教学难点】判断现实生活中哪些事件是随机事件.五、课前准备课件、图片等.六、教学过程(一)导入新课你能确定明天是什么天气吗?(出示课件2)解决这个问题要研究随机事件.(板书课题)(二)探索新知探究一必然事件、不可能事件和随机事件出示课件4,5:活动1掷骰子掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,则骰子向上的一面:教师问:可能出现哪些点数?学生答:1点、2点、3点、4点、5点、6点.教师问:出现的点数是7,可能发生吗?学生答:不可能发生.教师问:出现的点数大于0,可能发生吗?学生答:一定会发生.教师问:出现的点数是4,可能发生吗?学生答:可能发生,也可能不发生.出示课件6-8:活动2摸球游戏教师问:小明从盒中任意摸出一球,一定能摸到红球吗?学生答:不一定.教师问:小麦从盒中摸出的球一定是白球吗?学生答:一定.教师问:小米从盒中摸出的球一定是红球吗?学生答:一定.教师问:三人每次都能摸到红球吗?学生答:小明不一定;小麦一定不能;小米一定能.出示课件9:“从如下一堆牌中任意抽一张牌,可以事先知道抽到红牌的发生情况”吗?学生交流,回答问题:第一组一定会发生;第二组一定不会发生;第三组有可能发生,也可能不发生.教师归纳:(出示课件10,11)在一定条件下,有些事件必然会发生,这样的事件称为必然事件.有些事件必然不会发生,这样的事件称为不可能事件.在一定条件下,可能发生也可能不发生的事件称为随机事件.教师强调:事件一般用大写字母A,B,C···表示.出示课件12:例判断下列事件是必然事件、不可能事件和随机事件:(1)乘公交车到十字路口,遇到红灯;(2)把铁块扔进水中,铁块浮起;(3)任选13人,至少有两人的出生月份相同;(4)从上海到北京的D314次动车明天正点到达北京.学生思考交流后,教师抽查学生口答:⑴随机事件;⑵不可能事件;⑶必然事件;⑷随机事件.巩固练习:(出示课件13)下列现象哪些是必然发生的,哪些是不可能发生的?学生独立思考后口答:必然事件;必然事件;不可能事件;不可能事件;必然事件;必然事件;不可能事件;不可能事件.探究二随机事件发生的可能性大小出示课件15-17:活动3:摸球袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.教师问:这个球是白球还是黑球?学生答:可能是白球也可能是黑球.教师问:如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?学生答:摸出黑球的可能性大.由于两种球的数量不等,所以“摸出黑球”和“摸出白球”的可能性的大小是不一样的,且“摸出黑球”的可能性大于“摸出白球”的可能性.教师问:能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?学生答:可以.白球个数不变,拿出两个黑球或黑球个数不变,加入2个白球.出示课件18:教师归纳:随机事件的特点:一般地,⑴随机事件发生的可能性是有大小的;⑵不同的随机事件发生的可能性的大小有可能不同.出示课件19:例1有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大的事件是_____,可能性最小的事件是_____(填写序号);(2)将这些事件的序号按发生的可能性从小到大的顺序排列:____________.学生观察交流后,师生共同解答.⑴④;②;⑵②<③<①<④.巩固练习:(出示课件20,21)1.随意从一副扑克牌中抽到Q和K的可能性大小是()A.抽到Q的可能性大B.抽到K的可能性大C.抽到Q和K的可能性一样大D.无法确定2.如果一件事情不发生的可能性为99.99%,那么它()A.必然发生B.不可能发生C.很有可能发生D.不太可能发生学生思考后独立解答:1.C解析:因为在一副扑克牌中,Q和K的数量相同,所以它们的可能性相同.2.D解析:一件事情不发生的可能性为99.99%,说明这个事件是随机事件,这个事件发生的可能性不大,即不太可能发生.出示课件22:例2一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其他区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.师生共同解答.解:至少再放入4个绿球.理由:袋中有绿球4个,再至少放入4个绿球后,袋中有不少于8个绿球,即绿球的数量最多,这样摸到绿球的可能性最大.巩固练习:(出示课件23,24)甲口袋中放着22个红球和8个黑球,乙口袋中则放着200个红球、8个黑球和2个白球,这三种球除了颜色以外没有任何区别,两袋中的球都各自搅匀,蒙上眼睛从口袋中取一个球,如果你想取一个红球,你选哪个口袋成功的机会大?小红认为选甲较好,因为里面的球较少,容易摸到红球;小明认为选乙较好,因为里面的球较多,成功的机会越大;小亮认为都一样,因为只摸一次,谁也无法预测会取出什么颜色的球.你觉得他们说的有道理吗?学生交流后口答.解:他们的说法都没有道理.因为摸到一个红球的可能性的大小和袋子中球的总数量没关系,而是取决于红球占总数量的比例.在甲口袋中取一个红球的可能性为2230,在乙口袋中取一个红球的可能性为200 210,即2021,因为2021>2230,所以在乙口袋中取一个红球的可能性大.(三)课堂练习(出示课件25-30)1.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件2.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨3.下列事件是必然事件,不可能事件还是随机事件?(1)太阳从东边升起.(2)篮球明星林书豪投10次篮球,次次命中.(3)打开电视正在播中国新航母舰载机训练的新闻片.(4)一个三角形的内角和为181度.4.如果袋子中有4个黑球和x个白球,从袋子中随机摸出一个,“摸出白球”与“摸出黑球”的可能性相同,则x=______.5.已知地球表面陆地面积与海洋面积的比约为3:7,如果宇宙中飞来一块陨石落在地球上,“落在海洋里”发生的可能性()“落在陆地上”的可能性.A.大于B.等于C.小于D.三种情况都有可能6.桌上扣着背面图案相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取1张扑克牌.(1)能够事先确定抽取的扑克牌的花色吗?(2)你认为抽到哪种花色扑克牌的可能性大?(3)能否通过改变某种花色的扑克牌的数量,使“抽到黑桃”和“抽到红桃”的可能性大小相同?7.你能说出几个与必然事件、随机事件、不可能事件相联系的成语吗?数量不限.参考答案:1.C2.B3.解:⑴必然事件;⑵随机事件;⑶随机事件;⑷不可能事件.4.45.A6.解:⑴不能确定;⑵黑桃;⑶可以,去掉一张黑桃或增加一张红桃.7.解:必然事件:种瓜得瓜,种豆得豆;黑白分明.随机事件:海市蜃楼,守株待兔.不可能事件:海枯石烂,画饼充饥,拔苗助长.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材129页练习1,2.2.配套练习册内容八、板书设计:九、教学反思:通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性.。
2024-2025学年初中数学九年级上册(华师版)教案第25章随机事件的概率25.2.1概率及其意义
![2024-2025学年初中数学九年级上册(华师版)教案第25章随机事件的概率25.2.1概率及其意义](https://img.taocdn.com/s3/m/0f1d5eefa1116c175f0e7cd184254b35effd1a7b.png)
第25章随机事件的概率25.2随机事件的概率1概率及其意义教学目标1.了解一个随机事件概率的意义.2.会在具体情境中求出一个随机事件的概率.3.会进行简单的概率计算及应用.教学重难点重点:概率的意义.难点:会进行简单的概率计算及应用.教学过程复习巩固随机事件:无法预先确定在一次试验中会不会发生的事件,我们称它们为随机事件.导入新课【问题1】五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序,盒中有五个形状、大小相同的纸团,每个纸团里面分别写着表示出场顺序的数字1,2,3,4,5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团.小军从分别有数字1,2,3,4,5的五个纸团中随机抽取一个,这个纸团里的数字有几种可能?每个数字被抽到的可能性大小是多少?【答案】小军从分别标有1,2,3,4,5的五个纸团中随机抽取一个,因为纸团看上去完全一样,又是随机抽取,所以每个数字被抽取的可能性大小是15,每个数字被抽到的可能性大小相等.教师总结:引出课题:25.2随机事件的概率1概率及其意义探究新知探究点一概率及其意义【动手操作】(学生互动,教师点评)活动1:两个同学一组,完成抛硬币游戏,每组抛20次,记录正面朝上的次数.活动2:两个同学一组,完成掷六面体骰子游戏,每组抛20次,记录点数为1的次数.每个组长汇总结果,全班将结果汇总到一起,你能发现什么结论?结论:在活动1中每个小组得到的结果差别很大,但将全班结果汇总在一起,抛教学反思硬币游戏中硬币正面朝上的频率接近21; 在活动2掷骰子的游戏中出现点数为1的频率为61. 我们通过大量的反复试验发现:频率逐渐稳定在概率附近.因此我们可以用试验的方法估计概率.【问题2】掷得“6”的概率等于61表示什么意思?有同学说它表示每6次就有1次抛掷出“6”,你同意吗?结论:概率等于61的含义为:如果掷很多次的话,那么平均每6次就有1次掷出“6”.【问题3】如果某个结果发生的概率为mn,你能解释它的意思吗?结论:概率为mn的含义为:如果做很多次试验的话,那么平均每n 次出现这个结果的次数为m 次.【总结】概率:一个事件发生的可能性叫做该事件的概率.概率的意义:概率是用来衡量事件在某一次试验中发生的可能性的大小的数量指标.典例讲解例1 投掷一枚均匀的正四面体骰子,每面上依次标有“吉” “祥” “如” “意”的字样.(1)掷的字是“吉”的概率是多少?这个数的含义是什么? (2)掷的字不是“吉”的概率是多少?这个数的含义是什么? (3)掷的字不是“如”“祥”的概率是多少?这个数的含义是什么? 【分析】(引导学生思考)掷得四个字的机会是均等的,即每个字出现的概率为41. 【解】(1)掷的字是“吉”的概率是41.这个数的含义是:如果抛掷多次正四面体骰子,那么平均每4次就有1次“吉”字.(2)掷的字不是“吉”的概率是43.这个数的含义是:如果抛掷多次正四面体骰子,那么平均每4次就有3次不是“吉”字.(3)掷的字不是“如”“祥”的概率是21.这个数的含义是:如果抛掷多次正四面体骰子,那么平均每2次就有1次掷的字不是“如”“祥”.探究点二 概率的求法 求概率,最关键的有两点:(1)要清楚我们关注的是发生哪个或哪些结果;(2)要清楚要求的所有机会均等.教学反思公式:()所有机会均等的结果关注结果发生数事件发生=P .【提示】一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率()mP A n=. 0≤ P (A )≤1,P (A )=1,A 为必然事件;P (A )=0,A 为不可能事件. 典例讲解例2 掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:①点数为2;②点数为奇数;③点数大于2且小于5.【探索思路】(引发学生思考) 掷一枚质地均匀的骰子,可能出现的结果有多少种?满足条件的结果有多少种?【解】掷一枚骰子,向上一面的点数可能性相等,分别为1,2,3,4,5,6,共有6种可能.①P (点数为2)=16.② 点数为奇数有3种可能,分别为1,3,5, 所以P (点数为奇数)=36=12. ③点数大于2且小于5有2种可能,分别3,4, 所以P (点数大于2且小于5)=26 =13.【即学即练】【互动】(小组讨论) 在一个不透明的口袋中,装有10个大小和外形一模一样的小球,其中有6个红球,4个白球,并在口袋中搅匀.任意从口袋中摸出一个球,摸到红球的概率为____;摸到白球的概率为 .【答案】3525例3 一个不透明的箱子里共有8个球,其中2个白球、1个红球、5个黄球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)再往箱子中放入多少个黄球,可以使摸到白球的概率变为0.2?【探索思路】(引发学生思考)(1)从箱子中任意摸出一个球,可能出现的结果有多少种?满足条件的结果有多少种?(2)已知摸到白球的概率,可以根据概率公式列方程求解.【解】(1)因为一个不透明的箱子里共有8个球,其中2个白球,所以从箱子中随机摸出一个球是白球的概率是28=14.(2)设再往箱子中放入x 个黄球,可以使摸到白球的概率变为0.2.根据题意,得28x+=0.2,解得x =2.所以再往箱子中放入2个黄球,可以使摸到白球的概率变为0.2.教学反思【归纳】(老师点评总结)(1)求概率主要是求随机事件发生的概率,关键是分别求出事件所有可能出现的结果数和所求的随机事件可能出现的结果数,后者与前者的比值即为该事件发生的概率.(2)第(2)问也可以根据概率公式直接用除法求出盒子中球的总数,从而求出还需要往箱子中放入的黄球个数.【即学即练】【互动】(小组讨论)任意掷一枚质地均匀的骰子.(1)掷出的点数大于4的概率是多少?(2)掷出的点数是偶数的概率是多少?【解】任意掷一枚质地均匀的骰子,所有可能的结果有6种,掷出的点数分别是1,2,3,4,5,6.因为骰子是质地均匀的,所以每种结果出现的可能性相等.(1)掷出的点数大于4的结果只有2种,分别是5,6,所以P(掷出的点数大于4)=26=13.(2)掷出的点数是偶数的结果有3种,分别是2,4,6,所以P(掷出的点数是偶数)=36=12.【题后总结】预测概率时,我们应用逻辑分析的方法求出所有机会均等的结果,并清楚所要关注的结果,然后运用概率公式计算.课堂练习1.小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率是( )A.14B.13C.12D.342.某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一课程的概率是( )A.12B.13C.16D.193.一个袋中有2个红球,2个黄球,每个球除颜色外都相同,从中一次摸出2个球,2个球都是红球的可能性是()A.12B.13C.16D.144.一个不透明的袋子中有3个红球,8个白球,a个黑球,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么a为( )A.3B.8C.5D.25.一只箱子里面有3个球,其中白球2个,红球1个,它们除颜色外均相同.(1)从箱子中任意摸出1个球是白球的概率是_____.(2)从箱子中任意摸出一个球不放回,将箱子中剩余的球搅匀后再摸出1个球,两次摸出的球都是白球的概率是_______.6.已知一个口袋中装有7个只有颜色不同的球,其中3个白球、4个黑球.(1)求从中随机抽取出一个球是黑球的概率是多少?(2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个球是白球的概率是14,求y与x之间的函数关系式.参考答案1.A2.D3.C教学反思4. C 【解析】由题意得,取得白球的概率和不是白球的概率均为12, 所以838a ++=12,解得a =5.5.(1)23 (2) 136.【解】(1)因为一个口袋中装有7个只有颜色不同的球,其中3个白球、4个黑球,所以从中随机抽取出一个球是黑球的概率是47.(2)因为口袋中有3个白球、4个黑球,再放入x 个白球和y 个黑球,从口袋中随机取出一个球是白球的概率是14,所以37x x y+++=14,则y =3x +5.课堂小结(学生总结,老师点评)1.概率:一个事件发生的可能性就叫做该事件的概率.如果在一次试验中,有n 种可能的结果,并且他们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率P (A )=mn.2.各种事件发生的概率大小: 必然事件A ,则P (A )=1; 不可能事件B ,则P (B )=0; 随机事件C ,则0<P (C )<1.布置作业教材第141页练习题,第153页习题25.2第1,2题板书设计课题 25.2 随机事件的概率1 概率及其意义【问题1】 【问题2】一、概率一个事件发生的可能性就叫做该事件的概率. 例1二、概率公式 例2()所有机会均等的结果关注结果发生数事件发生=P 例3三、各种事件发生的概率的大小: 必然事件A ,则P (A )=1; 不可能事件B ,则P (B )=0; 随机事件C ,则0<P (C )<1.教学反思。
人教版九年级数学上册25.1.2概率(第2课时)导学案
![人教版九年级数学上册25.1.2概率(第2课时)导学案](https://img.taocdn.com/s3/m/33fc5f36a300a6c30c229fbb.png)
25.1.2《概率》导学案一、学习目标1.理解P (A )=n m (在一次试验中有n 种可能的结果,其中A 包含m 种)的意义. 2.应用P (A )=n m 解决一些实际问题。
二、预习内容 自学课本132页例2,完成下列问题:如图25.1-2所示,有一个转盘,转盘分成7个相同的扇形,颇色分为红、绿、黄三种颇色,指针的位置固定,转动转盘后任其自由停止.其中的某个扇形会恰好停在指针所指的位里(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率(1)指针指向红色;(2)指针指向红色或黄色(3)指针不指向红色.三、探究学习自学例3例3如图25-8所示是计算机中“扫雷“游戏的画面,在99 个小方格的正方形雷区中,随机埋藏着10颗地雷,每个小方格内最多只能藏1颗地雷。
小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号3的方格相邻的方格记为A 区域(画线部分),A 区域外的部分记为B 区域,数字3表示在A 区域中有3颗地雷,那么第二步应该踩A 区域还是B 区域?分析:第二步应该踩在遇到地雷小的概率,所以现在关键求出在A 区域、B 区域的概率并比较。
四、巩固测评(一)基础训练:练习1 妈妈为小华包了 5 个外形完全相同的粽子,其中豆沙馅粽子 4 个,枣泥馅粽子 1 个.小华认为:自己任意拿起一个粽子,“拿到枣泥馅粽子”的概率为1/5。
小华的想法正确吗?为什么?(二)变式训练:练习2两个相同的可以自由转动的转盘 A 和 B,A盘被平均分为 12 份,颜色顺次为红、绿、蓝;B 盘被平均分为红、绿和蓝 3 份.分别自由转动 A 盘和 B 盘,A 盘停止时指针指向红色的概率与 B 盘停止时指针指向红色的概率哪个大?为什么?(三)综合训练:练习3 小明和小刚想通过抽取扑克牌的方式来决定谁去看电影,现有一副扑克牌,请你设计对小明和小刚都公平的抽签方案.你能设计出几种方案?五、学习心得。
九年级数学上册第25章随机事件的概率25.2随机事件的概率25.2.1概率及其意义导学案无答案新版华东师大版
![九年级数学上册第25章随机事件的概率25.2随机事件的概率25.2.1概率及其意义导学案无答案新版华东师大版](https://img.taocdn.com/s3/m/539a2cf7e009581b6bd9ebfe.png)
25.2.1 概率及其意义【学习目标】1、记忆并理解概率的定义,并从频率稳定性的角度了解概率的意义。
2、让学生经历试验、统计、分析、归纳、总结,进而了解并感受概率的意义。
3、学会怎样用概率描述随机事件发生的可能性的大小。
【学习重难点】对概率意义的正确理解【学习过程】一、课前准备1、把全班学生分成10个小组做抛掷硬币试验,每组同学抛掷100次,并整理获得的实验数据记录在下面的统计表中。
根据数据利用描点的方法绘制出函数图像并总结其中的规律。
2、下表记录了一名球员在罚球线上投篮的结果计算表中投中的频率(精确到0.01)并总结其规律。
二、学习新知自主学习:1、根据抛掷硬币的频率分布图规律总结出抛掷硬币的概率,并用自己的语言描述出概率的定义。
根据频率的取值范围总结出概率的取值范围。
2、同学之间相互讨论总结出概率的定义和取值范围。
3、同学们之间相互讨论,分析总结频率与概率有什么样的区别于联系?最后由教师点评补充,学生做出最后总结。
(1)一般的,频率是随着试验次数的变化而 。
(2)概率是一个客观的 。
(3)频率是概率的近似值,概率是频率的稳定制,他是频率的科学抽象,当试验次数越来越多时,频率围绕概率摆动的平均幅度会越来越 ,即频率靠近概率。
4、在1、2、3、4四个数字中,取任意两个数,则他们都是偶数的概率为 。
5、从一批种子中抽取若干粒,在同一条件下进行发芽试验,有关数据如下: 50计算表中发芽种子的频率(精确到0.01),估计发芽种子的概率。
实例分析:例1、在一个不透明的口袋中装着大小、外形一模一样的5个红球、3个蓝球、2个白球,从中任意摸出一球则:(1)P(摸到红球)= (2)P (摸到蓝球)= (3)P (摸到白球)=【随堂练习】1、一个事件发生的概率不可能是( ) A 、 0 B 、21 C 、 1 D 、 23 2、 事件的概率为1, 事件的概率为0,如果A 为 事件那么0<P(A)<1。
华师大版九年级上册数学第25章 随机事件的概率 导学案
![华师大版九年级上册数学第25章 随机事件的概率 导学案](https://img.taocdn.com/s3/m/ccff1f71af45b307e87197ed.png)
第25章 随机事件的概率导学案26、1、1 什么是概率学习目标:知识与技能目标: 1.能在简单的问题中预测事件的概率.2.知道所求具体问题概率的意思.过程与方法目标: 通过活动,感受数学与现实生活的联系;提高用数学知识来决问题的能力.情感与态度目标: 通过对概率问题的探索,使学生体会概率在现实生活中的广泛应用,使学生更好地认识世界,并形成自己的看法,促进形成正确的世界观及辩证唯物主义的观点学习重点难点:学习重点:对概率定义的理解和简单事件的概率的计算。
学习难点:用概率对事件进行认识。
导学流程:情景导入:问题:(1)如果天气预报说:“明日降水的概率是80%,那么你会带雨具吗?”(2)有两个工厂生产同一型号足球,甲厂产品的次品率为0.001,乙厂产品的次品率是0.01.若两厂的产品在价格等其他方面的条件都相同,你愿意买哪个厂的产品?自主学习:一、自学课本106页至108页内容,大约用五分钟时间,完成以下学习任务:(1)掌握概率的定义,(2)学习课本中表26.1.1,并把表格补充完整。
(3)如何从频率的角度解释某一具体的概率值?(4)除实验外我们还可以用什么方法求概率?合作交流:在自学的基础上,跟同桌交流书中所有问题的答案,答案不统一的,前后桌的同学再讨论后统一答案。
精讲点拨:( 1 ) P(关注的结果)=个数所有机会均等的结果的关注的结果个数 ( 2 ) 实验频率跟理论概率是统一的。
练习达标:(分层练习)A 组1.掷一枚普通正六面体骰子,求出下列事件出现的概率:P (掷得点数是6) =________ ;P (掷得点数小于7)= _________ ;P (掷得点数为5或3)= _________ ;P (掷得点数大于6)= ___________ .2.甲产品合格率为98,乙产品的合格率为80,你认为买哪一种产品更可靠?3.阿强在一次抽奖活动中,只抽了一张,就中了一等奖,能不能说这次抽奖活动的中奖率为百分之百?为什么?4.从一副扑克牌(除去大小王)中任抽一张·P (抽到红心) = ________ P (抽到黑桃) = _______P (抽到红心3)= ________ P 抽到5)= __________5.有5张数字卡片,它们的背面完全相同,正面分别标有1,2,2,3,4·现将它们的背面朝上,从中任意摸到一张卡片,则:P (摸到1号卡片)= _______ P (摸到2号卡片)= ________P (摸到3号卡片)= _______ P (摸到4号卡片)= ________6. 任意翻一下日历,翻出1月6日的概率为________.翻出4月31日的概率为 ________.B 组1. 某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会·如果转盘停止后,指针正好对准红、黄或绿色区域,顾客就可以分别获得100元、50元、20元的购物券(转盘被等分成20个扇形)·甲顾客购物120元,他获得购物券的概率是多少?他得到100元、50元、20元购物券的概率分别是多少?2.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏设置了如图所示的翻奖牌,如果只能在9个数字中选中一个翻牌,试求以下事件的概率(1)得到书籍;(2)得到奖励;(3)什么奖励也没有1. 用4个除颜色外完全相同的球设计一个摸球游戏.(1)使摸到白球的概率为 21 ,摸到红球的概率为21 (2)使摸到白球的概率为 21 ,摸到红球和黄球的概率都是41 .你能用8个除颜色外完全相同的球分别设计满足如上条件的游戏吗?课堂小结: 1、概率的概念 2、怎样预测简单事件的概率(由学生小结)达标测评:(1)班级里有15个女同学,27个男同学,•班上每个同学的名字都各自写在一张小纸条上,放入一个盒中搅匀.①如果班长闭上眼睛随便从盒中取出一张纸条,那么每个同学被抽中的可能性是多少?男同学被抽中的可能性是多少?女同学被抽中的可能性是多少?②如果班长已经抽出了6张纸条──2个女同学、4个男同学,他把这6张纸条放在桌上,闭上眼睛在盒中余下的纸条中再抽第7张纸条,•那么这时余下的每个同学被抽中的可能性是多少?男同学被抽中的可能性是多少?女同学被抽中的可能性是多少?(2)在分别写有1~20的20张小卡片中,随机地抽出1张卡片,•试求以下事件的概率.①该卡片上的数字是5的倍数;②该卡片上的数字不是5的倍数;③该卡片上的数字是素数;④该卡片上的数字不是素数.(3)抛掷一枚普通的硬币三次,有人说连续掷出三个正面和先掷出两个正面,•再掷出一个反面的机会是一样大吗?拓展提高:1、李琳的妈妈在李琳上学时总是叮咛她:“注意,别被来往的车辆碰着”,但李琳心里很不舒服,“哼,我市有300万人口,每天的交通事故只有几十件,事件发生的可能性太小,概率为0。
九年级数学上册第25章《随机事件的概率》(第2课时)概率及其意义导学案(无答案)(新版)华东师大版
![九年级数学上册第25章《随机事件的概率》(第2课时)概率及其意义导学案(无答案)(新版)华东师大版](https://img.taocdn.com/s3/m/d94d2c612e3f5727a5e962ad.png)
九年级数学上册第25章《随机事件的概率》(第2课时)概率及其意义导学案(无答案)(新版)华东师大版一、学习目标1.通过实验,理解事件发生的可能性问题,感受理论概率的意义和表示方法。
2.运用分析法和列表法计算简单事件发生的概率。
二、学习重点运用分析法和列表法计算简单事件发生的概率。
三、自主预习仔细阅读教材136-141,完成下列各题。
1.表示一个事件发生的__________的这个数,叫做该事件的概率。
例如:投掷一枚普通的六面筛子,“出现数字5”的概率为,可记作P(______)=它表示如果做投掷很多很多次的话,那么_____________就有1次掷出5 。
2.要分析出某一事件发生的概率,最关键的要明确两点:(1)___________________________________(2 )_____________________________________例如:投掷两枚硬币,则P(出现一正一反)=______。
(分析:我们要关注的结果是____________;而所有机会均等的结果有__________、_____________、____________、____________;所以P(出现一正一反)=____ 。
3.如果在一次实验中,共有m种机会均等的结果,而事件A包含其中的n种结果,那么P(A) = ______。
四、合作探究有两枚均匀的正四面体的各面依次标有1,2,3,4四个数字,同时抛掷两个这样的四面体,它们着地一面的数字不同的概率你能求得出来吗?五、巩固反馈(当堂检测)1.教材139,141页课后习题。
2.任意投掷均匀的骰子,4朝上的概率是_______。
3.袋中装有6个红球和7个白球,且除颜色外,这些球都相同,从袋中任意摸出红球的概率是_______。
4.某彩票中奖率是2%,买2张一定不会中奖,买1000张一定会中奖,这种说法是否正确?答______。
5.一副扑克牌(去掉大王和小王),随机抽取一张,抽到红桃的概率是______。
九年级数学 第25章 随机事件的概率25.2 随机事件的概率 1概率及其意义上课 数学
![九年级数学 第25章 随机事件的概率25.2 随机事件的概率 1概率及其意义上课 数学](https://img.taocdn.com/s3/m/f2375dea866fb84ae55c8d45.png)
因为 8 4
29 15
所以,选乙袋成功的机会大.
随堂演练
袋中有大小相同的3个绿球、3个黑球和6个
蓝球,从袋中任意摸出1个球,分别求出以
下各个事件发生的概率:
(1)摸出的球的颜色为绿色;P(绿色)
=
3
3 3
6
1 4
(2)摸出的球的颜色为白色;P(白色) =0 (3)摸出的球的颜色为蓝色;P(蓝色) = 6 1
概率= (1)的结果个数 (2)的结果个数
如在投掷一枚正方体骰子的游戏中,
P(掷得“6”)
=
1 6
问题
1
掷得“6”的概率等于 6 表示什么意思?
观察教材138页表25.2.2,从试验结果看, 掷得“6”的概率等于16 表示:如果掷很多 很多次,那么平均每6次有1次掷得“6”.
思考
1.已知掷得“6”的概率等于
‘6’”一致吗?
一致.这里一个“平均”,就是掷
600000次,出现6,大约稳定到100000 次左右.这一方面是频率会逐渐稳16 定到 附近.一方面平均每6次有1次掷出6.
例1 班级里有20个女同学,22个男
同学,班上每个同学的名字都各自写在 一张小纸条上,放入一个盒中搅匀.如 果老师闭上眼睛随便从盒中取出一张纸 条,那么抽到男同学名字的概率大还是 抽到女同学名字的概率大?
一个布袋中放着8个红球和16个黑 球,这两种球除了颜色以外没有任何区 别.布袋中的球已经搅匀.从布袋中任取1 个球,取出黑球与取出红球的概率分别 是多少?
解 P(取出黑球) = 1 6 2
8 16 3
P(取出红球) = 8 1
8 16 3
所以取出黑球的概率是 2 ,取 出红球的概率是 1 . 3
九年级数学上册第25章随机事件的概率25.2随机事件的概率25.2.2概率及其意义导学案(无答案)
![九年级数学上册第25章随机事件的概率25.2随机事件的概率25.2.2概率及其意义导学案(无答案)](https://img.taocdn.com/s3/m/ac24f3d26c85ec3a87c2c5f0.png)
九年级数学上册第25章随机事件的概率25.2 随机事件的概率25.2.2 概率及其意义导学案(无答案)(新版)华东师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第25章随机事件的概率25.2 随机事件的概率25.2.2 概率及其意义导学案(无答案)(新版)华东师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第25章随机事件的概率25.2 随机事件的概率25.2.2 概率及其意义导学案(无答案)(新版)华东师大版的全部内容。
25.2。
2 概率及其意义【学习目标】1. 理解 P (A )=n m (在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的意义。
2.应用 P (A )=n m 解决一些实际问题. 【学习重难点】理解 P (A )=n m 并运用它解决实际问题. 【学习过程】一、课前准备(1) 概率是什么?(2) P (A ) 的取值范围是什么?(3) A 是必然事件,B 是不可能事件,C 是随机事件,请你画出数轴把三个量表示出来。
二、学习新知自主学习:试验1从分别标有1、2、3、4、5号的5根纸签中随机抽取一根,抽出的签上的号码有( )种可能,即( )由于纸签的形状、大小相同,又是随机抽取的,所以我们认为:每个号码抽到的可能性( )都是( )。
试验2掷一个骰子,向上一面的点数有( )种可能,即( )由于骰子的构造、质地均匀,又是随机掷出的所以我们断言:每种结果的可能性( )都是()。
观察与思考:以上两个试验有两个共同特点:1。
( )2。
()如何分析出此类试验中事件的概率?归纳:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=( )。
25章随机事件的概率导学案无答案-数学九年级上册
![25章随机事件的概率导学案无答案-数学九年级上册](https://img.taocdn.com/s3/m/d30e9710a58da0116c1749ee.png)
25章随机事件的概率25.1概率的预测概率含义(1)制作人:沈泉壮【学习目标】1、通过实验,体会概率的意义;2、在具体情境中进一步了解概率的意义,体会概率是描述不确定现象的数学模型;3、了解一类事件发生概率的计算方法,并能进行简单计算。
【学习过程】(一)自主学习读一读: 阅读数学书P106看5分钟1、什么叫概率2. 概率的表示方法3. 必然事件发生的概率为( )4. 概率的范围例:你投掷手中的一枚普通的六面体骰子,“出现数字1”的概率是多少?解:P(出现数字1)=16必然事件发生的概率为1,记作P(必然事件)=1;不可能发生的概率为O ,记作,记作P(不可能事件)=0;如果A 为不确定事件,那么0()1P A <<。
(二)合作探究(15-18分钟)让我们一起实验,完成下表。
(小黑板或投影或以材料形式发到学生手上)。
让我们不要通过实验,看看是否能完成下表。
(小黑板或投影或以材料形式发到学生手上)。
完成此表后,你有何体会?完成此两表后,你发现了什么?总结 要计算概率最关键的有两点:(1) 要清楚( )(2) 要清楚() (1)、(2)两种结果个数之比就是关注的结果发生的概率,如P (掷得“6”)=61,读作:掷得“6”的概率等于61;P (拼成房子)=32,读作:拼成房子的概率等于323、提出问题问题1:掷得“6”的概率等于61表示什么意思?4、思 考(三)课堂检测(时间:15分钟)1、掷一个均匀的正四面体骰子,每个面上依次标有1、2、3、4。
求出掷得骰子:(1)“为4点”的概率,这个数表示什么意思?(2)“不为4点”的概率,这个数表示什么意思?(3)“为5点”的慨率是多少?;2、口袋中装有3个绿球,3个黑球,6个兰球,它们除颜色外其他均相同,闭上眼睛从袋中摸出1个球,求以下6个事件发生的概率;(1)摸到球的颜色为绿色(2) 摸到球的颜色为白色(3)摸到球的颜色为兰色(四) 学习反思本节课你的收获和困惑是什么25.1概率的预测概率含义(2)制作人:沈泉壮【学习目标】:1、掌握通过逻辑分析用计算的办法预测概率;2、经历各种疑问的解决,体验如何预测一类事件发生概率;3、培养分析问题与解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率及其意义
一、学习目标
1.通过实验,理解事件发生的可能性问题,感受理论概率的意义和表示方法。
2.运用分析法和列表法计算简单事件发生的概率。
二、学习重点
运用分析法和列表法计算简单事件发生的概率。
三、自主预习
仔细阅读教材136-141,完成下列各题。
1.表示一个事件发生的__________的这个数,叫做该事件的概率。
例如:投掷一枚普通的六面筛子,“出现数字5”的概率为,可记作P(______)=
它表示如果做投掷很多很多次的话,那么_____________就有1次掷出5 。
2.要分析出某一事件发生的概率,最关键的要明确两点:
(1)___________________________________
(2 )_____________________________________
例如:投掷两枚硬币,则P(出现一正一反)=______。
(分析:我们要关注的结果是____________;而所有机会均等的结果有__________、
_____________、____________、____________;所以P(出现一正一反)=____ 。
3.如果在一次实验中,共有m种机会均等的结果,而事件A包含其中的n种结果,那么P(A) = ______。
四、合作探究
有两枚均匀的正四面体的各面依次标有1,2,3,4四个数字,同时抛掷两个这样的四面体,它们着地一面的数字不同的概率你能求得出来吗?
五、巩固反馈(当堂检测)
1.教材139,141页课后习题。
2.任意投掷均匀的骰子,4朝上的概率是_______。
3.袋中装有6个红球和7个白球,且除颜色外,这些球都相同,从袋中任意摸出红球的概率是_______。
4.某彩票中奖率是2%,买2张一定不会中奖,买1000张一定会中奖,这种说法是否正确?答______。
5.一副扑克牌(去掉大王和小王),随机抽取一张,抽到红桃的概率是______。
6.下列说法正确的是()
A.小李喝了冰水才感冒的。
B.投掷一枚均匀的骰子,每个点数出现的频率相同
C.转盘A大,转盘B大,颜色和图案都一样的情况下,用转盘A实验成功的概率大
D.明天一定会下雨
7.袋子里有1个红球,3个白球,5个黄球,每个球除颜色外都相同,从中任意摸1个球:
⑴摸到红球的概率是多少?⑵摸到白球的概率是多少?⑶摸到黄球的概率是多少?
⑷哪一个概率大?。