金属在其它静载荷下的力学性能

合集下载

安徽工业大学 工程材料力学性能复习提纲整理(1)

安徽工业大学 工程材料力学性能复习提纲整理(1)

1.包申格效应:金属材料经过预先加载产生少量塑性变形(残余应变为1%~2%),卸载后再同向加载,规定残余应力(弹性极限或屈服强度)增加;反向加载,规定残余应力降低(特别是弹性极限在反向加载时几乎降低到零)的现象,称为包申格效应。

2.用低密度可动位错理论解释屈服现象产生的原因金属材料3.答:塑性变形的应变速率与可动位错密度、位错运动速率及柏氏矢量成正比欲提高v就需要有较高应力τ这就是我们在实验中看到的上屈服点。

一旦塑性形变产生,位错大量增值,ρ增加,则位错运动速率下降,相应的应力也就突然降低,从而产生了屈服现象。

(回答不完整,尤其是上屈服点产生的原因回答的不好)3.塑性:材料受力,应力超过屈服点后,仍能继续变形而不发生断裂的性质。

强度:金属材料在外力作用下抵抗永久变形和断裂的能力称为强度。

韧性:表示材料在塑性变形和断裂过程中吸收能量的能力脆性:材料在外力作用下(如拉伸、冲击等)仅产生很小的变形即断裂破坏的性质。

4.韧性断裂与脆性断裂的区别,为什么脆性断裂最危险?答:韧性断裂是材料断裂前产生明显宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量,韧性断裂的断裂面的断口呈纤维状,灰暗色。

脆性断裂是突然发生的断裂,断裂前基本不发生塑性变形,没有明显征兆,因而危害性极大,脆性断裂面的断口平齐而光亮,常呈放射状或结晶状。

5.试指出剪切断裂与解理断裂哪一个是穿晶断裂,哪一个是沿晶断裂?哪一个属于韧性断裂,哪一个属于脆性断裂?为什么?答:都是穿晶断裂,剪切断裂是材料在切应力作用下沿滑移面发生滑移分离而造成的断裂,断裂面为穿晶型,在断裂前会发生明显的塑性变形,为韧性断裂;而解理断裂是材料在正应力作用下沿一定的晶体学平面产生的断裂,也为穿晶断裂,但断裂面前无明显的塑性变形,为脆性断裂。

6.拉伸断口的三要素:纤维区、放射区、剪切唇7. 理论断裂强度的推导过程是否存在问题?为什么?为什么理论断裂强度与实际的断裂强度在数值上有数量级的差别?答:(1)虽然理论断裂强度与实际材料的断裂强度在数值上存在着数量级的差别,但是理论断裂强度的推导过程是没有问题的。

工程材料力学性能第二章

工程材料力学性能第二章
❖ 6〕不仅适用于脆性也适用于塑性金属材料。
❖ 7〕 缺点 外表切应力大,心部小,变形不均匀。
二、扭转实验 扭转试样:圆柱形式〔d0=10mm,L0=50m或100mm〕 试验方法:对试样施加扭矩T,相对扭转角以Φ表示
弹性范围内外表的切应力和切应变
扭转试验可测定以下主要性能指标: (1) 切变模量G
在弹性范围内,Kt的数值决定于缺口的几何形状和 尺寸 与材料性质无关.
❖ 2.厚板: ❖ εz=0, σz≠0 ❖ 根部:两向拉伸力状态, ❖ 内侧:三向拉伸的立体应力平面应变状态, ❖ σz =ν〔σy+σx〕 ❖ σy>σz >σx
3.缺口效应: 1〕根部应力集中 2〕改变缺口的应力状态,由单向应力状态改变为两
思考题: ❖ 1 缺口效应及其产生原因; ❖ 2 缺口强化; ❖ 3 缺口敏感度。

第六节 硬度
前言 •古时,利用固体互相刻划来区分材料的软硬 •硬度仍用来表示材料的软硬程度。 •硬度值大小取决于材料的性质、成分和显微组织,测
量方法和条件不符合统一标准就不能反映真实硬度。 •目前还没有统一而确切的关于硬度的物理定义。 •硬度测定简便,造成的外表损伤小,根本上属于“无
可利用扭转试验研究或检验工件热处理的外表质量和各 种外表强化工艺的效果。
❖ 4)扭转时试样中的最大正应力与最大切应力在数值 上大体相等,而生产上所使用的大局部金属材料的 正断抗力 大于切断抗力 ,扭转试验是测定这些材 料切断抗力最可靠的方法。
❖ 5〕根据扭转试样的宏观断口特征,区分金属材料 最终断裂方式是正断还是切断。
油孔,台阶,螺纹,爆缝等对材料的性能影响有以下 四个方面: ❖ 1 缺口产生应力集中 ❖ 2 引起三向应力状态,使材料脆化 ❖ 3 由应力集中产生应变集中 ❖ 4 使缺口附近的应变速率增高

《材料性能学》课后答案

《材料性能学》课后答案

《材料性能学》课后答案《⼯程材料⼒学性能》(第⼆版)课后答案第⼀章材料单向静拉伸载荷下的⼒学性能⼀、解释下列名词滞弹性:在外加载荷作⽤下,应变落后于应⼒现象。

静⼒韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。

弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最⾼应⼒。

⽐例极限:应⼒—应变曲线上符合线性关系的最⾼应⼒。

包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(ζP)或屈服强度(ζS)增加;反向加载时弹性极限(ζP)或屈服强度(ζS)降低的现象。

解理断裂:沿⼀定的晶体学平⾯产⽣的快速穿晶断裂。

晶体学平⾯--解理⾯,⼀般是低指数,表⾯能低的晶⾯。

解理⾯:在解理断裂中具有低指数,表⾯能低的晶体学平⾯。

韧脆转变:材料⼒学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断⼝特征由纤维状转变为结晶状)。

静⼒韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静⼒韧度。

是⼀个强度与塑性的综合指标,是表⽰静载下材料强度与塑性的最佳配合。

⼆、⾦属的弹性模量主要取决于什么?为什么说它是⼀个对结构不敏感的⼒学姓能?答案:⾦属的弹性模量主要取决于⾦属键的本性和原⼦间的结合⼒,⽽材料的成分和组织对它的影响不⼤,所以说它是⼀个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。

改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不⼤。

三、什么是包⾟格效应,如何解释,它有什么实际意义?答案:包⾟格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。

特别是弹性极限在反向加载时⼏乎下降到零,这说明在反向加载时塑性变形⽴即开始了。

包⾟格效应可以⽤位错理论解释。

第⼀,在原先加载变形时,位错源在滑移⾯上产⽣的位错遇到障碍,塞积后便产⽣了背应⼒,这背应⼒反作⽤于位错源,当背应⼒(取决于塞积时产⽣的应⼒集中)⾜够⼤时,可使位错源停⽌开动。

材料力学性能2

材料力学性能2
有所降低,故τb只是条件值(可作相对比较)而非真实
值,也称条件抗扭强度。
贵州大学
贵州正材邦料科力技学有性限能公:司金属在制其作它静载荷下的力学性能
§2-3 扭转
4. 扭转试验特点:
1. 应力状态:为轴类零件的工作受力状态:
最大正应力与力轴成450角,且σmax≈τmax,
应力状态系数α=0.8,大于单向拉伸,适于表现塑性形为 和评价脆性材料;
它是包含了材料的弹性、塑性、形变强化、强度、韧 性(含金属弹性变形功)等因素的综合指标,其中与强 度关系最为紧密。
测试方法分压入法、刻划法、回跳法 压入法:压入被测试材料表面,测表面压痕大小(压
痕面积或深度)
贵州大学
贵州正材邦料科力技学有性限能公:司金属在制其作它静载荷下的力学性能
§2-5 硬度
第二章:金属在其它静载
荷下的力学性能
压缩 弯曲(静) 扭转 硬度
贵州大学
贵州正材邦料科力技学有性限能公:司金属在制其作它静载荷下的力学性能
§2 - 1 应力状态
贵州大学
贵州正材邦料科力技学有性限能公:司金属在制其作它静载荷下的力学性能
§2-1 应力状态
一、强度理论:
三向应力状态: 主应力: σ1>σ2>σ3 最大切应力与主应力面成450角:τmax= (σ1-σ3)/2 广义虎克定律:ε= [σ1-μ(σ2+σ3)]/E
第一强度理论:最大拉应力理论: 第二强度理论:最大拉应变理论: 第三强度理论:最大剪应力理论: 第四强度理论:最大变形能理论:
贵州大学
贵州正材邦料科力技学有性限能公:司金属在制其作它静载荷下的力学性能
§2-1 应力状态

金属材料力学性能检测

金属材料力学性能检测
L0——标距长度 S0——试样原始截面积
K为常数,通常取5.65或11.3,k=5.65时也称为短试样,此时的原始标 距应不少于15mm;k=11.3试样称为长试样 对于圆形试样,标距长度为工作直径d的5倍时为短试样,为10倍时为长 试样。但在特殊情况有关标准有规定时,也用4d或8d的试样
2 拉伸试样分类
物理意义是在于它反映了最大均匀变形的抗力
抗拉强度 — 是脆性材料选材的依据。 屈服强度与抗拉强度的比值σS / σb称为屈强比。 屈强比小,工程构件的可靠性高,说明即使外载荷或某些 意外因素使金属变形,也不至于立即断裂。但若屈强比过 小,则材料强度的有效利用率太低。
3.刚度
材料在外力作用下抵抗弹性变形的能力称为刚度。
塑性:指金属发生塑性变形而不被 破坏的能力。
载荷
作用在机件上的外力——载荷
静载荷 动载荷
静载荷:逐渐而缓慢地作用在工作上的力 如机床床身的压力、钢索的拉力
动载荷:包括冲击及交变载荷 如空气锤杆所受的冲击力、齿轮、弹簧
静拉伸试验(所加载荷为静载荷)
是一种较简单的力学性能试验,能够清楚地反映出材料受力 后所发生的弹性、弹塑性与断裂三个变形阶段的基本特性。 经拉伸试验对所测试的力学性能指标的测量稳定可靠,而且 理论计算方便,因此各国及国际组织都制定了完善的拉伸试 验方法标准,将拉伸试验方法列为力学性能试验中最基本、 最重要的试验项目。


表示方法:硬度值+HBS(HBW)+D+F+t
硬 度
120HBS10/1000/30
压 痕
表示直径为10mm的钢球在1000kgf
载荷作用下保持30s测得的布氏硬度
值为120。

2.2金属的力学性能

2.2金属的力学性能

30
<140 非铁 金属 >130
10 30
12 30
36~130 8~35
10 2.5
30 60
3、表示方法
XXX HBS(W) XX / XXX / XX
硬度值 试验力保持 压头直径(mm ) 实验力(N) G=mg(g=9.807) 表示用直径5mm硬质合金球在7355N试验力作用下保持 10~15s测得的布氏硬度值为500 表示用直径10mm钢球压头在9807N试验力作用下保持30s 测得的布氏硬度值为120
除低碳钢、中碳钢及少数合金钢有屈服现象外,对于 大多数没有明显的屈服现象的金属材料。 定义:条件屈服强度: Rp0.2( σ0.2 指出: 是工程技术中最重要的机械性能指标之一;

规定:产生0.2%残余伸长时的应力作为条件屈服强度。
是设计零件时作为选用金属材料的重要依据。
• 工程上各种构件或机器零件工作时均不允许 发生过量塑性变形,因此屈服强度ReL和规定 残余延伸强度Rp0.2是工程技术上重要的力学 性能指标之一,也是大多数机械零件选材和 设计的依据。
• ReL 和Rp0.2 常作为零件选材和设计的依据。 • 传统的强度设计方法,对韧性材料,以屈服 强度为标准,规定许用应力[σ ]= ReL /n, 安全系数n一般取2或更大。
3)抗拉强度
定义:指在外力作用下由产生大量塑性变形到断裂前所承受的
最大应力,故又称强度极限。 公式:
Fm Rm 或 S0
菏泽高级技工学校
想一想:
1、金属材料受力后会有什么反应?
2、金属的力学性能的指标一般有哪些? 怎样获得这些指标?
3、金属材料为什么会发生断裂?
§2-2金属的力学性能

金属在其他静载荷下的力学性能 应力状态软性系数、压缩、弯曲、扭转

金属在其他静载荷下的力学性能 应力状态软性系数、压缩、弯曲、扭转
一般脆性材料的抗拉强度都低于抗压强 度,因此,脆性材料在承受弯曲载荷时, 断裂的特征是?
弯曲试验的特点
弯曲试样形状简单、弯曲试验操作方便 (如可以避免偏心拉伸),适用于硬质脆 性材料(铸铁、铸造合金、工具钢和硬质 合金等); 弯曲试样表面应力最大,可以比较灵敏地 反映材料表面缺陷; 弯曲强度( bb )随材料和热处理温度而变 化(图2-3)。
二 弯曲试验
两种常见的弯曲试验: 三点弯曲 three point bending 四点弯曲 four point bending(均匀弯矩弯曲)
两种常见的弯曲试验
三 弯曲试验中测量的力学指标
两种弯曲试样: 圆形:d 5 45mm ,长度为直径的16倍; 矩形:hb 5mm7.5mm 30mm 40mm(30mm30mm)
(2)对于拉-压弹性模量E和屈服强度相同的 材料,应力和应变分布才表现出上述的对 称性。
特殊性能:弹性模量(不同于拉伸和压 缩);
屈服现象不同于单纯拉伸或压缩;下图为 拉伸和压缩弹性模量不同的材料的应变分 布图(上下不对称)
铸铁的抗拉强度和抗压强度不同; 思考:铸铁梁在弯曲的过程中,什么位置首 先破坏(上表面还是下表面)?
还可以根据扭转试样的断口特征明确区分金属材 料最终的断裂方式(正断、切断)
二 扭转试验
试样:圆柱形试样 d0 10mm,标距长度分别 为 50mm 和 100mm
扭转弯曲应力的计算:Eq.(2-4) 扭转试验所测量的主要力学指标: 切变模量 扭转屈服点 抗扭强度
第二章 材料在其它 静载荷下的力学性能
第一节 应力状态软性系数
应力状态软性系数:
max
1 3
(2-1)
max 21 0.5( 2 3 )

材料力学性能-考前复习总结(前三章)

材料力学性能-考前复习总结(前三章)

材料力学性能-考前复习总结(前三章)金属材料的力学性能指标是表示其在力或能量载荷作用下(环境)变形和断裂的某些力学参量的临界值或规定值。

材料的安全性指标:韧脆转变温度Tk;延伸率;断面收缩率;冲击功Ak;缺口敏感性NSR材料常规力学性能的五大指标:屈服强度;抗拉强度;延伸率;断面收缩率;冲击功Ak;硬度;断裂韧性第一章单向静拉伸力学性能应力和应变:条件应力条件应变 =真应力真应变应力应变状态:可在受力机件任一点选一六面体,有九组应力,其中六个独立分量。

其中必有一主平面,切应力为零,只有主应力,且,满足胡克定律。

应力软性系数:最大切应力与最大正应力的相对大小。

1 弹变1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

ae=1/2σeεe=σe2/2E。

取决于E和弹性极限,弹簧用于减震和储能驱动,应有较高的弹性比功和良好弹性。

需通过合金强化及组织控制提高弹性极限。

2)弹性不完整性:纯弹性体的弹性变形只与载荷大小有关,而与加载方向及加载时间无关,但对实际金属而言,与这些因素均有关系。

①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

与材料成分、组织及试验条件有关,组织约不均匀,温度升高,切应力越大,滞弹性越明显。

金属中点缺陷的移动,长时间回火消除。

弹性滞后环:由于实际金属有滞弹性,因此在弹性区内单向快速加载、卸载时,加载线与卸载线不重合,形成一封闭回路。

吸收变形功循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力(塑性区加载,塑性滞后环),也叫内耗(弹性区加载),或消震性。

②包申格效应:定义:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

(反向加载时弹性极限或屈服强度降低的现象。

特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了)解释:与位错运动所受阻力有关,在某滑移面上运动位错遇位错林而使其弯曲,密度增大,形成位错缠结或胞状组织,相对稳定。

金属材料的力学性能指标

金属材料的力学性能指标

金属材料的力学性能指标金属材料是工程中常用的材料之一,其力学性能指标对于材料的选择和设计具有重要意义。

力学性能指标是评价金属材料力学性能的重要依据,主要包括强度、韧性、塑性、硬度等指标。

下面将对金属材料的力学性能指标进行详细介绍。

首先,强度是评价金属材料抵抗外部力量破坏能力的指标。

强度可以分为屈服强度、抗拉强度、抗压强度等。

其中,屈服强度是材料在受到外部力作用下开始产生塑性变形的应力值,抗拉强度是材料在拉伸状态下抵抗破坏的能力,抗压强度是材料在受到压缩力作用下抵抗破坏的能力。

强度指标直接影响着材料的承载能力和使用寿命。

其次,韧性是材料抵抗断裂的能力。

韧性指标包括冲击韧性、断裂韧性等。

冲击韧性是材料在受到冲击载荷作用下抵抗破坏的能力,断裂韧性是材料在受到静态载荷作用下抵抗破坏的能力。

韧性指标反映了材料在受到外部冲击或载荷作用下的抗破坏能力,对于金属材料的使用安全性具有重要意义。

再次,塑性是材料在受力作用下产生塑性变形的能力。

塑性指标包括伸长率、收缩率等。

伸长率是材料在拉伸破坏前的延展性能指标,收缩率是材料在受力破坏后的收缩性能指标。

塑性指标直接影响着金属材料的加工性能和成形性能,对于金属材料的加工工艺和成形工艺具有重要影响。

最后,硬度是材料抵抗划伤、压痕等表面破坏的能力。

硬度指标包括洛氏硬度、巴氏硬度等。

硬度指标反映了材料表面的硬度和耐磨性能,对于金属材料的耐磨性和使用寿命具有重要意义。

综上所述,金属材料的力学性能指标是评价材料性能的重要依据,强度、韧性、塑性、硬度等指标直接影响着材料的使用性能和工程应用。

在工程设计和材料选择中,需要根据具体的工程要求和使用环境,综合考虑各项力学性能指标,选择合适的金属材料,以确保工程的安全可靠性和经济性。

工程材料力学性能 第三版课后题答案(束德林)

工程材料力学性能 第三版课后题答案(束德林)

工程材料力学性能课后题答案第三版(束德林)第一章单向静拉伸力学性能1、解释下列名词。

(1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

(2)滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

(3)循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

(4)包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

(5)解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。

(6)塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

脆性:指材料在外力作用下(如拉伸、冲击等)仅产生很小的变形即断裂破坏的性质。

韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

(7)解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。

(8)河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的一种标志。

(9)解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。

(10)穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。

(11)韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变。

2、说明下列力学性能指标的意义。

答:(1)E(G)分别为拉伸杨氏模量和切边模量,统称为弹性模量表示产生100%弹性变所需的应力。

σ规定残余伸长应力,试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力。

(2)rσ名义屈服强度(点),对没有明显屈服阶段的塑性材料通常以产生0.2%的塑性形变对应的应力作为屈2.0服强度或屈服极限。

材料力学性能总结2

材料力学性能总结2
厚板Z向变形受到约束εz =0
z ( x y )
且σy> σz > σx。
2020/5/4
y z y
x z
x
图2-11 厚板缺口拉伸弹 性状态下的应力分布
2.塑性状态下的应力分布
对于塑性好的材料,若根部产生 塑性变形,应力将重新分布,并 随载荷的增加塑性区逐渐扩大, 直至整个截面上都产生塑性变形。
ห้องสมุดไป่ตู้
第三节 弯曲及其性能指标
1. 弯曲试验测定的力学性能指标
a三点弯曲
是将圆柱形或矩形试样放置在跨矩为Ls 的支座上,进行加载F,记录弯曲力和
试样挠度曲线,确定金属在弯曲力作用 下的力学性能。
•最大正应力:
max
M max W
M max
FLs 4
其中W
d
3 0
32
2020/5/4
b四点弯曲
第二章 材料在其它静载下的力学性能
➢ 金属材料在常温静载荷条件下,除单向静拉伸外,还 有压缩、弯曲、扭转或缺口试样拉伸等不同的测试方 法。
➢ 其目的在于: ➢ 一、尽量接近材料真实的服役环境。测定材料在相应
条件下的力学性能指标,从而在应用中作为设计和选 材的依据。 ➢ 二、不同的加载方式将产生不同的应力环境,材料将 表现出不同的力学行为。
(1) 弯曲加载时受拉的一侧应力状态基 本上与静拉伸时相同,可用于测定那些太硬难 于加工成拉伸试样的脆性材料的断裂强度;
(2) 截面上应力分布也是表面最大,可 以用于比较和评定材料表面处理层的质量
(3) 较软的塑性材料难以发生断裂,最 好采用拉伸试验。
2020/5/4
第四节 扭转的力学性能
圆柱试样承受扭矩M进行扭转时,试样表面的应力状态如图 2-5,在与试样轴线呈45°的两个截面上承受最大与最小正 应力力τ。σ1及σ3,在平行和垂直于轴线的截面上承受最大切应

金属材料的力学性能(一)

金属材料的力学性能(一)

(2)拉伸机
万能材料试验机
a) WE系列液压式 b) WDW系列电子式
(3)拉伸试验
拉伸试验视频1
(a)试样
(b)伸长
(c)产生缩颈
(d)断裂
拉 伸 试 样 的 颈 缩 现 象
拉伸试验视频1回顾
2、低碳钢拉伸曲线
OA' 弹性变形阶段 A'ABC 屈服阶段 CD 强化阶段 DE 缩颈阶段
脆性材料的拉伸曲线(与低碳钢试样相对比)
金属材料的力学性能又称为机械性能,是指金属
在外力作用下所反映出来的性能。 具体的说就是金属材料在受到拉伸、压缩、弯曲、 扭转、冲击、交变应力时,对变形与断裂的抵抗能力。

材料在外力的作用下将发生形状和尺寸变化,称为 变形。


外力去处后能够恢复的变形称为弹性变形。
外力去处后不能恢复的变形称为塑性变形。
Fs s ( MPa) Ao
式中Fs——试样产 生屈服时所承受的最大 载荷,N ; Ao——试样原始截 面积,mm2。

对于高碳淬火钢、铸铁等材料,在拉伸试验中没 有明显的屈服现象,无法确定其屈服强度。 国标GB228-2002规定,一般规定以试样产生 0.2%塑性变形时的应力作为该材料的屈服强度, 称为条件屈服强度,用σr0.2表示。
强度 塑性 硬度 韧性 疲劳强度
复习巩固
1、金属的力学性能包括哪些指标? 2、什么是强度?衡量材料强度的指标是什么?
强度是金属材料在静载荷作用下,抵抗塑性 变形和断裂的能力。 强度指标主要有屈服极限和强度极限。
复习巩固
1、金属的力学性能包括哪些指标? 2、什么是强度?衡量材料强度的指标是什么? 3、设计零件主要依据哪种强度指标?
练一练:举几个日常生活中弹性变形和塑性变形的例子

材料力学性能——第二章

材料力学性能——第二章
材料力学性能
一、缺口效应
(一)缺口试样在弹性状态下的应力分布(厚板)
理论应力集中系数
Kt max
与薄板相比, 厚板在垂直于板厚方向的收缩变形受到 约束,即:
z 0
z
1 E
[ z
(
x
y )]
z ( x y )
y> z> x
材料力学性能
一、缺口效应
(二)缺口试样在塑性状态下的应力分布(厚板)
一、应力状态软性系数α
(1)较硬的应力状态试验,主要用于塑性金属材料力学性能的测定。 (2)较软的应力状态试验,主要用于脆性金属材料力学性能的测定。
材料力学性能
第二节 压缩
一、压缩试验的特点
(1) 单向压缩试验的应力状态软性系数α=2,所以 主要用于拉伸时呈脆性的金属材料力学性能的测定。
(2) 拉伸时塑性很好的材料,在压缩时只发生压缩 变形而不断裂。
原因:
切应力:引起金属材料产生塑性变形以及韧性断裂。 正应力:引起金属材料产生脆性断裂。
反之亦然
1
材料力学性能
第一节 应力状态软性系数
材料在受到载荷作用时(单向拉伸), max s
max k
产生屈服 产生断裂
在复杂的应力状态下(用三个主应力表示成σ1、σ2、 σ3 )
最大切应力理论: max
一、缺口效应 定义
在静载荷作用下,由于缺口的存在,而使其尖端出现应力、应变集中; 并改变了缺口前方的应力状态,由原来的单向应力状态变为两向或三向 应力状态; 并使塑性材料的强度增加,塑性降低。
材料力学性能
一、缺口效应
(一)缺口试样在弹性状态下的应力分布(薄板)
在拉应力σ的作用下,缺口的存在使 横截面上的应力分布不均匀: 轴向应力σy分布:σy在缺口根部最大, 随着距离x↑ ,σy ↓ ,所以在缺口根部 产生了应力集中的现象。 横向应力σx分布:缺口根部可自由变形, σx=0,远离x轴,变形阻力增大, σx↑, 达到一定距离后,由于σy↓导致σx ↓。

工程材料力学性能-第三版课后题答案(束德林)

工程材料力学性能-第三版课后题答案(束德林)
Rp0.2 规定塑性延伸率为 0.2%时的应力。
Rr0.2 规定残余延伸率为 0.2%时的应力。
Rt0.5 规定总延伸率为 0.5%时的应力。
(3)Rm 抗拉强度,只代表金属材料所能承受的最大拉伸应力,表征金属材料对最大均匀塑性变形的抗力。 (4)n 应变硬化指数,反映金属材料抵抗均匀塑性变形的能力,是表征金属材料应变硬化行为的性能指标。 (5)A 断后伸长率,是试样拉断后标距的残余伸长(Lu-L0)与原始标距 L0 之比的百分率。
13、何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、
2
大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。
14、板材宏观断口的主要特征是什么?如何寻找断裂源? 答:板状矩形拉伸试样断口中呈人字纹花样。根据人字纹花样的放射方向,顺着尖顶指向可以找到裂纹源。 15、试证明,滑移相交产生微裂纹的柯垂耳机理对 fcc 金属而言在能量上是不利的。 答:
脆性断裂,这种现象称为韧脆转变。 2、 说明下列力学性能指标的意义。
答:(1)E(G)分别为拉伸杨氏模量和切边模量,统称为弹性模量表示产生 100%弹性变所需的应力。 (2) r 规定残余伸长应力,试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力。 0.2 名义屈服强度(点),对没有明显屈服阶段的塑性材料通常以产生 0.2%的塑性形变对应的应力作为屈
强度提高。 22、裂纹扩展扩展受哪些因素支配? 答:裂纹形核前均需有塑性变形;位错运动受阻,在一定条件下便会形成裂纹。 23、试分析能量断裂判据与应力断裂判据之间的联系。 答:格林菲斯能量判据是裂纹扩展的必要条件(必须满足),但不是充分条件(满足能量条件不一定扩展)。充分条件(应力

材料力学性能第二章

材料力学性能第二章

4/17/2014
安徽工业大学 材料科学与工程学院
20

缺口引起的应力集中程度通常用应力集中系 数Kt来表示
max Kt
与材料性质无关,只由缺口的 几何形状决定,可在手册中查 到
4/17/2014
安徽工业大学 材料科学与工程学院
21

缺口的第一个效应是引起应力集中,并改变了缺口前方的 应力状态,使缺口试样或机件中所受的应力,由原来的单 向应力状态改变为两向或三向应力状态,这种状态由板厚 或直径决定。 两向或三向不等拉伸的应力状态软性系数α<0.5,使金属难 以产生塑性变形。 对于脆性材料或低塑性材料进行缺口试样拉伸时,很难通 过缺口根部极为有限的塑性变形使应力重新分布,往往直 接由弹性变形过渡到断裂,所以缺口试样的抗拉强度必然 比光滑试样的低。
安徽工业大学 材料科学与工程学院

压头直径D有四种: 10 mm、5 mm、2.5 mm和1 mm 主要根据试样厚度选择,应使压痕深度h小于试样厚 度的1/8,当试样厚度足够时,应尽可能选直径10 mm 的压头
4/17/2014
安徽工业大学 材料科学与工程学院
33
布氏硬度试验的优点:


1. 由于压头的直径较大,所以压痕面积较大,其硬度值能 反映各组成相的平均性能,适合于测定灰铸铁、轴承合金 的硬度; 2. 试验数据稳定,重复性强。
布氏硬度试验的缺点:

1. 对不同材料需要更换压头直径和改变试验力,压痕直径 的测量较麻烦,所以不宜用于自动检测; 2. 压痕较大时不宜在成品上实验。

4/17/2014
安徽工业大学 材料科学与工程学院
10
根据扭转试验时试样所受的应力状态与应力分布,扭转 试验具有如下 特点:

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。

如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。

这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力。

这种能力就是材料的力学性能。

金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标。

钢材力学性能是保证钢材最终使用性能(机械性能)的重要指标,它取决于钢的化学成分和热处理制度。

在钢管标准中,根据不同的使用要求,规定了拉伸性能(抗拉强度、屈服强度或屈服点、伸长率)以及硬度、韧性指标,还有用户要求的高、低温性能等。

金属材料的机械性能1、弹性和塑性:弹性:金属材料受外力作用时产生变形,当外力去掉后能恢复其原来形状的性能。

力和变形同时存在、同时消失。

如弹簧:弹簧靠弹性工作。

塑性:金属材料受外力作用时产生永久变形而不至于引起破坏的性能。

(金属之间的连续性没破坏)塑性大小以断裂后的塑性变形大小来表示。

塑性变形:在外力消失后留下的这部分不可恢复的变形。

2、强度:是指金属材料在静载荷作用下抵抗变形和断裂的能力。

强度指标一般用单位面积所承受的载荷即力表示,单位为MPa。

工程中常用的强度指标有屈服强度和抗拉强度。

拉伸图:金属材料在拉伸过程中弹性变形、塑性变形直到断裂的全部力学性能可用拉伸图形象地表示出来。

材料在常温、静载作用下的宏观力学性能。

是确定各种工程设计参数的主要依据。

这些力学性能均需用标准试样在材料试验机上按照规定的试验方法和程序测定,并可同时测定材料的应力-应变曲线。

对于韧性材料,有弹性和塑性两个阶段。

弹性阶段的力学性能有:比例极限:应力与应变保持成正比关系的应力最高限。

当应力小于或等于比例极限时,应力与应变满足胡克定律,即应力与应变成正比。

弹性极限:弹性阶段的应力最高限。

材料的力学性能重点总结

材料的力学性能重点总结

名词解释:1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。

2弹性比功:表示金属材料吸收塑性变形功的能力。

3滞弹性:在弹性范围内快速加载或卸载后,随着时间延长产生附加弹性应变的现象。

4包申格效应:金属材料通过预先加载产生少来塑性变形,卸载后再同向加载,规定参与伸长应力增加;反向加载,规定残余伸长应力降低的现象。

5塑性:金属材料断裂前发生塑性变形的能力。

常见塑性变形方式:滑移和孪生6应力状态软性系数:最大切应力最大正应力应力状态软性系数α越大,最大切应力分量越大,表示应力状态越软,材料越易产生塑性变形α越小,表示应力状态越硬,则材料越容易产生脆性断裂7缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生拜年话,产生所谓―缺口效应―①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或者三向应力状态。

②缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向。

8缺口敏感度:有缺口强度的抗拉强度ζbm与等截面尺寸光滑试样的抗拉强度ζb的比值. NSR=ζbn / ζs NSR越大缺口敏感度越小9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解理,断口特征由纤维状变为结晶状,这种现象称为低温脆性12 脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。

材料屈服强度急剧升高的温度,或断后延伸率,断后收缩率,冲击吸收功急剧减小的温度就是韧脆转变温度tk,tk是一个温度区间13疲劳贝纹线:以疲劳源为中心的近于平行的一簇同心圆.是疲劳源裂纹扩展时前沿的痕迹14疲劳条带:具有略显弯曲并相互平行的沟槽花样,是疲劳断口最典型的微观特征15驻留滑移带:金属在循环应力长期作用下,形成永久留或再现的循环滑移带称为驻留滑移带,具有持久驻留性.16应力场强度因子KI :表示应力场的强弱程度,对于某一确定的点的大小直接影响应力场的大小,KI 越大,则应力场各应力分量也越大17应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后产生的低应力脆断现象18氢致延滞断裂:高强度钢或α+β钛合金中,含有适量的处于固溶状态的氢,在低于屈服强度的应力持续作用下经过一段时间的孕育期后在金属内部,特别是在三向拉应力区形成裂纹,裂纹的逐步扩展,最后突然发生脆性断裂,这种由于氢的作用而产生的延滞断裂现象称为氢致延滞断裂第一章2.力学性能指标的意义(1)δ0.2 对于拉伸曲线上没有屈服平台的材料,塑性变形硬化过程是连续的,产生0.2%残余伸长应力时刻的屈服强度。

金属材料在静拉伸载荷下的力学性能

金属材料在静拉伸载荷下的力学性能

五缩颈现象
缩颈:拉伸试验时,变形集中于局部区域 的特殊现象.
• 缩颈前是均匀变形,缩 颈后是不均匀变形,即 局部变形
e p
用规定的微量塑性变形(残余伸长)所需的应力来表征。
四、弹性比功
表征金属材料吸收弹性功的能力。
弹性比能
应变比能
应力-应变曲线下弹性范围所吸收的变形功
弹性比功ae=σeεe/2
=σe2/2E
σe↑E↓
→a e ↑
理想的弹簧材料要求有高的弹性比功
Байду номын сангаас
成分与热处理对弹性极限影响大, 对弹性模量影响不大。
. ε = bρ V
开始塑性变形时,可动ρ小,要求V大
V=(τ /τ 0)m'
要求 τ大
塑性变形后
ρ ↑ 要求V小
m'小,则τ变化大,屈服明显。
BCC: m′<20, 屈服明显 FCC: m′ >100~200,屈服不明显
要↓ τ
3、屈服强度σs 表征材料对微量塑性变形的抗力。
σs:上屈服点σsu和下屈服点σsl
E
拉伸杨氏模量: E = σ /ε
切变模量G =τ/γ
G E 2(1 v)
泊松比:υ= —εX/εZ
对金属υ值约为0.33(或1/3)
广义胡克定律
1
1 E
[1
v( 2
3 )]
2
1 E
[ 2
v( 3
1)]
3
1 E
[ 3
v(1
2 )]
物理意义: 产生单位应变所需的应力
技术意义: E,G称为材料的刚度
2、多晶体塑性变形的特点 1)各晶粒变形的不同时性和不均匀性 2)各晶粒变形的相互协调性

金属材料的力学性能

金属材料的力学性能



(二)洛氏硬度(HR)(P7)

洛氏硬度是以压头压入金属材料的压痕深度来 表征材料的硬度。 压头:1)锥角为120°的圆锥金刚石; 2)Ф1.588mm的淬火刚球 压痕的深度直接可用百分表测出来,还需另外 的测量和计算,十分方便,效率高,是实际生 产中使用最普遍的一种硬度测量方法。


洛氏硬度测量原理(P7)
A0 A1 A 100% 100% A0 A0

断面收缩率与试样尺寸无关; 金属材料只有具备足够的塑性才能承受各种变 形加工。

二、硬度(P6)

硬度是衡量材料软硬程度的一种力学性能指标。是材料 抵抗局部塑性变形的能力,或者说抵抗其它硬物压入的 能力。 硬 度 计 种 类 : 布 氏 硬 度 ( HB)、 洛 氏 硬 度 ( HR)、 维氏硬度(HV) 重要零件或零件的重要部位大多规定材料的硬度值。因 为:( 1 )硬度测量简便迅速,不需做试样,也不需破 坏试件;( 2 )多数金属材料的抗拉强度可以根据其硬 度值进行估算。所以硬度是一个很重要的力学性能指标。




早在上世纪20年代,Griffth就提出了著名的裂纹体的 脆断强度理论。 第二次世界大战后,广泛使用高强度材料,引起了一 系列的脆断事故。而且断裂应力远低于σs,即低应力 脆断。 为防止低应力脆断,不得不对其强度—断裂抗力进行 研究,从而形成断裂力学这门新学科。 根据断裂力学的分析,裂纹的尖端前沿存在应力集中, 形成裂纹尖端的应力场,其大小可用应力强度因子K1 来描述:


疲劳强度的影响因素(P10)

疲劳强度的影响因素: 1 )材料本身的组织结 构状态; 2)表面粗糙度和应力状态。 提高零件疲劳强度的措施: 1、改善内部组织; 2 、设计上减小应力集中,转接处避免锐角 连接; 3、降低零件表面粗糙度; 4、强化表面,如表面淬火、表面滚压、渗 碳等。

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能一、概述1、金属材料所受的载荷主要有:静载荷、冲击载荷、交变载荷2、金属材料的变形主要有:弹性变形(可恢复)、塑性变形(永久变形)3、弹性金属材料受外力作用时产生变形,当外力去掉后能回复其原来形状的性能,叫做弹性。

4、弹性变形随着外力消失而消失的变形,叫做弹性变形。

5、塑性金属材料在外力作用下,产生永久变形而不致引起破坏的性能叫做塑性。

6、塑性变形在外力消失后留下来的这部分不可恢复的变形,叫做塑性变形。

7、刚性:金属材料在受力时抵抗弹性变形的能力。

二、力学性能1、强度定义:材料在外力(载荷)作用下抵抗变形和断裂的能力。

材料单位面积所受的载荷成为应力。

屈服强度R el:在拉伸过程中,材料所受应力达到某一临界值时,载荷不在增加而变形却继续增加或产生大应力值。

单位N/mm²(条件屈服强度σ0.2)有些材料在拉伸图中没有明显的水平阶段。

为了衡量这些材料的屈服特性,规定产生永久残余变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2抗拉强度R m:材料在拉断前承受大最大应力值。

2、塑性定义:材料断裂前产生永久变形的能力断后伸长率A断面收缩率Z3、硬度定义:材料抵抗其他硬物压入的能力。

硬度测试方法:A、布式硬度测定法(HBW)HBS——压头为钢球,用于测量<450HBS HBW——压头为硬质合金,用于测量>450HBW(<650HBW)特点:布氏硬度因压痕面积较大,HB值的代表性较全面,而且实验数据的重复性也好。

由于淬火钢球本身的变形问题,不能试验太硬的材料,一般测HB450以下的材料;硬质合金可测HB450以上的材料。

由于压痕较大,不能进行成品检验。

通常用于测定铸铁、有色金属、低合金结构钢等材料的硬度。

B、洛氏硬度测定法(HRA、HRB HRC)特点:洛氏硬度HR可以用于硬度很高的材料,而且压痕很小,几乎不损伤工件表面,故在钢件热处理质量检查中应用最多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2- 3 弯 曲
§2.3弯曲的力学性能
1、弯曲试验测定的力学性能指标: (1)弯曲试验:
圆柱试样或方形试祥; 万能试验机;
加载方式一般有两种: 三点弯曲加载和四点弯曲加载。 (2)载荷F与试样最大挠度fmax—弯曲图。
15
§2.3弯曲的力学性能
(3)性能指标: 试样弯曲时,受拉一侧表面的最大正应力: σmax=Mmax /W 抗弯强度(脆性材料)σbb: σbb= Mb /W 最大弯曲挠度、弯曲弹性模数、规定非比例弯曲应力、断裂挠度 等。
此直接地比较材料自身抗拉、抗剪能力的 强弱。
§2.5 缺口试样静载力学性能
缺口包括轴间、螺纹、油孔、退刀槽、焊缝、不均 匀组织、夹杂物、第二相、晶界、亚晶界、以 及裂纹等引起形状改变的部位。
以厚薄来分,包括薄板缺口和厚板缺口。
25
§2.5 缺口试样静载力学性能
一、缺口处的应力分布特点及缺口效应 二、缺口试样的静拉伸及静弯曲性能 三、材料缺口敏感度及其影响因素
G
32TL0
d04
扭转
扭转试验主要性能指标——塑性阶段
扭转屈服极限
s
Ts W
塑性变形时应力、应变分布
抗扭强度
b
Tb W
扭转
扭转试验的特点 ✓ α=0.8,易于显示金属的塑性行为; ✓ 截面上应力分布不均匀,表面最大,愈往
心部愈小; ✓ 塑性变形均匀,没有颈缩现象; ✓ 根据断口的宏观特征,区分断裂方式,由
26
一、缺口处的应力分布特点及缺口效应
1.弹性状态下的应力分布 (1)薄板缺口: ①薄板所受拉应力σ低于弹性极限,
缺口轴向应力σy在缺口根部最大, 即在根部产生应力集中; 根部应力σy达到的屈服强度σs时, 便引起缺口根部附近区域的塑性交形。 即缺口造成应力应变集中,
的斜截面上作用有最大压应
´
力和最大拉应力。
扭转
✓试样的断口角度直接显示材料是正断还是切 断,材料自身抗拉、抗剪能力的强弱由此得到 直接地比较。
低碳钢试件:沿横截面断开, 为切断。
铸铁试件:沿与轴线约成45 的螺旋线断开,为正断。
扭转
扭转试验主要性能指标——弹性阶段
T d0
W
2 L0
弹性变形时应力、应变分布
§2-1 应力状态
二、应力状态:
正应力σ→脆断; 切应力τ→韧(塑)断、塑变
τ σ 对于一定的应力分布,其 max与 max应成正比
且比值应为与应力的大小无关的常数。
应力状态柔(软)性系数α: α=τmax/σmax
塑性断裂 脆性断裂
应力状态软性系数
应力状态软性系数: max max
h:do=1-3倍(1.5-2), h/do不同时得到的数据不能比
较; 端面加工精度>▽9以减小磨擦力
2. 特点:
应力状态极软,α=2(单向压缩) 或> 2(多向压缩)
适用于测试极脆材料、工作服役条件为压缩应力状态 的材料,并可使之沿45o角度断裂(最大应力方向);不适用于塑性材ຫໍສະໝຸດ 的测试。二、应力状态软性系数
1、受力分析: 正应力σ导致脆性的解理断裂; 切应力τ导致塑性变形和韧性断裂。 变形和断裂方式主要决定于承载条件下的应力状态。 σmax与τmax ?
2、应力状态软性系数α: (1)任何应力都可用3个主应力σ1、 σ2、 σ3 来表示。 (2)τmax=(σ1-σ3 )/2;σmax= σ1-υ(σ2+σ3)。 (3)α=τmax /σmax= (σ1-σ3 )/2[σ1-υ(σ2+σ3)]
②应力状态柔性系数α值较高;适用于脆性较大材料,
不能测量优良塑性材料的抗弯强度σbb :
塑性材料常不能使之断裂,而对脆性材料可较好地观察 其断口,研究其断裂机制,适于测试工具钢、铸钢;
③用挠度表示塑性,可显示低塑性材料的塑性;并可测 得其塑性指标--挠度f;
④以拉应力为主; ⑤与很多材料实际工作应力状态相同; ⑥其试验结果受偏斜的影响小,简单、简便;
§2-2 压缩
3.压缩的性能指标:一般只测量抗压强度σc
因受压时试样的端面受到很大的摩擦力,使其端面 的横向变形受阻,试样成为腰鼓形,故压缩时的变 形分布不均匀。
h(h:do)越小受摩擦力的影响越大,故希望有高的 h:do比值,但过高又会使试样纵向失稳(弯曲),所 以一般取h:do=1-3倍
§2- 2 压 缩
压缩
压缩力学性能指标
➢韧性材料
弹性模量
E
压缩屈服极限
s
F0.2 A0
➢脆性材料:
抗压强度
bc
Fbc A0
脆性材料的抗压能力强,且价格低廉,适合做抗压构件的材料!
§2-2 压缩
1. 试样:
一般为圆柱形(方形试样在热处理时易产生扭曲); do = 10、20、25mm;
金属在其它静载荷下的力学性能
压缩 弯曲(静) 扭转 硬度
§2-1 应力状态软性系数
一、强度理论:
三向应力状态: 主应力: σ1>σ2>σ3
最大切应力与主应力面成450角:τmax= (σ1-σ3)/2
广义虎克定律:ε= [σ1-μ(σ2+σ3)]/E
第一强度理论:最大拉应力理论: 第二强度理论:最大拉应变理论: 第三强度理论:最大剪应力理论: 第四强度理论:最大变形能理论:
2.弯曲试验的特点及应用 (1)常用于测定那些由于太硬难于加工成拉伸试样的脆性材料的断 裂强度,并能显示出它们的塑性差别。 (2)用来比较和评定材料表面处理层的质量. (3)可测定规定非比例弯曲应力。
16
§2-3 弯曲
3.特点:
①应力分布不均匀,对表面较敏感,其相应的力学性能 指标可以较敏感地反应构件的表面质量状态;
max
越大,应力状态越“软”,易产生韧性断 裂;
max 越大,应力状态越“硬”,易产生脆性
断裂。
材料基本力学性能的测试
不同加载方式下的应力状态柔度系数
加载方式
三向不等拉 单向拉伸
扭转 二向等压 单向压缩 三向不等压
1
0 0
1 3
主应力
2
8 9
0 0
0
1 3
3
8 9
0
软性系数
0.1 0.5 0.8 1 2 4
§2- 4 扭 转
扭转
扭转试验:对圆柱形试样施加扭矩T,标距l0之间 两个横截面不断产生相对转动,其相对扭角以φ表 示。
T
T
动画
T
Tb
铸铁的扭矩-扭角曲线
扭转
变形特征:杆件的各横截 面环绕轴线发生相对的转 动。
受力特征:圆轴扭转时,在
45 横截面和纵截面上的切应力
° 为最大值;在方向角 = 45
相关文档
最新文档