2.2一元多项式加法运算
《高等代数(上)》课程标准
《高等代数(上)》课程标准1.课程说明《高等代数(上)》课程标准课程编码〔 37008 〕承担单位〔师范学院〕制定〔〕制定日期〔2022.11.20 〕审核〔〕审核日期〔〕批准〔〕批准日期〔〕(1)课程性质:本门课程是数学教育专业的专业基础课程之一,是本专业的核心课程,也是必修课程。
本课程是初等代数的延续与提高, 它的知识,技能,思想方法,对中小学数学教学有直接的指导作用,特别是数学能力的培养和提升发挥着不可替代的作用,可以增强学生的数学思维品质和提高学生的数学素养,为未来的数学教师生涯和今后的再学习奠定良好的专业理论基础。
(2)课程任务:本课程主要针对中小学数学教育教师及相关等岗位开设,主要任务是培养学生在中小学数学教育教师岗位的数学课程教学能力,要求学生掌握中小学数学教师在代数方面的专业理论基础知识、基本技能及思想方法和解决相关问题的能力。
(3)课程衔接:在课程设置上,前导课程有中学数学,后续课程有《高等代数(下)》、《解析几何》、《概率统计基础》、《数论》等。
2.学习目标通过本课程的学习,使学生掌握《高等代数(上)》的基础知识、基本理论、基本方法。
提高学生的逻辑推理能力,提高学生的数学思维能力,提高学生的再学习的能力。
培养学生实事求是、诚实守信、爱岗敬业、团结协作的职业精神,培养学生善于沟通、勇于合作的良好品质,为发展职业能力奠定良好的基础。
使学生成为具备从事中小学数学教育职业的高素质劳动者和教学高级技术人才。
(1)知识目标掌握一元多项式理论、线性方程组、行列式与矩阵及二次型的基本知识、基本理论。
熟练掌握行列式、矩阵的运算。
熟练掌握运用初等变换求解线性方程组、求可逆矩阵的逆矩阵等基本方法。
(2)素质目标培养良好的思想品德、心理素质。
培养良好的职业道德,包括爱岗敬业、诚实守信、遵守相关的法律法规等。
培养学生踏实、认真、求实的做事态度,使学生形成勇于承担责任、实事求是的工作作风。
培养良好的团队协作、协调人际关系的能力。
整数和多项式性质同异比较
学校代码:______________学号:______________Hefei University毕业论文(设计)BACH ELOR DISSERTATION论文题目:_____整数与多项式性质的异同比较______学位类别:_______________________理学______________________学科专业:_______________信息与计算科学_______________作者姓名:_____________________曾钧鹏_____________________导师姓名:___________________余海峰_________________完成时间:___________________________________________________整数与多项式性质的异同比较摘要:在学习数学的时接触比较多的是数和多项式,今天我们通过对整数与多项式性质的比较来研究它们有哪些相似之处与不同之处,进而更好深入学习整数与多项式。
整数理论与多项式理论都是代数的非常基本的研究对象,二者在性质上有着很多相同之处。
其概念、结果与方法,是近世代数中抽象概念的非常基本的模型和源泉。
本课题尝试对二者的性质异同做一研究和归纳。
具体任务为首先对整数与多项式的各种性质进行归纳,其次讨论它们的相似于不同之处,最后从代数观点来分析解释异同原因。
首先,本论文对整数和多项式的多项式各自的性质作了一个归纳,从它们的定义出发,再到它们的一些具体性质,包括整数和多项式的运算,整除性等一些性质。
其次我们对整数和多项式的性质进行了一些比较,包括运算律,整除性等一些性质。
在本文的最后我们从环和欧氏环的概念上对整数和多项式性质类同的原因做了一些简单的分析。
通过的对整数与多项式的性质的归纳总结,进而让我们更深入了解整数与多项式的性质。
然后通过代数观点上进行分析他们性质的异同,更加深入了解各个知识直接的关系与区别,能够更清楚的对整数与多项式进行认知。
一元多项式的定义和运算讲解
令f (x)是F [x]的一个次数大于零的多项式,并且
此处
定理 2.4.2
例 在有理数域上分解多项式 为不可约因式的乘积.容易看出
(2)
一次因式x + 1自然在有理数域上不可约.我们证明, 二次因式 也在有理数域上不可约.不然的话, 将能写成有理数域上两个次数小于2的因式 的乘积,因此将能写成
这个定义的条件也可以用另一种形式来叙述
若多项式 有一个非平凡因式 而 ,那么 与 的次数显然都小于 的次数.反之,若 能写成两个这样的多项式的乘积,那么 有非平凡因式.因此我们可以说:
这里
多项式的减法
2.1.5 多项式加法和乘法的运算规则
(1)加法交换律:
(2)加法结合律:
(3)乘法交换律:
(4)乘法结合律:
(5)乘法对加法的分配律:
注意:
要把一个多项式按“降幂”书写
当
时,
叫做多项式的首项.
2.1.6 多项式的运算性质
定理
是数环R上两个多项式,并且
定义 2
设 是多项式 与 的一个公因式.若是 能被 与 的每一个公因式整除,那么 叫做 与 的一个最大公因式.
定义 1
的任意两个多项式 与 一定有最大公因式.除一个零次因式外, 与 的最大公因式是唯一确定的,这就是说,若 是 与 的一个最大公因式,那么数域F的任何一个不为零的数 c与 的乘积 ,而且当 与 不全为零多项式时,只有这样的乘积是 与 的最大公因式.
由此得出,
是
与
的最大公因式,而
定理 2.3.3
的两个多项式 与 互素的充分且必要条 件是:在 中可以求得多项式 与 ,使
高等代数_李海龙_习题第2章多项式
第二章 多项式2.1 一元多项式的定义和运算1. 设f (x ),g (x )和h (x )是实数域上的多项式.证明:若f (x )2 = x g (x )2+x h (x )2,那么 f (x ) = g (x ) = h (x ) = 0.证明概要:比较等式两边的次数可证.2. 求一组满足上一题中等式的不全为零的复系数多项式f (x ),g (x )和h (x ). 解:取f (x ) = 2ix ,g (x ) = i (x +1),h (x ) = x-1即可. 或取f (x ) = 0,g (x ) = 1,h (x ) = i 即可. 3. 证明:(1)(1)(1)1(1)2!!(1)()(1)!nnx x x x x n x n x x n n ---+-+-+---=-证明提示:用数学归纳法证之.2.2 多项式的整除性1. 求f (x )被g (x )除所得的商式和余式:(i) 14)(24--=x x x f ,13)(2--=x x x g(ii) 13)(235-+-=x x x x f ,23)(3+-=x x x g解:(i) 35)(,2)(2--=--=x x r x x x q(ii) 56)(,2)(22++=+=x x x r x x q2. 证明:kx f x )(|必要且只要)(|x f x证明:充分性显然.现证必要性.反证法:若x 不整除)(x f ,则c x xf x f +=)()(1,且0≠c .两边取k次方得k k c x xg x f +=)()(,其中0≠kc .于是x 不整除)(x f k .矛盾.故必要性成立.3. 令)(),(),(,)(2121x g x g x f x f 都是数域F 上的多项式,其中0)(1≠x f 且)()(21x g x g |)()(21x f x f ,)(1x f |)(1x g .证明:)(2x g |)(2x f .证明:反复应用整除定义即得证.4. 实数m,满足什么条件时多项式12++mx x 能够整除多项式q px x ++4?解:以12++mx x 除q px x ++4得一次余式.令余式为零得整除应满足的条件:当且仅当m m p 23-=且12-=m q 时,12++mx x |q px x ++4.5. 设F 是一个数域,F a ∈.证明:a x -整除nn a x -.解:因为1221()()n n n n n n x a x a x ax a x a -----=-++⋅⋅⋅++6. 考虑有理数域上多项式 1)1)(2()1()(-+++++=n k n k x x x x fn k x x )1()2(++⋅⋅⋅+,这里n 和k 都是非负整数.证明:1+k x |1)1()()1(++++-n k x x f x .解:因为 1(1)()(1)k n x f x x ++-++1[2(1)]()(1)k n x x f x x ++=-+++nk x x )1()2(1+=+7. 证明:1-d x 整除1-nx 必要且只要d 整除n .证明:若d |n ,令md n =,则=-=-1)(1m d n x x )1(-dx ·)1)()((21++⋅⋅⋅++--dm d m d x x x .所以1-d x |1-n x .下面证必要性:反证法,若d 不整除n ,令r qd n +=,0≠r ,且0<r <d .于是111)1(-+-=-=-=-+rr r qdr qdrqd nx x x xx xxx)1()1(-+-=rqdr x xx .因1-qd x 可被1-d x 整除,故)1(-qdrx x 可被1-d x 整除.即1-r x 是1-n x 被1-d x 除所得的余式.因r <d ,0≠r .所以与1-n x 可被1-dx 整除相矛盾.2.3 多项式的最大公因式1. 计算以下各组多项式的最大公因式:(i)32103)(,343)(23234-++=---+=x x x x g x x x x x f ;(ii) i x i x i x i x x f ----+-+-+=1)21()42()22()(234;x i x x g -+-+=1)21()(2.解: (i) 3),(+=x g f ; (ii)i x i x g f -+-+=1)21(),(2.2. 设)()()(1x f x d x f =,)()()(1x g x d x g =.证明:若)())(),((x d x g x f =,且)(x f 和)(x g 不全为零,则1))(),((=x g x f ,反之,若1))(),((=x g x f ,则)(x d 是)(x f 与)(x g 的一个最大公因式.解:由本节定理2.3.2及2.3.3得证(常当作定理).3. 令)(x f 与)(x g 是][x F 的多项式,而a ,b ,c ,d 是F 中的数,并且0≠-bc ad .证明:))(),(())()(),()((x g x f x dg x cf x bg x af =++.证明:设)()()(1x bg x af x f +=)()()(1x dg x cf x g +=,=)(x d))(),((x g x f .易知)(x d |)(x f ,)(x d |)(x g ,从而)(x d |)(1x f ,)(x d |)(1x g .即)(x d 是)(1x f ,)(1x g 的一个公因式.再设)(x ϕ是)(1x f ,)(1x g 的任一公因式.则由定义知)(x ϕ|)(1x f ,)(x ϕ|)(1x g ,由)(x f ,)(x g 之所设及0≠-bc ad ,可解得)()()(11x g bcad b x f bcad d x f ---=)()()(11x g bcad a x f bcad c x g ----=从而可知)(x ϕ|)(x f ,)(x ϕ|)(x g .既)(x ϕ是)(x f 、)(x g 的一个公因式,所以)(x ϕ|)(x d .由定义知))(),(()(11x g x f x d =.4. 证明:(i) h g f ),(是fh 和gh 的最大公因式;(ii) ( f 1 , g 1 )( f 2 , g 2 ) = ( f 1f 2 , f 1g 2 , g 1f 2 , g 1g 2 ) 此处f ,g ,h 都是F [x ]的多项式. 证明:(i) 设( f , g ) = d , 则d | f ,d | g .所以dh | fh ,dh | gh .又有u ,v 使uf + vg = d .于是ufh + vgh = dh .所以dh 是fh ,gh 的一个最大公因式.(ii)设( f 1 , g 1 ) = d 1,( f 2 , g 2 ) = d 1,则d 1d 2同时整除f 1f 2,f 1g 2,g 1f 2,g 1g 2.d 1d 2是它们的一个公因式,另设ϕ是f 1f 2,f 1g 2,f 2g 1,g 1g 2的任一公因式,那么就有ϕ| ( f 1f 2 , f 1g 2 ),( f 1f 2 , f 1g 2 ) = f 1( f 2 , g 2 ) = f 1d 1.ϕ| ( f 2g 1 , g 1g 2 ),( f 2g 1 , g 1g 2 ) = g 1 ( f 2 , g 2 ) = g 1d 2.所以ϕ| ( d 2g 1 , f 1d 2 ),而( d 2g 1 , f 1d 2 ) = d 2 ( f 1 , g 1 ) = d 1d 2.既ϕ| d 2d 1.故有( f 1 , g 1 ) ( f 2 , g 2 ) = ( f 1f 2 , f 1g 2 , g 1f 2 , g 1g 2 ).5. 设432()242f x x x x x =+---,432()2f x x x x x =+--2-都是有理数Q 域上的多项式.求u (x ),][)(x Q x v ∈使得))(),(()()()()(x g xd f x v x g x u x f =+. 解:u (x )=-x-1,v (x )=x +2.6. 设(f , g )=1.令n 是任意正整数,证明:( f , g n) = 1.由此进一步证明,对于任意正整数m ,n ,都有( f m , g n ) = 1.证明:因为( f , g ) = 1.所以有u ,v 使uf + vg = 1,则vg = 1- uf ,两边n 次方得v n g n = ( 1- uf )n = 1+ u 1f .所以v n g n = ( 1- uf )n = 1 + u 1f - u 1f + v n g n = 1.从而 -u 1f + v n g n = 1,( f , g n ) = 1.固定g n,同理可证( f m, g n) = 1.7. 设( f , g ) = 1.证明:( f , f + g ) = ( f + g , g ) = 1.证明:因为( f , g ) = 1.所以有u ,v 使uf + vg = 1,进而有( u – v ) f + v ( g + f ) = 1, 所以( f , g + f ) = 1.同理( g + f , g ) = 1利用互素性质得( f g , f + g ) = 18. 证明:对于任意正整数n 都有( f , g )n = ( f n , g n ).证明:设( f , g )=d ,则f = df 1 ,g = dg 1,且( f 1 , g 1 ) = 1由上面第6题知 ( f 1n , g 1n) = 1,从而存在u ,v 使uf 1n+ vg 1n= 1.所以uf 1nd n+ vg 1nd n= d n,既uf n+ vg n= d n.又d n|f n,d n |g n .所以( f , g )n = d n = ( f n , g n ).9. 证明:若是f ( x )与g ( x )互素,并且的次数都大于0.那么定理2.3.3里的可以如此选取,u ( x )次数低于g ( x )的次数,v ( x )次数低于f ( x )的次数,并且这样的u ( x )与v ( x )是唯一的.证明:因为, 所以有u 1 ( x ),v 1 ( x )使u 1 ( x ) f ( x ) + v 1 ( x ) g ( x ) = 1,因))((x f ∂︒> 0,))((x g ∂︒> 0.所以f ( x )不整除v 1 ( x )及g ( x ) 不整除 u 1 ( x ).现以f ( x )除v 1( x ),得商式为q 1 ( x ),余式为v ( x ),则有v 1 ( x ) = f ( x ) q 1 ( x ) + v ( x ),其中))((x v ∂︒< ))((x f ∂︒.同理有u 1 ( x ) = g ( x ) q 2 ( x ) + u ( x ).其中))((x u ∂︒< ))((x g ∂︒.代入u 1 ( x ) f ( x ) + v 1 ( x ) g ( x ) = 1,得( g ( x ) q 2 ( x ) + u ( x ) ) f ( x ) + ( f ( x ) q 1 ( x ) + v ( x ) ) g ( x ) = 1.整理得u ( x ) f ( x ) + v ( x ) g ( x ) + [ q 1 ( x ) + q 2 ( x ) ] f ( x ) g ( x ) = 1.因为))()((x f x u ∂︒< ))()((x g x f ∂︒,))()((x g x v ∂︒< ))()((x g x f ∂︒,所以必有q 1 ( x ) + q 2 ( x ) = 0.即u ( x ) f ( x ) + v ( x ) g ( x ) = 1,且满足))((x u ∂︒< ))((x g ∂︒,))((x v ∂︒< ))((x f ∂︒.下面证唯一性 设另有u 2 ( x ) , v 2 ( x ) 满足u 2 ( x ) f ( x ) + v 2(x ) g (x ) = 1,及))((2x u ∂︒<))((x g ∂︒,))((2x v ∂︒<))((x f ∂︒.则有 ( u ( x ) - u 2 ( x ) ) f ( x ) = ( v 2 ( x ) – v ( x )) g ( x ).故f ( x )| ( v 2 ( x ) - v ( x ) ) g ( x ).又( f ( x ) , g ( x ) ) = 1,从而.如果v 2 ( x ) -0)(≠x v ,其次数一定低于f ( x )的次数,故只有v 2 ( x ) - v ( x ) = 0.既v 2 ( x ) = v ( x ).同理u ( x ) = u 2 ( x ).10.决定k ,使2(6)42x k x k ++++与2(2)2x k x k +++的最大公因式是一次的.解:设=24)6(2++++k x k x , g (x )= k x k x 2)2(2+++,以g ( x ) 除 f ( x ) 得余式4x +2k + 2.由题意4x + 2k + 2 | g ( x ),由此推出k = 1或k = 3.11.证明:如果 ( f ( x ) , g ( x ) ) =1,那么对于任意正整数m ,( f ( x m ) , g ( x m ) ) =1 证明:因为 ( f ( x ) , g ( x ) ) =1,所以u ( x ),v ( x ),满足u ( x ) f ( x ) + v ( x ) g ( x ) = 1.从而u ( x m) f ( x m) + v ( x m) g ( x m) = 1,此即是 ( f ( x m) , g ( x m) ) =1.12.设f ( x ) , g ( x )是数域F 上的多项式.f ( x )与g ( x )的最小公陪式指的是F [x ]中满足以下条件的一个多项式m ( x ):(a) f (x ) | m (x ) 且 g (x ) | m (x );(b) h (x )∈F [x ] 且 f (x ) | h (x ),g (x ) | h (x ),那么m (x ) | h (x ).(i) 证明: F [x ]中任意两个多项式都有最小公倍式,并且除了可能的零次因式差别外,是唯一的.(ii)设f (x ), g (x )都是最高次项系数是1的多项式.令[ f (x ), g (x )]表示 f (x )与g (x )的最高次项系数是1的那个最小公倍式.证明: f (x ) g (x )= (f (x ) , g (x )) [ f (x ), g (x )].证明:(i) 若f (x ) , g (x )有一个为0,则它门的最小公倍式是0.现设f (x )0≠, g (x )0≠.以d (x )记(f (x ) , g (x )).则f (x ) = d (x ) f 1(x ),g (x ) = d (x )g 1(x ),且(f 1(x ) , g 1(x )) =1.现证)()()(x d x g x f 是f (x ),g (x )的一个最小公倍式.首先由)()()(x d x g x f = f 1(x ) g (x )= f (x )g 1(x ),知其是f (x )与g (x )的一个公倍式.另设M (x )是f (x )与g (x )的任一公倍式,则有M (x )= f (x )s (x )= d (x ) f 1 (x ) s (x )及M (x )=g (x )t (x )= d (x ) g 1 (x )t (x ),消去d (x ),得f 1(x ) s (x ) = g 1 (x )t (x ).又(f 1(x ) , g 1(x )) =1,由此可得g 1 (x )|s (x ),令s (x )= g 1 (x ) s 1(x ).代入M (x )= f (x )s (x )= d (x ) f 1 (x ) s (x )得M (x )= d (x ) f 1 (x )g 1 (x )s 1(x )=s 1(x ))()()(x d x g x f .即)()()(x d x g x f | M (x ),即)()()(x d x g x f 是f (x ) , g (x )的一个最小公倍式.从而存在性得证.现证唯一性:若m 1(x ),m 2(x )都是f 1(x ) , g 1(x )的最小公倍式,由定义得m 1(x )|m 2(x )及m 2(x )|m 1(x ).所以m 1(x ),m 2(x )只相差一个常数因子.(ii)由(i)的证明,知当f 1(x ) , g 1(x )的最高次项系数都是1时,有f (x ) g (x )= (f (x ) , g (x )) [f (x ) , g (x )].13.设g (x )|)()(1x f x f n ⋅⋅⋅,并且(f i (x ), g (x )) =1, i =1,1,,2-⋅⋅⋅n . 证明 g (x ) | f n (x ). 证明:令11()()()n h x f x f x -= ,由(f 1(x ), g (x ))=1. ( f 2(x ), g (x ))=1,所以(f 1(x ) f 2(x ),g (x ))=1,进而可证得(h (x ), g (x ))=1又g (x ) | h (x )f n (x ),所以g (x ) | f n (x ).14.设][)(,),(1x F x f x f n ∈⋅⋅⋅.证明:(i) ()(,),(1x f x f n ⋅⋅⋅)=(()(,),(1x f x f k ⋅⋅⋅), ()(,),(1x f x f n k ⋅⋅⋅+)), 1≤k ≤n -1.(ii))(,),(1x f x f n ⋅⋅⋅互素的充要条件是存在多项式][)(,),(1x F x u x u n ∈⋅⋅⋅使得1)()()()(11=+⋅⋅⋅+x u x f x u x f n n证明:(i) 设d (x ) = ( ()(,),(1x f x f k ⋅⋅⋅), ()(,),(1x f x f n k ⋅⋅⋅+)),有d (x ) |()(,),(1x f x f k ⋅⋅⋅), d (x ) |()(,),(1x f x f n k ⋅⋅⋅+),进一步有d (x ) | f i (x ), i =1,n ,,2⋅⋅⋅.另设h (x )是)(,),(1x f x f n ⋅⋅⋅的任一公因式,h (x ) |()(,),(1x f x f k ⋅⋅⋅) 及h (x ) |()(,),(1x f x f n k ⋅⋅⋅+),进一步h (x ) | ( ()(,),(1x f x f k ⋅⋅⋅) ,()(,),(1x f x f n k ⋅⋅⋅+)) = d (x ).所以( ()(,),(1x f x f k ⋅⋅⋅) ,()(,),(1x f x f n k ⋅⋅⋅+)) = ()(,),(1x f x f n ⋅⋅⋅).(ii)充分性:若有)(,),(1x u x u n ⋅⋅⋅使+⋅⋅⋅+)()(11x u x f1)()(=x u x f n n ,另设h (x )是)(,),(1x f x f n ⋅⋅⋅的任一公因式,则有h (x )|1.从而)(,),(1x f x f n ⋅⋅⋅互素.必要性:若(f 1(x ), f 2(x ))= d 2(x ),则由定理2.3.2有u 11(x ) ,u 12(x ) ,使u 11(x )f 1(x )+ u 12(x ) f 2(x )= d 2(x ),则由定理2.3.2可以假设对于s -1个多项式是成立的.即当d s-1(x ) = ()(,),(11x f x f s -⋅⋅⋅)时,有u 11(x ,),⋅⋅⋅u 1s-1(x ),使得∑-=111)()(s i i ix f x u=d s-1(x ).则对于s 个多项式来说,由()(,),(1x f x f s ⋅⋅⋅)= (()(,),(11x f x f s -⋅⋅⋅), f s (x ))= ( d s-1(x ) , f s (x )).知有p (x ), q (x )使p (x )d s-1(x ) + q (x ) f s (x ) = ( d s-1(x ) , f (x )),以d s-1(x )的上述表示式代入,则得∑-=111)()(s i i ix f x u+ q (x ) f s (x ) = ( d s-1(x ) , f (x )),.即有p (x )u 11(x ,),⋅⋅⋅p (x )u 1s-1(x ) , q (x ),使∑-=111)())()((s i i ix f x ux q +p (x ) f s (x ) = ()(,),(1x f x f s ⋅⋅⋅)()(,),(1x f x f s ⋅⋅⋅)=1时,令p (x )=1,s =n 其中u 1(x )= p (x ) u 11(x ,),⋅⋅⋅u 1s (x ) = p (x )u 1s (x ) 则本题必要性得证. 15.设][)(,),(1x F x f x f n ∈⋅⋅⋅.令I ={+⋅⋅⋅+)()(11x g x f f n (x ) g n (x )|][)(x F x g i ∈, 1≤i ≤n } .比照定理1.4.2,证明:)(,),(1x f x f n ⋅⋅⋅有最大公因式.[提示:如果)(,),(1x f x f n ⋅⋅⋅不全为零,取d (x )是中次数最底的一个多项式,则d (x )就是)(,),(1x f x f n ⋅⋅⋅的一个最大公因式.] 证明:如果0)()(1==⋅⋅⋅=x f x f n ,则0就是它们的最大公因式.如不全为0,则I 中 有非零多项式.设d (x )是I 中次数最低的一个多项式.以d (x )除f (x ),得.其中r 1=0,或∂︒( r 1 (x ))< ∂︒( d (x )).由于r 1 (x )= f 1(x )- q 1 (x )d (x ),可以推得r 1 (x )∈I ,而d (x )是I 中次数最底的,故r 1 (x ) =0.所以d (x )|f 1(x ),同理d (x )|f 2(x )⋅⋅⋅,,d (x )|f n (x ).即d (x ) 是)(,),(1x f x f n ⋅⋅⋅的一个公因式,又因是它们的组合,故d (x ) 就是)(,),(1x f x f n ⋅⋅⋅的最大公因式.2.4 多项式的分解1. 在有理数域上分解以下多项式为不可约因式的乘积:(i) 3x 2+1; (ii) x 3-2x 2-2x +1.解: (i) 不可约. (ii) (x +1) (x 2-3x +1)2. 分别在复数域,实数域和有理数域上分解多项式x 4+1为不可约因式的乘积.解:在复数域上有x 4+1= (x +22(1+i )) (x +22(1+i )) (x -22(1-i )) (x -22(1-i ));在实数域上有x 4+1=( x 2+2x +1) (x 2-2x +1);在有理数域上x 4+1 不可约3. 证明:g (x )2|f (x )2,当且仅当g (x )|f (x ).证明:充分性显然.现证必要性,即若g (x )2|f (x )2,那么g (x )|f (x ).若f (x )= g (x ) =0,则有g (x )|f (x ).如果f (x ), g (x )不全为0,令d (x )=(f (x ), g (x )).则f (x )=d (x )f 1(x ), g (x )=d (x )g 1(x ),且(f 1(x ), g 1(x ))=1.那么f (x )2=d (x )2f 1(x )2, g (x )2=d (x )2g (x )2,故由g (x )2|f (x )2,可得g 1(x )2|f 1(x )2,故g 1(x )|f 1(x )2,又(f 1(x ) , g 1(x ) ) =1,根据互素多项式的性质知g 1(x )|f 1(x ),从而g 1(x ) = c f 1(x ), (c 为非零常数).于是g (x )|f (x ).4. (i)求f (x )= x 5-x 4-2x 3+2x 2+x -1在Q (x )内的典型分解式;(ii)求f (x )= 2x 5-10x 4+16x 3-16x 2+14x -6在R (x )内的典型分解式. 解: (i) f (x )= (x-1)3(x +1)2 ; (ii) f (x )= 2(x-1)2(x-3)(x 2+1)5. 证明:数域F 上一个次数大于零的多项式f (x )是F [x ]中某一不可约多项式的幂的充分必要条件是对于任意g (x )∈F [x ],或者(f (x ), g (x )) =1,或者存在一个正整数m 使得f (x )|g (x )m . 证明:必要性:设f (x ) = p m (x ) ( p (x )不可约) ,则对于F [x ]中的任意g (x ),只有两种可能:(p (x ),g(x ))=1或 p (x )|g(x ).在前一情形有( f (x ),g (x ) )=1,在后一情形有p m (x ) |g m (x ),即f (x ) |g (x )m .充分性:设f (x )=1()i sri i a p x =∏为其典型分解式.令g (x )=p 1(x ).若 s >1,则(p (x ), g (x ))≠1,且f (x )不整除g (x )m,即条件成立时,必有s =1,即f (x )= 11()rap x .6. 设p (x )是F [x ]中一个次数大于零的多项式.如果对于任意f (x ), g (x )∈F [x ],只要p (x )|f (x )g(x )就有p (x )| f (x )或p (x )| g(x ),那么p (x )不可约.证明:反证法,若)(x p 可约,设)()()(21x p x p x p =,其中)(),(21x p x p 的次数都低于)(x p 的次数.由)()(|)(21x p x p x p ,根据条件可得出)(|)(1x p x p 或)(|)(2x p x p ,这是不可能的.2.5 重因式1. 证明下列关于多项式的导数的公式: a) )(')('))'()((x g x f x g x f +=+; b))(')()()('))'()((x g x f x g x f x g x f +=提示:设10()n n f x a x a x a =+++ ,10()mm g x b x b x b =+++ 利用本教材中对导数的定义证之.2. 设)(x p 是)(x f 的导数)('x f 的1-k 重因式.证明: a) )(x p 未必是)(x f 的k 重因式;b))(x p 是)(x f 的k 重因式的充分必要条件是)(|)(x f x p证明:a) 设4)(3+=x x f ,则x 是x x f 3)('=的二重因式,但不是)(x f 的因式,更不是)(x f 的三重因式.b) 必要性显然;充分性,设)(x p 是)(x f 的s 重因式,则)(x p 是)('x f 的1-s 重因式.11-=-k s 即得出.3. 证明有理系数多项式!!21)(2n xxx x f n++++= 没有重因式.证明:因为)!1(!21)('12-++++=-n xxx x f n ,有1),'(=f f .4. a,b 应该满足什么条件,下列的有理系数多项式才能有重因式?a) b ax x ++33b) b ax x ++44提示:由多项式有重因式的充要条件是它与它的导数不互素可得.a) 0423=+b a ; b)02734=-b a .5. 证明:数域F 上的一个n 次多项式)(x f 能被它的导数整除的充分必要条件是:nb x a x f )()(-=,这里a,b 是F 中的数.证明:若nb x a x f )()(-=,则1)()('--=n b x an x f ,0>n ,所以)(1)(')(a x nx f x f -⋅=,)(|)('x f x f .必要性:设)(x f 的典型分解式为)()()(11x p x ap x f tm t m =,其中)(x p i 都是不可约多项式,则)()()()('1111x x p x p x f tm t m ϕ--= .由)(|)('x f x f ,知c x =)(ϕ(常数),但))((1))('(x f x f ∂︒=+∂︒.故知t =1,且n x p =∂︒))((1.即nb x a x f )()(-=.2.6 多项式函数 多项式的根1.设f (x )=2x 5-3x 4-5x 3+1.求f (3),f (-2). 解: f (3) =109; f (-2) =-71.2.数环R 的一个数c 说是f (x )∈R(x )的一个k 重根,如果f (x )可以被(x -c )k整除,但不能被(x -c )k +1整除.判断5是不是多项式f (x )=3x 5-224x 3+742x 2+5x +50的根.如果是的话,是几重根?提示:用3次综合除法得:5是f (x ) 的二重根. 3.设2x 3-x 2+3x -5=a (x -2)3+b (x -2)2+c (x -2)+d .求a,b,c,d . 提示:应用综合除法得:a =2, b =11, c =23, d =13. 4.将下列多项式f (x )表成x-a 的多项式. a) f (x )= x 5,a =1; b) f (x )=x 4-2x 2+3,a =-2. 解:用综合除法求出:a) f (x )= x 5=(x -1)5+5(x -1)4+10(x -1)3+10(x -1)2+5(x -1)+1; b) f (x )=x 4-2x 2+3=(x +2)4-8(x +2)3+22(x +2)2+24(x +2)+11. 5.求一次数小于4的多项式,使f (2)=3,f (3)=-1,f (4)=0,f (5)=2.解:f (x )= -32x 3+217x 2-6203x +426.求一个2次多项式,使它在x =0,,2ππ处于函数 sin x 有相同的值.结果:24()()f x x x ππ=--7.令f (x ) , g (x ),是两个多项式,并且f (x 3) +x g (x 3)可以被x 2+x +1.证明: f (1) = g (1) =0.证明: 因x 2+x +1| f (x 3) +x g (x 3).故x 2+x +1=0的根必为f (x 3) +x g (x 3)的根.而x 2+x +1=0的两个根是2,231ωωi+-=.但3ω=1.故有2(1)(1)0(1)(1)0f g f g ωω+=⎧⎨+=⎩,解此方程组得:f (1) = g (1) =0.8.令c 是一个复数,且是Q [x ]中一个非零多项式的根.令J ={ f (x )∈Q [x ] | f (c ) = 0}.证明:a)在J 中存在唯一的高次项系数是1的多项式p (x ),使得J 中每一多项式f (x )都可以写成p (x )q (x )的形式,这里q (x )∈Q [x ].b) p (x )在Q [x ]中不可约.如果c =32+,求上述的p (x ).证明: a) 因c 是Q [x ]中一个非零多项式的根,则J 中存在次数大于零的多项式,即令A ={ m |f (x )∈J ,∂︒( f (x ))=m }非空. A 中必有最小数设为n (n >0).其对应的多项式若为f (x ),令p (x )=1a f (x ), (a 0是f (x )的最高次项系数),则11()n n n p x x a xa -=+++ .现证当f (x ) ∈J 时,必有f (x ) =p (x )q (x ).对于任意的f (x )∈J ,由p (x )的取法知∂︒( f (x )) ≥∂︒(p (x )).以p (x )除f (x )得f (x )=p (x )q (x )+r (x ),其中r (x )=0或∂︒( r (x )) <∂︒(p (x )).由于r (c )=f (c )-p (c )q (c )=0,故知r (x )∈J . 由p (x )的取法知r (x )的次数不可能小于p (x )的次数.故只有r (x )=0,即f (x ) = p (x )q (x ).再证的唯一性.设另有p 1(x )具有上述性质,则p (x )| p 1(x )且p 1(x ) | p (x ).所以p 1(x ) = c p (x ).又首项系数都为1,故c =1,即p 1(x ) = p (x ).b) 反证法:设p (x )可约,令p (x )=p 1(x ) p 2(x ),知p 1(x )与p 2(x )的次数都小于p (x )的次数.又p (c )=p 1(c )p 2(c )=0,知p 1(c )=0或p 2(c )=0从而p 1(c )或p 2(c ) ∈J ,这与p (x )是J 中次数最低的多项式相矛盾.故p (x )不可约.若c =32+,则p (x )=(x -32+)(x +32+)(x -32-) (x +32-).9.设C [x ]中多项式f (x )≠0且f (x )| f (x n),n 是一个对于1的整数.证明: f (x )的根只能是零或单位根.证明: 因f (x )| f (x n),所以f (x n)= f (x )g (x ), g (x )∈C [x ].如果c 是f (x )的根,即f (c )=0则f (nc)=f (c )g (c )=0, f (2nc)= f (nc) g (nc)=0,, f (knc)= f (1-k nc) g (1-k nc)=0.由于, f (x )在C 中至多有n 个不同的根,故有i <j ,使jnc =inc ,所以c =0或1.即c =0或c 是单位根.2.7 复数和实数域上多项式1.设n 次多项式n n na x a x a x f +++=-10)( 的根是n αα,,1 .a) 求以n c c αα,,1 为根的多项式,这里c 是一个数;b) 以na 1,,11 α(假定0,,1≠n αα )为根的多项式.解:a) 若c =0,则n c c αα,,1 都为0,则g (x )= x n即是.若c ≠0,则令g (x )=)(1)(10n n na x a x a cc x f +++=- 为所求.b) 令g (x )= f (x 1)x n =nn n n x a x a x a +++--110 ,则g (x )是以na 1,,11α为根的多项式.2.设f (x )是一个多项式,用)(x f 表示把f (x )的系数分别换成它们的共轭数后所得多项式.证明:a) 若是g (x )|f (x ),那么)(x g |)(x f ;b) 若是d (x )是f (x )和)(x f 的一个最大公因式,并且d (x )的最高次项系数是1,那么d (x )是一个实系数多项式.证明: a) 因为g (x )|f (x ),所以f (x )= q (x )g (x ), )(x f =)(x q )(x g 从而)(x g |)(x f .b) 若d (x )=(f (x ),)(x f ),则有u (x ), v (x )使的u (x )f (x )+ v (x ))(x f =d (x ),所以)(x d =)(x u )(x f +)(x vf f (x ),另一方面,由d (x )|f (x ), d (x )|)(x f ,可得)(x d |f (x ),)(x d |)(x f ,所以)(x d =(f (x ), )(x f ).从而d (x )=)(x d ,即d (x )是实系数多项式.3.给出实系数四次多项式在实数域上所有不同类型的典型分解式. 解:共9种:a (x +b )4; a (x +b 1)(x +b 2)3; a (x +b 1)2(x +b 2)2;a (x +b 1)(x +b 2)(x +b 3)2; a (x +b 1)(x +b 2)(x +b 3)(x +b 4); a (x 2+px +q )2; a (x 2+p 1x +q 1)(x 2+p 2x +q 2) ; a (x +b )2(x 2+px +q );a (x +b 1)(x +b 2)(x 2+px +q ) . (其中二次式x 2+px +q 不可约).4.在复数和实数域上分解x n-2为不可约因式的乘积.解: 在复数域上: x n -2=(x -n2)(x -)2()21--n nnx εε ,其中22cossini nn ππε=+; 在实数域上:当n 为奇数, x n-2=(x -n2)(x 2-222(1)cos(2n x nnππ-+-+ ;当n 为偶数, x n - 2=(x -n 2)(x +n 2)(x 222(2)cos(cosn x nnππ-+- )4n+.5.证明:数域F 上任意一个不可约多项式在复数域内没有重根.证明:设p (x )是F 上不可约多项式,因多项式的最大公因式不因数域扩大而改变, 所以在复数域内仍有(p (x ),'p (x ))=1,故p (x )在复数域内没有重根.2.8 有理数域上多项式1.证明以下多项式在有理域上不可约: a) x 4-2x 3+8x -10; b) 2x 5+18x 4+6x 2+6 c) x 4-2x 3+2x -3d) x 6+x 3+1提示:用艾森斯坦判断法. a)取p =2; b)取p =3; c)令x =y +1, 则f (x )=g (y )=y 4+2y 3-2, 取 p =2得g (y )不可约,即f (x )不可约;d)令x =y +1,则f (x )=g (y )=(y +1)6+(y +1)3+1=y 6+6y 5+15y 4+21y 3+18y 2 +9y+3,取p =3,得g (y )不可约,即f (x )不可约. 2利用艾森斯坦判断法,证明:若是t p p p ,,,21 是t 个不相同的素数,而n 是一个大于1的整数,那么ntp p p 21是一个无理数.证明:考虑多项式x n-t p p p ,,,21 ,因t p p p ,,,21 互不相同,取p=p 1满足艾森斯坦判断法,知x n -t p p p ,,,21 在有理数域上不可约, 因n<1无有理根,.因而.3.设f (x )是一个整数系数多项式,证明:若是f (0)和f (1)都是奇数,那么f (x )不能有整数根. 证明:设α是f (x )的一个整数根.则f (x )=(x -a )f 1(x ).由综合除法知f 1(x )也是整系数多项式.所以f (0)= -a f 1(0), f (1)=(1-a ) f 1(1),这是不可能的.因为α与1-α中有一个是偶数.从而f (0)与f (1)至少有一个是偶数,与题设矛盾.故f (x )无整数根.4.求以下多项式的有理数根: a) x 3-6x 2+15x -14; b) 4x 4-7x 2-5x -1;c) x 5-x 4-25x 3+2x 2-21x -3.解: a)有理单根-2; b)二重有理根-21; c)有理单根-1,2.2.9 多元多项式1.写出一个数域F 上三元三次多项式的一般形式.解:f =000a +∑=++1k j i kj i ijkzy x a+∑=++2k j i kj i ijkzy x a+∑=++3k j i kj i ijkzy x a其中,a ijk ∈F.2.设 f (n x x ,,1 )是一个r 次齐次多项式.t 是任意数.证明:f (n tx tx ,,1 )=t r f (n x x ,,1 ).证明:可设),,(1n x x f ∑=++=ri i i i i i i i n nnxx x a12121.于是 ),,(1n tx tx f ∑=++=ri i i i i i i i n nntx tx tx a12121)()()(∑=+++++=r i i i i i i i i i i i n nnnxx x ta1212121∑=++=ri i i i i ri i i n nnxx x t a12121∑=++=ri i i i i i i i rn nnxx x at12121rt=),,(1n x x f3. 设f (n x x ,,1 )是数域F 上一个n 元齐次多项式,证明:如果f (n x x ,,1 )=g (n x x ,,1 )h (n x x ,,1 ),则g ,h 也是n 元齐次多项式.证明:反证法,设g ,h 至少有一个不是n 元齐次多项式,不妨设是h ,则s g g g g +++= 21,1≥s ,i g 是齐次多项式,t h h h h +++= 21,1>t ,jh 是齐次多项式,并且假设)()()(21s g g g ∂︒>>∂︒>∂︒ ,)()()(21t h h h ∂︒>>∂︒>∂︒ .则111112()()s t s tf ghg gh h g h g h g h ==++++=+++其中t s h g h g ,11都不能消去,与f 是齐次多项式矛盾.故,g h 都是齐次多项式. 4.把多项式x 3+y 3+z 3+3xyz 写成两个多项式的乘积. 原式=(x +y +z )3-3(x +y +z )(xy +yz +xz )= (x +y +z ) [(x +y +z )2-3 (xy + yz +xz )] = (x +y +z ) (x 2+y 2+z 2-xy -yz -zx ).5.设F 是数域. f ,g ∈F [n x x ,,1 ]是F 上n 元多项式. 如果存在h ∈F [n x x ,,1 ]使得f =gh ,那么就说g 是f 的一个因式.或者说g |f .a) 证明,每一f 都可以被零次多项式c 和cf 整除c ∈F , c ≠0.b) f ∈F [n x x ,,1 ]说是不可约的,如果除了a)中那种类型的因式外f 没有其它因式,证明在F [x ,y ]里多项式x ,y ,x +y ,x 2-y 都不可约.c) 举反例证明,当n ≥2时,类似于一元多项式的带余除法不成立.d) f ,g ∈F [n x x ,,1 ]说是互素的,如果除了零次多项式外,它们没有次数大于零的公因式.证明x ,y ∈F [x ,y ]是互素的多项式.能是否找到u (x ,y ), v (x ,y ) ∈F [x ,y ],使得x u (x ,y )+y v (x ,y )=1?证明: a)因为0c ≠,所以1111,,(,,),(,,)[n n c cf x x f x x F cc∈ 1,,]nx x ,而11111(,,)[(,,)][(,,)]n n n f x x c f x x cf x x cc==所以|c f ,11(,,)|(,,)n n cf x x f x x .b) 现证对于1[,,]n F x x ,任意一次多项式不可约.设f 是1[,,]n F x x 的一次多项式.若f gh =,由次数定理有1= ()()()fgh ∂︒=∂︒+∂︒.因而g 与h 中有一个是0次多项式,故f 不可约.所以,,x y x y +都不可约.因2x y -是一个非齐次的二次多项式,如可约,只能是2x y -=()()x ay x b ++.比较()()x a y x b ++与2x y -的系数有:0,0b a ==,且1ab =-,这是不可能的,故2x y -不可约.c)例:若(,),(,)f x y x g x y y ==,若存在(,),(,)x y r x y ϕ使(,)(,)x x y y r x y ϕ=+,应有(,)0r x y =或c (常数).这是不可能的.即对于二元多项式.带余除法定理不成立. d)因为x 的因式只有常数c 与cx ,而x 不是y 的因式,故x 与y 的公共因式只有常数c (且0c ≠),故x 与y 互素.因对任意(,),(,)u x y v x y ,(,)(,)xu x y yv x y +没有零次项,所以找不到(,),(,)u x y v x y 使(,)(,)xu x y yv x y +=1.2.10 对称多项式1. 写出某一数环R 上三元三次对称多项式的一般形式. 结果: a 300(x 3+y 3+z 3)+a 210(x 2y +x 2z +y 2x +y 2z +z 2x +z 2y )+a 200(x 2+ y 2+z 2)+a 110(xy +xz +yx )+a 100 (x+y+z )+a 111(xyz )+a 000其中,a ijk ∈F.2.令R [n x x ,,1 ]是数环R 上n 元多项式环, S 是由一切n 元对称多项式组成的R [n x x ,,1 ]的子集.证明存在R [n x x ,,1 ]到S 的一个双射.证明:设1,,n σσ 是1,,n x x 的初等对称多项式.对任意11(,,)[,,]n n f x x R x x ∈ 规定1:(,,)|n f x x τ→ 1(,,)n f σσ ,则1(,,)n f σσ 是S 中唯一确定的多项式.既τ是R [n x x ,,1 ]到S 的映射, 对任意的1(,,)n g x x S ∈ ,由对称多项式的基本定理,有唯一的1(,,)n h σσ 使11(,,)(,,)n n h g x x σσ= .这里1(,,)n h x x [F ∈ 1,,]n x x ,故111((,,))(,,)(,,)n n n h x x h g x x τσσ== .故τ是满射.如果11(,,)(,,)n n f x x g x x ≠ 那么11(,,)(,,)n n f g σσσσ≠ ,所以τ是单射.从而是R [n x x ,,1 ]到S 的一个双射3.把下列多元多项式表成初等对称多项式的多项式: a)∑231x x; b)∑41x; c)32221x x x∑;解: a) 2212213424σσσσσσ--+;b) 42211221344244σσσσσσσ-++-; c) 2314535σσσσσ-+;4.证明:如果一个三次多项式x 3+ax 2+bx +c 的一个根的平方等于其余两个根的平方和那么这个多项式的系数满足以下关系: 2324)22(2)2(c ab a b a a +-=-.证明:设,,αβγ是32x ax bx c -++的三个根.则由条件知(,,f αβγ=222()αβγ--222()βγα--222()γαβ--=0,把(,,)f αβγ用初等对称多项式表出,得(,,)f αβγ=64223211212131233688168σσσσσσσσσσσ-++-+=4211(σσ-32211232)2(22)σσσσσ-++-.因123,,a b c σσσ=-=-=,用它们代入上式得(,,)f αβγ=42(a a -322)2(22)b a ab c -+++=0所以42(a a 322)2(22)b a ab c -=++.5.设n αα,,1 是某一数域F 上多项式x n +a 1x n -1++ a n -1x +a n 在复数域内的全部根.证明:2,,n αα 的每一个对称多项式都可以表成F 上关于1α的多项式.证明:设f (2,,n αα )是关于2,,n αα 的任意一个对称多项式.由对称多项式的基本定理有211(,,)(',,')n n f a a g σσ-= ,其中'i σ(1,2,,1i n =- )是nαα,,2的初等对称多项式.由于111'a σσ=-,11''i i i a σσσ-=-(2,,1i n =- ) 其中i σ是n αα,,1 的初等对称多项式.又(1)ii i a σ=-(1,2,,1i n =- ),是数域F 中的数,将它们代入上式可知, 'i σ是1a 与中的数11,,n αα- 的一个多项式,不妨记为i p (11,,n αα- )='i σ(1,2,,1i n =- ),再将它们代入f g=式右端,即证明f (nαα,,2)可表为1a 与11,,n αα- 的多项式.由11,,n αα- 是F 中的数,即f (nαα,,2)是F 上关于1a 的多项式:1()G a .。
高等代数课件 第二章
三、 多项式的带余除法定理
定理 设f x, gx F[x] ,且 gx 0,则存在
qx, rxF[x], 使得
f x gxqx rx
这里 rx 0,或者 0 rx 0 gx. 并且满足上述条件的 qx和r(x) 只有一对。
注1: qx, rx分别称为 gx除f (x)所得的商式和
余式
注2: gx 0, gx| f x rx 0.
使以下等式成立:
f xux gxvx dx
三、多项式的互素
1. 互素的定义
定义 3 如果 Fx 的两个多项式除零次多项式外
不再有其它的公因式,我们就说,这两个多项式互素.
2. 互素的性质
(1)定理 2.3.3 Fx的两个多项式 f x与gx 互素
的充分且必要条件是:在 Fx中可以求得多项式 ux
二.教学目的 1.掌握最大公因式,互素概念. 2.熟练掌握辗转相除法 3.会应用互素的性质证明整除问题
三.重点,难点 辗转相除法求最大公因式. 证明整除问题
一、最大公因式的定义
定义 1 令 f x和 gx是F [x]的两个多项式,若 是F [x]的一个多项式hx 同时整除 f x和gx ,那么 hx 叫做 f x与gx的一个公因式.
f1x, f2 x,, fk x,及 q1x, q2 x,, qk x,
使得
fk1x fk x qk1xgx
而
0 f x 0 f1x 0 gx
由于多项式 f1x, f2x,的次数是递降的, 故存在k使
fk x 0或0 fk x 0gx ,于是
qx q1x qk x及rx fk x
系数所在范围对整除性的影响
二、教学目的
1.掌握一元多项式整除的概念及其性质。 2.熟练运用带余除法。
(C语言)加法运算实验报告
cout<<"两个多项式之和为:"<<endl;
cout<<"A+B=";
result(add(A,B));
cout<<endl;
return 0;
}
//当 p 不为空时进行循环;
{
PolyLink A,B;
A=Ini_polynode();
B=Ini_polynode();
cout<<"输入第一个多项式:"<<endl;
input(A);
cout<<"A=";
result(A);
cout<<"输入第二个多项式:"<<endl;
input(B);
cout<<"B=";
result(B);
2、 测试结果:
①输入 A=x+3x^6-8x^11
输入 B=6-3x^6+21x^9
输出 A+B=6+x+21x^9-8x^11
②输入 A=x+x^3
输入 B=-x-x^3
输出 A+B=0
③输入 A=x+x^100
输入 B=x^100+x^200
输出 A+B=x+2x^100+x^200
④输入 A=x+x^2+x^3
一元多项式的加法运算
一、 需求分析
1、 程序的基本功能 1 按照指数升序次序,输入并建立多项式 A 与 B。 2 计算多项式 A 与 B 的和,即建立多项式 A+B。 3 按照指数升序次序,输出多项式 A、B、A+B。 2、 输入输出要求: 1 输入多项式;
多项式相关的知识点总结
多项式相关的知识点总结一、多项式的基本概念1.1 多项式的定义在代数学中,多项式是由变量和常数以加法和乘法运算构成的表达式。
一般地,多项式可以写成如下形式:\[ P(x) = a_nx^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0 \]其中,\( x \)称为变量,\( a_n, a_{n-1}, \ldots, a_1, a_0 \)为常数系数,\( n \)为多项式的次数,\( a_n \)的系数称为首项系数,\( a_0 \)为常数项。
1.2 多项式的次数多项式中的次数是指各项中变量的指数的最高次数,常数项的次数为0。
例如,\( 3x^2 +5x - 2 \)的次数为2。
1.3 多项式的系数多项式中各项的常数因子称为系数。
在多项式\( P(x) = a_nx^n + a_{n-1}x^{n-1} + \ldots +a_1x + a_0 \)中,\( a_n, a_{n-1}, \ldots, a_1, a_0 \)即为多项式的系数。
1.4 多项式的系数与根的关系多项式的系数与多项式的根存在着密切的关系。
如果\( x = c \)是多项式\( P(x) \)的一个根,则多项式可以被\( (x-c) \)整除。
反之,如果多项式可以被\( (x-c) \)整除,则\( x=c \)是多项式的一个根。
1.5 多项式的常见类型在代数学中,有一些特殊的多项式类型,如一次多项式、二次多项式、三次多项式、齐次多项式、非齐次多项式等等。
这些多项式在数学中都有着重要的应用和研究价值。
二、多项式的运算2.1 多项式的加法和减法多项式的加法和减法即是将同类项相加或相减,它们的运算规则与实数的加法和减法非常类似。
例如,\( (3x^2 + 5x - 2) + (2x^2 - 3x + 4) = 5x^2 + 2x + 2 \)。
2.2 多项式的乘法多项式的乘法是通过分配律和乘法结合律进行计算的。
数据结构一元多项式的运算
数据结构一元多项式的运算正文:1. 引言本文档旨在介绍数据结构中一元多项式的运算方法。
一元多项式是指在一个变量上的多项式,其中每一项由一个系数和一个指数组成。
我们将会讨论一元多项式的表示、存储和基本运算,包括多项式的加法、减法、乘法和求导等操作。
2. 一元多项式的表示和存储2.1 一元多项式的定义一元多项式是指在一个变量x上的多项式,每一项由一个系数和一个指数组成,例如:2x^3 - 5x^2 + 3x + 1.其中,2、-5、3和1分别是系数,3、2、1和0分别是指数。
2.2 一元多项式的表示方法一元多项式可以使用数组、链表或其他数据结构来表示。
在本文中,我们选择使用数组来表示一元多项式。
数组的索引代表指数,数组的元素代表系数。
例如,多项式 2x^3 - 5x^2 + 3x + 1 可以表示为 [1, 3, -5, 2]。
2.3 一元多项式的存储结构为了表示一元多项式,我们可以使用一个数组来存储多项式的系数。
数组的长度应该比多项式的最高指数大1.数组的索引代表指数,数组的元素代表系数。
例如,数组 [1, 3, -5, 2] 表示的多项式 2x^3 - 5x^2 + 3x + 1 中,索引0对应指数为3的项,索引1对应指数为2的项,以此类推。
3. 一元多项式的基本运算3.1 一元多项式的加法一元多项式的加法是指将两个多项式相加,并合并同类项。
具体操作如下:- 将两个多项式的系数相加,并将结果存储在一个新的多项式中。
- 遍历新的多项式,将相邻的相同指数的项合并。
3.2 一元多项式的减法一元多项式的减法是指将一个多项式减去另一个多项式,并合并同类项。
具体操作如下:- 将两个多项式的系数相减,并将结果存储在一个新的多项式中。
- 遍历新的多项式,将相邻的相同指数的项合并。
3.3 一元多项式的乘法一元多项式的乘法是指将两个多项式相乘,并合并同类项。
具体操作如下:- 遍历一个多项式的每一项,与另一个多项式的每一项相乘。
数据结构_一元多项式的表示与相加
实验一一元多项式的表示与相加实验目的:1.复习并熟练掌握数据结构所使用的程序设计语言——C语言;2.学会单步跟踪、调试自己的程序;3.加深对线性表特别是链表知识的理解和掌握,并能够运用相关知识来解决相关的具体问题,如一元多项式相加等;程序流程:1.定义一元多项式链表结构体类型;2.输入多项式项数以分配存储空间;3.输入多项式每项的系数和指数,将其插入当前多项式链表。
同时判断是否有与当前节点指数相同的项,若存在,则将两项系数相加合并。
此外,若存在系数为0的项,将其存储空间释放;4.进行多项数加法时,新建一个存储结果的链表,分别将两多项式各项依次插入结果多项式即完成多项式相加运算;5.进行多项数加法时,将减项多项式各项系数化为相反数后进行加法操作,即完成多项式相减运算;6.对x赋值后,将x值代入多项式进行运算得到多项式的值;7.输出多项式。
注意:进行完一次运算以后,应该及时销毁无用多项式以释放空间以便再次应用。
算法及注释:1)定义一元多项式链表结构体类型typedef struct Lnode{float cof; //定义系数int exp; //定义指数struct Lnode *next; //定义指针变量指向下一个节点}Lnode ,*Linklist; //定义新的变量类型2)建立多项式存储线性链表头结点void makehead(Linklist &head){head=(Linklist)malloc(sizeof(Lnode)); //建立新的节点head->exp=-1;head->next=NULL; //指针赋空head->cof=1;}3)将输入的多项式信息存储于节点中void makelnode(Lnode *&p){p=(Lnode*)malloc(sizeof(Lnode)); //建立新的节点printf("Input the cof and exp\n");scanf("%fx%d",&p->cof,&p->exp); //输入多项式底数指数信息p->next=NULL; //指针赋空}4)清除系数为零的多项式节点void clear(Linklist la){Lnode *p,*q; //定义两个指向结构体的指针p=la;q=p->next;while (q){if (fabs(q->cof)<=0.000001) { //判断系数为零p->next=q->next; //指针指向相隔的下一个节点free(q); //销毁系数为零的节点q=p->next; //指针后移一位}else {p=p->next; //p q分别后移一位q=q->next;}}}5)找到多项式中与当前节点同指数项位置int locate(Linklist l,Lnode *&p,Lnode*e){p=l;//标记表头if (!l->next)return(0);while(p&&e->exp!=p->exp){//当p存在且指数不相等时指针后移p=p->next;}if(p)return(p);//当p存在时,返回p地址else {//没找到时寻找出插入位置p=l;while (p->next&&e->exp<=p->next->exp)p=p->next;if (!p->next){p=p;return(0);}return(0);}}6)将多项式节点插入已有多项式链表中,同时完成系数运算void caseinsert(Linklist &l,Lnode *e){Lnode *p;if (locate(l,p,e)){//指数相同项系数相加p->cof += e->cof;free(e);}else{//插入新的项e->next=p->next;p->next=e;}}7)创建新的多项式链表void creat(Linklist &head,int m){Lnode *p;int i;makehead(head);//建立头结点for (i=1;i<=m;i++){p=(Linklist)malloc(sizeof(Linklist));//建立新的多项式单个节点空间makelnode(p);//建立赋值caseinsert(head,p);//将多项式节点插入已有多项式链表中,同时完成系数运算}clear(head);}8)输入多项式项数并创建节点进行存储void input(Linklist &l){int m;printf("Input the Poly numbers\n");scanf("%d",&m);creat(l,m);//建立一个l指向的头指针有m项的多项式链表}9)输出多项式void print(Linklist l){Lnode *p;p=l->next;printf("Poly:%6fx^%d",p->cof,p->exp);p=p->next;while (p){if(p->cof>0) printf("+");//系数正负号if (fabs(p->cof)<=0.000001); break;//不输出系数为零的项printf("%6fx^%d",p->cof,p->exp);p=p->next;//指针后移}printf("\n");}10)进行多项式加法运算void add(Linklist la,Linklist lb,Linklist &lc){ Lnode *p,*q,*q1,*p1;p=la->next;q=lb->next;makehead(lc);//建立一个新的表头while(p){p1=p->next;caseinsert(lc,p);//将多项式节点p插入已有多项式链表lc中,同时完成系数运算p=p1;//指针后移}while(q){q1=q->next;caseinsert(lc,q);//将多项式节点q插入已有多项式链表lc中,同时完成系数运算q=q1;}}11)将减项多项式转化为系数为相反数的多项式便于转化为加法运算void reverse(Linklist &l){Linklist p;p=l->next;while(p){p->cof*=-1;//系数自乘-1p=p->next;}}12)进行多项式减法运算void sub(Linklist la,Linklist lb,Linklist &lc){reverse(lb);add(la,lb,lc);clear(lc);//清除头结点}13)对x赋值进行多项式赋值运算float value(Linklist l,float x){float sum=0,t;int i;Linklist p=l->next;while(p){t=1;for (i=p->exp;i>0;i--)t*=x;sum=sum+t*p->cof;p=p->next;}return(sum);}14)销毁已有多项式,清除已有多项式占用的存储空间void destroy(Linklist la){Lnode *p,*q;p=la;while(p){q=p;p=p->next;free(q);}}15)创建主程序即菜单界面void main(){Linklist l[10];int c,n,m,i;float a;printf("Choose the number to operate:\n");printf(" 1:Creat a Poly\n");printf(" 2:Poly Addition\n");printf(" 3:Poly Substraction\n");printf(" 4:Evaluation\n");printf(" 5:Destroy a Poly\n");printf(" 6:Print a Poly\n");printf(" 0:Exit\n");printf("\nDestroy the Polys after used.\n");printf("\n*use ',' to separate\n");scanf("%d",&c);while (c){switch (c){case 1: printf("Input the Poly number 1~9\n");scanf("%d",&n);input(l[n]);break;case 2: printf(" Input the Poly number to add,and the Poly number stored in\n");scanf("%d,%d,%d",&n,&m,&i);add(l[n],l[m],l[i]);break;case 3: printf(" Input the Poly number to subtract,and the Poly number stored in\n");scanf("%d,%d,%d",&n,&m,&i);sub(l[n],l[m],l[i]);break;case 4: printf("Input the number to operate and the value of x:\n");scanf("%d,%f",&n,&a);printf("%f\n",value(l[n],a));break;case 5: printf("Input the Poly number:\n");scanf("%d",&n);destroy(l[n]);break;case 6: printf(" Input the Poly number:\n");scanf("%d",&n);print(l[n]);case 0: n=0;break;default:printf("ERROR!");}printf("Choose the number to operate:\n");scanf("%d",&c);}printf("OK!\n");程序运行截图:实验总结:这次实验室数据结构第一次上机实验,由于与C语言课程的学习相隔已经一个学期,对C语言有些生疏和遗忘,在编程过程中出现很多错误。
一元多项式环的概念及其通用性质
03 一元多项式的加法与减法
加法规则
设两个一元多项式为$P(x) = a_0 + a_1x + a_2x^2 + ldots + a_nx^n$和$Q(x) = b_0 + b_1x + b_2x^2 + ldots + b_mx^m$, 则它们的和$P(x) + Q(x)$定义为系数相加,即$(a_0 + a_1x + a_2x^2 + ldots + a_nx^n) + (b_0 + b_1x + b_2x^2 + ldots + b_mx^m) = (a_0+b_0) + (a_1+b_1)x + (a_2+b_2)x^2 + ldots + (a_n+b_n)x^n$。
一元多项式环的概念及其通用性质
目录
• 一元多项式环的定义 • 一元多项式环的基本性质 • 一元多项式的加法与减法 • 一元多项式的乘法 • 一元多项式的除法 • 一元多项式环的特殊性质
01 一元多项式环的定义
定义
一元多项式环是由所有一元多项式构 成的环,其中加法、减法和乘法运算 封闭。
一元多项式环中的元素称为一元多项 式。
THANKS FOR WATCHING
感谢您的观看
举例说明:$(x^2+3x+2) - (x+1) = (1-1)x^2 + (3-1)x + (2-1) = 0x^2 + 2x + 1$。
04 一元多项式的乘法
单项式与多项式相乘
定义
举例
单项式与多项式相乘是指将单项式的每一项 分别与多项式的每一项相乘,并合并同类项。
高等代数02多项式
注意: 注意:
定理2.3.2的逆命题不成立.但是当(2)式成立,而d(x)是f(x)与 g(x)的一个公因式时, d(x)一定是f(x)与g(x)的一个最大公因式. 定义3 定义3 F[X]的两个多项式 与 互素的充分必要条件是: F[X]的两个多项式f(x)与g(x)互素的充分必要条件是:在 的两个多项式 互素的充分必要条件是 F[X]中可以求得多项式u(x)与v(x),使 中可以求得多项式u(x) 中可以求得多项式u(x)与v(x), f(x)u(x)+g(x)v(x)=1
最大公因式的定义可以推广到n(n>2)个多项式的情形: n n>2) 若是多项式h(x)整除多项式中 f1 ( x), f 2 ( x),L f n ( x) 的每一个,那么 h(x)叫做这n个多项式的一个公因式.若是 f1 ( x), f 2 ( x),L f n ( x) 的公因式d(x)能被这n多个多项式的每一个公因式整除,那么d(x)叫 做 f1 ( x), f 2 ( x),L f n ( x) 的一个最大公因式。 容易推出:若d0 ( x)是多项式 f1 ( x), f 2 ( x),L f n ( x ) 的一个最大公因式 容易推出 那么 d 0 ( x) 与多项式f(x)的最大公因式也是多项式 f1 ( x), f 2 ( x),L f n ( x) 的最大公因式。
§2.4 多项式的分解
我们知道,给了F(X)的任何一个多项式f(x),那么的任何不为零 的元素c都是f(x)的因式.另一方面,c与f(x)的成绩cf(x)也总是f(x)的因 式.我们f(x)把的这样的因式叫做他的平凡因式 平凡因式. 平凡因式 定义 令f(x)是F[X]的一个次数大于零的多项式.若是f(x)在F[X] f(x)是F[X]的一个次数大于零的多项式.若是f(x)在 的一个次数大于零的多项式 f(x) 中只有平凡因式,f(x)就是说在数域 上不可约. f(x)除平凡 就是说在数域F 中只有平凡因式,f(x)就是说在数域F上不可约.若f(x)除平凡 饮食外, F[X]中还有其它因式 f(x)就是说在 上可约。 中还有其它因式, 就是说在F 饮食外,在F[X]中还有其它因式,f(x)就是说在F上可约。 对于零多项式与零次多项式我们既不能说它们是可约的,也 不能说它们是不可约的。在任一多项式环F[X]中都存在不可约多 项式,因为F[X]的任何一个一次多项式总是不可约的. 注意: 注意:我们只能对给定的数域来谈论多项式可约或不可约
数据结构课程设计——一元多项式计算
数据结构课程设计——一元多项式计算一、课程设计题目及要求二、设计思路和方法三、程序流程图四、程序代码及注释五、测试结果及分析六、结论七、参考文献本次课程设计的题目为“一元多项式计算”,要求设计一个程序,能够实现一元多项式的加、减、乘、求导和求值等操作。
在设计思路和方法上,我们采用了链表的数据结构来存储多项式,同时设计了相应的函数来实现各种操作。
程序的流程图如下所示:插入流程图)程序的代码及注释如下所示:插入代码及注释)在测试结果及分析方面,我们对程序进行了多组测试,并对其进行了详细的分析和比较。
结果表明,我们的程序能够正确地实现各种操作,并且具有较高的效率和稳定性。
综上所述,本次课程设计的目标已经得到了圆满地实现,我们对于所取得的成果感到非常满意。
同时,我们也希望能够通过这次课程设计,加深对于数据结构及其应用的理解和掌握,为今后的研究和工作打下坚实的基础。
设计目标:本课程设计旨在结合理论与实际应用,提高学生组织数据及编写大型程序的能力。
通过掌握数据组织、算法设计和算法性能分析的方法,培养学生良好的程序设计能力。
具体实现是利用单链表表示一元多项式,实现多项式的输入、建立、输出、相加、相减和相乘。
总体设计:2.1 数据结构描述与定义:一元多项式定义系数和指数结构如下:coef,expn和next。
定义多项式的结构为线性链表的存储结构,每个结点包含三个元素:系数coef,指数expn和指向下一个结点的指针*next。
多个单项式通过指针连接起来,形成一个多项式。
2.2 模块设计:从实现多项式运算过程的角度来分析,至少需要以下子功能模块:多项式创建、销毁、输出、相加、相减和相乘。
定义并调用的函数有:Insert、CreatePolyn、DestroyPolyn、PrintPolyn、AddPolyn、SubtractPolyn、XXX和main函数。
注:该文章中没有明显的格式错误和需要删除的段落,因此没有进行小幅度改写。
高等代数第一章一元多项式
1第一章多项式21.1 数域3数是数学的一个最基本的概念,研究数学问题常常需要明确规定所考虑的数的范围,按照所研究的问题不同,我们对数的范围界定也不一样。
例如22x 在有理数范围内不能分解,在实数范围内就可以分解。
210x 在实数范围内没有根,在复数范围内就有根。
自然数整数有理数实数复数NZQRC这是一个认识的渐进的过程。
在讨论多项式的因式分解、方程的根等问题时,都跟数的范围有关。
4在代数中,我们主要考虑一个集合中元素的加、减、乘、除四则运算以及经过四则运算后是否还在这个集合之中。
例如自然数集N 只对加法和乘法封闭,而整数集Z 对加、减、乘三种运算封闭,但对除法不封闭;而有理数集Q 对加、减、乘、除(除数不为0)四种运算都封闭,同样,实数集R 、复数集C 对加、减、乘、除四种运算都封闭。
定义( 运算封闭):在一个数的集合P 中,如果集合中任意两个数做某种运算后的结果仍在P 中,则称数集P 对这种运算是封闭的(closed) 。
5定义1(数域):设P 是一个由一些复数组成的数的集合,其中包含0和1。
如果P 中的任意两个数对加、减、乘、除(除数不为0)都是封闭的,则称P 是一个数域(number field )。
有理数集Q ,实数集R ,复数集C 都是数域,且是三个最重要的数域。
如果某个数集只对加、减、乘封闭,则称其为数环。
整数集是一个数环.任意一个数域P 都是复数域C 的子集,都包含有理数域Q 作为其子域,即满足.Q P C 在Q 和R 之间存在其它数域;但在R 与C 之间没有别的数域存在.61.2 一元多项式教学目的和要求1. 掌握一元多项式形式表达式的准确定义.2. 掌握一元多项式的加法、减法、乘法的运算和运算律.3. 掌握一元多项式经过运算后的次数,并会用相关结论解题.78一、基本概念设x 是一个符号(或称文字),P 是一个数域,定义2:n 是一个非负整数,形式表达式其中,,,,,011P a a a a n n 称为系数在数域P 中的一元多项式(one variable polynomial ),或称为数域P 上的一元多项式。
使得hxfxgx如果存在记为gx...
第二章多项式第二章多项式2.1 一元多项式的定义和运算2.2 多项式的整除性2.3 多项式的最大公因式2.4 多项式的分解2.5 重因式2.6 多项式函数多项式的根2.7 复数和实数域上多项式2.8 有理数域上多项式2.9 多元多项式2.10 对称多项式课外学习2:从高次代数方程和求根公式到伽罗华理论课外学习2:从高次代数方程和求根公式到伽罗华理论课外学习3:代数与代数基本定理的历史课外学习3:代数与代数基本定理的历史课外学习4:推广的余数定理及算法课外学习4:推广的余数定理及算法课外学习5:代数元的多项式的共轭因子课外学习5:代数元的多项式的共轭因子惠州学院数学系代数是搞清楚世界上数量关系的工具。
代数是搞清楚世界上数量关系的工具。
――怀特黑德(1961-1947)――怀特黑德(1961-1947)当数学家导出方程式和公式,如同看到雕像、美丽的当数学家导出方程式和公式,如同看到雕像、美丽的风景,听到优美的曲调等等一样而得到充分的快乐。
风景,听到优美的曲调等等一样而得到充分的快乐。
- -柯普宁前苏联哲学家- -柯普宁前苏联哲学家快乐地学习数学,优雅地欣赏数学。
快乐地学习数学,优雅地欣赏数学。
――匿名者――匿名者惠州学院数学系2.1 一元多项式的定义和运算2.1 一元多项式的定义和运算一、内容分布一、内容分布2.1.1 认识多项式 2.1.4 多项式的运算2.1.5 多项式加法和乘法的运算规则2.1.2 相等多项式2.1.6 多项式的运算性质2.1.3 多项式的次数二、教学目的掌握一元多项式的定义,有关概念和基本运算性质三、重点、难点一元多项式的定义,多项式的乘法,多项式的运算性质。
惠州学院数学系2.1.1 认识多项式2.1.1 认识多项式多项式令R是一个含有数1的数环.R上一个文字x的多项式或一元多项式指的是形式表达式2 naa xa x a x0 1 2 nai0, 1, ?, n这里n是非负整数而都是R中的数ifx ?, gx ?,一元多项式常用符号来表示i1:在多项式1中,a xa叫做零次项或常数项,i叫做 i 次项,a叫做 i 次项的系数i2:在一个多项式中,可以任意添上或去掉一些系注数为零的项;若是某一个i次项的系数是1 ,那么这个系数可以省略不写。
高等代数课件(北大三版)--第二章--多项式
定义 1
令f x 和 gx是F [x]的两个多项式,若是F [x]的一 个多项式 hx同时整除 f x和 gx ,那么hx 叫做
f x与 gx的一个公因式.
定义 2
设dx是多项式 f x 与 gx的一个公因式.若是 dx 能被 f x 与 gx的每一个公因式整除,那么 dx叫做 f x与gx的一个最大公因式.
(3)乘法交换律: f xgx gx f x (4)乘法结合律: f xgxhx f xgxhx
(5)乘法对加法的分配律: f xgx hx f xgx f xhx
注意:要把一个多项式按“降幂”书写
an x n an1x n1 a1x a0 当 an 0 时,an xn叫做多项式的首项.
那么由上面定理的证明得 f xgx 0
推论2 f xgx f xhx, f x 0 gx hx
证 由 f xgx f xhx得 f xgx hx 。但 f x 0
所以由推论1必有 gx hx 0 ,即
gx hx
惠州学院数学系
例 当 a,b, c 是什么数时,多项式
f x ax3 bx2 c b x3 x2
这里当m < n 时,bm1 bn 0
惠州学院数学系
多项式的乘法
给定数环R上两个多项式
f x a0 a1x a2 x2 an xn gx b0 b1x b2 x2 bm xm
f (x) 和g (x) 的乘法定义为
f xgx c0 c1x c2 x2 cnn xnm
2.1.1 认识多项式
多项式
令R是一个含有数1的数环.R上一个文字x的多项式或
一元多项式指的是形式表达式
a0 a1x a2 x2 an xn
高等代数课件(北大三版)--第二章--多项式
2.2.4 系数所在范围对整除性旳影响
二、教学目旳
1.掌握一元多项式整除旳概念及其性质。
2.熟练利用带余除法。
三、要点、难点
多项式旳整除概念,带余除法定理
2.2.1 多项式旳整除概念
设F是一种数域. F [x]是F上一元多项式环.
2.2.2 多项式整除性旳某些基本性质
证 设f (x) = g (x) 那么它们有完全相同旳项, 因而对R旳任何c都有f (c) = g (c)这就是说, f (x) 和g (x)所拟定旳函数相等.反过来设f (x) 和g (x)所拟定旳函数相等.令 u (x) = f (x) – g (x)那么对R旳任何c都有u (c) = f (c) – g (c) = 0这就是说, R中旳每一种数都是多项式u (x)旳根. 但R有无穷多种数, 所以u (x)有无穷多种根.根据定理2.6.3只有零多项式才有这个性质.所以有 u (x) = f (x) – g (x) = 0 , f (x) = g (x) .
f (c)与它相应. 于是就得到R到R旳一种映射. 这个映射是由多项式f (x)所拟定旳,叫做R上一种多项式函数.
综合除法
由此得出
表中旳加号一般略去不写.
例1
用x + 3除
作综合除法:
所以商式是
而余式是
证
假如f (x)是零次多项式,那么f (x)是R中一种不等于零旳数, 所以没有根. 所以定理对于n = 0成立.于是我们能够对n作数学归纳法来证明这一定理.设c∈R是f (x)旳一种根.那么 f (x) = (x – c) g (x)这里g (x) ∈R [x]是一种n – 1次多项式.假如d∈R是f (x)另一种根, d≠c那么 0 = f (d) = (d – c) g (d)因为d – c≠0 , 所以g (d) = 0. 因为g (x)旳次数是 n – 1 ,由归纳法假设, g (x)在R内至多有n – 1个不同旳根.所以f (x)在R中至多有n个不同旳根.
新人教版初中数学目录
新人教版初中数学目录第一章有理数1.1 正数和负数1.2 有理数的概念与性质1.3 有理数的加法和减法1.4 有理数的乘法和除法1.5 有理数的混合运算第二章整式的加减2.1 单项式与多项式2.2 整式的加减法则2.3 合并同类项2.4 整式的化简与求值第三章一元一次方程3.1 方程的概念与性质3.2 一元一次方程的解法3.3 一元一次方程的应用3.4 问题解决策略与方程建模第四章图形认识初步4.1 基本的几何图形4.2 直线、射线和线段4.3 角的概念与性质4.4 角的度量与计算第五章相交线与平行线5.1 相交线及其性质5.2 平行线及其性质5.3 平移与图形的变换第六章平面直角坐标系6.1 平面直角坐标系的概念6.2 点的坐标与表示6.3 坐标的变换与图形的平移6.4 用坐标表示地理位置第七章三角形7.1 三角形的概念与性质7.2 三角形的全等与相似7.3 三角形的角平分线、中线和高7.4 三角形的面积与周长第八章二元一次方程组8.1 二元一次方程组的概念8.2 二元一次方程组的解法8.3 二元一次方程组的应用8.4 三元一次方程组及其解法第九章不等式与不等式组9.1 不等式的概念与性质9.2 一元一次不等式的解法9.3 一元一次不等式组及其解法9.4 不等式与不等式组的应用第十章数据的收集与整理10.1 数据的收集与分类10.2 统计图表与数据的表示110.3 数据的整理与描述10.4 数据的分析与推断请注意,上述内容仅为基础框架,具体内容可能会根据教材版本和具体教学要求有所调整。
高等代数第五版第二章 多 项 式
第二章 多 项 式§2.1 一元多项式的定义和运算2.1.1 教学目的2.1.1.1 掌握多项式、多项式相等、多项式次数的概念。
2.1.1.2 掌握多项式加法、减法与乘法的法则和性质。
2.1.2 教学重点多项式的概念,多项式的运算法则和性质。
2.1.3 教学难点对多项式形式表达式的理解。
2.1.4 教学过程本节所说的R ,指的是含1的数环。
一、一元多项式的一些基本概念Def 1: 数环R 上文字x 的多项式或一元多项式指的是形式表达式 n n 2210x a x a x a a ++++ (1) 这里n 是非负整数,0a ,1a ,…,a n 是R 中的数。
在(1)中0a 叫零次项或常数项,i i x a 叫i 次项,i a 叫i 次项的系数, 一元多项式常用f(x)、g(x)表示.Def 2: 若是数环R 上两个多项式f(x)和g(x)有完全相同的项或者只差一些系数为零的项,则称f(x)=g(x).如 1+0x+5x 2+0x 3=1+0x+5x 2=1+5x 2 ,3+1x+2x 2=3+x+2x 2≠3+x+x 2 Def 3:在多项式中n n 2210x a x a x a a ++++ ,若a n ≠0,n n x a 叫多项式的最高次项,非负整数n 叫多项式的次数多项式f(x)的次数记作0∂(f(x)). 零多项式记为0且是唯一不定义次数.所以以后谈到多项式)x (f 的次数时总假定0)x (f ≠。
非零常数是零次多项式,它的次数为0,有次数。
二、多项式的运算 (一)运算的定义设nn x a x a x a a x f ++++= 2210)(, 或∑==ni ii x a x f 0)(mm x b x b x b b x g ++++= 2210)(, 或∑==mj j j x b x g 0)(; 是数环R 上两个多项式,并且m ≤n ,则定义:一)加法f(x)+g(x)=(a 0+b 0)+(a 1+b 1)x+…+(a m +b m )x m +…+(a n +b n )x n当m<n 时取b m+1=…=b n =0,或∑=+=+ni ii i x b a x g x f 0)()()(. 二)减法设f(x)=a 0+a 1x+…+a n x n ,把-f(x)=-a 0-a 1x -…-a n x n 叫f(x)的负多项式,则定义:f(x)-g(x)=f(x)+(-g(x)),或∑=-=-n i ii i x b a x g x f 0)()()(1)在Def1中文字x 不一定代表“数”,可以是一个矩阵A ,或一个变换等,因此不能把x 当作“未知数”2)“n 为非负整数”说明表达式x 1x ,x 1+等都不是多项式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2x + 5x8 −3.1x11) + (7 − 5x8 + 11x9) = 7 + 2x + 11x9 −3.1x11 (1+x) + (− 1 − x) = 0 (x+x2+x3) + 0 = x+x2+x3 ( 3 + 6x − 2x6 + 7x7 − 9x10) + (2x + x2 + 2x6 − 6x9) = 3 + 8x + x2 + 7x7 − 6x9 − 9x10 o (−3x6 + x9+12x16) + (3x6 +7 x9 −3.6x36 ) = 8x9 +12x16 −3.6x36 o (x + 3x8 −3.1x11) + ( − 6 + 5x3 −6.6x9) = − 6 + x + 5x3 + 3x8 −6.6x9 −3.1x11 o o o o
界面设计及编码实现
界面设计
提倡设计简洁、友好的人机界面。 输入数据时,应提示用户输入数据的格式,指 导用户正确的输入数据。 对于非法输入,程序能够做出合适的反应。 输出数据时,应采用人易于理解的方式输出。
编码实现
采用C,Visual C++语言或者其它熟悉的语言编 写程序。
运行与测试
编辑、调试、运行所编写源代码。 用多组数据进行测试,检查程序是否正确。
数据结构设计
一元多项式的结构特点
一元多项式的每一个子项都是由“系数”和“指数”构 成,因此可将其抽象为数据元素为“系数-指数”的线性 表。 因为零系数项没有必要存储,因此采用单链表来表示一 元多项式。为方便运算的实现,采用带头结点的单链表。
类型定义
typedef struct node { float ce; float ex; struct node ∗next; } Pnode, *Plink; //系数 //指数
多项式加法
对于已创建的两个多项式,类似于教材上的合并有 序链表的算法,通过比较系数,采用尾插法生成和多项 式,实现多项式的加法运算。 令指针pa和pb分别指向多项式A和B中的结点,比较 pa和pb所指结点的指数域,指数相等时,在和多项式中 生成新结点,指数值为pa(pb)所指结点的指数值,系数 值为二者的系数之和;指数不等时,选取指数较小那一 项,复制为和多项式中的新结点。 【例】 − 9x10 A = 3 + 6x − 2x6 + 7x7 B= 2x + x2 + 2x6 − 6x9 A+B = 3 + 8x + x2 + 7x7 − 6x9 − 9x10
多项式输出
图形界面下多项式的输出
在图形界面下,可以通过设置指数应该出现 坐标位置来表示指数形式,如: X + 6X3 − 8X20 +3X100
文本界面下多项式的输出
在文本方式下,无法设置上标和下标,可采用 以下方式显示多项式: X + 6X(3) − 8X(20)+3X(100) 或 (1,0),(6,3),(-8,20),(3,100)
功能模块设计
主要功能模块
– 多项式生成 – 多项式加法 – 多项式输出 – 主函数 create ( ) add ( ) prin数递增)从键盘输入多项式的 各个子项的值,每个子项包括系数和指数两部分。 每输入一个子项建立一个结点,遇到结束标志时停止。 【参考】如输入多项式: A = 3 + 6x − 2x6 + 7x7 − 9x10
选作实验
多项式减法运算
将被减数(第二个多项式)的每个子项的系数取反,然 后与第一个多项式相加即可。
多项式乘法运算
– 子项相乘:
系数相乘,指数相加。 – 两个多项式相乘 (假设A有n个子项, B有m个子项) 对于第一个多项式A的每一子项Ai …….(i从1到n) { (1)令Ai去乘第二个多项式B的各个子项Bj,得到一 个临时多项式T; …….(j从1到m) (2) 将临时多项式T加到和多项式C中去。 }
实验2.2 一元多项式加法运算
实验步骤
实验目的及问题描述 数据结构设计 功能模块设计 界面设计及编码实现 运行与测试 选作实验
实验目的及问题描述
实验目的
通过实验加深对线性表的逻辑结构与存储结构的 理解,进一步掌握应用链表处理实际问题的能力。
问题描述
由键盘输入两个以下形式的多项式: P0+P1x1+P2x2+…+Pnxn 计算它们的和,然后在屏幕上输出。 【例】 A = 3 + 6x − 2x6 + 7x7 − 9x10 B = 2x + x2 + 2x6 − 6x9 A+B = 3 + 8x + x2 + 7x7 − 6x9 − 9x10
请输入第一个多项式: 请输入第1项(按照“系数,指数” 形式,输入“0,0”结束): 3,0 请输入第2项(按照“系数,指数” 形式,输入“0,0”结束): 6,1 请输入第3项(按照“系数,指数” 形式,输入“0,0”结束): 2,6 请输入第4项(按照“系数,指数” 形式,输入“0,0”结束): 7,7