小升初图形阴影部分面积专项练习

合集下载

小学六年级阴影部分面积专题复习经典例题 (含答案)

小学六年级阴影部分面积专题复习经典例题 (含答案)

小升初阴影部分面积专题姓名:.................... 1.求如图阴影部分的面积.(单位:厘米)2.如图,求阴影部分的面积.(单位:厘米)3.计算如图阴影部分的面积.(单位:厘米)4.求出如图阴影部分的面积:单位:厘米.5.求如图阴影部分的面积.(单位:厘米)6.求如图阴影部分面积.(单位:厘米)7.计算如图中阴影部分的面积.单位:厘米.8.求阴影部分的面积.单位:厘米.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)10.求阴影部分的面积.(单位:厘米)11.求下图阴影部分的面积.(单位:厘米)12.求阴影部分图形的面积.(单位:厘米)13.计算阴影部分面积(单位:厘米).14.求阴影部分的面积.(单位:厘米)15.求下图阴影部分的面积:(单位:厘米)16.求阴影部分面积(单位:厘米).17.(2012•长泰县)求阴影部分的面积.(单位:厘米)参考答案与试题解析1.求如图阴影部分的面积.(单位:厘米)考点:组合图形的面积;梯形的面积;圆、圆环的面积.分析:阴影部分的面积等于梯形的面积减去直径为4厘米的半圆的面积,利用梯形和半圆的面积公式代入数据即可解答.解答:解:(4+6)×4÷2÷2﹣3.14×÷2,=10﹣3.14×4÷2,=10﹣6.28,=3.72(平方厘米);答:阴影部分的面积是3.72平方厘米.点评:组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考查了梯形和圆的面积公式的灵活应用.2.如图,求阴影部分的面积.(单位:厘米)考点:组合图形的面积.分析:根据图形可以看出:阴影部分的面积等于正方形的面积减去4个扇形的面积.正方形的面积等于(10×10)100平方厘米,4个扇形的面积等于半径为(10÷2)5厘米的圆的面积,即:3.14×5×5=78.5(平方厘米).解答:解:扇形的半径是:10÷2,=5(厘米);10×10﹣3.14×5×5,100﹣78.5,=21.5(平方厘米);答:阴影部分的面积为21.5平方厘米.点评:解答此题的关键是求4个扇形的面积,即半径为5厘米的圆的面积.考点:组合图形的面积.分析:分析图后可知,10厘米不仅是半圆的直径,还是长方形的长,根据半径等于直径的一半,可以算出半圆的半径,也是长方形的宽,最后算出长方形和半圆的面积,用长方形的面积减去半圆的面积也就是阴影部分的面积.解答:解:10÷2=5(厘米),长方形的面积=长×宽=10×5=50(平方厘米),半圆的面积=πr2÷2=3.14×52÷2=39.25(平方厘米),阴影部分的面积=长方形的面积﹣半圆的面积,=50﹣39.25,=10.75(平方厘米);答:阴影部分的面积是10.75.点评:这道题重点考查学生求组合图形面积的能力,组合图形可以是两个图形拼凑在一起,也可以是从一个大图形中减去一个小图形得到;像这样的题首先要看属于哪一种类型的组合图形,再根据条件去进一步解答.4.求出如图阴影部分的面积:单位:厘米.考点:组合图形的面积.专题:平面图形的认识与计算.分析:由题意可知:阴影部分的面积=长方形的面积﹣以4厘米为半径的半圆的面积,代入数据即可求解.解答:解:8×4﹣3.14×42÷2,=32﹣25.12,=6.88(平方厘米);答:阴影部分的面积是6.88平方厘米.点评:解答此题的关键是:弄清楚阴影部分的面积可以由哪些图形的面积和或差求出.考点:圆、圆环的面积.分析:由图可知,正方形的边长也就是半圆的直径,阴影部分由4个直径为4厘米的半圆组成,也就是两个圆的面积,因此要求阴影部分的面积,首先要算1个圆的面积,然后根据“阴影部分的面积=2×圆的面积”算出答案.解答:解:S=πr2=3.14×(4÷2)2=12.56(平方厘米);阴影部分的面积=2个圆的面积,=2×12.56,=25.12(平方厘米);答:阴影部分的面积是25.12平方厘米.点评:解答这道题的关键是重点分析阴影部分是由什么图形组成的,再根据已知条件去计算.6.求如图阴影部分面积.(单位:厘米)考点:长方形、正方形的面积;平行四边形的面积;三角形的周长和面积.分析:图一中阴影部分的面积=大正方形面积的一半﹣与阴影部分相邻的小三角形的面积;图二中阴影部分的面积=梯形的面积﹣平四边形的面积,再将题目中的数据代入相应的公式进行计算.解答:解:图一中阴影部分的面积=6×6÷2﹣4×6÷2=6(平方厘米);图二中阴影部分的面积=(8+15)×(48÷8)÷2﹣48=21(平方厘米);答:图一中阴影部分的面积是6平方厘米,图二中阴影部分的面积是21平方厘米.点评:此题目是组合图形,需要把握好正方形、三角形、梯形及平行四边形的面积公式,再将题目中的数据代入相应的公式进行计算.考点:组合图形的面积.分析:由图意可知:阴影部分的面积=圆的面积,又因圆的半径为斜边上的高,利用同一个三角形的面积相等即可求出斜边上的高,也就等于知道了圆的半径,利用圆的面积公式即可求解.解答:解:圆的半径:15×20÷2×2÷25,=300÷25,=12(厘米);阴影部分的面积:×3.14×122,=×3.14×144,=0.785×144,=113.04(平方厘米);答:阴影部分的面积是113.04平方厘米.点评:此题考查了圆的面积公式及其应用,同时考查了学生观察图形的能力.8.求阴影部分的面积.单位:厘米.考点:组合图形的面积;三角形的周长和面积;圆、圆环的面积.分析:(1)圆环的面积等于大圆的面积减小圆的面积,大圆与小圆的直径已知,代入圆的面积公式,从而可以求出阴影部分的面积;(2)阴影部分的面积=圆的面积﹣三角形的面积,由图可知,此三角形是等腰直角三角形,则斜边上的高就等于圆的半径,依据圆的面积及三角形的面积公式即可求得三角形和圆的面积,从而求得阴影部分的面积.解答:解:(1)阴影部分面积:3.14×﹣3.14×,=28.26﹣3.14,=25.12(平方厘米);(2)阴影部分的面积:3.14×32﹣×(3+3)×3,=28.26﹣9,=19.26(平方厘米);答:圆环的面积是25.12平方厘米,阴影部分面积是19.26平方厘米.点评:此题主要考查圆和三角形的面积公式,解答此题的关键是找准圆的半径.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)考点:组合图形的面积;圆、圆环的面积.专题:平面图形的认识与计算.分析:观察图形可知:图中的大半圆内的两个小半圆的弧长之和与大半圆的弧长相等,所以图中阴影部分的周长,就是直径为10+3=13厘米的圆的周长,由此利用圆的周长公式即可进行计算;阴影部分的面积=大半圆的面积﹣以10÷2=5厘米为半径的半圆的面积﹣以3÷2=1.5厘米为半径的半圆的面积,利用半圆的面积公式即可求解.解答:解:周长:3.14×(10+3),=3.14×13,=40.82(厘米);面积:×3.14×[(10+3)÷2]2﹣×3.14×(10÷2)2﹣×3.14×(3÷2)2,=×3.14×(42.25﹣25﹣2.25),=×3.14×15,=23.55(平方厘米);答:阴影部分的周长是40.82厘米,面积是23.55平方厘米.点评:此题主要考查半圆的周长及面积的计算方法,根据半圆的弧长=πr,得出图中两个小半圆的弧长之和等于大半圆的弧长,是解决本题的关键.10.求阴影部分的面积.(单位:厘米)考点:圆、圆环的面积.分析:先用“3+3=6”求出大扇形的半径,然后根据“扇形的面积”分别计算出大扇形的面积和小扇形的面积,进而根据“大扇形的面积﹣小扇形的面积=阴影部分的面积”解答即可.解答:解:r=3,R=3+3=6,n=120,,=,=37.68﹣9.42,=28.26(平方厘米);答:阴影部分的面积是28.26平方厘米.点评:此题主要考查的是扇形面积计算公式的掌握情况,应主要灵活运用.11.求下图阴影部分的面积.(单位:厘米)考点:组合图形的面积.分析:先求出半圆的面积3.14×(10÷2)2÷2=39.25平方厘米,再求出空白三角形的面积10×(10÷2)÷2=25平方厘米,相减即可求解.解答:解:3.14×(10÷2)2÷2﹣10×(10÷2)÷2=39.25﹣25=14.25(平方厘米).答:阴影部分的面积为14.25平方厘米.点评:考查了组合图形的面积,本题阴影部分的面积=半圆的面积﹣空白三角形的面积.12.求阴影部分图形的面积.(单位:厘米)考点:组合图形的面积.分析:求阴影部分的面积可用梯形面积减去圆面积的,列式计算即可.解答:解:(4+10)×4÷2﹣3.14×42÷4,=28﹣12.56,=15.44(平方厘米);答:阴影部分的面积是15.44平方厘米.点评:解答此题的方法是用阴影部分所在的图形(梯形)面积减去空白图形(扇形)的面积,即可列式解答.13.计算阴影部分面积(单位:厘米).考点:组合图形的面积.专题:平面图形的认识与计算.分析:如图所示,阴影部分的面积=平行四边形的面积﹣三角形①的面积,平行四边形的底和高分别为10厘米和15厘米,三角形①的底和高分别为10厘米和(15﹣7)厘米,利用平行四边形和三角形的面积公式即可求解.解答:解:10×15﹣10×(15﹣7)÷2,=150﹣40,=110(平方厘米);答:阴影部分的面积是110平方厘米.点评:解答此题的关键是明白:阴影部分的面积不能直接求出,可以用平行四边形和三角形的面积差求出.14.求阴影部分的面积.(单位:厘米)考点:梯形的面积.分析:如图所示,将扇形①平移到扇形②的位置,求阴影部分的面积就变成了求梯形的面积,梯形的上底和下底已知,高就等于梯形的上底,代入梯形的面积公式即可求解.解答:解:(6+10)×6÷2,=16×6÷2,=96÷2,=48(平方厘米);答:阴影部分的面积是48平方厘米.点评:此题主要考查梯形的面积的计算方法,关键是利用平移的办法变成求梯形的面积.15.求下图阴影部分的面积:(单位:厘米)考点:组合图形的面积.分析:根据三角形的面积公式:S=ah,找到图中阴影部分的底和高,代入计算即可求解.解答:解:2×3÷2=6÷2=3(平方厘米).答:阴影部分的面积是3平方厘米.点评:考查了组合图形的面积,本题组合图形是一个三角形,关键是得到三角形的底和高.16.求阴影部分面积(单位:厘米).考点:组合图形的面积.分析:由图意可知:阴影部分的面积=梯形的面积﹣圆的面积,梯形的上底和高都等于圆的半径,上底和下底已知,从而可以求出阴影部分的面积.解答:解:(4+9)×4÷2﹣3.14×42×,=13×4÷2﹣3.14×4,=26﹣12.56,=13.44(平方厘米);答:阴影部分的面积是13.44平方厘米.点评:解答此题的关键是明白:梯形的下底和高都等于圆的半径,且阴影部分的面积=梯形的面积﹣圆的面积.17.(2012•长泰县)求阴影部分的面积.(单位:厘米)考点:组合图形的面积.分析:由图可知,阴影部分的面积=梯形的面积﹣半圆的面积.梯形的面积=(a+b)h,半圆的面积=πr2,将数值代入从而求得阴影部分的面积.解答:解:×(6+8)×(6÷2)﹣×3.14×(6÷2)2=×14×3﹣×3.14×9,=21﹣14.13,=6.87(平方厘米);答:阴影部分的面积为6.87平方厘米.点评:考查了组合图形的面积,解题关键是看懂图示,把图示分解成梯形,半圆和阴影部分,再分别求出梯形和半圆的面积.。

小学六年级-阴影部分面积-专题-复习-经典例题(含答案)

小学六年级-阴影部分面积-专题-复习-经典例题(含答案)

小升初阴影部分面积专题1.求如图阴影部分的面积.(单位:厘米)2.如图,求阴影部分的面积.(单位:厘米)3.计算如图阴影部分的面积.(单位:厘米)4.求出如图阴影部分的面积:单位:厘米.5.求如图阴影部分的面积.(单位:厘米)6.求如图阴影部分面积.(单位:厘米)7.计算如图中阴影部分的面积.单位:厘米.8.求阴影部分的面积.单位:厘米.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)10.求阴影部分的面积.(单位:厘米)11.求下图阴影部分的面积.(单位:厘米)12.求阴影部分图形的面积.(单位:厘米)13.计算阴影部分面积(单位:厘米).14.求阴影部分的面积.(单位:厘米)15.求下图阴影部分的面积:(单位:厘米)16.求阴影部分面积(单位:厘米).17.(2012•长泰县)求阴影部分的面积.(单位:厘米)参考答案与试题解析1.求如图阴影部分的面积.(单位:厘米)考点:组合图形的面积;梯形的面积;圆、圆环的面积.分析:阴影部分的面积等于梯形的面积减去直径为4厘米的半圆的面积,利用梯形和半圆的面积公式代入数据即可解答.解答:解:(4+6)×4÷2÷2﹣3.14×÷2,=10﹣3.14×4÷2,=10﹣6.28,=3.72(平方厘米);答:阴影部分的面积是3.72平方厘米.点评:组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考查了梯形和圆的面积公式的灵活应用.2.如图,求阴影部分的面积.(单位:厘米)考点:组合图形的面积.分析:根据图形可以看出:阴影部分的面积等于正方形的面积减去4个扇形的面积.正方形的面积等于(10×10)100平方厘米,4个扇形的面积等于半径为(10÷2)5厘米的圆的面积,即:3.14×5×5=78.5(平方厘米).解答:解:扇形的半径是:10÷2,=5(厘米);10×10﹣3.14×5×5,100﹣78.5,=21.5(平方厘米);答:阴影部分的面积为21.5平方厘米.点评:解答此题的关键是求4个扇形的面积,即半径为5厘米的圆的面积.3.计算如图阴影部分的面积.(单位:厘米)考点:组合图形的面积.分析:分析图后可知,10厘米不仅是半圆的直径,还是长方形的长,根据半径等于直径的一半,可以算出半圆的半径,也是长方形的宽,最后算出长方形和半圆的面积,用长方形的面积减去半圆的面积也就是阴影部分的面积.解答:解:10÷2=5(厘米),长方形的面积=长×宽=10×5=50(平方厘米),半圆的面积=πr2÷2=3.14×52÷2=39.25(平方厘米),阴影部分的面积=长方形的面积﹣半圆的面积,=50﹣39.25,=10.75(平方厘米);答:阴影部分的面积是10.75.点评:这道题重点考查学生求组合图形面积的能力,组合图形可以是两个图形拼凑在一起,也可以是从一个大图形中减去一个小图形得到;像这样的题首先要看属于哪一种类型的组合图形,再根据条件去进一步解答.4.求出如图阴影部分的面积:单位:厘米.考点:组合图形的面积.专题:平面图形的认识与计算.分析:由题意可知:阴影部分的面积=长方形的面积﹣以4厘米为半径的半圆的面积,代入数据即可求解.解答:解:8×4﹣3.14×42÷2,=32﹣25.12,=6.88(平方厘米);答:阴影部分的面积是6.88平方厘米.点评:解答此题的关键是:弄清楚阴影部分的面积可以由哪些图形的面积和或差求出.5.求如图阴影部分的面积.(单位:厘米)考点:圆、圆环的面积.分析:由图可知,正方形的边长也就是半圆的直径,阴影部分由4个直径为4厘米的半圆组成,也就是两个圆的面积,因此要求阴影部分的面积,首先要算1个圆的面积,然后根据“阴影部分的面积=2×圆的面积”算出答案.解答:解:S=πr2=3.14×(4÷2)2=12.56(平方厘米);阴影部分的面积=2个圆的面积,=2×12.56,=25.12(平方厘米);答:阴影部分的面积是25.12平方厘米.点评:解答这道题的关键是重点分析阴影部分是由什么图形组成的,再根据已知条件去计算.6.求如图阴影部分面积.(单位:厘米)考点:长方形、正方形的面积;平行四边形的面积;三角形的周长和面积.分析:图一中阴影部分的面积=大正方形面积的一半﹣与阴影部分相邻的小三角形的面积;图二中阴影部分的面积=梯形的面积﹣平四边形的面积,再将题目中的数据代入相应的公式进行计算.解答:解:图一中阴影部分的面积=6×6÷2﹣4×6÷2=6(平方厘米);图二中阴影部分的面积=(8+15)×(48÷8)÷2﹣48=21(平方厘米);答:图一中阴影部分的面积是6平方厘米,图二中阴影部分的面积是21平方厘米.点评:此题目是组合图形,需要把握好正方形、三角形、梯形及平行四边形的面积公式,再将题目中的数据代入相应的公式进行计算.7.计算如图中阴影部分的面积.单位:厘米.考点:组合图形的面积.分析:由图意可知:阴影部分的面积=圆的面积,又因圆的半径为斜边上的高,利用同一个三角形的面积相等即可求出斜边上的高,也就等于知道了圆的半径,利用圆的面积公式即可求解.解答:解:圆的半径:15×20÷2×2÷25,=300÷25,=12(厘米);阴影部分的面积:×3.14×122,=×3.14×144,=0.785×144,=113.04(平方厘米);答:阴影部分的面积是113.04平方厘米.点评:此题考查了圆的面积公式及其应用,同时考查了学生观察图形的能力.8.求阴影部分的面积.单位:厘米.考点:组合图形的面积;三角形的周长和面积;圆、圆环的面积.分析:(1)圆环的面积等于大圆的面积减小圆的面积,大圆与小圆的直径已知,代入圆的面积公式,从而可以求出阴影部分的面积;(2)阴影部分的面积=圆的面积﹣三角形的面积,由图可知,此三角形是等腰直角三角形,则斜边上的高就等于圆的半径,依据圆的面积及三角形的面积公式即可求得三角形和圆的面积,从而求得阴影部分的面积.解答:解:(1)阴影部分面积:3.14×﹣3.14×,=28.26﹣3.14,=25.12(平方厘米);(2)阴影部分的面积:3.14×32﹣×(3+3)×3,=28.26﹣9,=19.26(平方厘米);答:圆环的面积是25.12平方厘米,阴影部分面积是19.26平方厘米.点评:此题主要考查圆和三角形的面积公式,解答此题的关键是找准圆的半径.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)考点:组合图形的面积;圆、圆环的面积.专题:平面图形的认识与计算.分析:观察图形可知:图中的大半圆内的两个小半圆的弧长之和与大半圆的弧长相等,所以图中阴影部分的周长,就是直径为10+3=13厘米的圆的周长,由此利用圆的周长公式即可进行计算;阴影部分的面积=大半圆的面积﹣以10÷2=5厘米为半径的半圆的面积﹣以3÷2=1.5厘米为半径的半圆的面积,利用半圆的面积公式即可求解.解答:解:周长:3.14×(10+3),=3.14×13,=40.82(厘米);面积:×3.14×[(10+3)÷2]2﹣×3.14×(10÷2)2﹣×3.14×(3÷2)2,=×3.14×(42.25﹣25﹣2.25),=×3.14×15,=23.55(平方厘米);答:阴影部分的周长是40.82厘米,面积是23.55平方厘米.点评:此题主要考查半圆的周长及面积的计算方法,根据半圆的弧长=πr,得出图中两个小半圆的弧长之和等于大半圆的弧长,是解决本题的关键.10.求阴影部分的面积.(单位:厘米)考点:圆、圆环的面积.分析:先用“3+3=6”求出大扇形的半径,然后根据“扇形的面积”分别计算出大扇形的面积和小扇形的面积,进而根据“大扇形的面积﹣小扇形的面积=阴影部分的面积”解答即可.解答:解:r=3,R=3+3=6,n=120,,=,=37.68﹣9.42,=28.26(平方厘米);答:阴影部分的面积是28.26平方厘米.点评:此题主要考查的是扇形面积计算公式的掌握情况,应主要灵活运用.11.求下图阴影部分的面积.(单位:厘米)考点:组合图形的面积.分析:先求出半圆的面积3.14×(10÷2)2÷2=39.25平方厘米,再求出空白三角形的面积10×(10÷2)÷2=25平方厘米,相减即可求解.解答:解:3.14×(10÷2)2÷2﹣10×(10÷2)÷2=39.25﹣25=14.25(平方厘米).答:阴影部分的面积为14.25平方厘米.点评:考查了组合图形的面积,本题阴影部分的面积=半圆的面积﹣空白三角形的面积.12.求阴影部分图形的面积.(单位:厘米)考点:组合图形的面积.分析:求阴影部分的面积可用梯形面积减去圆面积的,列式计算即可.解答:解:(4+10)×4÷2﹣3.14×42÷4,=28﹣12.56,=15.44(平方厘米);答:阴影部分的面积是15.44平方厘米.点评:解答此题的方法是用阴影部分所在的图形(梯形)面积减去空白图形(扇形)的面积,即可列式解答.13.计算阴影部分面积(单位:厘米).考点:组合图形的面积.专题:平面图形的认识与计算.分析:如图所示,阴影部分的面积=平行四边形的面积﹣三角形①的面积,平行四边形的底和高分别为10厘米和15厘米,三角形①的底和高分别为10厘米和(15﹣7)厘米,利用平行四边形和三角形的面积公式即可求解.解答:解:10×15﹣10×(15﹣7)÷2,=150﹣40,=110(平方厘米);答:阴影部分的面积是110平方厘米.点评:解答此题的关键是明白:阴影部分的面积不能直接求出,可以用平行四边形和三角形的面积差求出.14.求阴影部分的面积.(单位:厘米)考点:梯形的面积.分析:如图所示,将扇形①平移到扇形②的位置,求阴影部分的面积就变成了求梯形的面积,梯形的上底和下底已知,高就等于梯形的上底,代入梯形的面积公式即可求解.解答:解:(6+10)×6÷2,=16×6÷2,=96÷2,=48(平方厘米);答:阴影部分的面积是48平方厘米.点评:此题主要考查梯形的面积的计算方法,关键是利用平移的办法变成求梯形的面积.15.求下图阴影部分的面积:(单位:厘米)考点:组合图形的面积.分析:根据三角形的面积公式:S=ah,找到图中阴影部分的底和高,代入计算即可求解.解答:解:2×3÷2=6÷2=3(平方厘米).答:阴影部分的面积是3平方厘米.点评:考查了组合图形的面积,本题组合图形是一个三角形,关键是得到三角形的底和高.16.求阴影部分面积(单位:厘米).考点:组合图形的面积.分析:由图意可知:阴影部分的面积=梯形的面积﹣圆的面积,梯形的上底和高都等于圆的半径,上底和下底已知,从而可以求出阴影部分的面积.解答:解:(4+9)×4÷2﹣3.14×42×,=13×4÷2﹣3.14×4,=26﹣12.56,=13.44(平方厘米);答:阴影部分的面积是13.44平方厘米.点评:解答此题的关键是明白:梯形的下底和高都等于圆的半径,且阴影部分的面积=梯形的面积﹣圆的面积.17.(2012•长泰县)求阴影部分的面积.(单位:厘米)考点:组合图形的面积.分析:由图可知,阴影部分的面积=梯形的面积﹣半圆的面积.梯形的面积=(a+b)h,半圆的面积=πr2,将数值代入从而求得阴影部分的面积.解答:解:×(6+8)×(6÷2)﹣×3.14×(6÷2)2=×14×3﹣×3.14×9,=21﹣14.13,=6.87(平方厘米);答:阴影部分的面积为6.87平方厘米.点评:考查了组合图形的面积,解题关键是看懂图示,把图示分解成梯形,半圆和阴影部分,再分别求出梯形和半圆的面积.。

阴影部分面积专题复习经典例题(含答案)

阴影部分面积专题复习经典例题(含答案)

小升初阴影部分面积专题姓名:1.求如图阴影部分的面积.(单位:厘米)2.如图,求阴影部分的面积.()3.计算如图阴影部分的面积.(单位:厘米)4.求出如图阴影部分的面积:单位:厘米.5.求如图阴影部分的面积.(单位:厘米)6.求如图阴影部分面积.(单位:cm)7.计算如图中阴影部分的面积.单位:厘米.8.求阴影部分的面积.单位:厘米.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)10.求阴影部分的面积.(单位:厘米)11.求下图阴影部分的面积.(单位:厘米)12.求阴影部分图形的面积.(单位:厘米)13.计算阴影部分面积(单位:厘米).14.求阴影部分的面积.(单位:厘米)15.求下图阴影部分的面积:(单位:厘米)16.求阴影部分面积(单位:厘米).17.(2012•长泰县)求阴影部分的面积.(单位:厘米)参考答案与试题解析1.求如图阴影部分的面积.(单位:厘米)考点组合图形的面积;梯形的面积;圆、圆环的面积.分析阴影部分的面积等于梯形的面积减去直径为4厘米的半圆的面积,利用梯形和半圆的面积公式代入数据即可解答.解答解:(4+6)×4÷2÷2﹣3.14×÷2,=10﹣3.14×4÷2,=10﹣6.28,=3.72(平方厘米);答:阴影部分的面积是3.72平方厘米.点评组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考查了梯形和圆的面积公式的灵活应用.2.如图,求阴影部分的面积.(单位:厘米)考点组合图形的面积.分析根据图形可以看出:阴影部分的面积等于正方形的面积减去4个扇形的面积.正方形的面积等于(10×10)100平方厘米,4个扇形的面积等于半径为(10÷2)5厘米的圆的面积,即:3.14×5×5=78.5(平方厘米).解答解:扇形的半径是:10÷2,=5(厘米);10×10﹣3.14×5×5,100﹣78.5,=21.5(平方厘米);答:阴影部分的面积为21.5平方厘米.点评解答此题的关键是求4个扇形的面积,即半径为5厘米的圆的面积.3.计算如图阴影部分的面积.(单位:厘米)考点组合图形的面积.分析分析图后可知,10厘米不仅是半圆的直径,还是长方形的长,根据半径等于直径的一半,可以算出半圆的半径,也是长方形的宽,最后算出长方形和半圆的面积,用长方形的面积减去半圆的面积也就是阴影部分的面积.解答解:10÷2=5(厘米),长方形的面积=长×宽=10×5=50(平方厘米),半圆的面积=πr2÷2=3.14×52÷2=39.25(平方厘米),阴影部分的面积=长方形的面积﹣半圆的面积,=50﹣39.25,=10.75(平方厘米);答:阴影部分的面积是10.75.点评这道题重点考查学生求组合图形面积的能力,组合图形可以是两个图形拼凑在一起,也可以是从一个大图形中减去一个小图形得到;像这样的题首先要看属于哪一种类型的组合图形,再根据条件去进一步解答.4.求出如图阴影部分的面积:单位:厘米.考点组合图形的面积.专题平面图形的认识与计算.分析由题意可知:阴影部分的面积=长方形的面积﹣以4厘米为半径的半圆的面积,代入数据即可求解.解答解:8×4﹣3.14×42÷2,=32﹣25.12,=6.88(平方厘米);答:阴影部分的面积是6.88平方厘米.点评解答此题的关键是:弄清楚阴影部分的面积可以由哪些图形的面积和或差求出.5.求如图阴影部分的面积.(单位:厘米)考点圆、圆环的面积.分析由图可知,正方形的边长也就是半圆的直径,阴影部分由4个直径为4厘米的半圆组成,也就是两个圆的面积,因此要求阴影部分的面积,首先要算1个圆的面积,然后根据“阴影部分的面积=2×圆的面积”算出答案.解答解:S=πr2=3.14×(4÷2)2=12.56(平方厘米);阴影部分的面积=2个圆的面积,=2×12.56,=25.12(平方厘米);答:阴影部分的面积是25.12平方厘米.点评解答这道题的关键是重点分析阴影部分是由什么图形组成的,再根据已知条件去计算.6.求如图阴影部分面积.(单位:厘米)考点长方形、正方形的面积;平行四边形的面积;三角形的周长和面积.分析图一中阴影部分的面积=大正方形面积的一半﹣与阴影部分相邻的小三角形的面积;图二中阴影部分的面积=梯形的面积﹣平四边形的面积,再将题目中的数据代入相应的公式进行计算.解答解:图一中阴影部分的面积=6×6÷2﹣4×6÷2=6(平方厘米);图二中阴影部分的面积=(8+15)×(48÷8)÷2﹣48=21(平方厘米);答:图一中阴影部分的面积是6平方厘米,图二中阴影部分的面积是21平方厘米.点评此题目是组合图形,需要把握好正方形、三角形、梯形及平行四边形的面积公式,再将题目中的数据代入相应的公式进行计算.7.计算如图中阴影部分的面积.单位:厘米.考点组合图形的面积.分析由图意可知:阴影部分的面积=圆的面积,又因圆的半径为斜边上的高,利用同一个三角形的面积相等即可求出斜边上的高,也就等于知道了圆的半径,利用圆的面积公式即可求解.解答解:圆的半径:15×20÷2×2÷25,=300÷25,=12(厘米);阴影部分的面积:×3.14×122,=×3.14×144,=0.785×144,=113.04(平方厘米);答:阴影部分的面积是113.04平方厘米.点评此题考查了圆的面积公式及其应用,同时考查了学生观察图形的能力.8.求阴影部分的面积.单位:厘米.考点组合图形的面积;三角形的周长和面积;圆、圆环的面积.分析(1)圆环的面积等于大圆的面积减小圆的面积,大圆与小圆的直径已知,代入圆的面积公式,从而可以求出阴影部分的面积;(2)阴影部分的面积=圆的面积﹣三角形的面积,由图可知,此三角形是等腰直角三角形,则斜边上的高就等于圆的半径,依据圆的面积及三角形的面积公式即可求得三角形和圆的面积,从而求得阴影部分的面积.解答解:(1)阴影部分面积:3.14×﹣3.14×,=28.26﹣3.14,=25.12(平方厘米);(2)阴影部分的面积:3.14×32﹣×(3+3)×3,=28.26﹣9,=19.26(平方厘米);答:圆环的面积是25.12平方厘米,阴影部分面积是19.26平方厘米.点评此题主要考查圆和三角形的面积公式,解答此题的关键是找准圆的半径.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)考点组合图形的面积;圆、圆环的面积.专题平面图形的认识与计算.分析观察图形可知:图中的大半圆内的两个小半圆的弧长之和与大半圆的弧长相等,所以图中阴影部分的周长,就是直径为10+3=13厘米的圆的周长,由此利用圆的周长公式即可进行计算;阴影部分的面积=大半圆的面积﹣以10÷2=5厘米为半径的半圆的面积﹣以3÷2=1.5厘米为半径的半圆的面积,利用半圆的面积公式即可求解.解答解:周长:3.14×(10+3),=3.14×13,=40.82(厘米);面积:×3.14×[(10+3)÷2]2﹣×3.14×(10÷2)2﹣×3.14×(3÷2)2,=×3.14×(42.25﹣25﹣2.25),=×3.14×15,=23.55(平方厘米);答:阴影部分的周长是40.82厘米,面积是23.55平方厘米.点评此题主要考查半圆的周长及面积的计算方法,根据半圆的弧长=πr,得出图中两个小半圆的弧长之和等于大半圆的弧长,是解决本题的关键.10.求阴影部分的面积.(单位:厘米)考点圆、圆环的面积.分析先用“3+3=6”求出大扇形的半径,然后根据“扇形的面积”分别计算出大扇形的面积和小扇形的面积,进而根据“大扇形的面积﹣小扇形的面积=阴影部分的面积”解答即可.解答解:r=3,R=3+3=6,n=120,,=,=37.68﹣9.42,=28.26(平方厘米);答:阴影部分的面积是28.26平方厘米.点评此题主要考查的是扇形面积计算公式的掌握情况,应主要灵活运用.11.求下图阴影部分的面积.(单位:厘米)考点组合图形的面积.分析先求出半圆的面积3.14×(10÷2)2÷2=39.25平方厘米,再求出空白三角形的面积10×(10÷2)÷2=25平方厘米,相减即可求解.解答解:3.14×(10÷2)2÷2﹣10×(10÷2)÷2=39.25﹣25=14.25(平方厘米).答:阴影部分的面积为14.25平方厘米.点评考查了组合图形的面积,本题阴影部分的面积=半圆的面积﹣空白三角形的面积.12.求阴影部分图形的面积.(单位:厘米)考点组合图形的面积.分析求阴影部分的面积可用梯形面积减去圆面积的,列式计算即可.解答解:(4+10)×4÷2﹣3.14×42÷4,=28﹣12.56,=15.44(平方厘米);答:阴影部分的面积是15.44平方厘米.点评解答此题的方法是用阴影部分所在的图形(梯形)面积减去空白图形(扇形)的面积,即可列式解答.13.计算阴影部分面积(单位:厘米).考点组合图形的面积.专题平面图形的认识与计算.分析如图所示,阴影部分的面积=平行四边形的面积﹣三角形①的面积,平行四边形的底和高分别为10厘米和15厘米,三角形①的底和高分别为10厘米和(15﹣7)厘米,利用平行四边形和三角形的面积公式即可求解.解答解:10×15﹣10×(15﹣7)÷2,=150﹣40,=110(平方厘米);答:阴影部分的面积是110平方厘米.点评解答此题的关键是明白:阴影部分的面积不能直接求出,可以用平行四边形和三角形的面积差求出.14.求阴影部分的面积.(单位:厘米)考点梯形的面积.分析如图所示,将扇形①平移到扇形②的位置,求阴影部分的面积就变成了求梯形的面积,梯形的上底和下底已知,高就等于梯形的上底,代入梯形的面积公式即可求解.解答解:(6+10)×6÷2,=16×6÷2,=96÷2,=48(平方厘米);答:阴影部分的面积是48平方厘米.点评此题主要考查梯形的面积的计算方法,关键是利用平移的办法变成求梯形的面积.15.求下图阴影部分的面积:(单位:厘米)考点组合图形的面积.分析根据三角形的面积公式:S=ah,找到图中阴影部分的底和高,代入计算即可求解.解答解:2×3÷2=6÷2=3(平方厘米).答:阴影部分的面积是3平方厘米.点评考查了组合图形的面积,本题组合图形是一个三角形,关键是得到三角形的底和高.16.求阴影部分面积(单位:厘米).考点组合图形的面积.分析由图意可知:阴影部分的面积=梯形的面积﹣圆的面积,梯形的上底和高都等于圆的半径,上底和下底已知,从而可以求出阴影部分的面积.解答解:(4+9)×4÷2﹣3.14×42×,=13×4÷2﹣3.14×4,=26﹣12.56,=13.44(平方厘米);答:阴影部分的面积是13.44平方厘米.点评解答此题的关键是明白:梯形的下底和高都等于圆的半径,且阴影部分的面积=梯形的面积﹣圆的面积.17.(2012•长泰县)求阴影部分的面积.(单位:厘米)考点组合图形的面积.分析由图可知,阴影部分的面积=梯形的面积﹣半圆的面积.梯形的面积=(a+b)h,半圆的面积=πr2,将数值代入从而求得阴影部分的面积.解答解:×(6+8)×(6÷2)﹣×3.14×(6÷2)2=×14×3﹣×3.14×9,=21﹣14.13,=6.87(平方厘米);答:阴影部分的面积为6.87平方厘米.点评考查了组合图形的面积,解题关键是看懂图示,把图示分解成梯形,半圆和阴影部分,再分别求出梯形和半圆的面积.。

完整版小学六年级小学升初中小升初阴影面积专题复习经典例题图形面积几何图形含答案

完整版小学六年级小学升初中小升初阴影面积专题复习经典例题图形面积几何图形含答案

1小学六年级小学升初中阴影部分面积专题1.求如图阴影部分的面积.(单位:厘米)2.如图,求阴影部分的面积.(单位:厘米)3.计算如图阴影部分的面积.(单位:厘米)4.求出如图阴影部分的面积:单位:厘米.25.求如图阴影部分的面积.(单位:厘米)6.求如图阴影部分面积.(单位:厘米)7.计算如图中阴影部分的面积.单位:厘米.8.求阴影部分的面积.单位:厘米.39.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)10.求阴影部分的面积.(单位:厘米)11.求下图阴影部分的面积.(单位:厘米)12.求阴影部分图形的面积.(单位:厘米)13.计算阴影部分面积(单位:厘米).414.求阴影部分的面积.(单位:厘米)15.求下图阴影部分的面积:(单位:厘米)16.求阴影部分面积(单位:厘米).17.(2012?长泰县)求阴影部分的面积.(单位:厘米)☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆参考答案与试题解析.51.求如图阴影部分的面积.(单位:厘米)考点组合图形的面积;梯形的面积;圆、圆环的面积1526356分析阴影部分的面积等于梯形的面积减去直径为4厘米的半圆的面积,利用梯形和半圆的面积公式代入数据即可解答.解答÷2﹣3.14×÷2÷解:(4+6)×42,=10﹣3.14×4÷2,=10﹣6.28,=3.72(平方厘米);答:阴影部分的面积是3.72平方厘米.点评组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考查了梯形和圆的面积公式的灵活应用.2.如图,求阴影部分的面积.(单位:厘米)考点组合图形的面积.1526356分析根据图形可以看出:阴影部分的面积等于正方形的面积减去4个扇形的面积.正方形的面积等于(10×10)100平方厘米,4个扇形的面积等于半径为(10÷2)5厘米的圆的面积,即:3.14×5×5=78.5(平方厘米).解答解:扇形的半径是:10÷2,=5(厘米);10×10﹣3.14×5×5,100﹣78.5,=21.5(平方厘米);答:阴影部分的面积为21.5平方厘米.点评解答此题的关键是求4个扇形的面积,即半径为5厘米的圆的面积.3.计算如图阴影部分的面积.(单位:厘米)6考点组合图形的面积1526356分析分析图后可知,10厘米不仅是半圆的直径,还是长方形的长,根据半径等于直径的一半,可以算出半圆的半径,也是长方形的宽,最后算出长方形和半圆的面积,用长方形的面积减去半圆的面积也就是阴影部分的面积.解答解:10÷2=5(厘米),长方形的面积=长×宽=10×5=50(平方厘米),22÷2=39.255(平方厘米),π=r ÷2=3.14×半圆的面积阴影部分的面积=长方形的面积﹣半圆的面积,=50﹣39.25,=10.75(平方厘米);答:阴影部分的面积是10.75.点评这道题重点考查学生求组合图形面积的能力,组合图形可以是两个图形拼凑在一起,也可以是从一个大图形中减去一个小图形得到;像这样的题首先要看属于哪一种类型的组合图形,再根据条件去进一步解答.4.求出如图阴影部分的面积:单位:厘米.考点组合图形的面积.1526356专题平面图形的认识与计算.分析由题意可知:阴影部分的面积=长方形的面积﹣以4厘米为半径的半圆的面积,代入数据即可求解.2÷2,3.14×4 4解答解:8×﹣=32﹣25.12,=6.88(平方厘米);答:阴影部分的面积是6.88平方厘米.点评解答此题的关键是:弄清楚阴影部分的面积可以由哪些图形的面积和或差求出..求如图阴影部分的面积.(单位:厘米)5.7考点圆、圆环的面积1526356分析由图可知,正方形的边长也就是半圆的直径,阴影部分由4个直径为4厘米的半圆组成,也就是两个圆的面积,因此要求阴影部分的面积,首先要算1个圆的面积,然后根据“阴影部分的面积=2×圆的面积”算出答案.2πr解答解:S=2 2)×(4÷=3.14=12.56(平方厘米);阴影部分的面积=2个圆的面积,=2×12.56,=25.12(平方厘米);答:阴影部分的面积是25.12平方厘米.点评解答这道题的关键是重点分析阴影部分是由什么图形组成的,再根据已知条件去计算.6.求如图阴影部分面积.(单位:厘米)考点长方形、正方形的面积;平行四边形的面积;三角形的周长和面积.1526356 分析图一中阴影部分的面积=大正方形面积的一半﹣与阴影部分相邻的小三角形的面积;图二中阴影部分的面积=梯形的面积﹣平四边形的面积,再将题目中的数据代入相应的公式进行计算.解答解:图一中阴影部分的面积=6×6÷2﹣4×6÷2=6(平方厘米);图二中阴影部分的面积=(8+15)×(48÷8)÷2﹣48=21(平方厘米);答:图一中阴影部分的面积是6平方厘米,图二中阴影部分的面积是21平方厘米.点评此题目是组合图形,需要把握好正方形、三角形、梯形及平行四边形的面积公式,再将题目中的数据代入相应的公式进行计算.7.计算如图中阴影部分的面积.单位:厘米.8考点组合图形的面积1526356分析由图意可知:阴影部分的面积=圆的面积,又因圆的半径为斜边上的高,利用同一个三角形的面积相等即可求出斜边上的高,也就等于知道了圆的半径,利用圆的面积公式即可求解.解答解:圆的半径:15×20÷2×2÷25,=300÷25,=12(厘米);阴影部分的面积:2,12 ××3.14=×3.14×144,=0.785×144,=113.04(平方厘米);答:阴影部分的面积是113.04平方厘米.点评此题考查了圆的面积公式及其应用,同时考查了学生观察图形的能力.8.求阴影部分的面积.单位:厘米.考点组合图形的面积;三角形的周长和面积;圆、圆环的面积.1526356分析(1)圆环的面积等于大圆的面积减小圆的面积,大圆与小圆的直径已知,代入圆的面积公式,从而可以求出阴影部分的面积;(2)阴影部分的面积=圆的面积﹣三角形的面积,由图可知,此三角形是等腰直角三角形,则斜边上的高就等于圆的半径,依据圆的面积及三角形的面积公式即可求得三角形和圆的面积,从而求得阴影部分的面积.)阴影部分面积:1解:(解答.9×﹣3.14×,3.14=28.26﹣3.14,=25.12(平方厘米);(2)阴影部分的面积:2﹣×(3+3)××33,3.14=28.26﹣9,=19.26(平方厘米);答:圆环的面积是25.12平方厘米,阴影部分面积是19.26平方厘米.点评此题主要考查圆和三角形的面积公式,解答此题的关键是找准圆的半径.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)考点组合图形的面积;圆、圆环的面积.1526356专题平面图形的认识与计算.分析观察图形可知:图中的大半圆内的两个小半圆的弧长之和与大半圆的弧长相等,所以图中阴影部分的周长,就是直径为10+3=13厘米的圆的周长,由此利用圆的周长公式即可进行计算;阴影部分的面积=大半圆的面积﹣以10÷2=5厘米为半径的半圆的面积﹣以3÷2=1.5厘米为半径的半圆的面积,利用半圆的面积公式即可求解.解答解:周长:3.14×(10+3),=3.14×13,=40.82(厘米);22﹣×3.142)×(2]×﹣3.14×(10÷3[面积:×3.14×(10+3)÷2,)÷2=×3.14×(42.25﹣25﹣2.25),=×3.14×15,=23.55(平方厘米);答:阴影部分的周长是40.82厘米,面积是23.55平方厘米.点评此题主要考查半圆的周长及面积的计算方法,根据半圆的弧长=πr,得出图中两个小半圆的弧长之和等于大半圆的弧长,是解决本题的关键.10.求阴影部分的面积.(单位:厘米)1 0考点圆、圆环的面积1526356分析先用“3+3=6”求出大扇形的半径,然后根据“扇形的面积”分别计算出大扇形的面积和小扇形的面积,进而根据“大扇形的面积﹣小扇形的面积=阴影部分的面积”解答即可.解答解:r=3,R=3+3=6,n=120,,=,=37.68﹣9.42,=28.26(平方厘米);答:阴影部分的面积是28.26平方厘米.点评此题主要考查的是扇形面积计算公式的掌握情况,应主要灵活运用.11.求下图阴影部分的面积.(单位:厘米)考点组合图形的面积.15263562÷2=39.25平方厘米,再求出空白三10÷2)先求出半圆的面积分析3.14×(角形的面积10×(10÷2)÷2=25平方厘米,相减即可求解.2÷2﹣10×(10÷223.14解答解:×(10÷))÷2=39.25﹣25=14.25(平方厘米).答:阴影部分的面积为14.25平方厘米.点评考查了组合图形的面积,本题阴影部分的面积=半圆的面积﹣空白三角形的面积.12.求阴影部分图形的面积.(单位:厘米)1 1考点组合图形的面积1526356分析求阴影部分的面积可用梯形面积减去圆面积的,列式计算即可.2÷4,×4 4+10)×4÷2﹣3.14解答解:(=28﹣12.56,=15.44(平方厘米);答:阴影部分的面积是15.44平方厘米.点评解答此题的方法是用阴影部分所在的图形(梯形)面积减去空白图形(扇形)的面积,即可列式解答.13.计算阴影部分面积(单位:厘米).考点组合图形的面积.1526356专题平面图形的认识与计算.分析如图所示,阴影部分的面积=平行四边形的面积﹣三角形①的面积,平行四边形的底和高分别为10厘米和15厘米,三角形①的底和高分别为10厘米和(15﹣7)厘米,利用平行四边形和三角形的面积公式即可求解.解答解:10×15﹣10×(15﹣7)÷2,=150﹣40,=110(平方厘米);平方厘米.110答:阴影部分的面积是1 2点评解答此题的关键是明白:阴影部分的面积不能直接求出,可以用平行四边形和三角形的面积差求出.14.求阴影部分的面积.(单位:厘米)考点梯形的面积.1526356分析如图所示,将扇形①平移到扇形②的位置,求阴影部分的面积就变成了求梯形的面积,梯形的上底和下底已知,高就等于梯形的上底,代入梯形的面积公式即可求解.解答解:(6+10)×6÷2,=16×6÷2,=96÷2,=48(平方厘米);答:阴影部分的面积是48平方厘米.点评此题主要考查梯形的面积的计算方法,关键是利用平移的办法变成求梯形的面积.15.求下图阴影部分的面积:(单位:厘米)考点组合图形的面积.1526356分析根据三角形的面积公式:S=ah,找到图中阴影部分的底和高,代入计算即可求解.解答解:2×3÷2=6÷2=3(平方厘米).答:阴影部分的面积是3平方厘米.点评考查了组合图形的面积,本题组合图形是一个三角形,关键是得到三角形的底和高..求阴影部分面积(单位:厘米).16.1 3考点组合图形的面积1526356分析由图意可知:阴影部分的面积=梯形的面积﹣圆的面积,梯形的上底和高都等于圆的半径,上底和下底已知,从而可以求出阴影部分的面积.解答2×,﹣43.14×解:(4+9)×4÷2=13×4÷2﹣3.14×4,=26﹣12.56,=13.44(平方厘米);答:阴影部分的面积是13.44平方厘米.点评解答此题的关键是明白:梯形的下底和高都等于圆的半径,且阴影部分的面积=梯形的面积﹣圆的面积.17.(2012?长泰县)求阴影部分的面积.(单位:厘米)考点组合图形的面积.1526356分析阴影部分的面积=梯形的面积﹣半圆的面积.梯形的面积=(a+b)由图可知,2,将数值代入从而求得阴影部分的面积.r h,半圆的面积=π解答2)÷23.142)﹣××(66+8解:×(÷)×(6×14×3﹣×3.14=×9,=21﹣14.13,=6.87(平方厘米);答:阴影部分的面积为6.87平方厘米.点评考查了组合图形的面积,解题关键是看懂图示,把图示分解成梯形,半圆和阴影部分,再分别求出梯形和半圆的面积.。

小升初数学几何热点“求阴影部分面积”专项练习(含解答)

小升初数学几何热点“求阴影部分面积”专项练习(含解答)

小升初数学几何热点“求阴影部分面积”专项练习求平面图形中阴影部分的面积,是每年小升初考试中的几何热点,思维能力要求高,学生失分率高。

由于阴影部分的图形常常不是以基本几何图形的形状出现,没法直接利用课本中的基本公式来计算,所以比较麻烦。

家长辅导孩子处理这类型的几何题,除了要让孩子熟练地掌握平面图形的概念和面积公式之外,关键还在于懂得如何“巧用方法、妙在变形”。

以下是小学阶段常见的求阴影面积的方法,家长可以让孩子边做边总结方法,逐一攻关,体验解题思维的乐趣。

一、几何图形计算公式1.正方形:周长=边长×4 C=4a面积=边长×边长 S=a×a2.正方体:表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3.长方形:周长=(长+宽)×2 C=2(a+b)面积=长×宽 S=ab4.长方体:表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)体积=长×宽×高V=abh5.三角形:面积=底×高÷2 s=ah÷26.平行四边形:面积=底×高 s=ah7.梯形:面积=(上底+下底)×高÷2 s=(a+b)×h÷28.圆形:周长=直径×π=2×π×半径 C=πd=2πr面积=半径×半径×π9.圆柱体:侧面积=底面周长×高表面积=侧面积+底面积×2体积=底面积×高10.圆锥体:体积=底面积×高÷3二、解题方法解题要点:1.观察图形的特点,根据图形特点选择合适的方法求解图形的面积。

2.能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。

小升初奥数求阴影部分面积提升题

小升初奥数求阴影部分面积提升题
6如下图扇形圆心角为90度半径为7等腰直角三角形斜边长10厘米求阴影部分的面积
求阴影部分的面积练习题
1、求下图中阴影部分的面积。
2、下图两个正方形的边长分别是8厘米和10厘米,求阴影部分的面积。
3、下图中半圆直径为10宽为4,求阴影部分的面积。(单位:分米)
5、下面两图中等腰直角三角形的腰长均为8厘米,求阴影部分的面积。
6、如下图扇形圆心角为90度,半径为8厘米,扇形内有一个正方形,求阴影部分的面积。
7、等腰直角三角形斜边长10厘米,求阴影部分的面积。

小升初数学求阴影部分面积专项训练

小升初数学求阴影部分面积专项训练

小升初数学易错题阴影部分面积——专项训练1.求下图阴影部分的面积。

(单位:厘米)解:3.14×(10÷2)2÷2﹣10×(10÷2)÷2=39.25﹣25=14.25(平方厘米)答:阴影部分的面积为14.25平方厘米。

2.求图中阴影部分图形的面积。

解:6÷2=3(厘米)6×3-3.14×32÷2=18-14.13=3.87(平方厘米)答:阴影部分的面积是3.87平方厘米。

3.求阴影部分图形的面积。

(单位:厘米)解:(4+10)×4÷2﹣3.14×42÷4,=28﹣12.56=15.44(平方厘米)答:阴影部分的面积是15.44平方厘米。

4.求阴影部分的面积。

(单位:cm)解:(5+12)×4÷2-3.14×(4÷2)2÷2=17×4÷2-3.14×4÷2=34-6.28=27.72(平方厘米)答:阴影部分的面积是27.72平方厘米。

5.求阴影部分的面积。

(单位:厘米)根据环形面积公式:环形面积=大圆的面积-小圆的面积,解:3.14×52-3.14×32=3.14×(25-9)=3.14×16=50.24(平方厘米).6.求下图阴影部分的面积。

(单位:厘米)解:3.14×(2÷2)2+2×(2÷2)÷2×2=3.14+2=5.14(平方厘米)答:阴影部分的面积是5.14平方厘米.7.求出如图阴影部分的面积。

(单位:厘米)解:8×4﹣3.14×4²÷2=32﹣25.12=6.88(平方厘米)答:阴影部分的面积是6.88平方厘米.8.求如图阴影部分的面积。

阴影部分面积-专题复习-经典例题(含答案)

阴影部分面积-专题复习-经典例题(含答案)

小升初阴影部分面积专题☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆试题解析1.求如图阴影部分的面积.(单位:厘米)考点组合图形的面积;梯形的面积;圆、圆环的面积.分析阴影部分的面积等于梯形的面积减去直径为4厘米的半圆的面积,利用梯形和半圆的面积公式代入数据即可解答.解答解:(4+6)×4÷2÷2﹣3.14×÷2,=10﹣3.14×4÷2,=10﹣6.28,=3.72(平方厘米);答:阴影部分的面积是3.72平方厘米.点评组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考查了梯形和圆的面积公式的灵活应用.2.如图,求阴影部分的面积.(单位:厘米)考点组合图形的面积.分析根据图形可以看出:阴影部分的面积等于正方形的面积减去4个扇形的面积.正方形的面积等于(10×10)100平方厘米,4个扇形的面积等于半径为(10÷2)5厘米的圆的面积,即:3.14×5×5=78.5(平方厘米).解答解:扇形的半径是:10÷2,=5(厘米);10×10﹣3.14×5×5,100﹣78.5,=21.5(平方厘米);答:阴影部分的面积为21.5平方厘米.点评解答此题的关键是求4个扇形的面积,即半径为5厘米的圆的面积.3.计算如图阴影部分的面积.(单位:厘米)考点组合图形的面积.分析分析图后可知,10厘米不仅是半圆的直径,还是长方形的长,根据半径等于直径的一半,可以算出半圆的半径,也是长方形的宽,最后算出长方形和半圆的面积,用长方形的面积减去半圆的面积也就是阴影部分的面积.解答解:10÷2=5(厘米),长方形的面积=长×宽=10×5=50(平方厘米),半圆的面积=πr2÷2=3.14×52÷2=39.25(平方厘米),阴影部分的面积=长方形的面积﹣半圆的面积,=50﹣39.25,=10.75(平方厘米);答:阴影部分的面积是10.75.点评这道题重点考查学生求组合图形面积的能力,组合图形可以是两个图形拼凑在一起,也可以是从一个大图形中减去一个小图形得到;像这样的题首先要看属于哪一种类型的组合图形,再根据条件去进一步解答.4.求出如图阴影部分的面积:单位:厘米.考点组合图形的面积.专题平面图形的认识与计算.分析由题意可知:阴影部分的面积=长方形的面积﹣以4厘米为半径的半圆的面积,代入数据即可求解.解答解:8×4﹣3.14×42÷2,=32﹣25.12,=6.88(平方厘米);答:阴影部分的面积是6.88平方厘米.点评解答此题的关键是:弄清楚阴影部分的面积可以由哪些图形的面积和或差求出.5.求如图阴影部分的面积.(单位:厘米)考点圆、圆环的面积.分析由图可知,正方形的边长也就是半圆的直径,阴影部分由4个直径为4厘米的半圆组成,也就是两个圆的面积,因此要求阴影部分的面积,首先要算1个圆的面积,然后根据“阴影部分的面积=2×圆的面积”算出答案.解答解:S=πr2=3.14×(4÷2)2=12.56(平方厘米);阴影部分的面积=2个圆的面积,=2×12.56,=25.12(平方厘米);答:阴影部分的面积是25.12平方厘米.点评解答这道题的关键是重点分析阴影部分是由什么图形组成的,再根据已知条件去计算.6.求如图阴影部分面积.(单位:厘米)考点长方形、正方形的面积;平行四边形的面积;三角形的周长和面积.分析图一中阴影部分的面积=大正方形面积的一半﹣与阴影部分相邻的小三角形的面积;图二中阴影部分的面积=梯形的面积﹣平四边形的面积,再将题目中的数据代入相应的公式进行计算.解答解:图一中阴影部分的面积=6×6÷2﹣4×6÷2=6(平方厘米);图二中阴影部分的面积=(8+15)×(48÷8)÷2﹣48=21(平方厘米);答:图一中阴影部分的面积是6平方厘米,图二中阴影部分的面积是21平方厘米.点评此题目是组合图形,需要把握好正方形、三角形、梯形及平行四边形的面积公式,再将题目中的数据代入相应的公式进行计算.7.计算如图中阴影部分的面积.单位:厘米.考点组合图形的面积.分析由图意可知:阴影部分的面积=圆的面积,又因圆的半径为斜边上的高,利用同一个三角形的面积相等即可求出斜边上的高,也就等于知道了圆的半径,利用圆的面积公式即可求解.解答解:圆的半径:15×20÷2×2÷25,=300÷25,=12(厘米);阴影部分的面积:×3.14×122,=×3.14×144,=0.785×144,=113.04(平方厘米);答:阴影部分的面积是113.04平方厘米.点评此题考查了圆的面积公式及其应用,同时考查了学生观察图形的能力.8.求阴影部分的面积.单位:厘米.考点组合图形的面积;三角形的周长和面积;圆、圆环的面积.分析(1)圆环的面积等于大圆的面积减小圆的面积,大圆与小圆的直径已知,代入圆的面积公式,从而可以求出阴影部分的面积;(2)阴影部分的面积=圆的面积﹣三角形的面积,由图可知,此三角形是等腰直角三角形,则斜边上的高就等于圆的半径,依据圆的面积及三角形的面积公式即可求得三角形和圆的面积,从而求得阴影部分的面积.解答解:(1)阴影部分面积:3.14×﹣3.14×,=28.26﹣3.14,=25.12(平方厘米);(2)阴影部分的面积:3.14×32﹣×(3+3)×3,=28.26﹣9,=19.26(平方厘米);答:圆环的面积是25.12平方厘米,阴影部分面积是19.26平方厘米.点评此题主要考查圆和三角形的面积公式,解答此题的关键是找准圆的半径.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)考点组合图形的面积;圆、圆环的面积.专题平面图形的认识与计算.分析观察图形可知:图中的大半圆内的两个小半圆的弧长之和与大半圆的弧长相等,所以图中阴影部分的周长,就是直径为10+3=13厘米的圆的周长,由此利用圆的周长公式即可进行计算;阴影部分的面积=大半圆的面积﹣以10÷2=5厘米为半径的半圆的面积﹣以3÷2=1.5厘米为半径的半圆的面积,利用半圆的面积公式即可求解.解答解:周长:3.14×(10+3),=3.14×13,=40.82(厘米);面积:×3.14×[(10+3)÷2]2﹣×3.14×(10÷2)2﹣×3.14×(3÷2)2,=×3.14×(42.25﹣25﹣2.25),=×3.14×15,=23.55(平方厘米);答:阴影部分的周长是40.82厘米,面积是23.55平方厘米.点评此题主要考查半圆的周长及面积的计算方法,根据半圆的弧长=πr,得出图中两个小半圆的弧长之和等于大半圆的弧长,是解决本题的关键.10.求阴影部分的面积.(单位:厘米)考点圆、圆环的面积.分析先用“3+3=6”求出大扇形的半径,然后根据“扇形的面积”分别计算出大扇形的面积和小扇形的面积,进而根据“大扇形的面积﹣小扇形的面积=阴影部分的面积”解答即可.解答解:r=3,R=3+3=6,n=120,,=,=37.68﹣9.42,=28.26(平方厘米);答:阴影部分的面积是28.26平方厘米.点评此题主要考查的是扇形面积计算公式的掌握情况,应主要灵活运用.11.求下图阴影部分的面积.(单位:厘米)考点组合图形的面积.分析先求出半圆的面积3.14×(10÷2)2÷2=39.25平方厘米,再求出空白三角形的面积10×(10÷2)÷2=25平方厘米,相减即可求解.解答解:3.14×(10÷2)2÷2﹣10×(10÷2)÷2=39.25﹣25=14.25(平方厘米).答:阴影部分的面积为14.25平方厘米.点评考查了组合图形的面积,本题阴影部分的面积=半圆的面积﹣空白三角形的面积.12.求阴影部分图形的面积.(单位:厘米)考点组合图形的面积.分析求阴影部分的面积可用梯形面积减去圆面积的,列式计算即可.解答解:(4+10)×4÷2﹣3.14×42÷4,=28﹣12.56,=15.44(平方厘米);答:阴影部分的面积是15.44平方厘米.点评解答此题的方法是用阴影部分所在的图形(梯形)面积减去空白图形(扇形)的面积,即可列式解答.13.计算阴影部分面积(单位:厘米).考点组合图形的面积.专题平面图形的认识与计算.分析如图所示,阴影部分的面积=平行四边形的面积﹣三角形①的面积,平行四边形的底和高分别为10厘米和15厘米,三角形①的底和高分别为10厘米和(15﹣7)厘米,利用平行四边形和三角形的面积公式即可求解.解答解:10×15﹣10×(15﹣7)÷2,=150﹣40,=110(平方厘米);答:阴影部分的面积是110平方厘米.点评解答此题的关键是明白:阴影部分的面积不能直接求出,可以用平行四边形和三角形的面积差求出.14.求阴影部分的面积.(单位:厘米)考点梯形的面积.分析如图所示,将扇形①平移到扇形②的位置,求阴影部分的面积就变成了求梯形的面积,梯形的上底和下底已知,高就等于梯形的上底,代入梯形的面积公式即可求解.解答解:(6+10)×6÷2,=16×6÷2,=96÷2,=48(平方厘米);答:阴影部分的面积是48平方厘米.点评此题主要考查梯形的面积的计算方法,关键是利用平移的办法变成求梯形的面积.15.求下图阴影部分的面积:(单位:厘米)考点组合图形的面积.分析根据三角形的面积公式:S=ah,找到图中阴影部分的底和高,代入计算即可求解.解答解:2×3÷2=6÷2=3(平方厘米).答:阴影部分的面积是3平方厘米.点评考查了组合图形的面积,本题组合图形是一个三角形,关键是得到三角形的底和高.16.求阴影部分面积(单位:厘米).考点组合图形的面积.分析由图意可知:阴影部分的面积=梯形的面积﹣圆的面积,梯形的上底和高都等于圆的半径,上底和下底已知,从而可以求出阴影部分的面积.解答解:(4+9)×4÷2﹣3.14×42×,=13×4÷2﹣3.14×4,=26﹣12.56,=13.44(平方厘米);答:阴影部分的面积是13.44平方厘米.点评解答此题的关键是明白:梯形的下底和高都等于圆的半径,且阴影部分的面积=梯形的面积﹣圆的面积.17.(2012•长泰县)求阴影部分的面积.(单位:厘米)考点组合图形的面积.分析由图可知,阴影部分的面积=梯形的面积﹣半圆的面积.梯形的面积=(a+b)h,半圆的面积=πr2,将数值代入从而求得阴影部分的面积.解答解:×(6+8)×(6÷2)﹣×3.14×(6÷2)2=×14×3﹣×3.14×9,=21﹣14.13,=6.87(平方厘米);答:阴影部分的面积为6.87平方厘米.点评考查了组合图形的面积,解题关键是看懂图示,把图示分解成梯形,半圆和阴影部分,再分别求出梯形和半圆的面积.。

小升初阴影面积测试题及答案

小升初阴影面积测试题及答案

小升初阴影面积测试题及答案一、选择题1. 下列哪个图形的阴影部分面积可以通过计算其总面积减去非阴影部分面积得到?A. 圆形B. 正方形B. 三角形D. 长方形答案:B2. 如果一个正方形的边长为10厘米,那么它的阴影部分面积(边长为5厘米的内接正方形)是多少平方厘米?A. 25B. 50C. 75D. 100答案:A二、填空题3. 一个长方形的长是15厘米,宽是10厘米,如果在内部有一个边长为5厘米的正方形阴影部分,那么阴影部分的面积是_________平方厘米。

答案:254. 一个圆的直径是20厘米,那么半径为10厘米的内圆阴影部分的面积是_________平方厘米(圆周率取3.14)。

答案:314三、计算题5. 如图所示,一个三角形的底边长为12厘米,高为8厘米,其内有一个边长为6厘米的正方形阴影部分。

求三角形阴影部分的面积。

答案:36平方厘米解析:首先计算三角形的总面积,公式为 \( \frac{1}{2} \times 底 \times 高 = \frac{1}{2} \times 12 \times 8 = 48\) 平方厘米。

然后计算正方形的面积,公式为 \( 边长^2 = 6^2 = 36\) 平方厘米。

最后,三角形阴影部分的面积等于三角形总面积减去正方形面积,即\( 48 - 36 = 12\) 平方厘米。

6. 如图所示,一个圆形的半径为15厘米,其内部有一个半径为10厘米的圆形阴影部分。

求圆形阴影部分的面积。

答案:565平方厘米解析:首先计算大圆的面积,公式为 \( 圆周率 \times 半径^2 = 3.14 \times 15^2 = 706.5\) 平方厘米。

然后计算小圆的面积,公式为 \( 3.14 \times 10^2 = 314\) 平方厘米。

最后,圆形阴影部分的面积等于大圆面积减去小圆面积,即 \( 706.5 - 314 = 392.5\) 平方厘米。

四、解答题7. 如图所示,一个长方形的长为20厘米,宽为8厘米,其内部有一个边长为6厘米的正方形阴影部分。

(完整版)小学六年级小学升初中小升初阴影面积专题复习经典例题图形面积几何图形(含答案)

(完整版)小学六年级小学升初中小升初阴影面积专题复习经典例题图形面积几何图形(含答案)

阴影部分面积专题小学六年级小学升初中1. 求如图阴影部分的面积.(单位:厘米)2. 如图,求阴影部分的面积.(单位:厘米)3. 计算如图阴影部分的面积.(单位:厘米)4. 求出如图阴影部分的面积:单位:厘米.6.求如图阴影部分面积.(单位:厘米)7.计算如图中阴影部分的面积.单位:厘米.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)11. 求下图阴影部分的面积.(单位:厘米)12. 求阴影部分图形的面积.(单位:厘米)r ------ io ------- 113. 计算阴影部分面积(单位:厘米)14. 求阴影部分的面积.(单位:厘米)15. 求下图阴影部分的面积:(单位:厘米)16. 求阴影部分面积(单位:厘米)17. (2012&泰县)求阴影部分的面积.(单位:厘米)☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆参考答案与试题解析1.求如图阴影部分的面积.(单位:厘米)考点组合图形的面积;梯形的面积;圆、圆环的面积. 1526356分析阴影部分的面积等丁梯形的面积减去直径为4厘米的半圆的面积,利用梯形和半圆的面积公式代入数据即可解答.解答…n 2解:(4+6) X4士2士2-3.14 X士2,2=10— 3.14 X4士2,=10-6.28 ,=3.72 (平方厘米);答:阴影部分的面积是3.72平方厘米.点评组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考查了梯形和圆的面积公式的灵活应用.2.如图,求阴影部分的面积.(单位:厘米)考点组合图形的面积.1526356分析根据图形可以看出:阴影部分的面积等丁正方形的面积减去4个扇形的面积.正方形的面积等丁(10X 10) 100平方厘米,4个扇形的面积等丁半径为(10士2) 5厘米的圆的面积,即:3.14 X 5X 5=78.5 (平■方厘米). 解答解:扇形的半径是:10 士2,=5 (厘米);10X 10 -3.14 X 5X 5,100-78.5 ,=21.5 (平方厘米);答:阴影部分的面积为21.5平方厘米.点评解答此题的关键是求4个扇形的面积,即半径为5厘米的圆的面积.考点组合图形的面积.1526356分析分析图后可知,10厘米不仅是半圆的直径,还是长方形的长,根据半径等丁直径的一半,可以算出半圆的半径,也是长方形的宽,最后算出长方形和半圆的面积,用长方形的面积减去半圆的面积也就是阴影部分的面积.解答解:10 -2=5 (厘米),长方形的面积*X宽=10X 5=50 (平方厘米),半圆的面积=兀r2士2=3.14 X 52-2=39.25 (平■方厘米),阴影部分的面积=长方形的面积-半圆的面积,=50- 39.25 ,=10.75 (平方厘米);答:阴影部分的面积是10.75 .点评这道题重点考查学生求组合图形面积的能力,组合图形可以是两个图形拼凑在一起,也可以是从一个大图形中减去一个小图形得到;像这样的题首先要看届丁哪一种类型的组合图形,再根据条件去进一步解答.4.求出如图阴影部分的面积:单位:厘米.考点组合图形的面积.1526356专题平■面图形的认识与计算.分析由题意可知:阴影部分的面积=长方形的面积-以4厘米为半径的半圆的面积,代入数据即可求解.解答解:8X4-3.14 X42-2,=32 - 25.12 ,=6.88 (平方厘米);答:阴影部分的面积是6.88平方厘米.点评解答此题的关键是:弄活楚阴影部分的面积可以由哪些图形的面积和或差求出.5.求如图阴影部分的面积.(单位:厘米)考点圆、圆环的面积.1526356分析由图可知,正方形的边长也就是半圆的直径,阴影部分由4个直径为4 H 米的半圆组成,也就是两个圆的面积,因此要求阴影部分的面积,首先要算1个圆的面积,然后根据“阴影部分的面积=2X圆的面积”算出答案.解答解:S=^ r2_ ,_ . 2=3.14 X (4士2)=12.56 (平方厘米);阴影部分的面积=2个圆的面积,=2X 12.56 ,=25.12 (平方厘米);答:阴影部分的面积是25.12平方厘米.点评解答这道题的关键是重点分析阴影部分是由什么图形组成的,再根据已知条件去计算.考点长方形、正方形的面积;平行四边形的面积;三角形的周长和面积.1526356分析图一中阴影部分的面积=大正方形面积的一半-与阴影部分相邻的小三角形的面积;图二中阴影部分的面积=梯形的面积-平四边形的面积,再将题目中的数据代入相应的公式进行计算.解答解:图一中阴影部分的面积=6X6-2-4X6-2=6 (平方厘米);图二中阴影部分的面积=(8+15) X (48士8)士 2 - 48=21 (平方厘米);答:图一中阴影部分的面积是6平方厘米,图二中阴影部分的面积是21平方厘米.点评此题目是组合图形,需要把握好正方形、三角形、梯形及平行四边形的面积公式,再将题目中的数据代入相应的公式进行计算.7.计算如图中阴影部分的面积.单位:厘米.考点组合图形的面积.1526356分析由图意可知:阴影部分的面积皂圆的面积,乂因圆的半径为斜边上的高, 4利用同一个三角形的面积相等即可求出斜边上的高,也就等丁知道了圆的半径,利用圆的面积公式即可求解.解答解:圆的半径:15X 20-2X2-25,=300+ 25,=12 (厘米);阴影部分的面积:lx 3.14 X 122,4=Lx 3.14 X 144,=0.785 X 144,=113.04 (平■方厘米);答:阴影部分的面积是113.04平方厘米.点评此题考查了圆的面积公式及其应用,同时考查了学生观察图形的能力.考点组合图形的面积;三角形的周长和面积;圆、圆环的面积. 1526356 分析(1)圆环的面积等丁大圆的面积减小圆的面积,大圆与小圆的直径已知,代入圆的面积公式,从而可以求出阴影部分的面积;(2)阴影部分的面积=圆的面积-三角形的面积,由图可知,此三角形是等腰直角三角形,则斜边上的高就等丁圆的半径,依据圆的面积及三角形的面积公式即可求得三角形和圆的面积,从而求得阴影部分的面积.解答解:(1)阴影部分面积:223.14 X (上)-3.14 X 〔萱),2 2=28.26 - 3.14 ,=25.12 (平方厘米);(2)阴影部分的面积:3.14 x 32--X (3+3) X3, 2=28.26 - 9,=19.26 (平方厘米);答:圆环的面积是25.12平方厘米,阴影部分面积是19.26平方厘米.点评此题主要考查圆和三角形的面积公式,解答此题的关键是找准圆的半径. 9. 如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)考点组合图形的面积;圆、圆环的面积.1526356专题平■面图形的认识与计算.分析观察图形可知:图中的大半圆内的两个小半圆的弧长之和与大半圆的弧长相等,所以图中阴影部分的周长,就是直径为10+3=13厘米的圆的周长,由此利用圆的周长公式即可进行计算;阴影部分的面积=大半圆的面积-以10-2=5厘米为半径的半圆的面积-以3-2=1.5厘米为半径的半圆的面积,利用半圆的面积公式即可求解.解答解:周长:3.14 X ( 10+3),=3.14 X 13,=40.82 (厘米);面积:ix 3.14 X [ (10+3) 士2]2—【X 3.14 X (10 士2) 2 2ix 3.14 X (3 士2) 2,=以 3.14 X (42.25 - 25 - 2.25),2=以 3.14 X 15,=23.55 (平方厘米);答:阴影部分的周长是40.82厘米,面积是23.55平方厘米.点评此题主要考查半圆的周长及面积的计算方法,根据半圆的弧长=兀r,得出图中两个小半圆的弧长之和等丁大半圆的弧长,是解决本题的关键.10. 求阴影部分的面积.(单位:厘米)考点圆、圆环的面积.1526356■刀忻先用“3+3=6'求出大扇形的半径,然后根据“扇形的面积卫*”分别计360算出大扇形的面积和小扇形的面积,进而根据“大扇形的面积-小扇形的面积=阴影部分的面积”解答即可.解:r=3, R=3+3=6 n=120,解答$喙新一点兀=—"■-□OU JuU=37.68 - 9.42 ,=28.26 (平方厘米);答:阴影部分的面积是28.26平方厘米.点评此题主要考查的是扇形面积计算公式的掌握情况,应主要灵活运用.11. 求下图阴影部分的面积.(单位:厘米)考点组合图形的面积.1526356分析先求出半圆的面积3.14 X (10士2)2-2=39.25平方厘米,再求出空白三角形的面积10X (10士2)士2=25平方厘米,相减即可求解.2解答解:3.14 X (10士2)士2 - 10X (10士2)士 2=39.25 - 25=14.25 (平■方厘米).答:阴影部分的面积为14.25平方厘米.点评考查了组合图形的面积,本题阴影部分的面积北圆的面积-空白三角形的面积.12. 求阴影部分图形的面积.(单位:厘米)考点组合图形的面积.1526356分析求阴影部分的面积可用梯形面积减去圆面积的1,列式计算即可.42解答解:(4+10) X4士2-3.14 X4 士4,=28 - 12.56 ,=15.44 (平方厘米);答:阴影部分的面积是15.44平方厘米.点评解答此题的方法是用阴影部分所在的图形(梯形)面积减去空白图形(扇形)的面积,即可列式解答.13. 计算阴影部分面积(单位:厘米)考点组合图形的面积.1526356专题平■面图形的认识与计算.分析如图所示,阴影部分的面积=平行四边形的面积-三角形①的面积,平■行四边形的底和高分另U为10厘米和15厘米,三角形①的底和高分别为10厘米和(15-7)厘米,利用平■行四边形和三角形的面积公式即可求解.解答解:10X 15- 10X ( 15-7)士2,=150- 40,=110(平方厘米);答:阴影部分的面积是110平方厘米.点评解答此题的关键是明白:阴影部分的面积不能直接求出,可以用平行四边形和三角形的面积差求出.考点梯形的面积.1526356分析如图所示,将扇形①平移到扇形②的位置,求阴影部分的面积就变成了求梯形的面积,梯形的上底和下底已知,高就等丁梯形的上底,代入梯形的面积公式即可求解.=96 士2,=48 (平方厘米);答:阴影部分的面积是48平方厘米.点评此题主要考查梯形的面积的计算方法,关键是利用平移的办法变成求梯形的面积.15. 求下图阴影部分的面积:(单位:厘米)考点组合图形的面积.1526356分析根据三角形的面积公式:S=ah,找到图中阴影部分的底和高,代入计算即可求解.解答解:2X 3-2=6 士2=3 (平方厘米).答:阴影部分的面积是3平方厘米.点评考查了组合图形的面积,本题组合图形是一个三角形,关键是得到三角形的底和高.16. 求阴影部分面积(单位:厘米).考点组合图形的面积.1526356分析由图意可知:阴影部分的面积=梯形的面积-圆的面积,梯形的上底和高[4都等丁圆的半径,上底和下底已知,从而可以求出阴影部分的面积.解答解:(4+9) X4士2-3.14 X42x1,4=13X4士2-3.14 X4,=26 - 12.56 ,=13.44 (平方厘米);答:阴影部分的面积是13.44平方厘米.点评解答此题的关键是明白:梯形的下底和高都等丁圆的半径,且阴影部分的面积=梯形的面积-[圆的面积.17. (2012&泰县)求阴影部分的面积.(单位:厘米)考点组合图形的面积.1526356分析由图可知,阴影部分的面积=梯形的面积-半圆的面积.梯形的面积(a+b)h,半圆的面积 m兀「2,将数值代入从而求得阴影部分的面积.解答解:*X(6+8) X (6士2)— 3.14 X (6士2)2=以14X3-以 3.14 X 9, 2 '=21 - 14.13,=6.87 (平方厘米);答:阴影部分的面积为6.87平方厘米.点评考查了组合图形的面积,解题关键是看懂图示,把图示分解成梯形,半圆和阴影部分,再分别求出梯形和半圆的面积.。

小升初数学阴影部分的面积求法易错题

小升初数学阴影部分的面积求法易错题

小升初数学总复习『阴影部分的面积求法——易错题』一、常用公式 图形 面积公式 图形 面积公式 长方形 S=a ×b 三角形 S=a ×b ÷2 正方形 S=a ×a 梯形 S=(a+b )×h ÷2 平行四边形 S=a ×h圆s=πr 2二、计算题r=8÷2=4(cm )S阴=S圆×12=3.14×4×4×12=3.14×8=25.12(cm 2)S阴=S圆×1 4=3.14×6×6×1 4=3.14×9=28.26(cm2)小升初数学总复习『阴影部分的面积求法——易错题』三、解决问题1.光盘的银色部分是一个圆环,内圆半径是3cm,外圆半径是9cm。

它的面积是多少?3.14×(92-32)=3.14×72=226.08(cm2)答:它的面积是226.08cm2。

2.工厂生产一种圆环垫片,内圆直径是6厘米,外圆半径是6厘米,求这个垫片的面积。

6÷2=3(cm)3.14×(62-32)=3.14×27=84.78(cm2)答:它的面积是84.78cm2。

3.一个圆形金鱼池的半径是8米,周围有一条2米宽的小路(如图)。

这条小路的占地面积是多少平方米?8+2=10(m)3.14×(102-82)=3.14×36=113.04(m2)答:它的面积是113.04m2。

小升初图形面积及阴影面积计算

小升初图形面积及阴影面积计算

图形面积及阴影面积计算
1.下图中,ABCD为平行四边形,求阴影部分的面积?
2.计算下面图形中阴影部分的面积(单位:厘米,圆中半径为4)。

3.计算右图阴影部分的面积。

4.右图是两个相同的直角三角形叠在一起,AD=8,求阴影部分的面积。

(单位:分米)
5.已知△AOB与△BOC的面积分别为25平方厘米与35平方厘米,那么梯形ABCD 的面积是多少平方厘米?
6.如图,已知三角形ABC面积为1,延长AB至D,使BD=AB;延长BC至E,使CE=2BC;延长CA至F,使AF=3AC,求三角形DEF的面积?
7.下图,求四边形ABCD的面积。

(单位:厘米)
8.如图,三角形ABC的面积是24平方厘米,且DC=2AD,E、F分别是AF、BC的中点,那么阴影部分的面积是多少?
9.下图中,边长为10cm和15cm的两个正方体并放在一起,求三角形ABC(阴影部分)的面积?
10.计算下图中阴影部分的面积。

(单位:cm)
11.如下图,在长方形内画了一些直线,把长方形分成八块,已知其中三块的面积,则图中阴影部分的面积是多少?
12.正方形的边长是2(a+b),已知图中阴影部分B的面积是7平方厘米,求阴影部分A和C的和是多少平方厘米?。

求阴影面积小升初练习题

求阴影面积小升初练习题

求阴影面积小升初练习题一、基础图形类1. 如下图所示,矩形ABCD的边长AB=6cm,BC=4cm,对角线AC上有一点E,使得BE=CE。

求阴影部分的面积。

2. 等腰直角三角形ABC的直角边长为8cm,D为斜边AB上的一点,且CD垂直于AB。

求阴影部分的面积。

3. 半圆的直径为10cm,正方形的一边与半圆的直径重合。

求阴影部分的面积。

二、组合图形类1. 如下图所示,正方形ABCD的边长为4cm,分别以A、B、C、D为圆心,边长为半径画圆。

求阴影部分的面积。

2. 矩形EFGH的内角为直角,且EF=6cm,EH=8cm。

以E为圆心,3cm为半径画圆;以F为圆心,4cm为半径画圆。

求阴影部分的面积。

3. 如下图所示,两个半径为5cm的圆相交,求阴影部分的面积。

三、多边形类1. 正六边形的边长为6cm,连接对角线形成六个等边三角形。

求阴影部分的面积。

2. 正方形ABCD的边长为8cm,分别在AB、BC、CD、DA上取点E、F、G、H,使得AE=BF=CG=DH=4cm。

求阴影部分的面积。

3. 如下图所示,正五边形ABCDE的边长为5cm,连接对角线AC、BD,求阴影部分的面积。

四、圆与圆的关系类1. 两个半径分别为3cm和5cm的圆相交,求阴影部分的面积。

2. 半径为6cm的圆内有一个半径为4cm的圆,两圆相切。

求阴影部分的面积。

3. 三个半径均为4cm的圆两两相切,求阴影部分的面积。

五、综合运用类1. 如下图所示,矩形ABCD的内角为直角,AB=6cm,BC=8cm。

以A、B、C、D为圆心,3cm为半径画圆。

求阴影部分的面积。

2. 等腰直角三角形ABC的直角边长为10cm,以C为圆心,5cm为半径画圆。

求阴影部分的面积。

3. 如下图所示,正方形EFGH的内角为直角,且EF=8cm。

以E、F、G、H为圆心,4cm为半径画圆。

求阴影部分的面积。

六、几何变换类1. 在直角坐标系中,点A(2,2)关于y轴的对称点B在阴影区域内,阴影区域是一个边长为4cm的正方形。

【2020】小升初数学几何图形阴影部分面积题型大全(详细答案解析)

【2020】小升初数学几何图形阴影部分面积题型大全(详细答案解析)

六年级阴影部分的面积1.求阴影部分的面积。

(单位:厘米)解:割补后如右图,易知,阴影部分面积为一个梯形。

梯形上底DE=7-4=3厘米,1S =S =DE AB)AD 2⨯+⨯阴梯形(=137)42⨯+⨯(=20(平方厘米)2、求阴影部分的面积。

<解:S =S 阴梯形,梯形的上底是圆的直径,下底、高是圆的半径,S =S 阴梯形=124)22⨯+⨯(=6(2cm )3、如图,平行四边形的高是6厘米,面积是54平方厘米,求阴影三角形的面积。

【解:S =AD AO ⨯ABCD =54平方厘米,且AO=6厘米,所以AD=9厘米。

由图形可知AED ∆是等腰直角三角形,所以AE=AD ,OE=OF=AE-AO=9-6=3cm ,BO=BC-OC=9-3=6cm 。

1S =BO OF 2⨯⨯阴=1S =632⨯⨯阴=92cm 。

4、如图是一个平行四边形,面积是50平方厘米,求阴影积分的面积。

解:方法一:过C 点作CF AD ⊥交AD 于点F ,可知AECF 是长方形,面积=5×6=302cm ,ABE CFD S =S ∆∆=(50-30)÷2=102cm 。

方法二:BC=S ABCD ÷AE=50÷5=10cm ,BE=BC-EC=10-6=4cm ,ABE S ∆=BE ×AE ÷2 =4×5÷2=102cm,5、下图是一个半圆形,已知AB=10厘米,阴影部分的面积为平方厘米,求图形中三角形的高。

解:S =S -S ∆阴半圆=21AB 22π⎛⎫⨯⨯ ⎪⎝⎭=21103.1422⎛⎫⨯⨯ ⎪⎝⎭=152cm , 三角形的高=2S ∆÷AB=2×15÷10=3cm 。

@6、如图,一个长方形长是10cm ,宽是4cm ,以A 点和C 点为圆心各画一个扇形,求画中阴影部分的面积是多少平方厘米解:BECD 1S =S -S 4阴大圆=ABCD 11S -S S 44⎛⎫- ⎪⎝⎭大圆小圆=ABCD 11S +S -S 44大圆小圆=()2213.1410-4-1044⨯⨯⨯ =2cm 。

小学六年级-影部分面积-专题-复习-经典例题(含答案)

小学六年级-影部分面积-专题-复习-经典例题(含答案)

小升初阴影部分面积专题姓名:.................... 1.求如图阴影部分的面积.(单位:厘米)2.如图,求阴影部分的面积.(单位:厘米)3.计算如图阴影部分的面积.(单位:厘米)4.求出如图阴影部分的面积:单位:厘米.5.求如图阴影部分的面积.(单位:厘米)6.求如图阴影部分面积.(单位:厘米)7.计算如图中阴影部分的面积.单位:厘米.8.求阴影部分的面积.单位:厘米.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)10.求阴影部分的面积.(单位:厘米)11.求下图阴影部分的面积.(单位:厘米)12.求阴影部分图形的面积.(单位:厘米)13.计算阴影部分面积(单位:厘米).14.求阴影部分的面积.(单位:厘米)15.求下图阴影部分的面积:(单位:厘米)16.求阴影部分面积(单位:厘米).17.(2012•长泰县)求阴影部分的面积.(单位:厘米)参考答案与试题解析1.求如图阴影部分的面积.(单位:厘米)考点:组合图形的面积;梯形的面积;圆、圆环的面积.分析:阴影部分的面积等于梯形的面积减去直径为4厘米的半圆的面积,利用梯形和半圆的面积公式代入数据即可解答.解答:解:(4+6)×4÷2÷2﹣3.14×÷2,=10﹣3.14×4÷2,=10﹣6.28,=3.72(平方厘米);答:阴影部分的面积是3.72平方厘米.点评:组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考查了梯形和圆的面积公式的灵活应用.2.如图,求阴影部分的面积.(单位:厘米)考点:组合图形的面积.分析:根据图形可以看出:阴影部分的面积等于正方形的面积减去4个扇形的面积.正方形的面积等于(10×10)100平方厘米,4个扇形的面积等于半径为(10÷2)5厘米的圆的面积,即:3.14×5×5=78.5(平方厘米).解答:解:扇形的半径是:10÷2,=5(厘米);10×10﹣3.14×5×5,100﹣78.5,=21.5(平方厘米);答:阴影部分的面积为21.5平方厘米.点评:解答此题的关键是求4个扇形的面积,即半径为5厘米的圆的面积.考点:组合图形的面积.分析:分析图后可知,10厘米不仅是半圆的直径,还是长方形的长,根据半径等于直径的一半,可以算出半圆的半径,也是长方形的宽,最后算出长方形和半圆的面积,用长方形的面积减去半圆的面积也就是阴影部分的面积.解答:解:10÷2=5(厘米),长方形的面积=长×宽=10×5=50(平方厘米),半圆的面积=πr2÷2=3.14×52÷2=39.25(平方厘米),阴影部分的面积=长方形的面积﹣半圆的面积,=50﹣39.25,=10.75(平方厘米);答:阴影部分的面积是10.75.点评:这道题重点考查学生求组合图形面积的能力,组合图形可以是两个图形拼凑在一起,也可以是从一个大图形中减去一个小图形得到;像这样的题首先要看属于哪一种类型的组合图形,再根据条件去进一步解答.4.求出如图阴影部分的面积:单位:厘米.考点:组合图形的面积.专题:平面图形的认识与计算.分析:由题意可知:阴影部分的面积=长方形的面积﹣以4厘米为半径的半圆的面积,代入数据即可求解.解答:解:8×4﹣3.14×42÷2,=32﹣25.12,=6.88(平方厘米);答:阴影部分的面积是6.88平方厘米.点评:解答此题的关键是:弄清楚阴影部分的面积可以由哪些图形的面积和或差求出.考点:圆、圆环的面积.分析:由图可知,正方形的边长也就是半圆的直径,阴影部分由4个直径为4厘米的半圆组成,也就是两个圆的面积,因此要求阴影部分的面积,首先要算1个圆的面积,然后根据“阴影部分的面积=2×圆的面积”算出答案.解答:解:S=πr2=3.14×(4÷2)2=12.56(平方厘米);阴影部分的面积=2个圆的面积,=2×12.56,=25.12(平方厘米);答:阴影部分的面积是25.12平方厘米.点评:解答这道题的关键是重点分析阴影部分是由什么图形组成的,再根据已知条件去计算.6.求如图阴影部分面积.(单位:厘米)考点:长方形、正方形的面积;平行四边形的面积;三角形的周长和面积.分析:图一中阴影部分的面积=大正方形面积的一半﹣与阴影部分相邻的小三角形的面积;图二中阴影部分的面积=梯形的面积﹣平四边形的面积,再将题目中的数据代入相应的公式进行计算.解答:解:图一中阴影部分的面积=6×6÷2﹣4×6÷2=6(平方厘米);图二中阴影部分的面积=(8+15)×(48÷8)÷2﹣48=21(平方厘米);答:图一中阴影部分的面积是6平方厘米,图二中阴影部分的面积是21平方厘米.点评:此题目是组合图形,需要把握好正方形、三角形、梯形及平行四边形的面积公式,再将题目中的数据代入相应的公式进行计算.考点:组合图形的面积.分析:由图意可知:阴影部分的面积=圆的面积,又因圆的半径为斜边上的高,利用同一个三角形的面积相等即可求出斜边上的高,也就等于知道了圆的半径,利用圆的面积公式即可求解.解答:解:圆的半径:15×20÷2×2÷25,=300÷25,=12(厘米);阴影部分的面积:×3.14×122,=×3.14×144,=0.785×144,=113.04(平方厘米);答:阴影部分的面积是113.04平方厘米.点评:此题考查了圆的面积公式及其应用,同时考查了学生观察图形的能力.8.求阴影部分的面积.单位:厘米.考点:组合图形的面积;三角形的周长和面积;圆、圆环的面积.分析:(1)圆环的面积等于大圆的面积减小圆的面积,大圆与小圆的直径已知,代入圆的面积公式,从而可以求出阴影部分的面积;(2)阴影部分的面积=圆的面积﹣三角形的面积,由图可知,此三角形是等腰直角三角形,则斜边上的高就等于圆的半径,依据圆的面积及三角形的面积公式即可求得三角形和圆的面积,从而求得阴影部分的面积.解答:解:(1)阴影部分面积:3.14×﹣3.14×,=28.26﹣3.14,=25.12(平方厘米);(2)阴影部分的面积:3.14×32﹣×(3+3)×3,=28.26﹣9,=19.26(平方厘米);答:圆环的面积是25.12平方厘米,阴影部分面积是19.26平方厘米.点评:此题主要考查圆和三角形的面积公式,解答此题的关键是找准圆的半径.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)考点:组合图形的面积;圆、圆环的面积.专题:平面图形的认识与计算.分析:观察图形可知:图中的大半圆内的两个小半圆的弧长之和与大半圆的弧长相等,所以图中阴影部分的周长,就是直径为10+3=13厘米的圆的周长,由此利用圆的周长公式即可进行计算;阴影部分的面积=大半圆的面积﹣以10÷2=5厘米为半径的半圆的面积﹣以3÷2=1.5厘米为半径的半圆的面积,利用半圆的面积公式即可求解.解答:解:周长:3.14×(10+3),=3.14×13,=40.82(厘米);面积:×3.14×[(10+3)÷2]2﹣×3.14×(10÷2)2﹣×3.14×(3÷2)2,=×3.14×(42.25﹣25﹣2.25),=×3.14×15,=23.55(平方厘米);答:阴影部分的周长是40.82厘米,面积是23.55平方厘米.点评:此题主要考查半圆的周长及面积的计算方法,根据半圆的弧长=πr,得出图中两个小半圆的弧长之和等于大半圆的弧长,是解决本题的关键.10.求阴影部分的面积.(单位:厘米)考点:圆、圆环的面积.分析:先用“3+3=6”求出大扇形的半径,然后根据“扇形的面积”分别计算出大扇形的面积和小扇形的面积,进而根据“大扇形的面积﹣小扇形的面积=阴影部分的面积”解答即可.解答:解:r=3,R=3+3=6,n=120,,=,=37.68﹣9.42,=28.26(平方厘米);答:阴影部分的面积是28.26平方厘米.点评:此题主要考查的是扇形面积计算公式的掌握情况,应主要灵活运用.11.求下图阴影部分的面积.(单位:厘米)考点:组合图形的面积.分析:先求出半圆的面积3.14×(10÷2)2÷2=39.25平方厘米,再求出空白三角形的面积10×(10÷2)÷2=25平方厘米,相减即可求解.解答:解:3.14×(10÷2)2÷2﹣10×(10÷2)÷2=39.25﹣25=14.25(平方厘米).答:阴影部分的面积为14.25平方厘米.点评:考查了组合图形的面积,本题阴影部分的面积=半圆的面积﹣空白三角形的面积.12.求阴影部分图形的面积.(单位:厘米)考点:组合图形的面积.分析:求阴影部分的面积可用梯形面积减去圆面积的,列式计算即可.解答:解:(4+10)×4÷2﹣3.14×42÷4,=28﹣12.56,=15.44(平方厘米);答:阴影部分的面积是15.44平方厘米.点评:解答此题的方法是用阴影部分所在的图形(梯形)面积减去空白图形(扇形)的面积,即可列式解答.13.计算阴影部分面积(单位:厘米).考点:组合图形的面积.专题:平面图形的认识与计算.分析:如图所示,阴影部分的面积=平行四边形的面积﹣三角形①的面积,平行四边形的底和高分别为10厘米和15厘米,三角形①的底和高分别为10厘米和(15﹣7)厘米,利用平行四边形和三角形的面积公式即可求解.解答:解:10×15﹣10×(15﹣7)÷2,=150﹣40,=110(平方厘米);答:阴影部分的面积是110平方厘米.点评:解答此题的关键是明白:阴影部分的面积不能直接求出,可以用平行四边形和三角形的面积差求出.14.求阴影部分的面积.(单位:厘米)考点:梯形的面积.分析:如图所示,将扇形①平移到扇形②的位置,求阴影部分的面积就变成了求梯形的面积,梯形的上底和下底已知,高就等于梯形的上底,代入梯形的面积公式即可求解.解答:解:(6+10)×6÷2,=16×6÷2,=96÷2,=48(平方厘米);答:阴影部分的面积是48平方厘米.点评:此题主要考查梯形的面积的计算方法,关键是利用平移的办法变成求梯形的面积.15.求下图阴影部分的面积:(单位:厘米)考点:组合图形的面积.分析:根据三角形的面积公式:S=ah,找到图中阴影部分的底和高,代入计算即可求解.解答:解:2×3÷2=6÷2=3(平方厘米).答:阴影部分的面积是3平方厘米.点评:考查了组合图形的面积,本题组合图形是一个三角形,关键是得到三角形的底和高.16.求阴影部分面积(单位:厘米).考点:组合图形的面积.分析:由图意可知:阴影部分的面积=梯形的面积﹣圆的面积,梯形的上底和高都等于圆的半径,上底和下底已知,从而可以求出阴影部分的面积.解答:解:(4+9)×4÷2﹣3.14×42×,=13×4÷2﹣3.14×4,=26﹣12.56,=13.44(平方厘米);答:阴影部分的面积是13.44平方厘米.点评:解答此题的关键是明白:梯形的下底和高都等于圆的半径,且阴影部分的面积=梯形的面积﹣圆的面积.17.(2012•长泰县)求阴影部分的面积.(单位:厘米)考点:组合图形的面积.分析:由图可知,阴影部分的面积=梯形的面积﹣半圆的面积.梯形的面积=(a+b)h,半圆的面积=πr2,将数值代入从而求得阴影部分的面积.解答:解:×(6+8)×(6÷2)﹣×3.14×(6÷2)2=×14×3﹣×3.14×9,=21﹣14.13,=6.87(平方厘米);答:阴影部分的面积为6.87平方厘米.点评:考查了组合图形的面积,解题关键是看懂图示,把图示分解成梯形,半圆和阴影部分,再分别求出梯形和半圆的面积.。

小学数学小升初求阴影部分面积专项练习(附答案解析)

小学数学小升初求阴影部分面积专项练习(附答案解析)

小升初数学求阴影部分面积练习班级考号姓名总分例1.求阴影部分的面积。

(单位:厘米) 例2.正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米)例3.求图中阴影部分的面积。

(单位:厘米) 例4.求阴影部分的面积。

(单位:厘米)例5.求阴影部分的面积。

(单位:厘米)例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?例7.求阴影部分的面积。

(单位:厘米)例8.求阴影部分的面积。

(单位:厘米)例9.求阴影部分的面积。

(单位:厘米)例10.求阴影部分的面积。

(单位:厘米)例13.求阴影部分的面积。

(单位:厘米)例14.求阴影部分的面积。

(单位:厘米)例15.已知直角三角形面积是12平方厘米,求阴影部分的面积。

例16.求阴影部分的面积。

(单位:厘米)例17.图中圆的半径为5厘米,求阴影部分的面积。

(单位:厘米)例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长。

例19.正方形边长为2厘米,求阴影部分的面积。

例20.如图,正方形ABCD的面积是36平方厘米,求阴影部分的面积。

例21.图中四个圆的半径都是1厘米,求阴影部分的面积。

例22.如图,正方形边长为8厘米,求阴影部分的面积。

例23.图中的4个圆的圆心是正方形的4个顶例24.如图,有8个半径为1厘米的小圆,用他例25.如图,四个扇形的半径相等,求阴影部分的面积。

(单位:厘米)例27.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求阴影部分的面积。

例28.求阴影部分的面积。

(单位:厘米)例29.图中直角三角形ABC的直角三角形的直角边AB=4厘米,BC=6厘米,扇形BCD所在圆是以B为圆心,半径为BC的圆,∠CBD=,问:阴影部分甲比乙面积小多少?例30.如图,三角形ABC是直角三角形,阴影部分甲比阴影部分乙面积大28平方厘米,AB= 40厘米。

小升初阴影部分面积专题

小升初阴影部分面积专题
S阴=39.25﹣25 =14.25cm2
梯形的面积——扇形的面积=阴影部分的 面积
S阴=S梯-S圆÷4 S梯 =(4+10)×4÷2
= 28cm2 S圆 = 3.14×42÷4
=12.56cm2 S阴=28﹣12.56
=15.44cm2
阴影部分通过移动后可以组成一个梯形。
S阴=(6+10)×6÷2 =16×6÷2 =96÷2 =48cm2
阴影部分是一个扇形,先求扇形的半径
扇形的半径: 20×15÷2×2÷25 =12cm
扇形的面积: 3.14×12×12÷4 =113.04cm2
图形一:S大圆-S小圆=S阴
S阴=3.14×(3×3-1×1) =25.12cm2
图形二:S圆-S三=S阴 S阴=3.14×4×4-8×4÷2 =50.24-16 =34.24cm2
小升初阴影部分面积专题
长方形的面积—半圆的面积=阴影部分的面积
S长=a×b =8×4 =32 S圆=πr2 =3.14×42÷2 =25.12
S阴=S长-S圆 =8×4﹣3.14×42÷2 =32﹣25.12 =6.88cm2
阴影部分的面积=2个圆的面积
S圆=πr2 =3.14×(4÷2)2 =12.56cm2
大半圆的面积—中半圆的面积—小半圆 的面积=阴影部分的面积
S大半圆=3.14×6.5×6.5÷2 =66.3325cm2
S中半圆=3.14×5×5÷2 =39.25cm2
S小中=3.14×1.5×1.5÷2 =3.5325cm2
S阴=S大半圆-S中半圆-S小中 =66.3325-39.25-3.5325 =23.55cm2
阴影部分的面积是环形面积的三分之一
S阴=S大扇形-S小扇形 3.14×(6×6-3×3)÷3 =3.14× 27÷3 =28.26cm2

小升初数学阴影部分面积“拓展型”专项练习

小升初数学阴影部分面积“拓展型”专项练习

小升初数学典型奥数题『阴影部分面积“拓展型”专项练习』1.求图中阴影部分的面积。

(单位:cm)8×(8÷2)=8×4=32(cm2)阴影部分的面积是32cm2。

8×8÷2 =64÷2=32(cm2)2.求出阴影部分的面积和周长。

阴影部分的面积:3×3=9(cm2)阴影部分的周长:2×3.14×3÷2+3×2=15.42(cm)答:阴影部分的面积是9cm2,阴影部分的周长是15.42cm。

3.大圆半径5厘米,小圆半径3厘米,求两圆中阴影部分的面积差。

3.14×52-3.14×32=3.14×(52-32)=50.24(平方厘米)答:两圆中阴影部分的面积差是50.24平方厘米。

小升初数学典型奥数题『阴影部分面积“拓展型”专项练习』4.图中圆的周长是25.12厘米,空白部分是一个正方形,阴影部分的面积是多少平方厘米?25.12÷3.14÷2 =8÷2=4(厘米)3.14×42-4×4÷2×4 =3.14×16-16÷2×4 =50.24-8×4=50.24-32=18.24(平方厘米)答:阴影部分的面积是18.24平方厘米。

5.求阴影部分的面积。

2×2-14×3.14×22=4-14×4×3.14=4-3.14=0.86(平方厘米)4×2÷2-0.86 =4-0.86=3.14(平方厘米)答:阴影部分的面积是3.14平方厘米。

小升初数学典型奥数题『阴影部分面积“拓展型”专项练习』6.计算如图中阴影部分的面积。

6×6+4×4-(6-4+6)×6÷2-3.14×42×1/4 =36+16-8×6÷2-50.24×1/4=36+16-8×6÷2-12.56=36+16-48÷2-12.56=36+16-24-12.56=52-24-12.56=28-12.56=15.44(cm2)答:阴影部分的面积是15.44cm2。

完整版)小学求阴影部分面积专题—含答案

完整版)小学求阴影部分面积专题—含答案

完整版)小学求阴影部分面积专题—含答案本文是一个小学及小升初复专题,主要介绍了圆与求阴影部分面积的相关知识。

文章提到了面积求解的两种方法,并强调了观察图形特点的重要性。

接下来列举了多个例子,要求读者求解阴影部分的面积。

最后一个例子是四个扇形的半径相等,需要求阴影部分的面积。

为了更好地理解文章,下面将对每个例子进行简单的解释和改写。

例1:给定一个图形,要求求出阴影部分的面积。

这个例子没有具体的图形,需要根据题目所给的数据进行计算。

例2:一个正方形的面积是7平方厘米,求阴影部分的面积。

这个例子需要注意正方形的面积和阴影部分的关系。

例3:给定一个图形,要求求出阴影部分的面积。

这个例子需要观察图形的特点,选择合适的方法求解面积。

例4:给定一个图形,要求求出阴影部分的面积。

同样需要观察图形的特点,选择合适的方法求解面积。

例5:给定一个图形,要求求出阴影部分的面积。

同样需要观察图形的特点,选择合适的方法求解面积。

例6:已知小圆半径为2厘米,大圆半径是小圆的3倍,问空白部分甲比乙的面积多多少。

这个例子需要根据圆的面积公式求解。

例7:给定一个图形,要求求出阴影部分的面积。

同样需要观察图形的特点,选择合适的方法求解面积。

例8:给定一个图形,要求求出阴影部分的面积。

同样需要观察图形的特点,选择合适的方法求解面积。

例9:给定一个图形,要求求出阴影部分的面积。

同样需要观察图形的特点,选择合适的方法求解面积。

例10:给定一个图形,要求求出阴影部分的面积。

同样需要观察图形的特点,选择合适的方法求解面积。

例11:给定一个图形,要求求出阴影部分的面积。

同样需要观察图形的特点,选择合适的方法求解面积。

例12:给定一个图形,要求求出阴影部分的面积。

同样需要观察图形的特点,选择合适的方法求解面积。

例13:给定一个图形,要求求出阴影部分的面积。

同样需要观察图形的特点,选择合适的方法求解面积。

例14:给定一个图形,要求求出阴影部分的面积。

小升初求阴影部分面积历年真题汇总

小升初求阴影部分面积历年真题汇总

小升初求阴影部分面积历年真题汇总(2004东华)5、右图等腰三角形OAB 面积为8平方厘米,求圆的面积。

(2007东华)5、下图阴影部分中甲的面积比乙的面积多28平方厘米,已知AB 长40厘米,求BC 的长是多少厘米?(3分)(2008东华)六、运算阴影部分的面积(共4分)(2009东华)1﹑右图平行四边形ABCD 的面积是36平方厘米,其中AE=23AC,求阴影部分的面积.(4分)DCA B(2009东华)2﹑如右图,阴影部分的面积是25平方米,求圆环面积,(5分)ABOAB C 甲乙20cmE(2010东华)六、已知图中梯形ABCD的面积是27.5平方厘米,求阴影部分的面积。

(2011东华)24、下图中圆的周长是62.8厘米,假如圆的面积和长方形的面积相等,运算涂色部分的周长。

(2020东华)阴影2比阴影1面积大2.75cm2,圆的半径为5 cm,求BC的长。

(3分)(2009大联盟)8、一个半圆形花坛,周长为10.28米,面积为多少平方米?(2011大联盟)8、测测你的综合能力(1)现有长5厘米,宽4厘米的长方形纸片若干张,用这种纸片拼正方形(不能重叠、不留间隙),拼出的最小正方形面积是多少?需要这种长方形纸片多少张?(2)如图,图中阴影部分面积占整个图形面积的几分之几4cm 7cmAB CD(2020大联盟)1、求右图中阴影部分的面积。

(单位:厘米)(2009大联盟,附加题)某中学打算建设一个400m跑道的运动场(如下图所示),聘请你任工程师,问:(1)若直道长100m,则弯道弧长半径r为多少m?(2)共8个跑道,每条宽1.2m,操场最外圈长多少m?(3)若操场中心铺绿草,跑道铺塑胶,则各需绿草、塑胶多少㎡?(4)若绿草50元/㎡,塑胶350元/㎡,学校现有200万元,能够开工吗?什么缘故?7.如图,在△ABC中,DC=3BD,DE=EA,若△ABC面积是2,则阴影部分的面积是______.1、求图中阴影部分的面积?(单位:厘米)(5分)1020104、如下图:一个半径为10厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为____ __ 厘米5、2002年北京召开的国际数学家大会,大会会标如图所示,它是由四个相同的直角三角形拼成的(直角边长为2和3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求图形阴影部分面积专项练习
【本讲教育信息】
一. 教学内容:
复习圆的有关知识(扩展提高训练)
1、圆的周长:通过测量大小不同的圆的周长和直径,分别算出它们的比值,可以发现“圆的周长总是直径的三倍多一点”
2、圆的面积:圆的面积计算公式的推导。

“将圆分割,然后再拼成学过的图形”将圆分成16等分(也可以是32等分),再拼成近似平行四边形的过程,“分的份数越多,拼成的图形就越接近长方形”。

发现圆和拼成的近似长方形之间的关系,根据长方形面积的计算公式,推导出圆面积的计算公式
3、从一个大圆去掉一个小圆可以得到一个环形,环形的面积就是两个圆面积的差。

4、一些常见图形的对称轴情况。

如:平行四边形(不包括菱形)不是轴对称图形、长方形有2条对称轴、正方形有4条对称轴、圆有无数条对称轴、半圆有一条对称轴……
二. 重点、难点:
与圆有关的周长和面积的计算及阴影部分面积的计算
三、具体内容:
计算公式:
(1)周长是直径的π倍,是半径的2π倍。

C/d=πC/r=2π即:C=2πr=πd
(2)半圆周长 C=πr+2r=(π+2)r 半圆周长是半径的约5.14倍
圆周长的一半: =2πr/2=πr
(3)S圆=π S圆=π S圆=已知r,d,C可以进一步求面积
(4)应让学生熟练掌握π的几倍数值:
1π≈3.14 6π≈18.84
2π≈6.28 7π≈21.98
3π≈9.42 8π≈25.12
4π≈12.56 9π≈28.26
5π≈15.7 10π≈31.4
会乘法分配律,以加代乘,会计算两位数π值的速算:
15π=10π+5π≈31.4+15.7=47.1
【典型例题】
例1、如图,大小两个半圆,它们的直径在同一直线上,弦AB与小圆相切,且与直径平行,弦AB长12厘米。

求图中阴影部分的面积。

(圆周率=3.14)
第一步:阴影部分面积S=/2 (因为是半圆,所以除以2)
第二步:找出未知量与唯一知道确切数值的已知条件--弦AB长12厘米
关系。

第三步:优化已知条件。

把小圆的圆心移到大圆圆心处,自己画图出来看看,有什么豁然开朗的地方?
第四步:看到两个直角三角形了吗?快用勾股定理,直角三角形两直角边的平方和等于斜边的平方(这个定理迟早要学,晚学不如早学)。

第五步:由勾股定理知R=r+(弦AB/2)平方,即=(弦AB/2)平方。

第六步:化简得=36把36代入S=3.14()/2=56.52
例2、如图,直角三角形ABC中,AB是圆的直径,且AB=20厘米,如果阴影(Ⅰ)的面积比阴影(Ⅱ)的面积大7平方厘米,求BC长。

分析与解:已知阴影(Ⅰ)比阴影(Ⅱ)的面积大7平方厘米,就是半圆面积比三角形ABC面积大7平方厘米;又知半圆直径AB=20厘米,可以求出圆面积。

半圆面积减去7平方厘米,就可求出三角形ABC的面积,进而求出三角形的底BC的长。

BC=[π×(20÷2)2÷2-7]×2÷20=(157-7)×2÷20=15(厘米)
例3、如图,在一个正方形内,以正方形的三条边为直径向内作三个半圆。

求阴影部分的面积。

分析与解:解法一:把上图靠下边的半圆换成(面积与它相等)右边的半圆,得到右图。

这时,右图中阴影部分与不含阴影部分的大小形状完全一样,因此它们的面积相等。

所以上图中阴影部分的面积等于正方形面积的一半。

解法二:将上半个“弧边三角形”从中间切开,分别补贴在下半圆的上侧边上,如右图所示。

阴影部分的面积是正方形面积的一半。

解法三:将下面的半圆从中间切开,分别贴补在上面弧边三角形的两侧,如右图所示。

阴影部分的面积是正方形的一半。

例4、如图,正方形ABCD的边长为4厘米,分别以B、D为圆心以4厘米为半径在正方形内画圆,求阴影部分面积。

分析与解:由容斥原理:S阴影=S扇形ACB+S扇形ACD-S正方形ABCD=π×AB2÷4×2-AB2=16×(π/2-1)≈9.12(平方厘米)
例5、如图三角形ABC是直角三角形,ACD是以A为圆心、AC为半径的的扇形。

求图中阴影部分的面积是多少?(π=3.14)
分析与解:△ABC的面积=1/2×6×6=18,扇形ACD的面积=1/8×π×62=14.13,
∴阴影部分的面积=18-14.13=3.87(平方厘米)
例6、如图:左边正方形的边长为a,以正方形的一个顶点为圆心、边长为半径分别作两个扇形,问:图中阴影部分的面积是多少?
分析与解:如图添辅助线。

阴影部分面积等于左上角的三角形面积。

面积为(1/2)a2。

例7、如图,等腰直角三角形的一腰的长是8厘米,以它的两腰为直径分别画了两个半圆,那么阴影部分的面积共有多少平方厘米?(π取3.14)
解:阴影部分面积=半圆面积2-正方形面积=3.14=18.24(平方厘米)
答:阴影部分的面积共有18.24平方厘米。

例8、如图,以AB为直径做半圆,三角形ABC是直角三角形,阴影部分①比阴影部分②的面积小28平方厘米,AB长40厘米。

求BC的长度。

(π取3.14)
解:阴影部分①比阴影部分②的面积小28平方厘米,即半圆面积比三角形ABC的面
积小28平方厘米,半圆面积==628平方厘米,
三角形ABC的面积=半圆面积+28=628+28=656平方厘米,
所以,BC=2656/40=32.8(厘米)
答:BC的长度是32.8厘米。

【模拟试题】(答题时间:30分钟)
一、填空
1. 圆的周长是这个圆的直径的()倍,
圆的周长是这个圆的半径的()倍。

2. 如果圆的半径扩大2倍,那么圆的直径扩大()倍,那么圆的周长扩大()倍。

3. 半圆的周长=()
4. 知道圆的(),就可以求圆的周长。

5. 你能求出电扇的扇叶转动一圈的轨迹的长是多少吗?怎么求?
6. 半径是3分米的一个圆,它的周长是()分米。

7. 一个直径是4厘米的半圆形,它的周长是()厘米。

8. 圆周率就是3.14,对吗?()
二、计算题
1. 一只狗被拴在一个边长为3米的等边三角形建筑物的墙角上(见下图),绳长是4米,求狗所能到的地方的总面积。

2. 如图,ABC是等腰直角三角形,D是半圆周上的中点,BC是半圆的直径,且AB=BC=10,求阴影部分面积(π取
3.14)。

3. 如图,ABCD是正方形,且FA=AD=BE=1,求阴影部分的面积。

(取π=3)
【试题答案】
一、
1. 2
2. 2 2
3. πr
4. 半径
5. 能,求圆的周长,C=2πr
6. 18.84
7. 2+4
8. 不对
二、
1. 解:可分为半径为4米、圆心角为300°的扇形与两个半径为1米、圆心角为120°的扇形。

面积为
2. 分析与解:∵三角形ABC是等腰直角三角形,以AC为对角线再作一个全等的等腰直角三角形ACE,则ABCE为正方形(利用对称性质)。

∴ S阴影=(S正方形ABCE+S半圆-S△ADE)÷2
S阴影=[102+π×(10/2)2÷2-10×(10+5)÷2]=32.125。

3. 分析与解:阴影M的面积+阴影N的面积=△BCD的面积=1/2;
阴影W的面积=△CBE的面积-1/8的圆面积=1/2-π/8=1/8。

∴阴影部分总面积=1/2+1/8=5/8。

相关文档
最新文档