真实世界中医诊疗数据挖掘分析的探索与实践共42页

合集下载

中医病证规律下的数据挖掘论文

中医病证规律下的数据挖掘论文

中医病证规律下的数据挖掘论文1数据挖掘技术在中医病证规律研究中的应用数据挖掘技术已广泛应用于中医病证规律研究领域,其基本流程为针对所研究疾病或证候整理相关文献资料,搜集具备中医诊疗信息、处方信息的海量数据,使用数据挖掘技术相关算法及其程序系统实行数据分析[5],总结该病或该证候的核心理论、诊疗方法及特色方药,提炼具有中医特色的个性化诊疗方案。

因为疾病及中医证候种类繁多,作者通过中国知网信息检索平台,搜索关键词“数据挖掘”,查找并学习2010—2014年相关期刊文献,汇总中医病证诊疗方面的数据挖掘技术的应用成果,旨在为内、外、妇、儿等常见学科疾病的临床诊疗提供参考。

1.1内科疾病在心血管疾病方面,杨静等对冠心病的证候用药规律实行数据挖掘,结果显示冠心病以气虚血瘀证多见,另有心血瘀阻证、气阴两虚证,丹参、黄芪、葛根等为核心用药。

崔松等通过挖掘何立人治疗心悸的用药分析,总结其治疗心悸的基本方,归纳出以心悸为主重用淮小麦,以心律失常为主重用生黄芪等因症施药的特点。

赵健等通过对严季澜辨治的109例高血压病患者用方数据实行挖掘,总结出严季澜自拟调肝理血汤的用方要点与学术思想。

在消化系统疾病方面,王萍等挖掘整理了唐旭东治疗慢性萎缩性胃炎的辨证证型及用药规律。

Liu等[10]应用支持向量机技术研究中医舌诊舌象在胆囊炎患者中的分类,为数字化辨病辨证提供了可靠依据。

吴嘉瑞等[11]应用关联规则和复杂系统熵探索颜正华治疗泄泻用药经验。

杜斌等通过检索现代治疗溃疡性结肠炎的文献,挖掘出常用灌肠方药及药对。

在肾病及内分泌疾病方面,展俊平等[13]采用文本挖掘技术对慢性肾小球肾炎的证治方药规律实行总结分析,发现该病证候以气阴两虚、肝肾阴虚、脾肾阳虚为主,核心治法以益气养阴、化湿利水为主。

凌颖茹等挖掘了黄春林治疗肾病综合征的方药使用经验。

霍保民等[总结了戴希文教授分期诊疗慢性肾脏病的辨证及用药规律。

袁敏探析魏子孝教授诊治糖尿病善补气、活血的用药特点。

数据挖掘及其在中医领域的应用研究

数据挖掘及其在中医领域的应用研究

信息或知识对 于所讨 论 的业务 或研 究领 域是有 效 的、 是有 实 用价值和可实现 的 , 常识性 的结 论 或 已被人们 掌握 的事 实或
无法实现 的推测都是 没有 意义的 。
掘 的结果一部分 可能 与传 统 的诊 疗规 律相符 , 合 的部分 不符 可能是潜在 的新 知 , 也可能是没有 意义 的, 这都需要 在相应 目
起来 的。 1 数 据 挖 掘 介 绍
数据挖掘 的任务 主要是预测 和描述 。预测是 指用 一些变 量或数据库 的若干 已知字段 预测其他感兴趣 的变量 或字段 的 未知的或未来 的值 。描述 是指 找到描 述数 据 的可理解 模 式 。 预测方法有统 计 分 析、 关联 规则 和 决策 树 预测 、 回归 树 预测 等 。其 中关联 规则 反 映 了一 个事 务 与其他 事 务 之 间存究
丁 维 蒋永光

宋姚屏 吴孟旭 李 昆
成 都 60 7) 10 5
( 都 中医药大 学 图书馆 成
今后 的发展 趋势。
关键词 : 数据挖掘 ; 中医
要: 介 绍了数 据挖掘的意义和任务 , 综述 了近几年来数据 挖掘在 中医各领域 中的应用 , 分析 了 目 前存在 的问题 , 并探讨 了
代化过程 中建立 了很 多的数 据库 。堆积在 数据库 中的信 息呈 超指数爆炸式增 长 。例如 中 医药科技 信息 数据 库就有 5 O个 子数据库 、 1 个表 单及 数百个 自动生 成 的中间 表、 0 10 8 0余个
著 录项 目, 涵盖所有 中医药有关 医 、 药及 学术 的内容 。而数据 挖掘技术 的发展使我们有 可能从这些海量 数据 中发 现新 的知
的。
化研究 的重要组 成部 分[ , 1 必将 促进 中医药 的发展 。而数 据 ]

数据挖掘技术在中医药传承中的研究进展

数据挖掘技术在中医药传承中的研究进展
数据挖掘技术在 中医药传承 中的研 究进展
李 玲 周 学 平
( 南京 中 医药大学 , 苏南京 2 0 4 ) 江 1 0 6


数 据 挖 掘 技 术 作 为 一种 有 效 的信 息 处 理技 术 , 通过 分析 中 医个 体 化诊 疗信 息特 征 , 炼 出其 中蕴 藏 的 新 理 提
众 多 , 术 思 想 广 为 流 中 学
传 。中 医 药 事 业 的 发 展 需 要 “ 火 传 承 ” 传 统 的方 法 已 经越 薪 , 来 越 显 示其 不 足 。数据 挖 掘 技 术 作 为 一 种有 效 的信 息 处 理 技
术 , 过 分 析 中 医 个 体 化 诊 疗 信 息 特 征 , 炼 出 其 中蕴 藏 的 通 提
有 何关 系 , 尚待 进一 步研 究 。 5 参 考 文 献
[】 张 继 玲 , 曹碧 兰 .白癜 风 免 疫 学说 新 进 展 .遵 义 医 学 院 学报 , 1
2 o ,94)4 3 o 6 2 ( :0
中 国 药 物与 临床 ,0 7,( )2 1 20 7 4 :9 【l 张 玉 臣, 成 文 , 东 , . 7 熊 吕 等 虫草 提 取 物 抗 炎 及 免 疫 作 用 实 验 研
论、 方法 , 新 实现 中 医药 经 验 的有 效 总结 与 传 承 。目前 数 据 挖 掘 技 术在 中 医 药传 承 中的 应 用 主要 包括 : 疾病 研 究 中的 应 在 用 、 方 剂研 究 中的应 用 、 中 药研 究 中的 应 用 、 针 灸 临床 中 的应 用 。 同时 , 们 应 该 认 识 到 数 据 挖 掘 作 为 一 种 新 兴 的 在 在 在 我 前 沿技 术 , 多方 面 需要 完善 , 数 据 挖 掘 研 究 结 果 的不 确 定 性 , 据 挖 掘 系统 中的人 为 主观 影响 , 需 要 在 日后 的 实践 在 如 数 这 中予 以校 正和 改 良。

数据挖掘及其在中医药现代化研究中的应用

数据挖掘及其在中医药现代化研究中的应用

数据挖掘及其在中医药现代化研究中的应用一、本文概述随着信息技术的快速发展,数据挖掘作为一种高效的信息处理技术,已经在各个领域展现出其独特的优势。

在中医药现代化研究领域,数据挖掘技术的运用更是为传统中医药的现代化发展提供了新的视角和工具。

本文旨在探讨数据挖掘技术在中医药现代化研究中的应用,以期推动中医药领域的科技进步和创新发展。

本文将首先介绍数据挖掘技术的基本概念、原理和方法,然后重点分析数据挖掘技术在中医药现代化研究中的应用案例和效果。

我们将从中药材的种植、采摘、炮制、配伍、药效评价等多个环节入手,详细阐述数据挖掘技术在这些方面的具体应用,以及所带来的实际效果和潜在价值。

本文还将对数据挖掘技术在中医药现代化研究中面临的挑战和问题进行深入探讨,包括数据挖掘技术的局限性、中医药数据的复杂性、数据挖掘与中医药知识的融合等问题。

通过这些问题的分析,我们希望能够为数据挖掘技术在中医药现代化研究中的进一步应用提供有益的思考和建议。

本文旨在全面、系统地探讨数据挖掘技术在中医药现代化研究中的应用,以期为中医药领域的科技进步和创新发展贡献一份力量。

二、数据挖掘技术概述数据挖掘(Data Mining)是一门新兴的交叉学科,它融合了数据库技术、机器学习、统计学等多个学科的理论和方法。

数据挖掘的主要目的是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识。

这些信息和知识可以表示为概念、规则、规律、模式等形式,它们可以用于决策支持、过程控制、信息查询、科学研究等多个领域。

数据挖掘的过程通常包括数据预处理、数据挖掘、结果解释和评估等步骤。

数据预处理是对原始数据进行清洗、转换和整合的过程,以消除噪声、处理缺失值、标准化数据等,使得数据更适合于挖掘。

数据挖掘阶段则利用各种算法和工具,如聚类分析、决策树、神经网络、关联规则挖掘等,来发现数据中的模式和关联。

真实世界研究在中医药临床评价方面应用进展及数据质控

真实世界研究在中医药临床评价方面应用进展及数据质控

真实世界研究在中医药临床评价方面应用进展及数据质控邢永发;王保和;黄宇虹【摘要】随机对照试验是经典的药物安全性及疗效评价方法,但自身也存在一定的局限性.真实世界研究在世界范围内越来越受到研究者的重视,真实世界研究源于真实临床医疗环境的证据,研究结果临床适用性高.中医药强调以人为本,个性化治疗,这与真实世界研究更注重临床实际应用的特点不谋而合.真实世界研究应用于中医药临床评价尚处于起步阶段,当前其主要应用于中成药上市后再评价、中医临床治疗的证候特点分析、中医诊疗指南适用性评价及名老中医经验传承方面.本文就真实世界研究在中医药领域最新应用情况及数据质控策略做一综述.【期刊名称】《环球中医药》【年(卷),期】2018(011)004【总页数】6页(P625-630)【关键词】真实世界研究;中医药;临床评价【作者】邢永发;王保和;黄宇虹【作者单位】300250 天津中医药大学第二附属医院临床药理科;300250 天津中医药大学第二附属医院临床药理科;300250 天津中医药大学第二附属医院临床药理科【正文语种】中文【中图分类】R24在临床评价领域,评价药物或治疗方法效果的经典方法是随机对照试验(randomized controlled trial, RCT)。

在过去的几十年中,随机对照试验曾重塑了现代医学知识体系和实践策略,具有深远的意义。

其优点是可以很大程度的减少临床试验中的偏倚。

由于自身特点,RCT也存在一定局限性,其临床试验的环境与真实的医疗实践环境有较大距离,试验结果外推至更广大人群或在真实的医疗环境中应用时的效力不足。

出于以上RCT存在的局限性角度考虑,另一种临床评价思路——真实世界研究在世界范围内越来越受到研究者的重视[1]。

真实世界研究可理解为数据源自真实世界证据(real-world evidence,RWE)的临床研究。

其所提倡的理念与中医药理念不谋而合,真实世界研究基于真实世界的、常规的医疗环境,在这一过程中,医务人员以改善和保障患者健康状态为目标,采用恰当的方法,以患者为核心进行医疗活动,这与中医医疗实践的特点高度一致,中医辨证论治、综合调节、以人为本的优势特色在真实世界的条件下可得以充分发挥[2-3]。

数据挖掘在中医药领域应用研究进展

数据挖掘在中医药领域应用研究进展

数据挖掘在中医药领域应用研究进展标签:数据挖掘;中医药;应用研究;综述数据挖掘是指从大量数据中提取或挖掘有效、新颖、有潜在应用价值和最终可理解的模式、知识,其涉及多学科技术集成,包括数据库和数据仓库技术、统计学、机器学习、高性能计算、模式识别、神经网络、数据可视化、信息检索、图像处理以及空间或时间数据分析等。

数据挖掘技术在中医药研究领域得到广泛应用,兹将近年来研究进展作一综述。

1 中医药文献数据挖掘中医药文献数据来源主要包括中医药古典、名家医案、验方验案、书刊述评、期刊文献、中药词典等。

数据挖掘技术对这些数据整理挖掘,重新展现及总结名家学术思想、辨证论治、中药选材、中药炮制、中药制剂、用药规律等成果,对传承、借鉴与发展起到重要作用。

中医药数据具有非线性、模糊性、复杂性、非定量等特征,针对具体的中医药数据和不同的挖掘目标,往往要将几种方法融合起来应用,以发挥各自的技术优势,或引进其他学科方法共同解决一些问题,其中关联规则、频数分析、聚类、文本挖掘等为常用方法。

中医药文献数据研究,要求数据来源、文献纳入标准、排除标准、文献规范原则、证候名称规范、症状名称规范、中药名称规范、计量标准规范等进一步加强与完善,数据获取、保存、抽取等预处理及数据挖掘技术的运用也有待更科学深入。

1.1 关联规则郭氏等[1]采用关联规则分析方法分析了古医籍中治疗带下病的用药规律,发现明清时期治疗带下病的方药以健脾祛湿药物为最常用结构,其中又配伍一些专属度比较高的特色药物,如收涩止带药、补肾药、清热燥湿药等。

1.2 频数分析吴氏等[2]检索中国期刊全文数据库等1991-2011年发表的有关围绝经期综合征文献,进行整理及频数分析。

结果围绝经期综合征常见中医证候有49个,其中肝肾阴虚、肾阳虚、肾阴虚、肾阴阳两虚、心肾不交、肝郁气滞、脾肾阳虚最多见;提取常见症状共65个,包括月经紊乱、头晕耳鸣、失眠、烘热汗出、腰膝酸软、心悸、易怒、纳呆等;病位以肾、心、肝、脾为主;病性以虚为主;脉象以细数、沉细、弦细为主,舌象以舌淡或舌红、苔薄或少苔为主,说明围绝经期综合征的中医证候分布比较集中。

临床研究之真实世界研究

临床研究之真实世界研究

临床研究之真实世界研究临床研究之真实世界研究范本1. 概述1.1 研究背景1.2 研究目的1.3 研究对象1.4 研究设计2. 研究方法2.1 数据收集2.1.1 数据来源2.1.2 数据采集方法2.2 参与者选择标准2.3 数据变量定义和测量2.4 研究期限和随访周期3. 数据分析3.1 数据清洗和筛选3.2 描述性统计分析3.3 统计分析方法3.4 研究假设或问题4. 结果4.1 参与者基本特征4.2 研究主要结果4.3 次要结果或附加分析5. 讨论5.1 主要发现和解释5.2 结果的可靠性和有效性 5.3 结果与其他研究的比较5.4 具体限制和局限性6. 结论6.1 本研究的主要结论6.2 潜在的临床影响6.3 进一步研究建议7. 附件7.1 附表7.2 附图7.3 补充资料注释:1. 真实世界研究(Real-World Study,RWS):指在真实的医疗实践中对人群、疾病、治疗等进行观察和研究的科学方法。

2. 研究对象(Study Population):指参与研究的个体或群体,可以是患者、医生、医疗机构等。

3. 研究设计(Study Design):指研究的整体框架和方法,如前瞻性研究、回顾性研究、队列研究等。

4. 数据来源(Data Source):指研究所使用的数据的来源,可以是电子健康记录、药品库存系统、病例报告等。

5. 数据采集方法(Data Collection Method):指获得研究数据的具体方法,如问卷调查、数据抽取、数据录入等。

6. 参与者选择标准(Inclusion/Exclusion Criteria):指研究中用于确定符合条件的参与者和排除不符合条件的参与者的标准。

7. 数据变量定义和测量(Data Variable Definition and Measurement):指研究中用于收集和记录的数据变量的定义和测量方法。

8. 研究期限和随访周期(Study Period and Follow-up Period):指研究的时间范围和随访的周期。

中医药数据挖掘技术及其应用研究

中医药数据挖掘技术及其应用研究

中医药数据挖掘技术及其应用研究随着信息化时代的到来,中医药行业也逐渐迎来了数字化时代。

如今,中医药数据大量产生与积累,数据资源的获取和整合成为了需求和发展的重要因素。

而中医药数据挖掘技术应运而生,成为整合和挖掘数据的重要手段。

本文将介绍中医药数据挖掘技术及其应用研究。

一、中医药数据挖掘技术基础中医药数据挖掘技术是数据挖掘技术在中医药领域中的应用,主要包括数据预处理、关联规则挖掘、分类、聚类、回归、异常检测等技术手段。

数据预处理主要是对数据进行清理、整合、选择和转换,以便后续的挖掘操作。

关联规则挖掘则主要是发现数据集中项与项之间的关联关系,例如,在多家中医药机构的病历数据中做关联规则挖掘,可以发现某种病的诊断方式,与该病的治疗方式的长短之间的关联关系。

分类、聚类、回归等技术手段则常常用于对数据进行分析和预测,以期发掘出中医药中的潜在规律和规律的应用。

二、中医药数据挖掘技术的应用中药材品质研究中药材品质研究是中医药数据挖掘技术的一个重要应用领域。

中药材品质的研究一直是中医药行业面临的重要问题之一。

传统的中药材品质研究常常需要依靠药材质量地方标准进行,由于药材的品质在物理、化学和生物特性等方面的不稳定性,可能会带来一定的争议和误解。

中药材品质研究的一个重要任务是寻找代表药材品质的特征变量,并对这些特征变量进行定量描述和分类。

中医药数据挖掘技术为这些操作提供了一种较好的手段。

将数据挖掘技术应用于中药材品质研究,能够从大量的中医药书籍、中药材标本、中医药诊断和治疗记录中挖掘出与药材品质相关的有效变量和数字特征。

中医证候分类中医证候分类是中医药学的重要分支之一,其分类依据是由与中医医学相关的诊断和治疗数据所提供的证候信息。

在传统中医诊疗实践中,中医证候往往是通过临床医师的经验和知识判断的。

而这种主观判断往往存在一定的偏差和局限性。

中医药数据挖掘技术能够利用大量的中医药证候信息,基于数据挖掘的方法,制定精确的证候分类标准。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档