新能源汽车永磁无刷直流电机制动能量回馈双闭环控制技术

合集下载

双闭环直流调速系统特性与原理

双闭环直流调速系统特性与原理

双闭环直流调速系统特性与原理双闭环直流调速系统是一种用于控制直流电动机转速的调速系统。

它由两个闭环控制回路组成,分别是转速外环和电流内环。

其中,转速外环控制直流电机的转速,通过调节电压来控制直流电机的转矩;而电流内环则控制直流电机的电流,通过调节电压来控制直流电机的转矩。

1.稳定性:双闭环控制系统能够有效地控制直流电动机的转速和电流,使其在运行过程中保持稳定的转矩输出。

通过转速外环对转速进行控制,可以实现精确的转速调节;而电流内环则能够控制电机的电流,防止过载和短路等故障。

2.响应速度:双闭环控制系统的转速外环具有较快的响应速度,能够实现快速的转速调节。

而电流内环的响应速度则相对较慢,主要起到电机保护的作用。

3.鲁棒性:双闭环控制系统具有较好的鲁棒性,能够对外部干扰和参数变化具有一定的抗干扰能力。

通过合理的控制策略和参数调整,可以提高系统的鲁棒性。

1.转速外环控制原理:转速外环将输出电压与给定的转速进行比较,得到转速误差,并通过调节电压反馈回内环控制器中。

转速外环控制器通常采用PI控制器,根据转速误差和积分项来控制输出电压。

通过不断调节输出电压,使得转速误差趋于零,从而实现对直流电机转速的调节。

2.电流内环控制原理:电流内环控制器将输出电压与给定的电流进行比较,得到电流误差,并通过调节输出电压来控制电流。

电流内环控制器通常也采用PI控制器,根据电流误差和积分项来控制输出电压。

通过不断调节输出电压,使得电流误差趋于零,从而实现对直流电机电流的调节。

3.反馈信号处理:双闭环直流调速系统中,转速和电流测量信号需要经过滤波和放大等处理,以便传递给控制器进行计算。

滤波器通常采用低通滤波器,用于去除高频噪声,放大器则用于放大信号强度。

4.控制指令处理:由上位机或人机界面输入的控制指令需要经过处理,包括限幅、线性化等,以确保输入信号符合控制系统的要求。

处理后的指令将送入控制器,进行计算和控制输出电压。

通过双闭环直流调速系统的控制,可以实现对直流电机的转速和电流的精确调节,并具有较好的稳定性、响应速度和鲁棒性,广泛应用于工业自动化领域。

永磁同步电机双闭环之间的作用

永磁同步电机双闭环之间的作用

永磁同步电机双闭环之间的作用
《永磁同步电机双闭环的作用》
永磁同步电机双闭环是指在永磁同步电机控制系统中,采用了速度和位置双闭环控制。

在这种控制方式下,电机可以实现更精准的转速和位置控制,提高了系统的动态性能和稳定性。

首先,采用双闭环控制可以使永磁同步电机更加精准地控制转速。

由于采用了速度闭环控制,系统可以通过实时监测电机的转速并与期望转速进行比较,对电机的控制电流进行调整,从而实现精准的转速控制。

这对于一些对转速要求较高的应用场景非常重要,比如风力发电机组、电动汽车等。

其次,采用双闭环控制还可以实现更加精准的位置控制。

通过采用位置闭环控制,系统可以通过实时监测电机的位置并与期望位置进行比较,对电机的控制电流进行调整,从而实现精准的位置控制。

这对于一些对位置要求较高的应用场景也非常重要,比如机械臂、医疗设备等。

另外,双闭环控制还可以提高系统的动态性能和稳定性。

通过不断调整电机的控制电流,系统可以更快地响应外部的变化,从而提高了系统的动态性能。

同时,双闭环控制还可以通过不断调整电机的控制电流,使系统更加稳定。

这对于一些对动态性能和稳定性要求较高的应用场景同样非常重要。

综合来看,永磁同步电机双闭环控制在提高了电机的转速、位置控制精度的同时,还可以提高系统的动态性能和稳定性,因此在许多应用场景中得到广泛的应用。

双闭环直流调速系统特性与原理

双闭环直流调速系统特性与原理

双闭环直流调速系统特性与原理1.双闭环直流调速系统的特性:(1)调速性能优良:双闭环控制可以提高调速性能,使得速度响应更加迅速、稳定。

由于速度闭环控制,系统可以实时检测速度偏差,并根据偏差调整电机的控制信号,从而使电机转速保持恒定。

(2)载荷抗扰性好:双闭环直流调速系统具有良好的抗负载扰动能力。

通过电流闭环控制器对电流进行反馈控制,一旦发生负载变动,系统可以根据反馈信号快速调整电流,以保持电机输出功率稳定。

(3)适应性强:双闭环直流调速系统适应性强,可以适应各种负载条件下的调速要求。

通过速度闭环控制器可以实时检测速度偏差,并根据偏差调整电机的控制信号,以适应不同的负载要求。

(4)技术难度较高:双闭环直流调速系统需要同时进行速度闭环控制和电流闭环控制,涉及到多个反馈环节和控制算法的设计与调试,技术难度相对较高。

2.双闭环直流调速系统的原理:(1)速度闭环控制原理:速度闭环控制器测量电机的速度,并将测量值与期望速度信号进行比较,得到速度偏差。

根据速度偏差,通过控制器计算得到电机的控制信号,调整电机的输入电压或者电流,使得速度偏差减小,并最终稳定在期望速度值上。

(2)电流闭环控制原理:电流闭环控制器测量电机的电流输出值,并将测量值与期望电流信号进行比较,得到电流偏差。

根据电流偏差,通过控制器计算得到电机的控制信号,调整电机的输入电压或者电流,使得电流偏差减小,并最终稳定在期望电流值上。

(3)内环逆变器控制:双闭环直流调速系统通常采用内环逆变器控制方式。

内环逆变器控制主要是通过改变电机的输入电压或者电流来控制其输出转矩和速度。

内环逆变器可以调整直流电动机的极性和大小,以实现对电机力矩和速度的精确控制。

(4)反馈和调节:双闭环直流调速系统中的反馈环节起到了至关重要的作用。

通过测量电机的速度和电流输出值,并与期望值进行比较,得到偏差信号,通过控制器计算得到控制信号,对电机输入电压或者电流进行调节,以实现对速度和电流的闭环控制。

电动汽车用永磁无刷直流电机电流检测技术的研究

电动汽车用永磁无刷直流电机电流检测技术的研究

电动汽车用永磁无刷直流电机电流检测技术的研究摘要:本文通过两种电流检测方法,研究了电动汽车用永磁无刷直流电机电流检测系统,并进行对比分析优缺点。

关键词:采样法;闭环控制1.电流检测研究思路由永磁无刷直流电机基本公式可以知道电磁转矩与相电流成正比,只需控制无刷直流电机的相电流,就可以控制无刷直流电机的转矩。

因而对转矩的闭环控制实际上就是对电机相电流的闭环控制。

另外,不但需要考虑电池的瞬时最大放电电流,电池输出功率,还要考虑逆变器功率开关器件的最大允许电流。

2.电流检测方法1)两相电流采样法,要对电流进行闭环控制就必须对电流进行采样。

在电动状态时,由于无刷直流电机为两相导通方式,任意时刻只有两相导通,导通的两相电流大小相等,方向相反,因而只需要检测一相电流就可以知道另一相电流;由导通的逻辑可以知道,只需采样电机两相电流,就可以对电机的三相电流进行控制,这是因为第三相的电流可以由被采样的两相电流得到。

由发电回馈制动原理可以知道,当无刷直流电机工作在发电回馈状态时,仍然满足任意时刻只有两相导通,另一相悬空,且导通的两相电流大小相等,方向相反的关系。

因此,同样可以只采样两相电流就可以满足对电机相电流进行控制的要求。

为了满足电动汽车电机控制系统的要求,除了要对电机相电流进行控制,还需要知道流过逆变器开关器件的瞬时电流的大小,防止逆变器过流;知道直流母线电流的大小,并将直流母线电流控制在蓄电池允许的范围之内。

逆变器器件上流过的电流是和电机相电流一致的,逆变器上瞬时电流最大的时刻出现在对电流导通相电流进行控制的时间段。

因而采用这种检测方式可以很方便的对逆变器瞬时峰值电流进行限制。

电机驱动系统对直流母线电流的大小,要求没有电机相电流高,只需要控制直流母线电流的平均值就可以满足要求。

而直流母线电流可以通过功率守恒来求得,这是因为电动机的输入功率等于其电磁功率与铜耗之和,也就是:P1=Pcu+Pem 其中P1 表示蓄电池输入电机的功率也就是永磁无刷直流电机的输入功率,Pem表示电机的电磁功率,Pcu表示电机铜耗。

新能源汽车永磁无刷直流电机制动能量回馈双闭环控制技术

新能源汽车永磁无刷直流电机制动能量回馈双闭环控制技术

新能源汽车永磁无刷直流电机制动能量回馈双闭环控制技术作者:杨小兵路高磊王发群来源:《山东工业技术》2015年第16期摘要:本文分析了新能源汽车永磁无刷直流电机制动能量回馈的双闭环控制方法,论述了永磁无刷电机能量回馈原理和双闭环控制原理,根据电机制动能量回馈原理提出一种实现制动可靠能量回馈控制方法,通过在电机控制器测试台架上进行了测试,达到了预期的控制效果。

关键词:新能源汽车;永磁无刷直流电机;能量回馈;双闭环控制1 前言随着新能源汽车控制技术的发展,对新能源汽车控制技术的要求越来越高,提高续航里程是其中的一个重要问题,而新能源汽车用电机能量回馈技术可以将汽车制动和减速时[1]的部分动能转化为电能回馈到蓄电池,从而提高电动汽车的续驶里程,但是,蓄电池容量都有一定的限制,制动能量回馈时将产生很高的泵升电压和电流,为了避免过高的泵升电压和电流对系统带来危害,文中提出了通过控制占空比的办法来抑制泵升电压[2]和电流,提出了一种电压和电流双闭环数字控制方案,实现对泵升电压和电流的抑制,该方法通过数字控制实现,无需改动或增加硬件[3],该方法可迅速抑制泵升电压和电流,实现可靠的能量回馈控制,且具有良好的制动效果。

2 系统构成和工作原理图1是永磁无刷直流电机控制系统框图,系统由电源、控制电路、PWM驱动电路、功率逆变电路、位置传感器和永磁无刷电机组成。

工作原理:能量回馈即电动机工作于再生制动模式,在制动过程中,通过控制电路控制驱动电路和逆变电路使电机电流方向与正向运行时相反,便会产生制动性质的转矩。

当产生的电压高于蓄电池电压时,可以将电流回馈至蓄电池,达到能量回馈的目的,在能量回馈控制时,将逆变电路上桥臂的功率管关断,根据位置传感器信号对下桥臂的功率管的通断进行有规律的PWM(Pulse Width Modulation,脉冲宽度调制)控制,可以起到与Boost(升压)变换器相同的效果,其基本控制原理是Boost Chopper(升压斩波)方式,本文中选用半桥调制方式,在半桥斩波方式里,逆变电路6个开关管中,只有处于相同半桥上的3个元件(如图2中VT4、VT6、VT2)通有PWM波,另半桥上的3个元件(如图2中VT1、VT3、VT5)始终是关断的。

电动汽车能量回馈系统的原理与效能分析

电动汽车能量回馈系统的原理与效能分析

电动汽车能量回馈系统的原理与效能分析随着对环境和能源问题的日益关注,电动汽车作为一种无排放的绿色出行方式,正受到越来越多人的关注和青睐。

然而,电动汽车的续航里程一直是用户关注的一个重要问题。

为了解决这个问题,科学家们提出了能量回馈系统(regenerative braking system),这一系统能够利用车辆制动时产生的能量,并将其转化为电能进行存储,从而提高电动汽车的续航里程。

本文将从电动汽车能量回馈系统的原理和效能两个方面进行分析。

1. 原理能量回馈系统的核心原理是将制动过程中产生的动能转变为电能进行储存。

一般来说,制动时,电动汽车的驱动电机利用车轮运动的动能回转,相应地产生电能,而不是通过摩擦将动能转化为热能消耗掉。

这样一来,电动汽车能够将制动过程中的能量转化为电能进行储存,进一步提高车辆的能效。

具体而言,能量回馈系统一般包括以下几个主要的组成部分:1.1 制动电阻装置:在制动时,制动电阻装置根据车轮转动的速度和力度,产生一定的电阻,从而将动能转化为电能。

1.2 电能转换装置:制动电阻产生的电能需要进行转换才能储存和使用。

电能转换装置将制动过程中产生的直流电能转换为可以储存的电能,通常使用蓄电池进行储存。

1.3 控制系统:能量回馈系统的控制系统监测制动状态和电能转换过程,确保系统能够高效、稳定地将动能转化为电能。

2. 效能分析能量回馈系统对电动汽车的效能有着显著的提升作用,主要体现在以下几个方面:2.1 能量回收率提高:传统的内燃机汽车在制动时会将动能转化为热能散失,而电动汽车通过能量回馈系统能够最大程度地回收制动过程中产生的动能,提高能量的利用率。

据研究表明,能量回馈系统可以将制动时产生的能量回收率提高20%~30%,从而延长电动汽车的续航里程。

2.2 能耗减少:电动汽车通过能量回馈系统回收能量,可以减少对电池的充电次数,从而延长电池寿命。

同时,也能够减少充电过程中的能量损耗,提高充电效率,降低了电动汽车的能耗,进一步提高车辆的能效。

双闭环直流调速系统工作原理

双闭环直流调速系统工作原理

双闭环直流调速系统工作原理双闭环直流调速系统是一种常用的控制系统,用于调节和控制直流电动机的速度。

该系统通过两个闭环来实现目标速度的精确控制,其中一个闭环负责速度检测与控制,另一个闭环负责电流检测与控制。

下面将详细介绍双闭环直流调速系统的工作原理。

1.电机:用于产生机械功的装置,是整个系统的核心部分。

2.传感器:用于检测电机的速度和电流。

3.控制器:根据传感器的反馈信号,计算并控制电机的输入电压和输出扭矩。

4.功率放大器:将控制器输出的电压信号放大后,传递给电机。

5.脉宽调制(PWM)驱动器:将控制器输出的模拟信号转换为数字信号,用于驱动功率放大器。

下面是双闭环直流调速系统的工作过程:1.速度检测与控制环路:该环路用于检测和控制电机的速度,通过传感器测量电机的速度,并将该速度信号反馈给控制器。

控制器根据目标速度和反馈速度之间的误差,计算出控制电压,并将该控制电压传递给功率放大器。

功率放大器将控制电压放大后,通过PWM驱动器将控制信号传递给电机。

电机根据控制信号的大小和频率,调整自身的旋转速度,使得反馈速度与目标速度尽可能接近。

2.电流检测与控制环路:该环路用于检测和控制电机的电流,通过传感器测量电机的电流,并将该电流信号反馈给控制器。

控制器根据反馈电流和目标电流之间的误差,计算出控制电压,并将该控制电压传递给功率放大器。

功率放大器将控制电压放大后,通过PWM驱动器将控制信号传递给电机。

电机根据控制信号的大小和频率,调整自身的输出扭矩,使得反馈电流与目标电流尽可能接近。

通过双闭环控制,系统可以实现对电机速度和电流的高精度控制。

速度检测与控制环路可以保证电机的速度稳定在设定值附近,并可根据需求进行调整。

电流检测与控制环路可以保证电机输出扭矩的精确控制,从而满足不同工作负载下的要求。

总结起来,双闭环直流调速系统通过速度检测与控制环路和电流检测与控制环路,实现了对直流电动机速度和电流的精确控制。

该系统在工业自动化领域具有广泛的应用,可以确保电机在不同工作条件下的稳定运行,并满足不同任务的要求。

无刷直流电机(BLDC)双闭环调速解析

无刷直流电机(BLDC)双闭环调速解析

根据模拟 PID 可以得到数字 PID 的控制算法,为了用计算机实现 PID 控制规律,当采样时间 Ts 很小时,可以通过离散化来得到公式。在数字化 PID 中,用 Ki(积分系数)来代替 Ti(积 分时间),用 Kd(微分系数)来代替 Td(微分时间)。其中 Ki=(Kp*Ts)/Ti;Kd=(Kp*Td)/Ts。 1、数字化位置式 PID 标准形式:Pu(t)=Kp*e(t)+Ki*∑e(t)+Kd*(e(t)-e(t-1))]+Pu(t-1) 将 Kp 分离出来:Pu(t)=Kp*[e(t)+(Ts/Ti)*∑e(t)+(Td/Ts)*(e(t)-e(t-1))]+Pu(t-1) 用 C 代码表式公式:用 ek 代表 e(t);用 ek1 代表 e(t-1);用 Pu1 代表 Pu(t-1) Pu=Kp*[ek+(Ts/Ti)*∑ek+(Td/Ts)*(ek-ek1)]+Pu1 2、数字化增量式 PID(同模拟量一样跟据两式相减得到增量式) Pu(t)=Kp*[(e(t)-e(t-1))+(Ts/Ti)*e(t)+(Td/Ts)*(e(t)-2*e(t-1)+e(t-2))] 用 C 代码表式公式:用 ek 代表 e(t);用 ek1 代表 e(t-1);用 ek2 代表 e(t-2) Pu=Kp*[(ek-ek1)+(Ts/Ti)*ek+(Td/Ts)*(ek-2*ek1+ek2)] 在上式中,Pu 是输出量,Pu1 是前一次的输出量,Kp 是比例系数,Ti 是积分时间,Td 是微 分时间,Ts 是采样周期,ek 是当次的误差,ek1 是前一次的误差,ek2 是前两次的误差。而 在实际的应用中,为了简化程序,一般不将 Ts 拿来做运算,因为积分项和微分项的常数都 是两个比值,分别直接用系数 Ki 和 Kd 来代替,只是当采样周期改变时,要去相应的调整几 个系数的大小,所以我们可以得到无刷直流电机的增量式 PID 算法公式: Pu=Kp*[(ek-ek1)+Ki*ek+Kd*(ek-2*ek1+ek2)] 但是上面的公式在无刷直流电机的 PID 控制中并不实用,因为在电机的启动、停止或大幅增 减设定值时,由于会出现很大的偏差,且有时此偏差会保持一段时间不变(如电机启动时需 要一定的时间才能转动起来),会造成 PID 算法的比例控制失调,积分严重饱和的现象,此 现象表现为电机需要较长的时间才能运转起来,运转起来之后又会出现较大的超调。因此要 将其做改进的 PID 控制的形式,同时要在程序中加抗积分饱和的判断处理。 改进的 PID 公式:Pu=Kp[ek+Ki*∑ek+Kd*(ek-ek1)] 上式中,如果去掉微分项,只用 PI 控制,则公式:Pu=Kp[ek+Ki*∑ek] 将∑ek 分解出来用误差累加 ei 表示,则公式:Pu=Kp*ek+Ki*Kp*ek+ei;ei=Ki*Kp*ek+ei 加变速积分,则公式:Pu=Kp[ek+fek*Ki*∑ek+Kd*(ek-ek1)] 上式中,fek 为变速积分系数,如果去掉微分项,只用 PI 控制,将∑ek 分解出来用误差累 加 ei 表示,则公式:Pu=Kp*ek+fek*Ki*Kp*ek+ei;fek=0-1(由 A 和 B 值来确定) 当误差 ek 大于 A+B 时:fek=0(积分不起作用) 当误差 ek 在 B 与 A+B 之间时:fek=>0&<1(积分随误差减小而增强,随误差增大而减弱) 当误差 ek 大于 A+B 时:fek=1(全速积分)

详细分析新能源汽车电机电控系统

详细分析新能源汽车电机电控系统

详细分析新能源汽车电机电控系统新能源电动汽车性能还有巨大的提升空间,大家往往最关注电池,作为决定电动汽车性能的关键部件,本文详细说说电机电控。

一、电机电控的重要性新能源汽车作为传统燃油汽车的替代品,其主要电气系统即为在传统汽车“三小电”(空调、转向、制动)基础上延伸产生的电动动力总成系统“三大电”——电池、电机、电控。

其中,电机、电控系统作为传统发动机(变速箱)功能的替代,其性能直接决定了电动汽车的爬坡、加速、最高速度等主要性能指标。

同时,新能源汽车电机、电控系统面临的工况相对复杂:需要能够频繁起停、加减速,低速/爬坡时要求高转矩,高速行驶时要求低转矩,具有大变速范围;混合动力车还需要处理电机启动、电机发电、制动能量回馈等特殊功能。

此外,电机的能耗直接决定了固定电池容量情况下的续航里程。

因此,电动汽车驱动系统在负载要求、技术性能和工作环境上有特殊要求:其一,驱动电机要有更高的能量密度,实现轻量化、低成本,适应有限的车内空间,同时要具有能量回馈能力,降低整车能耗;第二,驱动电机同时具备高速宽调速和低速大扭矩,以提供高启动速度、爬坡性能和高速加速性能;第三,电控系统要有高控制精度、高动态响应速率,并同时提供高安全性和可靠性。

电机电控系统作为新能源汽车产业链的重要一环,其技术、制造水平直接影响整车的性能和成本。

目前,国内在电机、电控领域的自主化程度仍远落后于电池,部分电机电控核心组件如IGBT 芯片等仍不具备完全自主生产能力,具备系统完整知识产权的整车企业和零部件企业仍是少数。

随着国内电机电控系统产业链的逐步完善,电机电控系统的国产化率逐步提高,电机电控市场具有的增速有望超过新能源汽车整车市场的增速。

电池、电机、电控在新能源汽车中的应用。

永磁无刷直流电机及其控制

永磁无刷直流电机及其控制

永磁无刷直流电机及其控制摘要:永磁无刷直流电机有着高效率、长寿命、低噪音和机械性能好的显著优势,在航空航天、汽车、家用电器和军事等领域应用广泛。

随着社会经济和科学技术的高速发展,工业生产技术水平得到了很大提升,永磁无刷直流电机取得了显著的发展成就,与传统永磁有刷直流电机对比而言,现代永磁无刷电机保障各项设备安全稳定运行的能力更强,具有良好的控制性能,有利于提高企业的生产效率。

基于此,本文将概述无刷直流电机的基本结构和工作特点,并探讨永磁无刷直流电机控制技术。

关键词:永磁无刷电机;控制技术;智能控制如今,节能减排已经成为经济与能源可持续发展的必由之路,是我国工业化发展的重要方向和重要目标,永磁无刷直流电机有着低耗能、高效率和应用广的显著优势,是国家大力支持的绿色环保高新技术项目,符合目前机电产品小型化、模块化和智能化的发展要求,具有很广的发展前景。

在材料科学技术高速发展的背景下,高性能半导体元器件不断涌现,导磁材料磁性有了大幅度提高,这是推动电机行业快速发展的重要力量,与此同时,传感器技术的进步,直接增强了角位置传感器的性能、精度和稳定性,大大提高了永磁无刷直流电机的控制精度,所以,探讨永磁无刷直流电机及其控制技术,有利于充分发挥我国是世界上最大稀土储藏国这一优势,对推动高效节能电机系统构建和促进工业生产低碳化具有重要意义。

一、无刷直流电机基本结构与工作特点无刷直流电机取消了电刷,以此来实现无机械接触式换相,而且把永磁磁钢和电枢绕组分别放在了转子侧和定子侧,这样就构成了“倒装式直流电机”结构,要准确地控制电机转速和转向,无刷直流电机需要具备由转子位置传感器与逆变器共同组成的换相装置,其定子结构和普通同步电机或感应电机类似。

针对一般的三相无刷直流电机,Y联结或者△联结是常见的电枢绕组结构,由于需要兼顾投入成本和系统性能,比较常用的则是Y联结和三相对称且无中性点引出的电机方式。

短距分布式、整距分布式和整距集中是无刷直流电机主要的绕组形式,绕组方式在很大程度上决定着电机的反电动势波形,对电机的性能带来很大的影响,通常情况下,整距集中绕组可以获得很好的梯形反电动势波形,而采用短距绕组则会在一定程度上削弱转矩波动。

双闭环直流电机调速系统设计

双闭环直流电机调速系统设计

双闭环直流电机调速系统设计在今天的科技世界里,电机就像是家里的“万能小助手”,无处不在。

你想想,电风扇、洗衣机、甚至小汽车,都少不了它们的身影。

而双闭环直流电机调速系统就是这个小助手的“智囊团”,让它在各种环境中游刃有余,真是个神奇的存在。

今天,我们就来聊聊这个系统是怎么工作的,听起来是不是有点高大上?别担心,咱们用通俗易懂的语言来探讨,让你在闲聊中也能装装逼!1. 什么是双闭环控制?1.1 直流电机的基本知识直流电机,这东西其实就是通过直流电来转动的电机,简单说,就是通过电流来产生磁场,让电机的轴子转动起来。

想象一下,你在玩一辆遥控小车,控制它的速度和方向,其实和电机的工作原理类似。

电流大了,小车跑得快;电流小了,小车就慢了。

是不是很简单?不过,要把这个电机调得又快又稳,就得靠我们的双闭环系统了。

1.2 双闭环系统的工作原理双闭环控制,顾名思义,分为两个环,一个是速度环,一个是电流环。

速度环就像是你的眼睛,时刻盯着电机的转速,确保它不会跑偏。

而电流环就像是你的手,及时调整电机所需的电流,让它在需要的时候有充足的动力。

就好比你骑自行车,风一吹,你得用力蹬脚踏,让车子稳稳前行,这就是速度和电流的配合。

两者相辅相成,形成了一个良性的循环,确保电机在各种负载下都能稳定工作。

2. 设计双闭环系统的重要性2.1 提高系统性能你想啊,电机如果没有双闭环控制,开得快的时候,可能转速就飙到天上,没法控制;慢的时候,又感觉力不从心。

这就像你打球,想要扣篮却被卡在了框下,真是让人心急火燎!而有了双闭环系统,电机就能在不同的环境中保持稳定的转速,性能大大提升。

无论是重载还是轻载,电机都能游刃有余,根本不在话下。

2.2 降低能耗再来谈谈能耗的问题。

我们都知道,能源危机可是个大麻烦。

双闭环系统能够通过实时监测和调节,确保电机在最优状态下运行,从而降低能耗。

想象一下,省电就像是在家里随便找零花钱,谁不乐意呢?通过科学合理的控制,电机就能用更少的电,做更多的事,真是一举两得!3. 实际应用案例3.1 工业自动化说到双闭环系统的实际应用,那可真是多得数不过来。

双闭环直流调速系统原理介绍

双闭环直流调速系统原理介绍

双闭环直流调速系统原理介绍双闭环直流调速系统由两个环路组成,速度环和电流环。

速度环控制电机的速度,使其始终保持在设定值附近,而电流环控制电机的电流,保证电机的负载特性和响应速度。

速度环和电流环是相互独立的控制过程,通过串联连接实现整体调速控制。

速度环负责对电机转速进行调节,基本原理是将实际转速与设定转速进行比较,然后根据差值计算出调节量,最后通过调节电机的输入电压实现转速调节。

速度环的核心是比例-积分(PI)控制器,通过设定合适的比例系数和积分时间,可以实现对转速的精确调节。

速度环还可以加入速度前馈器,将速度设定值的变化率作为额外输入信号,进一步提高系统的响应速度和稳定性。

电流环负责对电机的电流进行调节,保证电机的负载特性和响应速度。

电流环的基本原理是将实际电流与设定电流进行比较,然后根据差值计算出调节量,最后通过调节电机的输入电压或电流实现电流调节。

电流环的核心也是比例-积分(PI)控制器,通过设定合适的比例系数和积分时间,可以实现对电流的精确调节。

电流环还可以加入电流前馈器,将电流设定值的变化率作为额外输入信号,进一步提高系统的响应速度和稳定性。

双闭环直流调速系统中,速度环和电流环之间通过串联连接的方式进行控制。

速度环输出电压指令作为电流环的输入电流设定值,电流环通过调节电机的输入电流实现电流调节。

而电流环输出电压指令作为速度环的输入电压设定值,速度环通过调节电机的输入电压实现转速调节。

通过这种双重反馈的控制方式,可以实现对电机转速和电流的精确控制。

1.精确控制:通过精确的调节速度环和电流环的参数,可以实现对电机转速和电流的精确控制,满足不同工况下的要求。

2.快速响应:双闭环结构可以利用速度环和电流环的双重反馈信息,在系统受到外部扰动时,能够快速调节输出,保持稳定的运行状态。

3.负载适应性:通过电流环的控制,可以根据电机所承受的外部负载变化,自动调整输出电压或电流,保持电机的运行稳定性和性能。

无刷直流电机的电流闭环控制

无刷直流电机的电流闭环控制

无刷直流电机的电流闭环控制无刷直流电机是较为常见的一种电机,可以应用于许多领域,例如机器人、无人机、车辆、电器等。

无刷直流电机被广泛应用的原因之一是其控制方式相比于传统的直流电机,更为灵活、有效率更高,以及其具有较高的功率密度,因此在有限的空间内可以输出更大的功率。

本文旨在阐述无刷直流电机的电流闭环控制,介绍该控制方式的工作原理和优点以及实现过程。

一、无刷直流电机的电流控制无刷直流电机的控制方式主要分为速度控制和电流控制。

对于大多数应用而言,电流控制是其最基本的控制方式。

因为在实际使用中,无刷直流电机的载荷通常是不稳定的,如果采用速度控制来控制负载,则电机的性能稳定性会受到一定的限制。

因此,采用电流控制是保证无刷直流电机性能及安全的重要手段。

简单来说,电流控制就是通过控制电机的输入电压和电机内部的控制器电路,使其输出恰当大小的电流数值,来控制电机的动力系统。

通过实时测量电机的电流,利用反馈回路来调节输入电压大小,从而实现稳定的输出电流,并控制电机的转速和输出功率。

这样,无刷直流电机就可以在负载发生变化时,通过电流控制来稳定输出并避免发生过载。

二、电流闭环控制的原理和优点作为一种常见的电流控制方式,电流闭环控制主要通过测量电机实时的电流值来实现控制。

具体而言,电流闭环控制分为两类,即速度电流闭环控制和电流电流闭环控制。

其中速度电流闭环控制主要的目的是控制电机的转速,根据测量的电机转速并反馈到程序中,调节电机的输入电压。

而电流电流闭环控制的主要目的则是控制电机的输出电流。

相比于其他的无刷直流电机控制方式,采用电流闭环控制具有多个优点:1. 较高的控制精度通过实时测量电机电流值,可以更为准确地调节电机的输入电压,在电机运行过程中及时修正电机的误差,从而实现更为准确的电机控制。

2. 节能在实际使用中,许多应用中的电机并不是一直处于工作状态,而是在间歇性的负载中运行。

此时,采用电流闭环控制能够更快速地适应负载变化,从而更有效地节省能源消耗。

无刷直流电机控制方法

无刷直流电机控制方法

无刷直流电机控制方法
无刷直流电机的控制方法有以下几种:
1. 电压控制方法:通过改变驱动电机的电压来控制电机的转速。

利用PWM调整电压占空比,可以精确控制电机的转速和扭矩。

2. 闭环控制方法:通过采集电机的转速、位置或电流等信息,来计算误差并进行校正,实现对电机的闭环控制。

常见的闭环控制方法有速度闭环控制和位置闭环控制。

3. 传感器反馈控制方法:通过安装速度、位置或电流等传感器来实时监测电机状态,并将反馈信号与期望信号进行比较,通过控制器对电机进行控制。

这种方法可以提高控制精度和响应速度。

4. 感应器反馈控制方法:通过对电机正弦电流的反馈进行控制,实现对电机的控制。

这种方法不需要安装传感器,并具有较高的控制精度和响应速度。

5. 磁场定向控制方法:通过感应器或感应器反馈对电机磁场进行定向控制,实现对电机转矩和速度的精确控制。

需要注意的是,无刷直流电机的控制方法选用应根据具体应用场景和要求来确定,而不同的控制方法也可能会相互结合使用,以满足对电机的精确控制。

双闭环直流调速系统

双闭环直流调速系统

双闭环直流调速系统双闭环直流调速系统是一种电力电子变换器设计用于控制直流电机转速的重要方法。

它使用两个控制循环,内环控制电机转速,外环控制负载的速度变化。

其中一般采用PI控制器,理论上能够在滞后角度及相位裕量方面提供相应的保障。

本文将对双闭环直流调速系统进行详细讲解。

系统结构双闭环直流调速系统包含两个主要部分:电机和电力电子变换器。

电机是系统的执行部分,它将电能转化为机械能。

电力电子变换器则是将电源接通到电机的途径。

其包含整流器/变频器、PWM控制器和功率放大器等组成部分。

在系统中,电力电子变换器通过对电流、电压和功率方面的控制,实现对电机的控制。

双闭环直流调速系统包含两个控制环路,内环和外环。

内环用于控制电机的转速,外环用于控制负载的变化速度。

内环控制器与电机直接耦合,接受电机转速控制信号,并控制电机驱动电压或电流。

外环控制器将负载反馈信号与期望速度信号进行比较,并计算出负载期望机械功率。

内环控制器为外环控制器提供实时电机转速,以便自动调整期望速度。

内部控制环路内环是双闭环直流调速系统的核心部分,它使用反馈控制技术控制电机转速。

内环控制器接受来自电机的反馈信号,并根据电机实际转速和期望转速之间的差异来控制驱动电压或电流。

转速反馈可以使用反电动势(EMF)或霍尔传感器来实现。

最常用的电机控制器是基于PI型控制器。

此控制器将PID控制(比例、积分、微分控制)的K值设定为0(因为在直流电机控制中微分控制几乎不可行),并针对不同比例和积分控制来为电机控制提供所需的响应特性。

反馈中的延迟和其他因素会导致偏差,因此比例控制器通常用于加速响应。

积分控制器用于使系统更加稳定,以响应慢速变化。

这些控制器参数通常是根据预期转速、电压和电流范围进行调整。

系统优缺点优点1.与传统的直流调速系统相比,双闭环直流调速系统能够更好地控制直流电机的转速。

内外环的设计使得控制速度响应更快,同时提高了系统的稳定性。

2.内环和外环控制器,使用的是速度反馈,可实时监测直流电机的转速,以控制电压和电流从而实现所需功率/MN的输出。

双闭环直流调速系统介绍

双闭环直流调速系统介绍

双闭环直流调速系统介绍
系统由两个主要的闭环控制回路组成:速度环和电流环。

速度环是系统的外环控制回路,其作用是根据用户对电机转速的需求进行反馈控制。

速度传感器测量电机的转速,并将测量值与设定值进行比较,产生差值作为输入信号。

这个差值通过控制器(通常为PID控制器)进行处理,并输出一个调节信号。

调节信号通过控制执行器(如PWM控制器)调节电机的输入电压或电流,从而控制电机的转速。

速度环的目标是使电机的转速稳定在用户设定的值附近。

电流环是系统的内环控制回路,其作用是根据速度环的输出信号来补偿负载扰动和电机参数变化所引起的转矩变化。

电流环的输入信号为速度环的输出调节信号,通过控制器处理后,输出一个电流指令。

这个电流指令通过控制执行器调节电机的输入电压或电流,从而控制电机的转矩。

电流环的目标是使电机的转矩稳定在速度环要求的范围内。

1.高精度:通过使用两个闭环控制回路,系统能够实现高精度的电机转速调节,并具备对负载扰动和电机参数变化的补偿能力。

2.快速响应:系统使用PID控制器作为控制算法,能够快速响应用户对电机转速的需求。

3.稳定性好:速度环和电流环形成了互补的控制关系,能够保持电机转速和转矩的稳定性。

4.可靠性高:双闭环直流调速系统结构简单,组件少,可靠性较高。

综上所述,双闭环直流调速系统通过使用速度环和电流环两个闭环控制回路,实现对电机转速的高精度控制和负载扰动补偿。

该系统具备精度
高、响应快、稳定性好、可靠性高等优点,广泛应用于各种需要精确电机调速的领域。

无刷电机转速-电流双闭环控制策略

无刷电机转速-电流双闭环控制策略

无刷电机转速-电流双闭环控制策略下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!无刷电机转速电流双闭环控制策略1. 前言随着现代科技的迅猛发展,无刷电机在工业与消费类电器领域已经得到广泛应用。

无刷直流电机运行原理与基本控制方法

无刷直流电机运行原理与基本控制方法

无刷直流电机运行原理与基本控制方法无刷直流电机(Brushless DC Motor,简称BLDC)是一种新型的电机,它与传统的有刷直流电机相比具有无刷、长寿命、低噪音、高效率等优点,因此在众多电动设备中得到广泛应用。

下面将介绍无刷直流电机的运行原理以及基本控制方法。

无刷直流电机由转子和定子组成。

定子上通常安装有三个正弦波分布的绕组,转子上安装有多个永磁体。

当电源施加在定子绕组上时,绕组内产生三相交流磁场,永磁体受到定子磁场的作用而旋转。

无刷电机实际上是一种由电脉冲驱动的电机,控制器通过给定的电流波形控制磁场的大小和方向,从而控制电机的转速和方向。

1.开环控制:开环控制是指在控制电机转速时仅根据给定转速信号来控制电机的工作状态,不考虑电机实际转速,也不进行反馈控制。

开环控制简单、成本低,但对于负载变化、电压波动等因素敏感,稳定性较差。

开环控制主要有直接转速控制和扭矩控制两种方式。

(1)直接转速控制:通过控制输入电压或电流的大小来控制电机的转速。

比如,PWM控制器可以根据所设定的占空比控制电流的大小,从而影响电机的转速。

(2)扭矩控制:通过控制输入电流的大小来控制电机的输出扭矩。

可以使用电流传感器来测量电机的电流,并通过调整电流大小来控制扭矩输出。

2.闭环控制:闭环控制是在开环控制的基础上加入反馈控制,以提高电机的稳定性和动态性能。

闭环控制可以根据电机实际转速与设定转速之间的误差来调整控制信号,从而使电机的运行更加精确。

通常使用位置传感器、速度传感器或反电动势等反馈信号来进行闭环控制。

闭环控制的主要方式包括位置环控制、速度环控制和电流环控制。

(1)位置环控制:通过位置传感器检测电机的位置,并将该信息与设定位置进行比较,然后根据误差信号进行控制。

位置环控制可以实现较高的精度,但对传感器的要求较高。

(2)速度环控制:通过速度传感器检测电机的转速,并将该信息与设定转速进行比较,然后根据误差信号进行控制。

电动汽车无刷直流电机能量回馈制动系统设计

电动汽车无刷直流电机能量回馈制动系统设计

电动汽车无刷直流电机能量回馈制动系统设计赵景波;王代超;李卉;师琦【期刊名称】《电机与控制应用》【年(卷),期】2017(044)007【摘要】就电动汽车能量回馈制动效率较低的问题提出了一种恒转矩模糊控制策略.首先分析了无刷直流电机能量回馈制动的基本原理,对不同的回馈控制策略进行了对比分析,设计了一个三维模糊控制器,再以该控制器为核心,在MATLAB/Simulink环境中搭建了无刷直流电机能量回馈制动系统的仿真模型,并进行仿真.仿真结果显示提出的控制策略对电机制动转矩以及能量回收达到了很好的控制效果.%Put forward a constant torque fuzzy control strategy to solve the problem of low efficiency in electric vehicles energy feedback braking.At first,made the analysis of the basic principles of energy regenerative braking of BLDCM.At the same time,a three-dimensional fuzzy controller through the comparative analysis of the different feedback control strategy was designed,and a BLDCM regenerative braking system simulation model in the MATLAB/ Simulink environment was established.Results showed that the control strategy reached good control effects to motor braking torque and energy recuperation.【总页数】7页(P129-135)【作者】赵景波;王代超;李卉;师琦【作者单位】青岛理工大学自动化工程学院,山东青岛266520;青岛理工大学自动化工程学院,山东青岛266520;青岛理工大学自动化工程学院,山东青岛266520;青岛理工大学自动化工程学院,山东青岛266520【正文语种】中文【中图分类】TM301.2【相关文献】1.电动汽车永磁无刷直流电机驱动系统低速能量回馈制动的研究 [J], 黄斐梨;王耀明2.新能源汽车永磁无刷直流电机制动能量回馈双闭环控制技术 [J], 杨小兵;路高磊;王发群3.电动汽车制动能量回馈控制策略的分析 [J], 彭海兰; 梅一丹; 朱今镜; 李振中4.电动汽车制动能量回馈控制策略的分析 [J], 彭海兰; 梅一丹; 朱今镜; 李振中5.电动汽车制动能量回馈控制系统及控制方法研究 [J], 杨志超;吴丽娟;杨凯祥;原黎鹏因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一ቤተ መጻሕፍቲ ባይዱ
v T

0 i
i D 5

I 棚


r I }
D 2
图 2 在 0到 t 1时 间段 VT 4导 通 图1 永 磁 无刷 直 流 电机 控 制 系统
在 [ 0 ,t 1 ] 时间段 内V T 4 导 通 ,其 工 作 回路 为 A相 绕 组 进 入
工作原 理 :能量 回馈 即 电动机工 作于再 生制 动模 式 ,在 制动过 由电压 回路 方程 : 程 中 ,通 过控制 电路控 制驱 动 电路和 逆 变电路使 电机 电流方 向与 正 向运行 时相反 ,便会 产生制 动性质 的转 矩。 当产 生 的电压高 于蓄 电 池 电压 时 ,可 以将 电流 回馈 至蓄 电池 ,达到 能量 回馈 的 目的 ,在 能 量 回馈 控制 时 ,将 逆变 电路 上桥 臂 的功 率 管 关断 ,根 据位 置 传 感 器信 号 对下 桥 臂 的功 率管 的 通 断进 行有 规 律 的 P WM ( P u l s e Wi d t h 且令 U 一 U = O ,i = 一 i = i 得到回路 电压方程为 : Mo d u l a t i o n ,脉冲 宽度调 制)控制 ,可 以起到 与 B o o s t( 升压 )变 换 2 ( L— M) +2 R i 一( e A— e B ) =o ( 2 ) 器 相 同的效 果 ,其 基本 控 制 原理 是 B o o s t C h o p p e r( 升 压 斩 波 )方 式 ,本 文中选 用半桥 调制 方式 ,在半桥 斩波 方式 里 ,逆 变 电路 6个 回路 电流为 : i = + ( I 。 一 ) e o ≤t ≤t 1 ( 3 ) 开关管中 ,只有 处于相 同半桥 上的 3个元件 ( 如 图 2中 VT 4 、V T6 、 V T 2 )通 有 P WM 波 ,另半桥 上的 3 个 元件 ( 如 图 2中 V T 1 、v T 3 、 式中 I 。 = i I t = 0 VT 5 )始终 是关断 的。

3 制动能量 回馈 运行原理 分析和 回馈 电压、 电流 限制 方案

』 0 L d t =  ̄ 0 1 ( e A - e n - 2 R i )  ̄ d t
( 4 )
6 5
; I
l l
山 束工案 投术
控 整 流 电路 。
因新 能源 电动汽车 电池特 性 , 电机在 进入 能量 回馈工 作 时 ,其 回馈 电压必须 高于 蓄 电池 电压 ,才能输 出 电功率 ,所 以能量 回馈运 行 的控 制方 法是 采用 半控 整流 的 P WM 升 压工 作原理 ,但 是 ,在设 计 电机 时应 该 考虑 到 最高 转 速 的 回馈 输 出 电压 不 应 该大 于 蓄 电池 的最 高充 电 电压 , 在低 转速 时 的能量 回馈 运行 是使下 半桥 的功 率管 VT2 、V T4 、VT 6按规 律 通过 P WM 波 控 制产 生 泵升 电压 ,当 泵升 电压 高于蓄 电池 的端 电压时就 输 出电能 ,这一过 程全 部 由控制 电路 2 系统构成和工作原理 控制 。 图1 是永磁无刷直流 电机控制系统框图 , 系统 由电源 、控制电路 、 为 了便于分析 ,选择 V T 4 导通 ,且对脉 宽调制工作取 P WM 的一 P WM 驱动 电路、功率逆变 电路、位置传 感器和 永磁无刷 电机组 成。 个脉冲周期 T进行分析 ,设导通时间为 t l , 则截止时 间 T — t l 。图 2 、 图3 给出了 v T 4 在P WM 一 个脉 冲周期 T内导通和截止 的能量 回馈运 行工作示意图 。
据 电机 制动能量回馈原理提 出一种 实现制动可 靠能量 回馈控制 方法 ,通过在 电机控 制器测试台架上进行 了测试,达到 了 预 期的控 制效果。
关键 词 :新 能源汽车;永磁 无刷 直流电机 ;能量 回馈 ;双闭环控制
1 前言
随着新 能源 汽车控制技术的发展 ,对新能源汽 车控制技术的要求 越来越高 ,提 高续航里程是其中 的一个重要 问题 , 而 新能源汽车用 电 机能量 回馈 技术可 以将汽车制动和减速时 的部分动能转化为 电能 回 馈 到蓄电池 , 从 而提高 电动汽车 的续驶 里程 ,但是 ,蓄 电池容量都有 定 的限制 ,制动能量 回馈时将产生很 高的泵升电压和 电流 ,为 了避 免过高 的泵升电压和电流对系统带来危害 ,文 中提 出了通过控制 占空 比的办法 来抑制 泵升电压 和 电流 , 提 出了一种 电压和 电流双 闭环数 字控 制方案 ,实现对泵升 电压和 电流 的抑制 ,该方法通过数字控制实 现 ,无需改动或增加硬 件 ,该 方法 可迅速抑制泵升 电压和 电流 ,实 现可 靠的能量 回馈控制 ,且具有 良好 的制动效果 。

3 . 1 制动 能 量 回馈 运 行 原 理分 析
如图2 所示, 在 能量 回馈状态 时 ,利用控制 电路 的控 制信号 ,将 功率 逆变 电路 上半桥 的功率管 V T1 、V T3 、V T5 全 部关 闭,而 将下半 桥 的功率管 v T 2 、 V T 4 、 V T 6 分别按照一定的规律进行 P WM 控制 , 这样 , 因上半桥续 流二极 管 D1 、D3 、D5的存在 ,其等效 电路等 同于一个半
能 源 技 术
柬工案 投术
新能源汽车 永磁 无刷直流 电机制 动能量
回馈双 闭环控制 技术
杨小兵 , 路高磊 , 王发群 【 郑州 日产汽车有限公司 , 郑州 4 5 0 0 1 6)
摘 要 :本文分析 了新能源汽车永磁无刷直 流电机制 动能量回馈 的双闭环控制方 法,论 述了永磁 无刷电机能量 回馈原理和 双闭环控 制原 理 ,根
相关文档
最新文档