2018-2019盐城小学毕业数学总复习小升初模拟训练试卷23-24(共2套)附详细试题答案
2018-2019盐城市小学毕业数学总复习小升初模拟训练试卷(9)附详细试题答案
小升初数学综合模拟试卷9一、填空题:1.在下面的四个算式中,最大的得数是______:(1)1994×1999+1999,(2)1995×1998+1998,(3)1996×1997+1997,(4)1997×1996+1996.2.今有1000千克苹果,刚入库时测得含水量为96%;一个月后,测得含水量为95%,则这批苹果的总重量损失了______.3.填写下面的等式:4.任意调换五位数54321的各个数位上的数字位置,所得的五位数中的质数共有______.5.下面式子中每一个中文字代表1~9中的一个数码,不同的文字代表不同的数码:则被乘数为______.6.如图,每个小方格的面积是1cm2,那么△ABC的面积是______cm2.7.如图,A1,A2,A3,A4是线段AA5上的分点,则图中以A,A1,A2,A3,A4,A5这六个点为端点的线段共有______条.8.10点15分时,时针和分针的夹角是______.9.一房间中有红、黄、蓝三种灯,当房间中所有灯都关闭时,拉一次开关,红灯亮;第二次拉开关,红黄灯都亮;第三次拉开关,红黄蓝三灯都亮;第四次拉开关,三灯全关闭,现在从1~100编号的同学走过该房间,并将开关拉若干次,他们拉开关的方式为:编号为奇数者,他拉的次数就是他的号数;编号为偶数者,其编号可以写成2r·p(其中p为正奇数,r为正整数),就拉p次,当100人都走过房间后,房间中灯的情况为______.10.老师带99名同学种树100棵,老师先种一棵,然后对同学们说:“男生每人种两棵,女生每两人合种一棵。
”说完把99棵树苗分给了大家,正好按要求把树苗分完,则99名学生中男生为______名.二、解答题:1.如图,某公园的外轮廓是四边形ABCD,被对角线AC、BD分成四个部分.△AOB的面积是2平方千米,△COD的面积是3平方千米,公园陆地面积为6.92平方千米,那么人工湖的面积是______平方千米.2.汽车往返于甲、乙两地之间,上行速度为每小时30千米,下行速度为每小时60千米,求往返的平均速度.3.已知一个数是1个2,2个3,3个5,2个7的连乘积,试求这个数的最大的两位数因数.4.某轮船公司较长时间以来,每天中午有一只轮船从哈佛开往纽约,并且在每天的同一时间也有一只轮船从纽约开往哈佛,轮船在途中所花的时间,来去都是七昼夜,问今天中午从哈佛开出的轮船,在整个航运途中,将会遇到几只同一公司的轮船从对面开来?答案一、填空题:1.(3988009)由乘法分配律,四个算式分别简化成:1995×1999,1996×1998,1997×1997,1996×1998,由“和相等的两个数,相差越小积越大”,所以1997×1997最大,为3988009.2.(200千克)苹果含水96%.所以苹果肉重1000×(1-96%)=40千克,一个月后,测得含水量为95%,即肉重占1-95%=5%,所以苹果重为40÷(1-95%)3.(1)26,26或14,182.(2)46、46.4.(0个)因为5+4+3+2+1=15,是3的倍数.所以任意调换54321各位数字所得的五位数均能被3整除,为合数,因此共有0个质数.5.142857或285714易知“数”只能是1或2或3,经过分析试证可知排除3,并得到两个答案.6.(8.5)2.5-6=8.5(cm2)7.(15条)以A为左端点的线段共5条,以A1为端点的线段共4条;以A2为左端点的线段共3条;以A3为左端点的线段共2条;以A4为左端点的线段共1条,总计5+4+3+2+1=15(条).8.(142°30′)10点15′时,时针从0点开始转过的角度是30°×10.25=307.5°,从而时针与钟表盘12所在的位置之间的夹角为360°-307.5°=52°30′,此时时针与分针之间的夹角为90°+52°30′=142°30′.9.(都不亮)奇数和为1+3+5+…+99=2500,编号为2P者有2×1,2×3,2×5,…,2×49,他们拉开关次数为1+3+5+…+49=625;编号为22p者有22×1,22×3,22×5,…,22×25,拉开关次数为1+3+5+……+25=169;同理可得编号23·p者拉36次;24·p者9次,25·p与26·p分别有25·1,25·3,26拉开关次数1+3+1=5次.总计2500+625+169+36+9+5=3344=4×836.所以最后三灯全关闭.10.(33)把问题简化:3人种3棵(指1男生2个女生),则99名分成33组,每组1男2女,所以共有男生:99÷(2+1)=33(名).二、解答题:1.(0.58)由△BOC与△DOC等高h1,△BOA与△DOA等高h2,利用面积公式:2.(40千米/小时)设两地距离为a,则总距离为2a.3.(98)由已知数=2×3×3×5×5×5×7×7.所以它的两位数的因数有很多个.因此我们可从两位数中最大数找起.99=9×11=3×3×11,而11不是原数因数,所以99不符合;98=2×49=2×7×7,因为2、7都是原数的因数,所以98符合要求.4.(15只)利用图解法代表今天中午从哈佛开往纽约的轮船的带箭头的线段.与另一簇代表从纽约开往哈佛的轮船行驶路线的15条平行线相交.其中一只是在出发时遇到,一只到达时遇到,剩下的13只则在海上相遇.。
2018-2019盐城市小学毕业数学总复习小升初模拟训练试卷3-4(共2套)附详细试题答案
小升初数学综合模拟试卷3一、填空题:1.用简便方法计算下列各题:(2)1997×19961996-1996×19971997=______;(3)100+99-98-97+…+4+3-2-1=______.2.右面算式中A代表______,B代表______,C代表______,D代表______(A、B、C、D各代表一个数字,且互不相同).3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟______岁.4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗______面,黄旗______面.5.在乘积1×2×3×…×98×99×100中,末尾有______个零.6.如图中,能看到的方砖有______块,看不到的方砖有______块.7.右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考______次满分.9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,……这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.二、解答题:1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸(1)若P点在岸上,则A点在岸上还是水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点B,他脱鞋的次数与穿鞋的次数和是奇数,那么B点在岸上还是水中?说明理由.2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,简单说明理由.若办得到,写出正方框里的最大数和最小数.3.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.答案一、填空题:1.(1)(24)(2)(0)原式=1997×(19960000+1996)-1996×(19970000+1997)=1997×19960000+1997×1996-1996×19970000-1996×1997=0(3)(100)原式=(100-98)+(99-97)+…+(4-2)+(3-1)=2×50=1002.(1、0、9、8)由于被减数的千位是A,而减数与差的千位是0,所以A=1,“ABCD”至少是“ABC”的10倍,所以“CDC”至少是ABC的9倍.于是C=9.再从个位数字看出D=8,十位数字B=0.3.(28)(65-9)÷2=284.(50、150)40O÷8=50,8÷2-1=33×50=1505.(24)由2×5=10,所以要计算末尾的零只需数清前100个自然数中含质因数2和5的个数,而其中2的个数远远大于5的个数,所以含5的因数个数等于末尾零的个数.6.(36,55)由图观察发现:第一层能看到:1块,第二层能看到:2×2-1=3块,第三层:3×2-1=5块.上面六层共能看到方砖:1+3+5+7+9+11=36块.而上面六层共有:1+4+9+16+25+36=91块,所以看不到的方砖有91-36=55块.7.(25)8.(5)考虑已失分情况。
2018-2019盐城小学毕业数学总复习小升初模拟训练试卷24-25(共2套)附详细试题答案
小升初数学综合模拟试卷24一、填空题:2.将1、2、3、4、5、6、8、9这八个数组成两个四位数,使这两个数的差最小,这个差是______.3.如图,将它折成一个正方体,相交于同一顶点的三个面上的数之和最大是______.4.将1至9这九个数分别填在下面九个方框中,使等式成立:5.如图,平行四边形ABCD的一边AB=8厘米,AB上的高等于3厘米,四边形EFOG的面积等于2平方厘米,则阴影部分的面积与平行四边形的面积之比是______.6.200个连续自然数的和是32300,取出其中所有的第偶数个数(第2个,第4个,……,第200个),将它们相加,则和是______.7.某人从甲地到乙地,如果每分钟走75米,迟到8分,如果每分钟走80米,迟到6分,他应以每分钟走______米的速度走才能准时到达.8.快慢两列火车的长分别是200米、300米,它们相向而行.坐在慢车上的人见快车通过此人窗口的时间是8秒,则坐在快车上的人见慢车通过此人窗口所用的时间是______秒.9.至少有一个数字是0,且能被4整除的四位数有______个.10.如图,九个小正方形内各有一个一位数,并且每行、每列及两条对角线上的三个整数的和相等,那么x=______.二、解答题:2.甲、乙、丙三人,甲每五天去李老师家,乙每四天去李老师家,丙每六天去李老师家。
三人在1997年元旦去了李老师家,下一次三人在李老师家相聚是几月几日?3.编号为1至7的7个盘子,每盘都放有玻璃球,共放有80个,其中第1号盘里放有18个,并且编号相邻的三个盘里的玻璃球数的和相等,问第6个盘中玻璃球最多可能是多少个?已知他骑车每小时行8千米,乘车每小时行16千米,则此人从家到单位的距离是多少千米?答案一、填空题:2.137要使差最小,被减数与减数应该尽量接近.被减数的千位与减数千位的差是1,它们的末三位数,被减数应该最小,是123,减数应该最大,是986,这样得到被减数是5123,减数是4986,差等于137.3.相交于同一顶点三个面上的数之和是13.6+3+4=134.73把4234分解质因数,然后进行计算和调整,有:4234=2×29×73=58×73=29×146所以最大的两位数是73.5.1∶3因为O是AC、BD的中点,所以S△AEF+S△BGE=S△AOB-S四边形EFOG=6-2=4(平方厘米)S阴影=S平ABCD-(S△AEF+S△BGE)=12-4=8(平方厘米)S阴影∶S平ABCD=8∶24=1∶36.16200连续自然数相邻两数之差是1,所以第2个数比第1个数大1,第4个数比第3个数大1,…,第200个数比第199个数大1,100个取出的数比没取出的100个数总共多100,因此所有的第偶数个数之和是(32300+100)÷2=162007.100设从甲地出发准时到达乙地需x分,则75×(x+8)=80×(x+6)80x-75x=600-480x=24甲、乙两地距离是:80×(24+6)=2400(米)从甲地准时到达乙地这人的速度是每分走:2400÷24=100(米)8.坐在慢车上的人见快车通过此人窗口时,两列火车共行了200米,用了8秒,得到两列火车的速度和是200÷8=(25米/秒),坐在快车上的人见慢车通过此人窗口时,两列火车共行了300米,所用时间是:300÷25=12(秒).9.792个一个数能被4整除的特征是末两位数能被4整除.末两位数应是00、04、08、12、16、20、 (92)96,共25个,其中含有数字0的有7个(00、 04、 08、 20、 40、 60、 80),其余 18个末两位都不含有数字0.一个四位数的末两位含有数字0,那么它的千位可以是1至9的任意一个,百位是0至9的任意一个,这个四位数的前两位数字共9×10=90个,则末两位含有数字0且能被4整除的四位数共有:90×7=630(个)如果末两位不含有数字0,那么要求四位数的百位是0,千位是1至9的任意一个,共有9个,则末两位不含数字0,前两位含有数字0,且能被4整除的四位数共有:9×18=162(个)所以至少有一个数字0,且能被4整除的四位数有 630+162=792(个).10. x=5如图所示,a+x+f=9+x+1,有a+f=10;同理d+x+c=9+x+1得d+c=10;所以 a+f+d+c=20又 a+9+d=9+x+1,得a+d=x+1;c+1+f=9+x+1,得c+f==x+9,则 a+d+c+f=2x+10.所以 2x+10=20,x=5.二、解答题:1.厂里现有工人120名所以厂里现有工人120名.2.3月1日[5,4,6]=60,60-(31+28)=1所以下一次三人在李老师家相聚是3月1日.3.第6个盘中的玻璃球最多是12个.由于相邻三个盘中的玻璃球相等,有编号为1、4、7的盘中玻璃球均相等,等于18个,于是2、3盘中的玻璃球数的和与5、6盘中的玻璃球数的和相等,所以5、6盘中玻璃球数之和是:(80-18×3)÷2=13(个)要使第6盘中的玻璃球数最多,第5盘至少是1个(每盘都有玻璃球),所以第6盘最多可能是12个.4.此人家到单位的距离是78千米.设此人家到单位的距离是s千米,他从单位回家用了t小时,则13t=12t+6t=6S=13×6=78(千米)所以此人家到单位的距离是78千米.小升初数学综合模拟试卷25一、填空题:2.三个不同的三位数相加的和是2993,那么这三个加数是______.3.小明在计算有余数的除法时,把被除数472错看成427,结果商比原来小5,但余数恰巧相同.则该题的余数是______.4.在自然数中恰有4个约数的所有两位数的个数是______.5.如图,已知每个小正方形格的面积是1平方厘米,则不规则图形的面积是______.6.现有2克、3克、6克砝码各一个,那么在天平秤上能称出______种不同重量的物体.7.有一个算式:五入的近似值,则算式□中的数依次分别是______.8.某项工作先由甲单独做45天,再由乙单独做18天可以完成,如果甲乙两人合作可30天完成。
【3套试卷】盐城市小升初模拟考试数学试卷(1)
新小升初数学试卷及答案(人教版)(1)小升初模拟训练(二)一、选择题1.下面说法正确的是()A. 把一个小数精确到百分位,也就是保留两位小数B. 小数除以小数,商一定是小数C. 91.4里面有914个0.012.微机课上,笑笑坐在微机教室的第4列第2行,用数对(4,2)表示,明明坐在笑笑正后方的第一个位置上,明明的位置用数对表示是( )。
A. (5,2)B. (4,3)C. (3,2)D. (4,1)3.清平中心小学98班有52人,彭老师至少要拿()作业本随意发给学生,才能保证至少有有个学生拿到2本或2本以上的本子.A. 53本B. 52本C. 104本4.下面()杯中的饮料最多。
A. B. C.5.某教育局装备科购进96台电脑,按4∶5∶3分发给第一、第二和第三小学,三所小学各发到电脑多少台?正确的解答是()A. 第一小学:22台第二小学:45台第三小学:29台B. 第一小学:32台第二小学:40台第三小学:24台C. 第一小学:30台第二小学:50台第三小学:16台D. 第一小学:20台第二小学:60台第三小学:20台6.一瓶橙汁有150毫升,求“ 瓶有多少毫升”就是求()A. 150的是多少B. 150减去是多少C. 150加是多少7.你估计小刚有多高?()。
A. 1米25厘米B. 2米52厘米C. 80厘米8.甲、乙两个等高的圆锥,甲圆锥的底面半径是乙圆锥底面半径的3倍,则甲圆锥体积是乙圆锥体积的( )倍。
A. 3B. 9C. 279.在3.145、3.14、π、3.14%中,最大的数是()。
A. 3.145B. 3.14C. πD. 3.14%10.如果把3∶7的前项加上9,要使它的比值不变,后项应()A. 加上9B. 加上21C. 减去911.蔬菜批发站把一批菜按4∶5∶3的比卖给甲、乙、丙三个餐厅,丙餐厅比乙餐厅少买60千克,这批菜一共有()A. 300千克B. 603千克C. 360千克D. 306千克二、判断题12.分母是7的真分数都不能化成有限小数.13.把一根长40厘米的铁丝围成一个长方形,如果长和宽都是质数,那么它的面积一定是51平方厘米。
2018-2019盐城小学毕业数学总复习小升初模拟训练试卷29-30(共2套)附详细试题答案
小升初数学综合模拟试卷29一、填空题:2.3支铅笔和8支圆珠笔的价钱是11.9元,7支铅笔和6支圆珠笔的价钱是11.3元,一支铅笔和一支钢笔的价钱是______元.3.比较下面两个积的大小:A=9.5876×1.23456,B=9.5875×1.23457,则A______B.第______个分数.5.从1,2,3,4,…,1997这些自然数中,最多可以取______个数,能使这些数中任意两个数的差都不等于8.6.用1至9这九个数字每个数字各一次,组成三个能被9整除的三位数,要求这三个数的和尽可能大,这三个数分别是______.7.如图,AD=DE=EC,F是BC中点,G是FC中点,如果三角形ABC的面积是24平方厘米,则阴影部分是______平方厘米.8.某次考试,A、B、C、D、E五人的平均成绩是90分,A、B两人的平均成绩是96分,C、D两人的平均成绩是92.5分,A、D两人的平均成绩是97.5分,且C比D得分少15分,则B的分数是______.9.某年级学生人数在200至250之间,若列队4人一排余1人,5人一排余3人,6人一排余5人,则这个年级有______名学生.10.商店用相同的费用购进甲、乙两种不同的糖果.已知甲种糖果每公斤18元,乙种糖果每公斤12元,如果把这两种糖果混在一起成为什锦糖,那么这种糖每公斤的成本是______元.二、解答题:1.有一个棱长是10厘米的正方体木块,在它的上、左、前三个面中心分别穿一个3厘米见方的孔,直至对面.求穿孔后木块的体积.2.分母是964的最简真分数共有多少个?3.一个城市交通道路如图,数字表示各段路的路程(单位:千米),求出图中从A到F的最短路程.4.两名运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度每秒0.6米,他们同时分别从游泳池的两端出发,来回共游了10分,如果不计转身时间,那么这段时间内共相遇多少次?答案一、填空题:2.1.8由3支铅笔+8支圆珠笔=11.9元7支铅笔+ 6支圆珠笔=11.3元得21支铅笔+ 56支圆珠笔= 83.3元21支铅笔+ 18支圆珠笔=33.9元(56- 18)支圆珠笔=83.3-33.91支圆珠笔= 1.3元所以1支铅笔= (11.9- 1.3×8)÷3=0.5(元)故1支铅笔和1支钢笔的价钱是1.8元.3.>A=9.5875×1.23456+0.0001×1.23456B=9.5875×1.23456+9.5875×0.00001因为 0.0001×1.23456>9.5875×0.00001所以A>B.将分母相同的分成一组,第1组1个数,第2组3个数,第3组5个数,……,从第2组起每一组比前一组多2个数,每一组分子的规律从1开始逐项加1,和倒数第6个分数,在这串数中是5.1000每16个连续自然数中,最多可以取8个数,使得每两个数的差不等于8.1997÷16=124 (13)把1至1997的自然数分成每16个连续自然数一组,最后剩13个数为一组,共组成125组.即1,2,3,4, (16)17, 18, 19, 20,…, 32;33,34,35,36, (48)…1969,1967,1968, (1984)1985,1986, (1997)每一组中取前8个数,共取出8×125=1000(个)使得其中任意两个数的差都不等于8.6.954、873、6211+ 2+ 3+ …+ 9= 45= 9×5,有5个9,由于每个三位数的各个数位上的数字之和不会超过3个9,所以这三个三位数的每一个数位上数字之和只能分别是9、 18、 18(合起来是5个9).要使这三个三位数的和尽可能大,各个数位上的数字之和是9的最大三位数是621,另两个数只能由9、8、7、5、4、3组成,显然百位应尽可能大,得到954、873.所以这三个数分别是954、873、621.7.14因为AD= DE= EC,所以又因为BF=FC,所以由于FG=GC,所以S阴影面积=S△ABD+S△DFE+S△GCE=8+4+2=14(平方厘米)8.97E得分是:90 × 5-96 × 2-92.5 × 2=73(分);C得分是:(92.5×2-15)÷2=85(分);D得分是:85+15=100(分);A得分是:97.5×2-100=95(分);B得分是:96×2-95=97(分).9.233人被4除余1的自然数有5,9,13,17,21,25,…,其中被5除余3的自然数有13,33,53,73,…,(相邻两数后一个数比前一个多20),其中被6除余5的自然数有53,…,且53是被4除余1,被5除余3,被6除余5的最小的一个,又4、5、6的最小公倍数是60,符合上述条件的任意整数写成60n+53,n是整数,所以这个年级的人数为:n=3,60×3+53=233(人)10.14.412、18的最小公倍数是36.为了解题方便,假设分别用36元购进甲、乙两种糖果,可购进甲种糖果36÷18=2公斤,购进乙种糖果36÷12=3公斤,两种糖果混合后总价是36×2元,总重量2+3公斤,得到什锦糖的成本是:36×2÷(2+3)=14.4(元)二、解答题:1.穿孔后木块的体积是784立方厘米.穿一个孔的体积是3×3×10=90立方厘米,穿三个孔时,体积应是:90×3-3×3×3×2=216(立方厘米)所以穿孔后木块的体积是:10×10×10-216=784(立方厘米)2.分母是964的最简真分数有480个.因为964=22×241.所以分母是964的最简真分数中不能有偶数及241的倍数,小于964的偶数有964÷2-1=481个,是241的倍数有3个,其中482是偶数,分母是964的最简真分数有:963-481-3+1=480(个)3.从A到F的最短路程是13千米从A到F有许多条路,要确定一条最短的路线,可以采用排除的方法,逐步去掉比较长的道路,最后确定一条由A到F的最短路线,根据图中给出的路程的长度,有些明显较长的路可以不去考虑.从A出发到F,有三条路线相对较短,沿AIHGF路线走,它的长度是:7+1+5+2=15(千米)沿ABCEF路线走,它的长度是.5+2+5+2=14(千米)沿AJKGF路线走,它的长度是:5+4+2+2=13(千米)所以从A到F的最短路程是13千米.4.10分钟内共相遇20次甲游30米需要30÷1=30秒,乙游30米需要30÷0.6=50秒,经过150秒,甲、乙两人同时游到两端,每隔150秒他们相遇的情况重复出现.如图,实线表示甲,虚线表示乙,两线的交点就是甲、乙相遇的地点(游泳池的两端用两条线段表示),可以看出经过150秒,甲游了5个30米,乙游了3个30米,共相遇了5次.以150秒为一个周期,10分钟是600秒,600÷150=4,有4个150秒,所以在10分钟内相遇的次数是:5×4=20(次).小升初数学综合模拟试卷30一、填空题:3.37□5□能被72整除,这个数除以72的商是______.4.一列火车以每小时60千米的速度通过一座200米长的桥,用了21秒,则火车的车长是______米.7.有两支蜡烛,第一支5小时燃尽,第二支4小时燃尽.如果同时点燃这两支蜡烛,并且蜡烛燃烧的速度不变,在点燃______小时后,第一支蜡烛的长度是第二支蜡烛的3倍.9.恰有8个约数的两位数有______个.10.某小学组织六年级学生春游,学校买了182瓶汽水分给每个学生.如果每5个空瓶又可换得1瓶汽水,那么这些汽水瓶最多可换得______瓶汽水.二、解答题:1.如果1个小正方体木块的表面积是24平方厘米,那么由512个这样的小正方体木块所组成的一个大正方体的体积是多少立方厘米?3.有6对夫妻参加一次聚会,每个男士与每一个人握手(但不包括自己的妻子),女士之间相互不握手,那么这12个人共握手多少次?4.甲、乙、丙三人同时从A地出发,到离A地18千米的B地,当甲到达B地时,乙、丙两人离B地分别还有3千米和4千米,那么当乙到达B地时,丙离B地还有多少千米?答案一、填空题:2.余2连续6个1能被7整除,说明每6个1除以7是一个循环.由于1997÷6=332 (5)这表明1997个1除以7的余数等于5个1除以7的余数,因为5个1除以7余数是2,所以1997个1除以7余数是2.3.答案有2个,是516和523因为72=8×9,8与9互质,所以这个五位数既是9的倍数,又是8的倍数.由于这个五位数是9的倍数,所以其各个数位上的数字之和应是9的倍数,不妨设五位数的个位是x,百位是y,则3+7+y+5+x=15+y+x是9的倍数,所以x+y可能是3或12;若x+y=3,3=1+2,由于这个五位数又能被8整除,因此这个五位数的末三位数字组成的数能被8整除,且个位必是偶数,但152不能被8整除,所以x+y不可能是3.若x+y=12,12=4+8=6+6,但458,854均不能被8整除,只有656能这个五位数除以72的商是523.4.150米火车通过一座桥是指火车头在桥一端算起到火车尾在桥的另一端为止.因此火车通过一座桥所行的路程实际是桥长加上火车的车长.并且计算时注意换算单位要一致,这样可以求出火车的车长是:60×1000÷3600×21-200=350-200=150(米).5.10平方厘米根据等底等高的三角形面积相等,由于D是BC的中点,△ABD的面积等于△ADC的面积,有S△ABD=S△ADC=120÷2=60(平方厘米)S△AED=S△ABD÷4=60÷4=15(平方厘米)S△AFD=S△AED×2/3=15×2/3=10(平方厘米)6.末尾有3996个0.7.3.5小时把两支蜡烛燃烧的速度看作每小时燃烧1个单位长,则第一支蜡烛长为5个单位长,第二支蜡烛长为4个单位长.设点燃x小时后,第一支蜡烛是第二支蜡烛的长度的3倍,列方程为:5-x=3(4-x)5-x=12-3x2x=7x=3.5(小时)先求出这499个数的和,然后求出这499个数中的所有整数之和,它们的差即为所求,所以9. 10个因为8=1×8=2×4=2×2×2,根据约数与质因数的关系知,含有8个约数的数N可以表示成:N=a7或N=a×b3或N=a×b×c其中a、b、c是N的质因数.下面采用枚举法得:N=27=128,超过两位数,舍去;N=2×33=54, N=3×23=24, N=5×23=40,N=7×23=56, N=11×23=88,N=2×3×5=30,N=2×3×7=42,N=2×3×11=66,N=2×3×13=78,N=2×5×7=70恰有8个约数的两位数有10个.10. 45瓶先用182个空瓶可换得汽水是:182÷5=36 (2)36瓶,还余2个空瓶.喝完这36瓶汽水连同余下的2个空瓶,又可换得汽水是(36+2)÷5=7…3为7瓶,还余3个空瓶.再喝完这7瓶汽水连同余下的3个空瓶,又可换得汽水是:(7+3)÷5=为2瓶,所以这些汽水瓶最多可换得汽水:36+ 7+ 2= 45(瓶).二、解答题:1. 4096立方厘米.小正方体的每个面的面积是:24÷6= 4(平方厘米)小正方体的棱长是2厘米,由于512= 8×8×8所以大正方体的棱长为8个小正方体的棱长,因此大正方体的棱长是:2×8=16(厘米)大正方体的体积是:16×16×16=4096(立方厘米).2.45(人)订《儿童故事画报》的人数是:订《好儿童》的人数是:两种都订的人数是:81+72-108=45(人).3.45次由于女士之间相互不握手,因此这12个人握手的情况分为两类:一类是男士之间相互握手,另一类是男士与女士握手,但每个男士不与自己的妻子握手.6个男士之间两两握手,每个男士与其余5个男士握手一次,共握手 5× 6= 30次,但这 30次握手有重复计算,如甲、乙两个握手,把甲与乙握手和乙与甲握手算成两次不同的握手,所以6个男士相互握手,共握手:5×6÷2=15(次)男士与女士握手的情况共有:6×5=30(次)所以这12个人共握手:15+30=45(次)当甲行了18千米时,乙行了18-3=15千米,丙行了18-4=14千米,甲、。
2018-2019盐城市小学毕业数学总复习小升初模拟训练试卷28-29(共2套)附详细试题答案
小升初数学综合模拟试卷28一、填空题:2.有一些数字卡片,上面写的数都是2的倍数或3的倍数,其中2的卡片共有______张.3.A、B、C、D、E、F六个点在同一圆周上,任取其中三点,以这三点为顶点组成一个三角形,在这样的三角形中,以A、B两点中至少一点为顶点的三角形共有______个.中点.则阴影部分的面积是______平方厘米.6.甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是乙的速度的2倍。
两个相遇后继续往前走,各自到达B、A后立即返回.已知两人第二次相遇的地点距第一次相遇地点是12千米,那么A、B两地相距______千米.7.下面是按规律排列的三角形数阵:那么第1997行的左起第三个数是______.8.分子和分母相乘的积是2100的最简真分数共有______个.9.有一块长36厘米,宽16厘米的长方形材料,要剪截成小长方形(不能接拼).现有两种方案,方案甲:都截成长10厘米,宽4厘米的小长方形;方案乙:都截成长10厘米,宽6厘米的小长方形.采用方案______可使余下材料的面积最小,余下材料的面积是______平方厘米,请画出你的剪截方案.10.用0到3可以组成许多没有重复数字的四位数,则所有这些四位数的平均数是______.二、解答题:2.三个数分别是189,456,372,请再写一个比996大的三位数,使这四个数的平均数是一个整数,则所写的三位数是多少?4.有甲、乙、丙三个足球队,两两比赛一场,共比赛了三场球,每个队的比赛结果如图所示,那么这三场球赛的具体比分是多少?答案一、填空题:1.36=38-2=362.30由于2、3的最小公倍数是6,所以2、3的倍数的卡片里都包含了6所以卡片总数是3.16以A为顶点,但不包括B为顶点的三角形共有3+2+ 1= 6个,同理,以B为顶点,但不包括A为顶点的三角形也是6个;以A、B为顶点的三角形是4个,所以以A、B两点中至少一点为顶点的三角形共有:6×2+ 4= 16(个)5.5又因为F是AD的中点,连结FC,所以(平方厘米)于是S△EFC=(S△ABF+S△AFC)-S△ABE=6-4=2(平方厘米)而S△DFC=S△AEF+S△EFC=1+2=3(平方厘米)所以S阴影=S△EFC+S△DFC=2+3=5(平方厘米)6.18设甲、乙第一次相遇地点是C,第二次相遇地点是D.由于甲的速度是乙的速度的2倍,在相同时间里,甲行的路程是乙行的路程的2倍.设AB 为x,BC+BD=2(AC+AD)即 2BC+CD=2(2AC-CD)x=187.1991010第三行左起第三个数是1第四行左起第三个数是3=1+2第五行左起第三个数是6=1+2+3第六行左起第三个数是10=1+2+3+4……所以第1997行左起第三个数是:1+ 2+ 3+ 4+ …+ 1995= 19910108.8因为2100= 22×3×52×7,所以分子和分母乘积是2100的最简真分9.方案乙,余下材料36平方厘米,剪截方案如图.采用方案乙可使余下的材料的面积最小,最小面积是:36×16-10×6×9=36(平方厘米).10.2148首位是1的四位数有6个,它们是:1023,1032,1203,1230,1302,1320;同样首位是2或3的四位数各有6个,有:2013,2031,2103,2130,2301,2310;3012,3021,3102,3120,3201,3210.所有这些四位数的平均数是:[(1+ 2+ 3)×6×1000+(1+ 2+ 3)×4×100+ (1+ 2+ 3)×4×10+(1+2+3)×4]÷18=[36000+6×444] ÷18=38664÷18=2148二、解答题:1. a=1722.所写的三位数是999.要使这四个数的平均数是一个整数,则这四个数的和必是4的倍数.因为189+456+372=1017,1017÷4=254…1.只有找出比996大且被4除余3的三位数,才能符合题目要求,由于999÷4=249 (3)这时有189+ 456+ 372+ 999= 2016,4|2016.所以所写的三位数是999.3.剩下的数是1.=1所以最后剩下的数是1.4.甲与乙,乙与丙,甲与丙都是3∶1甲队失2球,不会全失于乙队,如果是,由于乙队一共进4球,另外2个球是胜丙的,而丙队进2球,所以乙与丙成2∶2平局,与已知矛盾,甲队失2球,也不全失于丙队,如果是,乙进的4个球全是胜丙队,乙队与丙队是4∶0,这样丙队还有2个球是失甲队,甲队与丙队变成2∶2平局,与已知矛盾,所以甲队各失1球于乙、丙.乙共进4个球,另外3个球是胜丙,丙进2个球,另一球是胜乙的,所以乙与丙是3∶1.丙共失6个球,失了乙队3个,另3个失给甲队,所以甲与丙是3∶1.乙队失4个球,一球失于丙队,另三个球失于甲队,所以甲与乙是3∶1.小升初数学综合模拟试卷29一、填空题:2.3支铅笔和8支圆珠笔的价钱是11.9元,7支铅笔和6支圆珠笔的价钱是11.3元,一支铅笔和一支钢笔的价钱是______元.3.比较下面两个积的大小:A=9.5876×1.23456,B=9.5875×1.23457,则A______B.第______个分数.5.从1,2,3,4,…,1997这些自然数中,最多可以取______个数,能使这些数中任意两个数的差都不等于8.6.用1至9这九个数字每个数字各一次,组成三个能被9整除的三位数,要求这三个数的和尽可能大,这三个数分别是______.7.如图,AD=DE=EC,F是BC中点,G是FC中点,如果三角形ABC的面积是24平方厘米,则阴影部分是______平方厘米.8.某次考试,A、B、C、D、E五人的平均成绩是90分,A、B两人的平均成绩是96分,C、D两人的平均成绩是92.5分,A、D两人的平均成绩是97.5分,且C比D得分少15分,则B的分数是______.9.某年级学生人数在200至250之间,若列队4人一排余1人,5人一排余3人,6人一排余5人,则这个年级有______名学生.10.商店用相同的费用购进甲、乙两种不同的糖果.已知甲种糖果每公斤18元,乙种糖果每公斤12元,如果把这两种糖果混在一起成为什锦糖,那么这种糖每公斤的成本是______元.二、解答题:1.有一个棱长是10厘米的正方体木块,在它的上、左、前三个面中心分别穿一个3厘米见方的孔,直至对面.求穿孔后木块的体积.2.分母是964的最简真分数共有多少个?3.一个城市交通道路如图,数字表示各段路的路程(单位:千米),求出图中从A到F的最短路程.4.两名运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度每秒0.6米,他们同时分别从游泳池的两端出发,来回共游了10分,如果不计转身时间,那么这段时间内共相遇多少次?答案一、填空题:2.1.8由3支铅笔+8支圆珠笔=11.9元7支铅笔+ 6支圆珠笔=11.3元得21支铅笔+ 56支圆珠笔= 83.3元21支铅笔+ 18支圆珠笔=33.9元(56- 18)支圆珠笔=83.3-33.91支圆珠笔= 1.3元所以1支铅笔= (11.9- 1.3×8)÷3=0.5(元)故1支铅笔和1支钢笔的价钱是1.8元.3.>A=9.5875×1.23456+0.0001×1.23456B=9.5875×1.23456+9.5875×0.00001因为 0.0001×1.23456>9.5875×0.00001所以A>B.将分母相同的分成一组,第1组1个数,第2组3个数,第3组5个数,……,从第2组起每一组比前一组多2个数,每一组分子的规律从1开始逐项加1,和倒数第6个分数,在这串数中是5.1000每16个连续自然数中,最多可以取8个数,使得每两个数的差不等于8.1997÷16=124 (13)把1至1997的自然数分成每16个连续自然数一组,最后剩13个数为一组,共组成125组.即1,2,3,4, (16)17, 18, 19, 20,…, 32;33,34,35,36, (48)…1969,1967,1968, (1984)1985,1986, (1997)每一组中取前8个数,共取出8×125=1000(个)使得其中任意两个数的差都不等于8.6.954、873、6211+ 2+ 3+ …+ 9= 45= 9×5,有5个9,由于每个三位数的各个数位上的数字之和不会超过3个9,所以这三个三位数的每一个数位上数字之和只能分别是9、 18、 18(合起来是5个9).要使这三个三位数的和尽可能大,各个数位上的数字之和是9的最大三位数是621,另两个数只能由9、8、7、5、4、3组成,显然百位应尽可能大,得到954、873.所以这三个数分别是954、873、621.7.14因为AD= DE= EC,所以又因为BF=FC,所以由于FG=GC,所以S阴影面积=S△ABD+S△DFE+S△GCE=8+4+2=14(平方厘米)8.97E得分是:90 × 5-96 × 2-92.5 × 2=73(分);C得分是:(92.5×2-15)÷2=85(分);D得分是:85+15=100(分);A得分是:97.5×2-100=95(分);B得分是:96×2-95=97(分).9.233人被4除余1的自然数有5,9,13,17,21,25,…,其中被5除余3的自然数有13,33,53,73,…,(相邻两数后一个数比前一个多20),其中被6除余5的自然数有53,…,且53是被4除余1,被5除余3,被6除余5的最小的一个,又4、5、6的最小公倍数是60,符合上述条件的任意整数写成60n+53,n是整数,所以这个年级的人数为:n=3,60×3+53=233(人)10.14.412、18的最小公倍数是36.为了解题方便,假设分别用36元购进甲、乙两种糖果,可购进甲种糖果36÷18=2公斤,购进乙种糖果36÷12=3公斤,两种糖果混合后总价是36×2元,总重量2+3公斤,得到什锦糖的成本是:36×2÷(2+3)=14.4(元)二、解答题:1.穿孔后木块的体积是784立方厘米.穿一个孔的体积是3×3×10=90立方厘米,穿三个孔时,体积应是:90×3-3×3×3×2=216(立方厘米)所以穿孔后木块的体积是:10×10×10-216=784(立方厘米)2.分母是964的最简真分数有480个.因为964=22×241.所以分母是964的最简真分数中不能有偶数及241的倍数,小于964的偶数有964÷2-1=481个,是241的倍数有3个,其中482是偶数,分母是964的最简真分数有:963-481-3+1=480(个)3.从A到F的最短路程是13千米从A到F有许多条路,要确定一条最短的路线,可以采用排除的方法,逐步去掉比较长的道路,最后确定一条由A到F的最短路线,根据图中给出的路程的长度,有些明显较长的路可以不去考虑.从A出发到F,有三条路线相对较短,沿AIHGF路线走,它的长度是:7+1+5+2=15(千米)沿ABCEF路线走,它的长度是.5+2+5+2=14(千米)沿AJKGF路线走,它的长度是:5+4+2+2=13(千米)所以从A到F的最短路程是13千米.4.10分钟内共相遇20次甲游30米需要30÷1=30秒,乙游30米需要30÷0.6=50秒,经过150秒,甲、乙两人同时游到两端,每隔150秒他们相遇的情况重复出现.如图,实线表示甲,虚线表示乙,两线的交点就是甲、乙相遇的地点(游泳池的两端用两条线段表示),可以看出经过150秒,甲游了5个30米,乙游了3个30米,共相遇了5次.以150秒为一个周期,10分钟是600秒,600÷150=4,有4个150秒,所以在10分钟内相遇的次数是:5×4=20(次).。
2018-2019盐城小学毕业数学总复习小升初模拟训练试卷19-20(共2套)附详细试题答案
小升初数学综合模拟试卷19一、填空题:2.用1,2,3,4,5,6,7这七个数字组成三个两位数,一个一位数,并且使这四个数的和等于100,如果要求最小的两位数尽可能小,那么其中最大的两位数是______.3.小红和小明参加一个联欢会,在联欢会中,小红看到不戴眼镜的同联欢会的共有_______名同学.4.一次数学测验,六(1)班全班平均90分,男生平均88.5分,女生平均92分,这个班女生有18人,男生有______人.5.如图,M、N分别为平行四边形相邻两边的中点,若平行四边形面6.一个六位数□1997□能被33整除,这样的数是______.7.有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合,如图所示,已知露在外的部分中,红色面积是20,黄色面积是14,绿色面积是10,那么正方形盒子的面积是_______.8.有200多枚棋子摆成了一个n行n列的正方形,甲先从中取走10枚,乙再从中取走10枚,……,这样轮流取下去,直到取完为止.结果最后一枚被乙取走.乙共取走了______枚棋子.9.一艘油轮的船长已经50多岁,船上有30多名工作人员,其中男性占多数.如果将船长的年龄、男工作人员的人数和女工作人员的人数相乘,则积为15606,船上共有______名工作人员,船长的年龄是______岁.10.小明放学后沿某路公共汽车路线,以每小时4千米的速度步行回家.沿途该路公共汽车每隔9分就有一辆从后面超过他,每7分又遇到迎面开来的一辆车.如果这路公共汽车按相同的时间间隔以同一速度不停地运行,那么汽车每隔______分发一辆车.二、解答题:1.计算:2.有一种用六位数表示日期的方法,如用911206表示91年12月6日,也就是用前两位表示年,中间两位表示月,后两位表示日.如果用这种方法表示1997年的日期,全年中六个数字都不相同的日期共有多少天?3.少年歌手大奖赛的裁判小组由若干人组成,每名裁判员给歌手的最高分不超过10分.第一名歌手演唱后的得分情况是:全体裁判员所给分数的平均分是9.64分;如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.60分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是9.68分.求所有裁判员所给分数中的最低分最少可以是多少分?这时大奖赛的裁判员共有多少名?4.A、B、C三名同学参加了一次标准化考试,试题共10道,都是正误题,每道题10分,满分为100分.正确的画“√”,错误的画“×”.他们的答卷如下表:答案一、填空题:1.102.47要使最小的两位数尽可能小,最好十位是1,个位是2,此时四个数的个位之和应等于20,可找到这样的四个数2、5、6、7.在余下的数3、4中取4,可组成最大的两位数47.3.16如果小红和小明都戴眼镜或都不戴眼镜,那么他们看到的戴眼镜的比例应当相同,由于小明看到的戴眼镜的比例高,所以小红戴眼镜,小明不戴眼镜,因此总人数为4.24(92-90)×18÷(90-88.5)=24(人)5.6六个.6.919974,619971,219978a+b+1+9+9+7=a+b+26是3的倍数,因此a+b=1,4,7,10,13,16.(a+9+7)-(1+9+b)=a-b+6是11的倍数,因此a-b=5或b-a=6.因为a、b是整数,所以a+b与a-b同奇同偶,经试验,可找到以下三组解:7.51.2作辅助线,在黄色纸片中截出面积为a的部分,如图所示.所以14-a=10+aa=2设空白部分面积为x,将上图转化为正方形盒子的面积为12+20+12+7.2=51.28.126因为棋子数是200多,且是一个平方数,所以行数n可能是15,16,17.若n=15,15×15=225,即共有225枚棋子.由于是甲先取10枚,乙再取10枚,因此第225枚棋子被甲取走,不合题意.若n=16,16×16=256,即共有256枚棋子,根据规则可知,第256枚被乙取走.若n=17,17×17=289,即共有289枚棋子.根据规则可知,第289枚被甲取走,不合题意.所以满足条件的棋子数是256枚,乙共取走260÷2-4=126(枚)9.35,51因为15606=2×3×3×3×17×17,且船长是50多岁,所以有2×3×3×3=54和3×17=51两种情况.若船长54岁,则男女工作人员各17名,不合题意,所以船长只能是51岁.此时男女工作人员的乘积为2×3×3×17,男女工作人员的人数分配有下面五种:(153,2),(102,3)(51,60),(34,9),(18,17).根据工作人员共有30多名和男多女少的条件可知,男有18人,女有17名满足.所以工作人员共有35名.因为无论是迎面来的车,还是后面追来的车,两车之间的距离总是一样的.所以设车速为x,有两车之间的距离为发车的时间间隔为二、解答题:1.0原式=a(b-c)+b(c-a)+c(a-b)=ab-ac+bc-ba+ca-cb=02.73天分类按月计算1月、2月、10月分别有5天;3月、4月、6月分别有10天;5月、8月分别有11天;12月有6天;7月、9月没有.5×3+10×3+11×2+6=733.9.28分.10名设裁判员有x名,那么(1)总分为9.64x;(2)去掉最高分后的总分为9.60(x-1),由此可知最高分为:9.64x-9.60(x-1)=0.04x+9.6(3)去掉最低分后的总分为9.68(x-1),由此可知最低分为:9.64x-9.68(x-1)=9.68-0.04x因为最高分不超过10,所以0.04x+9.6不超过10,也就是0.04x不超过0.4,由此可知x不超过10.当x取10时,最低分有最小值,是9.68-0.04×10=9.28(分)所以最低分是9.28分,裁判员有10名4.1至10题的正确答案是×、×、√、√、√、√、√、×、√、×观察A与B的答案可知,A、B有4道题答案相同,6道题答案不同.因为每人都是70分,所以4道答案相同的题都答对了,6道答案不同的题各对了3道.由此可知第1、3、4、10题的答案分别是×、√、√、×.同理,B、C有4题答案相同,根据每人都是70分,所以4道答案相同的题都答对了,即第2、3、5、7题的答案分别是×、√、√、√.同理,A、C也有4题答案相同,这4道题都答对了,即第3、6、8、9题的答案分别是√、√、×、√.由此可知,1至10题的答案分别是×、×、√、√、√、√、√、×、√、×.小升初数学综合模拟试卷20一、填空题:1.13×99+135×999+1357×9999=______.2.一个两位数除以13,商是A,余数是B,A+B的最大值是_______.3.12345678987654321除本身之外的最大约数是______.4.有甲、乙两桶油,甲桶油比乙桶油多174千克,如果从两桶中各取5.图中有两个正方形,这两个正方形的面积值恰好由2、3、4、5、6、7这六个数字组成,那么小正方形的面积是______,大正方形的面积是______.6.如图,E、F分别是平行四边形ABCD两边上的中点,三角形DEF的面积是7.2平方厘米,平行四边形ABCD的面积是_______平方厘米.7.一辆公共汽车由起点到终点站共有10个车站,已知前8个车站共上车93人,除终点外前面各站共计下车76人.从前8个车站上车且在终点站下车的共有______人.9.某人以分期付款的方式买一台电视机,买时第一个月付款750元,以后每月付150元;或者前一半时间每月付300元,后一半时间每月付100元.两种付款方式的付款总数及时间都相同,这台电视机的价格是______元.10.一辆长12米的汽车以每小时36千米的速度由甲站开往乙站,上午9点40分,在距乙站2000米处遇到一行人,1秒后汽车经过这个行人,汽车到达乙站休息10分后返回甲站,汽车追上那位行人的时间是______.二、解答题:2.小明拿一些钱到商店买练习本,如果买大练习本可以买8本而无剩余;如果买小练习本可以买12本而无剩余,已知每个大练习本比小练习本贵0.32元,小明有多少元钱?3.某工厂的一只走时不够准确的计时钟需要69分(标准时间)时针与分钟才能重合一次,工人每天的正常工作时间是8小时,在此期间内,每工作1小时付给工资4元,而若超出规定时间加班,则每小时付给工资6元,如果一个工人照此钟工作8小时,那么他实际上应得到工资多少元?4.某次比赛中,试题共六题,均为是非题.正确的画“+ ”,错误的画“-”,记分方法是:每题答对的得2分,不答的得1分,答错的得0分,已知赵、钱、孙、李、周、吴、郑七人的答案及前六个人的得分记录如下表所示,请计算姓郑的得分.答案一、填空题:1.13704795原式=1300-13+135000-135+13570000-1357=13706300-1505=137047952.18因为余数最大是12,且99÷13=7…8,所以90÷13=6…12,A+B=6+12=18.3.4115226329218107因为12345678987654321除去1以外的最小约数是3,则12345678987654321的最大约数为12345678987654321÷3=4115226329218107174×3+4=526(千克)因此两桶油共重526+(526-174)=878(千克)5.273,546根据图形可以看出,大正方形面积是小正方形面积的2倍.经试验可知:273×2=546,所以小正方形面积为273,大正方形的面积为546.6.19.27.17因为在第9个车站上车的人,决不会在第9站下车,因此除终点外前面各站下车的76人都是在前8个车站上车的,所以从前8个车站上车且在终点下车的共有93-76=17(人)8.153因为总人数应是18,7,4的公倍数,而18,7,4的最小公倍数是252,所以参加考试的人数为252人.9.2400750+150x-150=200x50x=600x=12所以电视机的价格是根据题意可知,汽车的速度是每秒10米.行人的速度是每秒(12÷1-10=)2米.汽车到达乙站,休息10分后,行人又走了2×(2000÷10+60×10)=1600(米)汽车追上行人共需时间2000÷10+60×10+(2000+1600)÷(10-2)=1250(秒)=20分5秒9点40分+20分5秒=10点05秒.二、解答题:1.12.7.68元根据题意可知,如果买8个小练习本会剩下(0.32×8=)2.56元,而这2.56元正好可以再买4个小练习本,所以小明共有2.56×(12÷4)=7.68(元)正常钟表的时针和分针重合一次需要不准确的钟表走8小时,实际上是走应得工资为=32+2.6=34.6(元)4.8分从周做5题得9分可以看出,周做对了4道题,下面分别讨论:(1)假设第一题错,则第二、三、四、六题对,此时赵无法得到7分.(2)假设第二题错,则第一、三、四、六题对,此时赵无法得到7分.(3)假设第三题错,则第一、二、四、六题对,此时吴无法得到7分.(4)假设第四题错,则第一、二、三、六题对.此时第5题若填“十”,则赵、吴都可得到7分,钱、孙、李可得5分,由此推出郑得8分.(5)假设第六题错,则第一、二、三、四题对,则赵、吴无法同时得到7分.所以只有(4)满足条件.。
2019年盐城市小升初数学模拟试题(共4套)详细答案
2019年盐城市小升初数学模拟试题(共4套)详细答案小升初数学综合模拟试卷一、填空题:1.1997+1996-1995—1994+1993+1992—1991—1990+…+9+8—7—6+5+4—3—2+1=______.3.在图中的七个圆圈内各填一个数,要求每一条直线上的三个数中,当中的数是两边两个数的平均数,现在已经填好两个数,那么,x=______4.把1、2、3、4、5填入下面算式的方格内,使得运算结果最大:□+□-□×□÷□那么这个最大结果是_______.5.设上题答数为a,a的个位数字为b,2×b的个位数字为c.如图,积的比是______.6.要把A、B、C、D四本书放到书架上,但是,A不能放在第一层,B不能放在第二层,C不能放在第三层,D不能放在第四层,那么,不同的放法共有______种.7.从一张长2109毫米,宽627毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形,按照上面的过程,不断地重复,最后剪得的正方形的边长是______毫米.8.龟兔赛跑,全程5.4千米.兔子每小时跑25千米,乌龟每小时跑4千米,乌龟不停地跑,但兔子却边跑边玩,它先跑1分,然后玩15分,又跑2分,玩15分.再跑3分,玩15分,……,那么先到达终点的比后到达终点的快______分.9.从1,2,3,4,5中选出四个数,填入图中的方格内,使得右边的数比左边的数大,下面的数比上面的数大,那么,共有______种填法.比女生少人.二、解答题:1.小明从甲地到乙地,去时每小时走5千米,回来时每小时走7千米,来回共用4小时,小明去时用了多长时间?2.有一个长方体,它的正面和上面的面积之和是119,如果它的长、宽、高都是质数,那么这个长方体的体积是多少?3.在400米环形跑道上,A、B两点相距100米(如图),甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步,甲每秒跑7米,乙每秒跑5米,他们每人跑100米都停5秒.那么,甲追上乙需要多少秒?4.五年级三班有26个男生,某次考试全班有30人超过85分,那么女生中超过85分的比男生中未超过85分的多几人?答案,仅供参考。
2018-2019盐城市小学毕业数学总复习小升初模拟训练试卷27-28(共2套)附详细试题答案
小升初数学综合模拟试卷27一、填空题:3.将1个棱长是5厘米的正方体分割成若干个小的正方体,这些小正方体的棱长必须是整厘米数.如果这些小正方体的体积不要求都相等,那么最少可以分割成______个小正方体.4.A、B两数都只含有质因数3和4,它们的最大公约数是36.已知A有12个约数,B有8个约数,那么A+B=______.5.正方形的一组对边增加6厘米,另一组对边减少4厘米,结果得到的长方形与原正方形面积相等,原正方形的面积是______平方厘米.6如图,图中有18个小方格,要把3枚硬币放在方格里,使每行、每列只出现一枚硬币,共有______种放法.个数是______.8.1997名同学排成一排,从排头到排尾1至4报数;再从排尾向排头1至5报数,那么两次报数都报3的共有______人.9.把一个大长方体木块表面涂满红色后,分割成若干个同样大小的小长方体,其中只有两个面涂上红色的小正方体恰好是16块,那么至少要把这个大长方形分割成______个小长方体.10.有一个长方形,长有420个小方格,宽有240个小方格.如果把每个小方格的顶点称为格点,连结这个长方形的对角线共经过______个格点(包括对角线两端).二、解答题:1.某沿海地区甲、乙两码头,已知一艘船从甲到乙每天航行300千米,从乙到甲每天航行360千米,如果这艘船在甲、乙两码头间往返航行4次共22天,那么甲、乙两码头间的距离是多少千米?2.有8盏灯,从1到8编号,开始时3、6、7编号的灯是亮的。
如果一个小朋友按从1到8,再从1到8,…的顺序拉开关,一共拉动500次,问此时哪几个编号的灯是亮的?3.一容器内装有10升纯酒精,倒出1升后,用水加满,再倒出1升,再用水加满,然后再倒出1升,用水加满,这时容器内的酒精溶液浓度是多少?4.能否用2个田字形和7个T字形(如图),恰好覆盖住一个6×6的正方形网格?答案一、填空题:1.85=12.5×(1.86+2.54)+30=12.5×4.4+30=55+30=852.7设原来有圆珠笔x支,3.50要想分割的小正方体个数最少,就要使分割的小正方体的棱长尽可能大.如果小正方体的棱长是4厘米,只能分割出1个,剩下部分的体积是53-43=61立方厘米,只能分割成棱长为1厘米的小正方体,共61÷13=61个,按这种方法分割分成62个小正方体.若在已知正方体的一角分割一个棱长是3厘米的小正方体,剩下7个角可以分割出7个棱长为2厘米的小正方体,这时剩下部分的体积是53-33-7×23=42(立方厘米)这部分可以分割棱长是1厘米的小正方体42个,所以总共分割出小正方体个数是:1+7+42=50(个)比较上面两种方案,最少可以分割成50个小正方体.4.68436=32×4,A、B至少含有两个3和一个4.因为A有12个约数,12=2×6=3×4,所以A可能是35×4、32×43或33×42,B有8个约数,8=2×4,所以B=33×4,于是A只能是32×43,故A+B=32×43+33×4=6845. 144设原正方形的边长为x厘米,如图,由于正方形ABCD与长方形AEGH面积相等,而长方形AEFD是正方形ABCD和长方形AEGH的公共部分,所以长方形EBCF的面积等于长方形DFGH的面积,于是4x=6×(x-4)6x-4x=24x=12故原正方形的面积是:12×12=144(平方厘米).6.720第一枚硬币有18种放法;第二枚硬币只能有10种放法,因为这枚硬币放置时与第一枚不同行不同列;同理,第三枚硬币与前二枚硬币不同行也不同列,所以有4种放法.因此共有18×10×4=720(种)这串数的规律是,从第2个数起,每一个数的分子是它前一个数的分子与分母之和,分母是它前一个数的分子的2倍再加分母.若设8.100因为 1997÷4=499…1,所以排尾同学报1,而1997÷5=399…2,所以排头同学报2.从右起第3名同学两次报数都是3,以后每相差[4,5]=20名同学两次报数都是3,那么将1997-3=1994人分成每20人一组,共可分成1994÷20=99 (14)99组,所以两次都报3的人数是99+1=100人.9.24由于只有两个面涂上红色的小长方体只能位于每条棱的中间部分,将长方体按下图进行分割:依次分割的小长方体的个数是36、32、30、24,则图(4)分割的块数最少是24块,且恰好有16个两面涂红色的小长方体.10.61把长方形按比例缩小,由于420∶240=7∶4所以把长方形缩小成长7个小方格,宽4个小方格的小长方形,然后画一条对角线,如图,图中对角线经过2个格点,即对角线对长来讲,每经过7个小方格,就经过一个格点,或对宽来讲,每经过4个小方格,就经过一个格点,所以长方形的对角线经过的格点问题类似植树问题,共经过格点数:420÷7+1=61(个)(或240÷4+1=61(个))二、解答题:1.甲、乙两码头间的距离是900千米.由于往返的路程相等,船从甲到乙每天航行300千米,从乙到甲每行航知往返共22天,可得出从甲到乙行12天,从乙到甲用10天,而300×12+360×10相当于船在甲、乙两码头间往返4次所行的总路程,所以甲、乙两码头的距离.(300×12+360×10)÷4÷2=900(千米)2.编号是1、2、4、6、7的灯是亮的.对于亮着的灯,只要拉动偶数次开关仍是亮的,拉动奇数次开关是灭的;对于开始关闭的灯,只要拉动奇数次开关灯就亮,拉动偶数次开关仍是灭的.因为500÷8=62 (4)说明这8盏灯各拉动62次后,编号为1、2、3、4的灯又拉动一次,由于62是偶数,所以原来亮的灯仍是亮的,灭的灯仍是灭的,即编号是3、6、7的灯各拉动62次后仍是亮的,其余灯是灭的,接着编号是1、2、3、4的灯各拉动一次,编号1、2、4的灯亮了,编号3的灯灭了,所以这8盏灯最后是1、2、4、6、7这五盏灯是亮的.3.容器内的酒精溶液浓度是72.9%第一次倒出纯酒精是1升,加上1升水后,变成酒精溶液,第二次倒出的溶液含纯酒精是:第三次倒出的溶液含纯酒精是:三次倒出后,容器里还有纯酒精是:这时容器内溶液的浓度是:4.不能将6×6的正方形网格进行黑白相间染色,黑白格各有18个.每个T字形盖住1个或3个白格,现有7个T字形,若盖住白格数为1的T字形有奇数个,那么盖住白格数为3的T字形是偶数个,奇数个1的和是奇数,偶数个3的和是偶数,所以7个T字形盖住的白格总数,由于奇+偶=奇,因此是奇数个;同理,若盖住白格数为1的T字形有偶数个,那么盖住白格数为3的T字形是奇数个,同样7个T字形盖住的白格总数是奇数个;而2个田字形盖住的白格总数是4,4是偶数,因此2个田字形和7个T字形覆盖的白格总数是奇数个,但6×6的正方形网格的白格数是18个,18是偶数,由于奇数≠偶数,所以用2个田字形和7个T字形不能覆盖6×6的正方形网格.小升初数学综合模拟试卷28一、填空题:2.有一些数字卡片,上面写的数都是2的倍数或3的倍数,其中2的卡片共有______张.3.A、B、C、D、E、F六个点在同一圆周上,任取其中三点,以这三点为顶点组成一个三角形,在这样的三角形中,以A、B两点中至少一点为顶点的三角形共有______个.中点.则阴影部分的面积是______平方厘米.6.甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是乙的速度的2倍。
2018-2019盐城市小学毕业数学总复习小升初模拟训练试卷29-30(共2套)附详细试题答案
小升初数学综合模拟试卷29一、填空题:2.3支铅笔和8支圆珠笔的价钱是11.9元,7支铅笔和6支圆珠笔的价钱是11.3元,一支铅笔和一支钢笔的价钱是______元.3.比较下面两个积的大小:A=9.5876×1.23456,B=9.5875×1.23457,则A______B.第______个分数.5.从1,2,3,4,…,1997这些自然数中,最多可以取______个数,能使这些数中任意两个数的差都不等于8.6.用1至9这九个数字每个数字各一次,组成三个能被9整除的三位数,要求这三个数的和尽可能大,这三个数分别是______.7.如图,AD=DE=EC,F是BC中点,G是FC中点,如果三角形ABC的面积是24平方厘米,则阴影部分是______平方厘米.8.某次考试,A、B、C、D、E五人的平均成绩是90分,A、B两人的平均成绩是96分,C、D两人的平均成绩是92.5分,A、D两人的平均成绩是97.5分,且C比D得分少15分,则B的分数是______.9.某年级学生人数在200至250之间,若列队4人一排余1人,5人一排余3人,6人一排余5人,则这个年级有______名学生.10.商店用相同的费用购进甲、乙两种不同的糖果.已知甲种糖果每公斤18元,乙种糖果每公斤12元,如果把这两种糖果混在一起成为什锦糖,那么这种糖每公斤的成本是______元.二、解答题:1.有一个棱长是10厘米的正方体木块,在它的上、左、前三个面中心分别穿一个3厘米见方的孔,直至对面.求穿孔后木块的体积.2.分母是964的最简真分数共有多少个?3.一个城市交通道路如图,数字表示各段路的路程(单位:千米),求出图中从A到F的最短路程.4.两名运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度每秒0.6米,他们同时分别从游泳池的两端出发,来回共游了10分,如果不计转身时间,那么这段时间内共相遇多少次?答案一、填空题:2.1.8由3支铅笔+8支圆珠笔=11.9元7支铅笔+ 6支圆珠笔=11.3元得21支铅笔+ 56支圆珠笔= 83.3元21支铅笔+ 18支圆珠笔=33.9元(56- 18)支圆珠笔=83.3-33.91支圆珠笔= 1.3元所以1支铅笔= (11.9- 1.3×8)÷3=0.5(元)故1支铅笔和1支钢笔的价钱是1.8元.3.>A=9.5875×1.23456+0.0001×1.23456B=9.5875×1.23456+9.5875×0.00001因为 0.0001×1.23456>9.5875×0.00001所以A>B.将分母相同的分成一组,第1组1个数,第2组3个数,第3组5个数,……,从第2组起每一组比前一组多2个数,每一组分子的规律从1开始逐项加1,和倒数第6个分数,在这串数中是5.1000每16个连续自然数中,最多可以取8个数,使得每两个数的差不等于8.1997÷16=124 (13)把1至1997的自然数分成每16个连续自然数一组,最后剩13个数为一组,共组成125组.即1,2,3,4, (16)17, 18, 19, 20,…, 32;33,34,35,36, (48)…1969,1967,1968, (1984)1985,1986, (1997)每一组中取前8个数,共取出8×125=1000(个)使得其中任意两个数的差都不等于8.6.954、873、6211+ 2+ 3+ …+ 9= 45= 9×5,有5个9,由于每个三位数的各个数位上的数字之和不会超过3个9,所以这三个三位数的每一个数位上数字之和只能分别是9、 18、 18(合起来是5个9).要使这三个三位数的和尽可能大,各个数位上的数字之和是9的最大三位数是621,另两个数只能由9、8、7、5、4、3组成,显然百位应尽可能大,得到954、873.所以这三个数分别是954、873、621.7.14因为AD= DE= EC,所以又因为BF=FC,所以由于FG=GC,所以S阴影面积=S△ABD+S△DFE+S△GCE=8+4+2=14(平方厘米)8.97E得分是:90 × 5-96 × 2-92.5 × 2=73(分);C得分是:(92.5×2-15)÷2=85(分);D得分是:85+15=100(分);A得分是:97.5×2-100=95(分);B得分是:96×2-95=97(分).9.233人被4除余1的自然数有5,9,13,17,21,25,…,其中被5除余3的自然数有13,33,53,73,…,(相邻两数后一个数比前一个多20),其中被6除余5的自然数有53,…,且53是被4除余1,被5除余3,被6除余5的最小的一个,又4、5、6的最小公倍数是60,符合上述条件的任意整数写成60n+53,n是整数,所以这个年级的人数为:n=3,60×3+53=233(人)10.14.412、18的最小公倍数是36.为了解题方便,假设分别用36元购进甲、乙两种糖果,可购进甲种糖果36÷18=2公斤,购进乙种糖果36÷12=3公斤,两种糖果混合后总价是36×2元,总重量2+3公斤,得到什锦糖的成本是:36×2÷(2+3)=14.4(元)二、解答题:1.穿孔后木块的体积是784立方厘米.穿一个孔的体积是3×3×10=90立方厘米,穿三个孔时,体积应是:90×3-3×3×3×2=216(立方厘米)所以穿孔后木块的体积是:10×10×10-216=784(立方厘米)2.分母是964的最简真分数有480个.因为964=22×241.所以分母是964的最简真分数中不能有偶数及241的倍数,小于964的偶数有964÷2-1=481个,是241的倍数有3个,其中482是偶数,分母是964的最简真分数有:963-481-3+1=480(个)3.从A到F的最短路程是13千米从A到F有许多条路,要确定一条最短的路线,可以采用排除的方法,逐步去掉比较长的道路,最后确定一条由A到F的最短路线,根据图中给出的路程的长度,有些明显较长的路可以不去考虑.从A出发到F,有三条路线相对较短,沿AIHGF路线走,它的长度是:7+1+5+2=15(千米)沿ABCEF路线走,它的长度是.5+2+5+2=14(千米)沿AJKGF路线走,它的长度是:5+4+2+2=13(千米)所以从A到F的最短路程是13千米.4.10分钟内共相遇20次甲游30米需要30÷1=30秒,乙游30米需要30÷0.6=50秒,经过150秒,甲、乙两人同时游到两端,每隔150秒他们相遇的情况重复出现.如图,实线表示甲,虚线表示乙,两线的交点就是甲、乙相遇的地点(游泳池的两端用两条线段表示),可以看出经过150秒,甲游了5个30米,乙游了3个30米,共相遇了5次.以150秒为一个周期,10分钟是600秒,600÷150=4,有4个150秒,所以在10分钟内相遇的次数是:5×4=20(次).小升初数学综合模拟试卷30一、填空题:3.37□5□能被72整除,这个数除以72的商是______.4.一列火车以每小时60千米的速度通过一座200米长的桥,用了21秒,则火车的车长是______米.7.有两支蜡烛,第一支5小时燃尽,第二支4小时燃尽.如果同时点燃这两支蜡烛,并且蜡烛燃烧的速度不变,在点燃______小时后,第一支蜡烛的长度是第二支蜡烛的3倍.9.恰有8个约数的两位数有______个.10.某小学组织六年级学生春游,学校买了182瓶汽水分给每个学生.如果每5个空瓶又可换得1瓶汽水,那么这些汽水瓶最多可换得______瓶汽水.二、解答题:1.如果1个小正方体木块的表面积是24平方厘米,那么由512个这样的小正方体木块所组成的一个大正方体的体积是多少立方厘米?3.有6对夫妻参加一次聚会,每个男士与每一个人握手(但不包括自己的妻子),女士之间相互不握手,那么这12个人共握手多少次?4.甲、乙、丙三人同时从A地出发,到离A地18千米的B地,当甲到达B地时,乙、丙两人离B地分别还有3千米和4千米,那么当乙到达B地时,丙离B地还有多少千米?答案一、填空题:2.余2连续6个1能被7整除,说明每6个1除以7是一个循环.由于1997÷6=332 (5)这表明1997个1除以7的余数等于5个1除以7的余数,因为5个1除以7余数是2,所以1997个1除以7余数是2.3.答案有2个,是516和523因为72=8×9,8与9互质,所以这个五位数既是9的倍数,又是8的倍数.由于这个五位数是9的倍数,所以其各个数位上的数字之和应是9的倍数,不妨设五位数的个位是x,百位是y,则3+7+y+5+x=15+y+x是9的倍数,所以x+y可能是3或12;若x+y=3,3=1+2,由于这个五位数又能被8整除,因此这个五位数的末三位数字组成的数能被8整除,且个位必是偶数,但152不能被8整除,所以x+y不可能是3.若x+y=12,12=4+8=6+6,但458,854均不能被8整除,只有656能这个五位数除以72的商是523.4.150米火车通过一座桥是指火车头在桥一端算起到火车尾在桥的另一端为止.因此火车通过一座桥所行的路程实际是桥长加上火车的车长.并且计算时注意换算单位要一致,这样可以求出火车的车长是:60×1000÷3600×21-200=350-200=150(米).5.10平方厘米根据等底等高的三角形面积相等,由于D是BC的中点,△ABD的面积等于△ADC的面积,有S△ABD=S△ADC=120÷2=60(平方厘米)S△AED=S△ABD÷4=60÷4=15(平方厘米)S△AFD=S△AED×2/3=15×2/3=10(平方厘米)6.末尾有3996个0.7.3.5小时把两支蜡烛燃烧的速度看作每小时燃烧1个单位长,则第一支蜡烛长为5个单位长,第二支蜡烛长为4个单位长.设点燃x小时后,第一支蜡烛是第二支蜡烛的长度的3倍,列方程为:5-x=3(4-x)5-x=12-3x2x=7x=3.5(小时)先求出这499个数的和,然后求出这499个数中的所有整数之和,它们的差即为所求,所以9. 10个因为8=1×8=2×4=2×2×2,根据约数与质因数的关系知,含有8个约数的数N可以表示成:N=a7或N=a×b3或N=a×b×c其中a、b、c是N的质因数.下面采用枚举法得:N=27=128,超过两位数,舍去;N=2×33=54, N=3×23=24, N=5×23=40,N=7×23=56, N=11×23=88,N=2×3×5=30,N=2×3×7=42,N=2×3×11=66,N=2×3×13=78,N=2×5×7=70恰有8个约数的两位数有10个.10. 45瓶先用182个空瓶可换得汽水是:182÷5=36 (2)36瓶,还余2个空瓶.喝完这36瓶汽水连同余下的2个空瓶,又可换得汽水是(36+2)÷5=7…3为7瓶,还余3个空瓶.再喝完这7瓶汽水连同余下的3个空瓶,又可换得汽水是:(7+3)÷5=为2瓶,所以这些汽水瓶最多可换得汽水:36+ 7+ 2= 45(瓶).二、解答题:1. 4096立方厘米.小正方体的每个面的面积是:24÷6= 4(平方厘米)小正方体的棱长是2厘米,由于512= 8×8×8所以大正方体的棱长为8个小正方体的棱长,因此大正方体的棱长是:2×8=16(厘米)大正方体的体积是:16×16×16=4096(立方厘米).2.45(人)订《儿童故事画报》的人数是:订《好儿童》的人数是:两种都订的人数是:81+72-108=45(人).3.45次由于女士之间相互不握手,因此这12个人握手的情况分为两类:一类是男士之间相互握手,另一类是男士与女士握手,但每个男士不与自己的妻子握手.6个男士之间两两握手,每个男士与其余5个男士握手一次,共握手 5× 6= 30次,但这 30次握手有重复计算,如甲、乙两个握手,把甲与乙握手和乙与甲握手算成两次不同的握手,所以6个男士相互握手,共握手:5×6÷2=15(次)男士与女士握手的情况共有:6×5=30(次)所以这12个人共握手:15+30=45(次)当甲行了18千米时,乙行了18-3=15千米,丙行了18-4=14千米,甲、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初数学综合模拟试卷23一、填空题:2.以正方形的4个顶点和正方形的中心(共5个点)为顶点,可以套出______种面积不等的三角形.3.某校组织不到200名同学外出参观,集合时,他们排成了一个正方形的队伍,乘车时,由于每人都要有座位,因此需要每辆有60个座位的大轿车至少4辆.那么参加活动的共有______人.4.服装厂的工人每人每天可以生产4件上衣或7条裤子,一件上衣和一条裤子为一套服装.现有66名工人生产,每天最多能生产______套.6.一列客车从甲站开往乙站,每小时行65千米,一列货车从乙站开往甲站,每小时行60千米,已知货车比客车早开出5分,两车相遇的地点距甲乙两站中点10千米,甲乙两站之间的距离是______千米.7.55道数学题,分给甲、乙、丙三人计算。
已知乙分到的题比甲多1倍,丙分到的题最少,却是个两位数,且个位不是0.甲分到______道题,乙分到______道题,丙分到______道题.8.如图,已知CD=5,DE=7,EF=15,FG=6,直线AB将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG的面积是______.数超过了试题总数的一半,则他们都答对的题有______道.10.有一水果店一天之中共进了6筐水果,分别装着香蕉和桔子,重量分别为8、9、16、20、22、27千克.当天只卖出了一筐桔子.在剩下的五筐水果中香蕉的重量是桔子重量的2倍,那么当天共进了______筐香蕉.二、解答题:1.甲、乙、丙、丁四人共同购买一只价值4200元的游艇,甲支付的现的现金是多少元?2.如图,九个小长方形组成一个大长方形,按图中编号,则1号长方形的面积恰好是1平方厘米,2号恰好是2平方厘米,3号恰好是3平方厘米,4号恰好是4平方厘米,5号恰好是5平方厘米,6号的面积是多少平方厘米?3.某人连续打工24天,挣了190元。
星期一到星期五全天工作,日工资10元;星期六半天工作,发半资5元;星期日不工作,无工资.已知他打工是从3月下旬的某一天开始的,这个月的1日是星期日,那么他打工结束的那一天是4月几日?4.有甲、乙、丙三组工人,甲组4人的工作,乙组需5人完成;乙组3人的工作,丙组需8人完成.一项工作,需甲组13人、乙组15人合作3天完成.如果让丙组10人去做,需要多少天完成?答案一、填空题:1.1002.2如果三个顶点全取正方形顶点,则无论怎样套,三角形面积都是正方形面积的一半;如果一个顶点取在正方形的中心,则无论怎样套,三角形的面积都是正所以面积不同的三角形共有2种.3.196根据题设可知,参观人数应在(60×3+1=)181人到200人之间.又因为人数是一个平方数,且181至200之间只有196是平方数,所以196为所求.4.168根据题设可知,生产上衣与生产裤子的工人人数之比为7∶4,所以生产上衣的人数为:66÷(7+4)×7=42(人)共生产服装4×42=168(套)5.a=8,b=0,c=61+3+a+b+4+5+6是9的倍数,即19+a+b是9的倍数,由此推出 a+b=8或a+b=17.当a+b=17时,只有8+9=17,而1389456、1398456均不被11整除,舍去.又(1+a+4+6)-(3+b+5)是11的倍数,即3+a-b是11的倍数,由此推出a-b=8或b-a=3.因为a+b与a-b是同奇、同偶,所以只有a+b=8与 a-b=8有解,此时a=8,b=0.6.630因为两车在相距中点10千米处相遇,所以客车比货车多行(10×2=)20千米.又因为货车先开出(60÷60×5=)5千米,因此在相同的时间内客车比货车多行(20+5=) 25千米.甲、乙两地相距(65+60)×25÷(65-60)+5=630(千米)7.14,28,13根据题设可知,甲、乙分到的题数之和是3的倍数,将55拆分,可得到符合条件的分法:55=14×3+13所以甲分得14道题,乙分得(14×2=)28道题,丙分得13道题.8.40解方程,有:x=10所以S△ADG=10×(1+3)=40.9.17根据题设可知,题目总数是4、6的公倍数.9+7-(12-2)=6(道)没有超过总题数的一半,不合题意.18+19-(24-4)=17(道)超过总题数的一半,符合题意.若共有36题,则两人都答错的有当总数大于36时,均不合题意.10.3根据题意可知,剩下的五筐水果总重量是3的倍数.8+9+16+20+22+27=102(千克)是3的倍数,故卖掉的一筐重量也是3的倍数.若卖掉9千克的一筐,则桔子重量为(102-9)÷3=31(千克)但在剩下的五个数中没有几个数的和是31,不合题意.所以只能卖掉27千克的一筐,此时桔子重量为(102-27)÷3=25(千克)根据条件可知,9千克、16千克重的是桔子,剩下的是香蕉,所以当天共进了3筐香蕉.二、解答题:1.910丁应支付现金2.7.5为叙述方便,给长方形标上字母,如图所示.根据条件可知: AB×FG=1, AB×EF=2,CD×FG=3,BC×EF=4,BC×DE=5,所以CD×DE3.18日这个人每星期挣(10×5+5=)55元,根据55×3+25=190(元)和7×3+3=24(天)可知,他干了三个星期零三天,且在多干的三天中挣了25元.根据条件可知,多的三天中有两个上全工日,一个半工日,因此他打工的第一天是星期四.由于这个月的1日是星期日,因此星期四分别为5日、12日、19日和26日.由于从三月下旬开始打工,所以打工的第一天是3月26日.因为31-26+1+18=24,所以打工的最后一天是4月18日.4.25天这项工作的总工作量为丙组10人需干小升初数学综合模拟试卷24一、填空题:2.将1、2、3、4、5、6、8、9这八个数组成两个四位数,使这两个数的差最小,这个差是______.3.如图,将它折成一个正方体,相交于同一顶点的三个面上的数之和最大是______.4.将1至9这九个数分别填在下面九个方框中,使等式成立:5.如图,平行四边形ABCD的一边AB=8厘米,AB上的高等于3厘米,四边形EFOG的面积等于2平方厘米,则阴影部分的面积与平行四边形的面积之比是______.6.200个连续自然数的和是32300,取出其中所有的第偶数个数(第2个,第4个,……,第200个),将它们相加,则和是______.7.某人从甲地到乙地,如果每分钟走75米,迟到8分,如果每分钟走80米,迟到6分,他应以每分钟走______米的速度走才能准时到达.8.快慢两列火车的长分别是200米、300米,它们相向而行.坐在慢车上的人见快车通过此人窗口的时间是8秒,则坐在快车上的人见慢车通过此人窗口所用的时间是______秒.9.至少有一个数字是0,且能被4整除的四位数有______个.10.如图,九个小正方形内各有一个一位数,并且每行、每列及两条对角线上的三个整数的和相等,那么x=______.二、解答题:2.甲、乙、丙三人,甲每五天去李老师家,乙每四天去李老师家,丙每六天去李老师家。
三人在1997年元旦去了李老师家,下一次三人在李老师家相聚是几月几日?3.编号为1至7的7个盘子,每盘都放有玻璃球,共放有80个,其中第1号盘里放有18个,并且编号相邻的三个盘里的玻璃球数的和相等,问第6个盘中玻璃球最多可能是多少个?已知他骑车每小时行8千米,乘车每小时行16千米,则此人从家到单位的距离是多少千米?答案一、填空题:2.137要使差最小,被减数与减数应该尽量接近.被减数的千位与减数千位的差是1,它们的末三位数,被减数应该最小,是123,减数应该最大,是986,这样得到被减数是5123,减数是4986,差等于137.3.相交于同一顶点三个面上的数之和是13.6+3+4=134.73把4234分解质因数,然后进行计算和调整,有:4234=2×29×73=58×73=29×146所以最大的两位数是73.5.1∶3因为O是AC、BD的中点,所以S△AEF+S△BGE=S△AOB-S四边形EFOG=6-2=4(平方厘米)S阴影=S平ABCD-(S△AEF+S△BGE)=12-4=8(平方厘米)S阴影∶S平ABCD=8∶24=1∶36.16200连续自然数相邻两数之差是1,所以第2个数比第1个数大1,第4个数比第3个数大1,…,第200个数比第199个数大1,100个取出的数比没取出的100个数总共多100,因此所有的第偶数个数之和是(32300+100)÷2=162007.100设从甲地出发准时到达乙地需x分,则75×(x+8)=80×(x+6)80x-75x=600-480x=24甲、乙两地距离是:80×(24+6)=2400(米)从甲地准时到达乙地这人的速度是每分走:2400÷24=100(米)8.坐在慢车上的人见快车通过此人窗口时,两列火车共行了200米,用了8秒,得到两列火车的速度和是200÷8=(25米/秒),坐在快车上的人见慢车通过此人窗口时,两列火车共行了300米,所用时间是:300÷25=12(秒).9.792个一个数能被4整除的特征是末两位数能被4整除.末两位数应是00、04、08、12、16、20、 (92)96,共25个,其中含有数字0的有7个(00、 04、 08、 20、 40、 60、 80),其余 18个末两位都不含有数字0.一个四位数的末两位含有数字0,那么它的千位可以是1至9的任意一个,百位是0至9的任意一个,这个四位数的前两位数字共9×10=90个,则末两位含有数字0且能被4整除的四位数共有:90×7=630(个)如果末两位不含有数字0,那么要求四位数的百位是0,千位是1至9的任意一个,共有9个,则末两位不含数字0,前两位含有数字0,且能被4整除的四位数共有:9×18=162(个)所以至少有一个数字0,且能被4整除的四位数有 630+162=792(个).10. x=5如图所示,a+x+f=9+x+1,有a+f=10;同理d+x+c=9+x+1得d+c=10;所以 a+f+d+c=20又 a+9+d=9+x+1,得a+d=x+1;c+1+f=9+x+1,得c+f==x+9,则 a+d+c+f=2x+10.所以 2x+10=20,x=5.二、解答题:1.厂里现有工人120名所以厂里现有工人120名.2.3月1日[5,4,6]=60,60-(31+28)=1所以下一次三人在李老师家相聚是3月1日.3.第6个盘中的玻璃球最多是12个.由于相邻三个盘中的玻璃球相等,有编号为1、4、7的盘中玻璃球均相等,等于18个,于是2、3盘中的玻璃球数的和与5、6盘中的玻璃球数的和相等,所以5、6盘中玻璃球数之和是:(80-18×3)÷2=13(个)要使第6盘中的玻璃球数最多,第5盘至少是1个(每盘都有玻璃球),所以第6盘最多可能是12个.4.此人家到单位的距离是78千米.设此人家到单位的距离是s千米,他从单位回家用了t小时,则13t=12t+6t=6S=13×6=78(千米)所以此人家到单位的距离是78千米.。