华东师大版九年级数学上册 第21章 二次根式单元测试题含答案

合集下载

华东师大版九年级上册数学 第21章 二次根式 单元达标测试题含答案

华东师大版九年级上册数学 第21章 二次根式 单元达标测试题含答案

第21章二次根式一、选择题1.函数的自变量x的取值范围是()A. B. C. D.2.化简的结果是()A. 1-B. -1C. ±( -1)D. ±( -1)3.若式子有意义,则x的取值范围是( )A. x≥3B. x≤3C. x=3D. 以上都不对4.()A. B. 4 C. D.5.设,若用含a、b的式子表示,则下列表示正确的是()A. 0.3abB. 3abC. 0.1abD. 0.1a3b6.已知是整数,则正整数k的最小值为()A. 1B. 2C. 4D. 87.计算( +1)2018×( −1)2017的结果是()A. 1B. −1C. +1D. −18.下列二次根式中是最简二次根式的是()A. B. C. D.9.计算()A. B. C. 3 D.10.下列运算正确的是()A. B. C. D.11.下列计算正确的是A. B. C. D.12.与2- 相乘,结果是1的数为( )A. B. 2- C. -2+ D. 2+二、填空题13.若式子在实数范围内有意义,则的取值范围是________.14.计算3 的结果是________.15.________.16.计算:________.17.计算:(3 +2 )(3 ﹣2 )=________.18.计算的结果是________.19.若最简二次根式与是同类二次根式,则x=________20.计算: =________.三、解答题21.计算:(1);(2);(3)-÷ ;(4)3 ÷ .22.计算题(1)(2)23.若x,y都是实数,且y=+1,求+3y的值.24.化简并求值:(1 ),其中x 1.25.观察下列各式:;;;……请你猜想:(1)________,________;(2)计算(请写出推导过程):.(3)请你将猜想到的规律用含有自然数n(n≥1)的代数式表达出来.________.参考答案一、选择题1. D2. B3.C4. B5.A6.B7.C8. A9. A 10. D 11. B 12. D二、填空题13. 14. 15. 16.17. 6 18. 3 19. 6 20.三、解答题21.(1)解:(2)解:(3)解:(4)解:22. (1)解:原式=(2)解:原式=23. 解:由题意得:,解得:x=4,则y=1,∴+3y=2+3=524. 解:原式• ,当x 1时,原式25.(1);(2)解:;(3)。

华东师大版九年级数学上册 第21章 二次根式 单元检测试题(有答案)

华东师大版九年级数学上册 第21章 二次根式 单元检测试题(有答案)

第21章 二次根式 单元检测试题(满分120分;时间:120分钟)一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )1. 下列二次根式中,属于最简二次根式的是( )A.√12B.√0.3C.√8D.√52. 已知:a 、b 均为实数,下列式子:①√5;②√a ;③√a 2+1;④√16;⑤√a 2−b 2.其中是二次根式是个数有( )个.A.1个B.2个C.3个D.4个3. 使二次根式 √2a +1 有意义的a 的取值范围是( )A.a ≠−12B.a ≥12C.a ≥−2D.a ≥−124. a =2−√3,b =2+√3,则a +b −ab 的值是( ) A.3B.4C.5D.2√3 5. (√3)2的值是( )A.√3B.3C.±3D.96. 下列各式计算正确的是( )A.√2+√3=√5B.3√2−√2=2√2C.2+√2=2√2D.√(−2)2=±27. 算式(√6+√10×√15)×√3之值为何?( )A.2√42B.12√5C.12√13D.18√28. 下列运算正确的是( )A. B. C.D.9. 已知√a 2−16−√a 2−24=2,则√a 2−16+√a 2−24的值是( )A.10B.16C.4D.610. 若一个三角形的一条边的长为√3+1,其面积为6,则这条边上的高为( )A.3√3B.6√3−6C.3√3+3D.6√3+6 二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , ) 11. √x +y 的有理化因式为________.12. 若√(1−m)2=m −1,则m ________.13. 计算:√2+1+√32=________.14. 若√6−3x 在实数范围内有意义,则x 的取值范围是________. 15. 在√49,√52,√b a ,−√0.6,√25x 5中,是最简二次根式的是________.16. 在√12,√1,√8,√27,√54中与√3是同类二次根式的有________.617. 设√2=m,√3=n,用含m,n的式子表示√12=________.18. 若矩形的长和宽分别为2√3+√2和2√3−√2,则矩形的对角线的长为________.19. (x+√5)(x−√5)=________.20. 如果最简根式√2x−5与x√15−3x是同类二次根式,那么x=________.三、解答题(本题共计6 小题,共计60分,)21. 计算:(1)√25−√(−3)2;).(2)√2(√8−√2+√1222. 如图,已知直角△ABC的两条边AC、AB的长分别为2√2+1和2√2−1,求斜边BC的长.23. 已知式子ab √−ab+a√−1a有意义,求:(1)a,b的取值范围;(2)化简这个式子.24. 当x取何值时,式子有意义?(1)√xx;(2)x+1.25. 计算:(1)√18÷√8;(2)√123÷√56;(3)√152√5;(4)2√x2y3√xy;(5)√a2b4c2.26. 计算:(1)√8+2√3−(√27−√2);(2)√23÷√223.参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】D【解答】解:√12=√22,被开方数含分母,不是最简二次根式;√0.3=√3010,被开方数含分母,不是最简二次根式;√8=2√2,被开方数中含能开得尽方的因数,不是最简二次根式;√5是最简二次根式,故选:D.2.【答案】C【解答】解:二次根式有①③④,共3个,故选C.3.【答案】D【解答】解:要使二次根式√2a+1有意义,则2a+1≥0,则a≥−12.故选D.4.【答案】A【解答】解;a=√3(2−√3)(2+√3)=2+√3,b=√3(2+√3)(2−√3)=2−√3,a+b−ab=2+√3+2−√3−(2+√3)(2−√3) =4−(4−3)=3,故选:A.5.【答案】B【解答】解:(√3)2=3.故选B.6.【答案】B【解答】解:A、不是同类二次根式不能相加,故A错误;B、系数相加被开方数不变,故B正确;C、不是同类二次根式不能相加,故C错误;D、√(−2)2=√22=2,故D错误;故选B.7.【答案】D【解答】解:原式=(√6+5√6)×√3=6√6×√3 =18√2,故选:D.8.【答案】B【解答】A.√5−√3≠√2,故A错误;B.√8−√2=2√2⋅√2=√2,故B正确;c.√419=√379=√373,故C错误;D.√(2−√5)2=|2−√5|=√5−2,故D错误.故选:B.9.【答案】C【解答】解:√a2−16−√a2−24=2两边平方,得a2−16−2√(a2−16)(a2−24)+a2−24=4,移项、合并同类项,得2√(a2−16)(a2−24)=2a2−44,2√(a2−16)(a2−24)=2a2−44(a2−16)(a2−24)=(a2−22)2a4−40a2+384=a4−44a2+4844a2=100a2=25;所以√a2−16+√a2−24=√[√a2−16+√a2−24]2=√a2−16+2√(a2−16)(a2−24)+a2−24=√2a2−40+2a2−44=√4a2−84=2√a2−21=2√25−21=4.故选C.10.【答案】B【解答】解:设这边上的高为ℎ,则12(√3+1)ℎ=6,ℎ=√3+1=√3−1)(√3+1)(√3−1)=6√3−6.故选B.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】√x+y【解答】二次根式的有理化的目的就是去掉根号,所以,√x+y的一个有理化因式是√x+y.12.【答案】≥1【解答】解:∵ √(1−m)2=|1−m|=m−1,∵ 1−m≤0,∵ m≥1.故答案为:m≥1.13.【答案】5√2−1【解答】+4√2原式=√2−1(√2+1)(√2−1)=√2−1+4√2=5√2−1.14.【答案】x≤2【解答】解:∵ √6−3x有意义,∵ 6−3x≥0,解得x≤2.故答案为:x≤2.15.【答案】√52【解答】解:√49=7,√ba =√aba,−√0.6=−√155,√25x2=5|x|,∵ √52是最简二次根式.故答案为:√52.16.【答案】√12,√27【解答】解:∵ √12=2 √3,√16=√66,√8=2√2,√27=3√3,√54=3√6,∵ 与√3是同类二次根式的是√12,√27.故应填:√12,√27.17.【答案】m2n【解答】解:∵ √12=2√3=(√2)2√3,√2=m,√3=n,∵ √12=m2n.18.【答案】2√7【解答】解:矩形的对角线=√(2√3+√2)2+(2√3−√2)2,=√12+4√6+2+12−4√6+2,=2√7.故答案为:2√7.19.【答案】x2−5【解答】解:原式=x2−(√5)2=x2−5.故答案为:x2−5.20.【答案】4【解答】解:∵ 最简根式√2x−5与x√15−3x是同类二次根式,∵ 2x−5=15−3x,解得,x=4.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:(1)原式=5−3=2;(2)原式=4−2+1=3.【解答】解:(1)原式=5−3=2;(2)原式=4−2+1=3.22.【答案】解:由勾股定理得:BC2=AC2+BC2=(2√2+1)(2√2−1)=(2√2)2−12=8−1=7,∵ 斜边BC的长为√7.【解答】解:由勾股定理得:BC2=AC2+BC2=(2√2+1)(2√2−1)=(2√2)2−12=8−1=7,∵ 斜边BC的长为√7.23.【答案】解:(1)由题意得,−ab >0,−1a>0,所以,a<0,b>0;(2)ab √−ab+a√−1a=ab⋅√−abb+a⋅√−a−a=a√−abb2−√−a.【解答】解:(1)由题意得,−ab >0,−1a>0,所以,a<0,b>0;(2)ab √−ab+a√−1a=ab⋅√−abb+a⋅√−a−a=a√−abb2−√−a.24.【答案】解:(1)由x≠0,x≥0.得x>0.当x>0时,√xx在实数范围内有意义;(2)由√x+1≠0,得x≥0.当x≥0时,√x+1有意义.【解答】解:(1)由x≠0,x≥0.得x>0.当x>0时,√xx在实数范围内有意义;(2)由√x+1≠0,得x≥0.当x≥0时,x+1有意义.25.【答案】解:(1)√18÷√8=√94=32;(2)√123÷√56=√53×65=√2;(3)√152√5=√5×√32√5=2√3; (4)2√x 2y 3√xy =√xy×√x 3√xy =2√x 3; (5)√a 2b 4c 2=a √b 2c (a ,c 同号),当a ,c 异号,原式=−a √b2c .【解答】 解:(1)√18÷√8=√94=32; (2)√123÷√56=√53×65=√2; (3)√152√5=√5×√32√5=2√3; (4)2√x 2y 3√xy =√xy×√x 3√xy =2√x 3; (5)√a 2b 4c 2=a √b 2c (a ,c 同号),当a ,c 异号,原式=−a √b 2c .26. 【答案】解:(1)√8+2√3−(√27−√2) =2√2+2√3−(3√3−√2)=2√2+2√3−3√3+√2=3√2−√3; (2)√23÷√223=√2√3√2√3 =√2√3√32√2 =12.【解答】解:(1)√8+2√3−(√27−√2) =2√2+2√3−(3√3−√2)=2√2+2√3−3√3+√2 =3√2−√3;(2)√23÷√223 =√2√32√2√3 =√2√3√32√2 =12.。

第21章 二次根式数学九年级上册-单元测试卷-华师大版(含答案)

第21章 二次根式数学九年级上册-单元测试卷-华师大版(含答案)

第21章二次根式数学九年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、二次根式在实数范围内有意义,则x应满足的条件是()A.x≥1B.x>1C.x>﹣1D.x≥﹣12、估计的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间.3、化简(a﹣1)的结果是()A. B. C.﹣ D.﹣4、下列根式中属最简二次根式的是()A. B. C. D.5、下列四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01;③计算(+ )=5;④如果点P(3﹣2n,1)到两坐标轴的距离相等,则n=1.其中是假命题的个数是()A.1个B.2个C.3个D.4个6、若在实数范围内有意义,则x()A.x<1且x≠-3B.x≤1C.x≠-3D.x≤1且x≠-37、下列运算正确的是()A. ﹣=B. + =4C. =3D. ×=8、下列各式正确的是( )A. =a+bB. =a 2C.D.9、已知下列各式,是最简二次根式的是()A. B. C. D.10、如图,在数轴上所表示的x的取值范围中,有意义的二次根式是()A. B. C. D.11、下列运算正确的是()A. B.2 = C. =3 D.12、下列根式中是最简二次根式的是()A. B. C. D.13、下列计算正确的是()A. B. C. D.14、下列式子中,正确的是().A. B. C. D.15、下列二次根式中,与的积为有理数的是( )A. B. C. D.二、填空题(共10题,共计30分)16、已知,那么x=________.17、计算:×=________.18、若实数a,b满足(a﹣2)2+ =0,则(a+b)2015=________.19、使是整数的最小正整数n=________.20、计算:= 2;=________ .21、要使二次根式在实数范围内有意义,则实数x的取值范围是________.22、计算:3÷的结果是________.23、计算的结果是________.24、已知x= +1,y= ﹣1,则(1+ )(1﹣)=________.25、若m= ,则m5﹣2m4﹣2011m3的值是________.三、解答题(共5题,共计25分)26、计算:+(-1)+27、计算:×÷.28、已知x=( +),y=( -),求代数式x2+xy+y2的值.29、先化简,再求值:,其中x= .30、设a= ,且b是a的小数部分,求的值.参考答案一、单选题(共15题,共计45分)1、A2、B3、D4、D5、D6、D7、D9、D10、B11、D12、D13、C14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、29、。

第21章 二次根式 华东师大版数学九年级上册单元测试卷(含答案)

第21章 二次根式 华东师大版数学九年级上册单元测试卷(含答案)

2022-2023学年度华师大版九年级数学第21章《二次根式》单元测试卷一、单选题(每小题3分,共30分)1.下列计算正确的是()A.5-4=1B.+=C.3=D.2+2=42.下列式子中,属于最简二次根式的是()A.B.C.D.3.我国南宋著名数学家秦九韶和古希腊几何学家海伦都曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.已知的三边长分别为4,5,7,则的面积为()A.B.C.D.84.如图,从一个大正方形中裁去面积为6cm2和15cm2的两个小正方形,则留下阴影部分的面积为()A.B.C.D.5.计算的结果是()A.B.3C.-3D.6.若与最简二次根式能合并,则m的值为()A.7B.9C.2D.17.若式子有意义,则x的取值范围为()A.x≤2B.x≤2且x≠1C.x≥2D.x≥18.在学完二次根式的乘除法之后,小明借助计算机完成了以下计算:,,,,……,通过计算,小明发现了其中规律,那么按照上述规律,计算的结果是()A.B.C.D.9.若=1﹣x,则x的取值范围是( )A.x>1B.x≥1C.x<1D.x≤110.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm 的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′,设Q点运动的时间t秒,若四边形QPBP′为菱形,则t的值为()A.2B.C.D.4二、二、填空题(每小题3分,共15分)11.计算的结果是_____.12.计算:所得的结果是_____.13.由四个全等的直角三角形组成如图所示的“赵爽弦图”,若直角三角形斜边长为2,较长直角边的长为,则图中阴影部分的面积为_________.14.如图,平行四边形ABCD的对角线AC与BD交于点O,AC⊥AB,若,,则BD的长为_______.15.如图所示,折叠矩形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD边与对角线BD重合,得折痕DG.若,,则AG的长是___________.三、解答题(本题8小题,满分75分)16.(8分)计算(1);(2).17.(9分)先化简,再求值:,其中.18.(9分)(1)在边长为cm的正方形的一角剪去一个边长为cm的小正方形,如图1,求图中阴影部分的面积;(2)小明是一位爱动脑筋的学生,他发现沿图1中的虚线将阴影部分前开,可拼成如图2的图形,请你根据小明的思路求图1中阴影部分的面积19.(9分)观察下列等式,解答后面的问题:第1个等式:;第2个等式:;第3个等式:;第4个等式:;……(1)请直接写出第5个等式___________;(2)根据上述规律猜想:若n为正整数,请用含n的式子表示第n个等式,并给予证明;(3)利用(2)的结论化简:.20.(9分)某居民小区有块形状为长方形ABCD的绿地,长方形绿地的长BC为83米,宽AB为米,现要在长方形绿地中修建一个长方形花坛(即图中阴影部分),长方形花坛的长为米,宽为米(1)长方形ABCD的周长是多少?(结果化为最简二次根式);(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为6元/m2的地砖,要铺完整个通道,则购买地砖需要花费多少元?(结果化为最简二次根式)21.(10分)秦九韶(1208年-1268年),字道古,汉族,生于普州安岳(今四川省安岳县)人,祖籍鲁郡(今河南范县).南宋著名数学家,与李冶、杨辉、朱世杰并称宋元数学四大家.他精研星象、音律、算术、诗词、弓剑、营造之学,是一位既重视理论又重视实践,既善于继承又勇于创新的世界著名数学家.他所提出的大衍求一术(中国剩余定理)和正负开方术及其名著《数书九章》,是中国数学史、乃至世界数学史上光彩夺目的一页,对后世数学发展产生了广泛的影响.他写的《数书九章》序堪称一篇奇文.秦九韶的数学成果丰硕,其中关于三角形的面积公式与古希腊几何学家海伦的成果统称海伦-秦九韶公式.如果一个三角形的三边长分别是a、b、c,记,那么三角形的面积为:(1)在△ABC中,BC=4,AC=AB=3,请用上面的公式计算△ABC的面积.(2)如图,在△ABC中,BC=6,AC=AB=7,AD⊥BC,垂足为D,∠ABC的平分线交AD 于点E.求BE的长.22.(10分)如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.23.(11分)观察猜想(1)观察猜想:①;②;③.通过上面三个计算,可以初步对任意的非负实数a,b做出猜想:;(2)验证结论:我们知道可以利用几何图形对一个等式进行验证,请你利用与下图全等的四个矩形,构造几何图形对你的猜想进行验证.(要求:画出构造的图形,写出验证过程)(3)结论应用:如图,某同学在做一个面积为800cm2,对角线相互垂直的四边形玩具时,用来做对角线的竹条至少要cm.第21章《二次根式》单元测试卷参考答案一、单选题1.C 2.B 3.A 4.A 5.D 6.D 7.B 8.B 9.D 10.A 二、填空题11.12.1 13.14.12 15.三、解答题16.(1)解:原式=====;(2)解:原式====.17.解:当x1时,原式.【点睛】本题主要考查了分式的化简求值,熟练掌握分式混合运算法则,二次根式混合运算法则,是解题的关键.18.解:(1)由题意得;(2)由题意得,图2中长方形的长为:,图2中长方形的宽为:,∴;19.(1)解:由题意,第五个等式为:;故答案为:(2)(n为正整数),证明:∵n为正整数,∴∴(n是正整数)又∵,∴左边=右边,∴猜想成立;(3)原.20.(1)解:长方形ABCD的周长(米),答:长方形ABCD的周长是米;(2)解:通道的面积(平方米),购买地砖需要花费(元).答:购买地砖需要花费元.21.(1)解:p=,∴;(2)解:如图,过点E作EF⊥AC,EH⊥AB,垂足为F,H.由角平分线的性质可得:ED=EH=EF.在△ABC中,BC=6,AC=AB=7,由海伦—秦九韶公式:求得p=△ABC的面积为:=.∴,即,;又∵AC=AB=7,AD⊥BC,垂足为D∴,∴在Rt∆BDE中,由勾股定理得:BE=.22.(1)证明:∵四边形ABCD是平行四边形,∴,∴,在与中∴,∴.(2)解:∵,∴,∴,∴,∴,∴,∵,,∴,∴,∴为等腰直角三角形,∴,∴,∵,∴,∴,∴,由(1),∴,∴,∴,23.(1)解:观察三个式子可得,猜想:a+b,故答案为:;(2)解:如图所示,将四个小长方形围城一个大正方形,且画为阴影,中间所围成的小正方形的边长为:,所围成的图形的面积为:,即,∴a+b;(3)解:设对角线的长分别为a厘米,b厘米,∵对角线互相垂直,四边形ABCD的面积为:,即,∴,∵a+b,.∴用来做对角线的竹条至少要用80厘米.。

华东师大版九上数学第21章 二次根式单元测试题及答案

华东师大版九上数学第21章 二次根式单元测试题及答案

华东师大版九上数学二次根式单元检测题姓名: 班级: 得分:(本检测题满分:100分,时间:120分钟)一、选择题(每小题2分,共24分)1.若3x -在实数范围内有意义,则x 的取值范围是( ) A.3x < B.3x ≤ C.3x > D.3x ≥2.在下列二次根式中,x 的取值范围是x ≥3的是( )A.3x -B.62x +C.26x -D.13x - 3.如果2(21)12a a -=-,那么( )A.a <12 B.a ≤12 C.a >12 D.a ≥12 4.下列二次根式,不能与12合并的是( )A.48B.18C.113D.75- 5. 如果最简二次根式38a -与172a -能够合并,那么a 的值为( )A.2B.3C.4D.56.已知25523y x x =-+--, 则2xy 的值为( )A.15-B.15C.152-D.1527.下列各式计算正确的是( )A.83236-=B.5352105+=C.432286⨯=D.422222÷=8.等式2111x x x -⋅+=-成立的条件是( )A.1x >B.1x <-C.1x ≥D.1x -≤9.下列运算正确的是( )A.532-=B.114293=C.822-=D.()22525-=-10.已知24n 是整数,则正整数n 的最小值是( )A.4B.5C.6D.211.如果代数式43x -有意义,那么x 的取值范围是( ) A.3x ≠ B.3x < C.3x > D.3x ≥12.下列说法正确的是( )A.ab a b =⋅B.32(0)a a a a -⋅=≠C.不等式21x ->的解集为1x >D.当0x >时,反比例函数k y x=的函数值y 随自变量x 取值的增大而减小 二、填空题(每小题3分,共18分)13.化简:23= ;2318(0,0)x y x y >> =_________. 14.比较大小:10 3;22π.15.(1123________;(2)计算1482= .16.已知a ,b 为两个连续的整数,且28a b <<,则a b += . 17.若实数y x ,满足22(3)0x y -+-=,则xy 的值为 .18.已知,a b 为有理数,,m n 分别表示57-的整数部分和小数部分, 且21amn bn +=,则2a b += .三、解答题(共58分)19.(8分)计算:(1)127123-+ ; (2)1(4875)13-⨯ .20.(8分)先化简,再求值:21121,1x x x x x ++⎛⎫-⋅ ⎪+⎝⎭其中2x =.21.(8分)先化简,再求值:(3)(3)(6)a a a a +---,其中1122a =+.22.(8分)已知23,23x y =-=+,求下列代数式的值:(1)222x xy y ++ ;(2)22x y -.23.(10分)一个三角形的三边长分别为54(1)求它的周长(要求结果化简);(2)请你给出一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.24.(8分)已知,a b为等腰三角形的两条边长,且,a b满足4b=,求此三角形的周长.25.(8分)阅读下面问题:1==;==2=.(1的值;(2+⋅⋅⋅+参考答案1.D 解析:由二次根式有意义的条件知30,x -≥即x ≥3.2.C 解析:对于选项A,有30x -≥,即3x ≤;对于选项B ,有 620x +≥,即3x -≥; 对于选项C,有260x -≥,即3x ≥;对于选项D,有103x >-,即3x >.故选C. 3.B12a -,知120a -≥,即12a ≤. 4.B,-,.5.D是 同类二次根式,所以38172a a -=-,解得5a =.6.A 解析:由题意,知250x -≥,520x -≥,所以52x =,3y =-,所以215xy =-. 7.C解析:因为,所以选项A不正确;因为式,不能合并,所以选项B 不正确;选项C正确;因为2,所以选项D 不 正确.8.C 解析:由题意,知210,10,10,x x x ⎧-⎪+⎨⎪-⎩≥≥≥所以1x ≥.9.C=10.C=n 的最小值为6.11.C 解析:由题意可知30x ->,即3x >.12.B 解析:对于选项0,0)a b =≥≥;对于选项C,解21x ->,得1x <; 对于选项D,未指明k 的取值情况.3; 因为0,0x y >>3=14.>,< 解析:因为109>3=.因为2π>9,28=,所以2π8>,即π.15.(1解析:(1=(2)0=.16.11 知5,6a b ==,所以11a b +=.17.解析:由题意知20,0x y -=,所以2,x y ==,所以xy =.18.2.5 解析:因为23<,所以52,小数部分是3所以2,3m n ==所以2(6(31a b -+=,即(6(161a b -+-=.整理,得6163)1a b a b +-+=.因为a ,b 为有理数,所以6161a b +=,30a b +=,所以 1.5a =,0.5b =-,所以2 2.5a b +=.19.解:(1=.(2)2=- .20.解:原式=1(1)x x +当x 时,10x +>1,x =+故原式=1(1)1(1)44x x x x x x +⋅==+21.解:((6)a a a a --223663a a a a =--+=-.当12a =12=+163332⎛=-=+= ⎝⎭22.解:(1)222222()(2(2416x xy y x y ⎡⎤++=+=+==⎣⎦.(2)22()()(2224(x y x y x y -=+-=-=⨯-=-23.解:(1)周长54==(2)当20x =时,周长25==.(答案不唯一,只要符合题意即可) 24.解:由题意可得30,260,a a -⎧⎨-⎩≥≥即,,a a ⎧⎨⎩≤3≥3所以3a =,4b =4=.当腰长为3时,三角形的三边长分别为3,3,4,周长为10;当腰长为4时,三角形的三边长分别为4,4,3,周长为11.25.解:(1=(2=(3+⋅⋅⋅+1)(99=++++-+11109=--+=.26.解:(1)223,2a m n b mn =+=(2)21,12,3,2(答案不唯一)(3)由题意得223,42.a m n mn ⎧=+⎨=⎩因为42mn =且,m n 为正整数,所以2,1m n ==或1,2m n ==.所以222317a =+⨯=或2213213a =+⨯=.。

华东师大版九年级数学上册 第21章 二次根式单元测试题含答案

华东师大版九年级数学上册 第21章 二次根式单元测试题含答案

华东师大版九年级数学上册 第21章 二次根式单元测试题一、选择题1.二次根式2x +4中x 的取值范围是( ) A .x <-2 B .x ≤-2 C .x >-2 D .x ≥-22.下列式子为最简二次根式的是( ) A. 5B.12C.a 2D.1a3.若2x -1+1-2x +1在实数范围内有意义,则x 满足的条件是( )A .x ≥12B .x ≤12C .x =12D .x ≠124.代数式3-x +1x -1中x 的取值范围在数轴上表示为( )图15.实数a ,b 在数轴上对应点的位置如图2所示,化简|a |+(a -b )2的结果是( )图2A .-2a +bB .2a -bC .-bD .b 6.下列选项中,正确的是( ) A.x -1有意义的条件是x >1 B. 8是最简二次根式 C. ()-22=-2 D. 323-24=- 6 7.下列计算:(1)(2)2=2,(2)(-2)2=2,(3)(-2 3)2=12,(4)(2+3)(2-3)=-1,其中结果正确的个数为( )A .1B .2C .3D .4 8.下列计算正确的是( )A .310-2 5= 5 B.711×⎝⎛⎭⎫117÷111=11 C .(75-15)÷3=2 5 D.13 18-3 89= 2 二、填空题9.若式子2-x +x -1有意义,则x 的取值范围是________. 10.计算6 5-1015的结果是________. 11. 12与最简二次根式5a +1是同类二次根式,则a =________.12.计算:33+|3-2|-⎝⎛⎭⎫12-1=________.13.计算(4+7)(4-7)的结果等于________. 14.计算12+8×6的结果是________.15.如图3,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是2 3和2,则图中阴影部分的面积是________.图316.当-1<a <0时,则⎝⎛⎭⎫a +1a 2-4-⎝⎛⎭⎫a -1a 2+4=________. 174的程序中,则输出的结果是________.图418.观察下列各式: 1+112+122=1+11×2, 1+122+132=1+12×3, 1+132+142=1+13×4, …请利用你所发现的规律,计算1+112+122+1+122+132+1+132+142+…+1+192+1102,其结果为________.三、解答题 19.计算:(1)2 (3+2)2-48+2-2;(2) 9-25÷23+|-1|×5-(π-3.14)0.20.先化简,再求值:(x +y )(x -y )+y (x +2y )-(x -y )2,其中x =2+3,y =2- 3.21.先化简,再求值:m 2-4m +4m -1÷⎝⎛⎭⎫3m -1-m -1,其中m =2-2.答案1. D 2. A 3. C 4. A 5. A 6.D 7. D 8. B 9. 1≤x ≤2 10. 4 5 11. 2 12. 0 13. 9 14. 6 3 15. 2 16. 2a 17. 7 18. 991019.解:(1)原式=3+4 3+4-4 3+14=294. (2)原式=3-32÷8+5-1 =3-4+5-1 =3.20.解:原式=x 2-y 2+xy +2y 2-x 2+2xy -y 2=3xy . 当x =2+3,y =2-3时, 原式=3×(2+3)×(2-3)=3.21.解:原式=(m -2)2m -1÷3-m 2+1m -1=(m -2)2m -1÷(2+m )(2-m )m -1=(m -2)2m -1·m -1(2+m )(2-m )=2-m2+m. 当m =2-2时,原式=2-2+22+2-2=4-22=2 2-1.。

第21章 二次根式数学九年级上册-单元测试卷-华师大版(含答案)

第21章 二次根式数学九年级上册-单元测试卷-华师大版(含答案)

第21章二次根式数学九年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、在中,最简二次根式的个数为()A.1个B.2个C.3个D.4个2、下列各式计算正确的是()A.3 ﹣=3B.2+ =2C. =2D.=43、要使分式有意义,的取值范围是()A. B. C. D. 且4、下列运算正确的是()A. + =B. - =1C. =D.=5、下列二次根式是最简二次根式的是()A. B. C. D.6、下列计算正确的是()A. B. C. D.7、当a=﹣3时,下列式子有意义的是()A. B. C. D.8、与是同类二次根式的是()A. B. C. &nbsp; D.9、下列计算正确的是( )A. B. C. D.10、下列式子中:①;②;③;④;⑤;⑥.其中是二次根式的有()A.2个B.3个C.4个D.5个11、抛物线y=x2-2x+a2的顶点在直线y=2上,则a的值为()A.-2B.2C.±2D.无法确定12、如果是任意实数,下列各式中一定有意义的是()A. B. C. D.13、下列运算正确的是( )A. B. &nbsp; C.D.14、下列算式中,运算错误的是()A. B.C. D. =315、下列运算正确的是()A. ﹣=B. + =4C. =3D. ×=二、填空题(共10题,共计30分)16、在式子,,中,________是最简二次根式.17、若有意义,则=________.18、使等式成立的x的取值范围是________19、计算=________.20、计算:÷=________21、如果,则的值为________.22、如果最简二次根式与是同类二次根式,则a=________.23、已知:一元二次方程ax2+bx+c=0的一个根为1,且满足 b= +3,则a=________,b=________,c=________.24、化简=________.25、分母有理化:________三、解答题(共5题,共计25分)26、()()27、是否存在整数x,使它同时满足下列两个条件:①与都有意义;②的值是整数?若存在,求出x的值;若不存在,请说明理由.28、已知a、b分别为等腰三角形的两条边长,且a、b满足,求此三角形的周长.29、观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.30、已知:,求参考答案一、单选题(共15题,共计45分)1、A2、C4、C5、C6、B7、B8、D9、A10、B11、B12、C13、B14、C15、D二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

第21章 二次根式数学九年级上册-单元测试卷-华师大版(含答案)

第21章 二次根式数学九年级上册-单元测试卷-华师大版(含答案)

第21章二次根式数学九年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、使二次根式有意义的x的取值范围是()A.x≠2B.x>2C.x≤2D.x≥22、下列二次根式能与合并的是( )A. B. C. D.3、使式子在实数范围内有意义的整数x有()A.5个B.3个C.4个D.2个4、若式子在实数范围内有意义,则的取值范围是()A. B. C. D.5、下列计算中,正确是( )A. B. C. D.6、下列二次根式中,最简二次根式是()A. B. C. D.7、若是二次根式,则x的取值范围是A.x>2B.x≥2C.x<2D.x≠28、若代数式在实数范围内有意义,则x的取值范围是()A.x≥2B.x>2C.x≠2D.9、若式子在实数范围内有意义,则x的取值范围是()A.x≥B.x>C.x≥D.x>10、下列二次根式中,最简二次根式的是A. B. C. D.11、式子在实数范围内有意义,则的取值范围是()A. B. C. D.12、下列计算正确的是()A. B. C. D.13、下列二次根式中,是最简二次根式的是()A. B. C. D.14、函数的自变量x的取值范围是()A.x>1B.x<1C.x≥1D.x=115、9的算术平方根是()A. 3B.﹣3C.±3D.二、填空题(共10题,共计30分)16、若,则________.17、当a=________时,最简二次根式与是同类二次根式.18、如果,那么值是________.19、若二次根式在实数范围内有意义,则x的取值范围是________.20、 =________.21、计算:= 2;=________ .22、已知x= +1,则x2﹣2x﹣3=________.23、观察下列等式:①;②③…参照上面等式计算方法计算:________.24、设,那么的整数部分是________.25、要使代数式有意义,则x的取值范围是________ .三、解答题(共5题,共计25分)26、先化简,再求(1+x)的值;其中x满足= ,且x为偶数.27、在下列各式中,哪些是最简二次根式?哪些不是?对不是最简二次根式的进行化简.(1)(2)(3)(4)(5).28、计算:.29、已知x= +1,求代数式x2﹣2x﹣4的值.30、先阅读,后回答问题x为何值时有意义?解:要使有意义需x(x﹣1)≥0由乘法法则得或解之得:x≥1 或x≤0即当x≥1 或x≤0时,有意义体会解题思想后,解答,x为何值时有意义?参考答案一、单选题(共15题,共计45分)1、D2、D3、C4、B5、B6、B7、B8、A9、A10、C11、C12、C13、B14、C15、A二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

九年级上册数学单元测试卷-第21章 二次根式-华师大版(含答案)

九年级上册数学单元测试卷-第21章 二次根式-华师大版(含答案)

九年级上册数学单元测试卷-第21章二次根式-华师大版(含答案)一、单选题(共15题,共计45分)1、要使有意义,则( )A. B. C. D.2、下列计算正确的是( )A.5 -2 =3B.2 ×3 =6C. +2 =3 D.3 ÷=33、下列二次根式中,最简二次根式是()A. B. C. D.4、式子y= 中x的取值范围是()A.x≥0B.x≥0且x≠1C.0≤x<1D.x>15、下列各式计算正确的是()A.m 2•m 3=m 6B.C.D. (a<1)6、下列式子中,属于最简二次根式的是()A. B. C. D.7、在算式的□中填上运算符号,使结果最大,这个运算符号是()A.加号B.减号C.乘号D.除号8、估计的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间.9、下列函数中,自变量x的取值范围是x≥2的是()A. B. C. D.10、在式子,,,中,可以同时取1和2的是()A. B. C. D.11、下列计算错误的是()A. ·=B.C. ÷=2D.12、下列各式:,(x≥),,,其中一定是二次根式的有()A.1个B.2个C.3个D.4个13、当a≥0时,、、,比较他们的结果,下面四个选项中正确的是()A. = ≥B. > >C. << D. > =14、已知x+=,则x-的值为()A. B.±2 C.± D.15、二次根式中,字母a的取值范围是( )A.a≥6B.a≤6C.a>6D.a<6二、填空题(共10题,共计30分)16、已知(2a+b与互为相反数,则=________.17、如果+(y﹣2017)2=0,则x y________.18、若=2.449,=7.746,=244.9,=0.7746,则x=________,y=________.19、计算的结果是________.20、二次根式中的x的取值范围是________。

华东师大版九年级数学上册 第21章 二次根式 单元测试卷(有答案)

华东师大版九年级数学上册 第21章 二次根式 单元测试卷(有答案)

华师大版九年级数学上册第21章二次根式单元测试卷一、选择题(本大题共10小题,共30分)1.若二次根式√3−a有意义,则a的取值范围是()A. a>3B. a≥3C. a≤3D. a≠32.下列式子中,属于最简二次根式的是()A. √9B. √7C. √20D. √133.下列根式中,能与√3合并的二次根式为()A. √24B. √32C. √12D. √184.下列计算正确的是()A. √(−3)2=−3B. √2+√3=√5C. √414=212D. √8÷√2=25.化简√27+√3−√12的结果为()A. 0B. 2C. −2√3D. 2√36.下列计算正确的是()A. √6÷(√3−√2)=√2−√3B. √(−9)×(−25)=√−9×√−25=(−3)×(−5)=15C. √2(√3+√2)=√10D. √132−122=√(13+12)×(13−12)=57.若1≤x≤4,则化简|1−x|−√x2−8x+16的结果是()A. 2x−5B. 3C. 3−2xD. −38.已知m=1+√2,n=1−√2,则代数式√m2+n2−mn的值()A. 1B. √7C. 7D. 39.按下列程序计算,“a→立方→−a→÷a→+1→答案”,最后输出的答案是()A. a3B. a2+1C. a2D. a10.如图,将1、√2、√3三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,则(8,2)与(2020,2020)表示的两个数的积是()1/ 12A. √6B. √3C. √2D. 1二、填空题(本大题共6小题,共18分)11.二次根式√1−x有意义的条件是_____.−2√45)÷(−√5)的结果为_____.12.11.计算(√513.比较大小√10______3√2(填“>”、“<”或“=”);14.计算:2√12−6√1+3√48=______ .315.计算:√3×√2=______.16.计算:(√5−2)2018(√5+2)2019的结果是______.三、计算题(本大题共2小题,共16分)17.计算:(√17−√14)(√17+√14)18.已知a,b,c为实数且c=√a−3+√3−a−√−(b+1)2+2−√5,求代数式c2−ab的值.四、解答题(本大题共4小题,共36分)19.已知x=√6+2√2,y=√6−2√2,求x2−y2的值.20.已知:a、b、c是△ABC的三边长,化简√(a+b+c)2−√(b+c−a)2+√(c−b−a)2.(a+b+c),根据海伦公式S= 21.一个三角形三边的长分别为a,b,c,设p=12√p(p−a)(p−b)(p−c)可以求出这个三角形的面积.若a=4,b=5,c=6,求:(1)三角形的面积S;(2)长为c的边上的高h.3/ 1222.阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170~1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果.在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用1√5[(1+√52)n−(1−√52)n]表示(其中n≥1),这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.答案和解析1.【答案】C【解析】【分析】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.根据被开方数是非负数,可得答案.【解答】解:由题意,得3−a≥0,解得a≤3,故选:C.2.【答案】B【解析】解:A、√9=3,故A错误;B、√7是最简二次根式,故B正确;C、√20=2√5,不是最简二次根式,故C错误;D、√13=√33,不是最简二次根式,故D错误;故选:B.判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3.【答案】C【解析】【分析】此题主要考查了同类二次根式,正确化简二次根式是解题关键.分别化简二次根式进而得出能否与√3合并.5/ 12【解答】解:A、√24=2√6,故不能与√3合并,不合题意;B、√32=√62,不能与√3合并,不合题意;C、√12=2√3,能与√3合并,符合题意,D、√18=3√2,不能与√3合并,不合题意;故选C.4.【答案】D【解析】解:A、原式=3,所以A选项错误;B、√2与√3不能合并,所以B选项错误;C、原式=√174=√172,所以C选项错误;D、原式=√8÷2=2,所以D选项正确.故选:D.利用二次根式的性质对A、C进行判断;根据二次根式的加减法对B进行判断;利用二次根式的除法法则对D进行判断.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.【答案】D【解析】解:√27+√3−√12=3√3+√3−2√3=2√3,故选:D.根据根式的开方,可化简二次根式,根据二次根式的加减,可得答案.本题考查了二次根式的加减,先化简,再加减运算.6.【答案】D【解析】解:A、原式=√6√3−√2=√6(√3+√2)=3√2+2√3,所以A选项错误;B、原式=√9×25=3×5=15,所以B选项错误;C、原式=√6+2,所以C选项错误;D、原式=√(13+12)(13−12)=√25=5,所以D选项正确.故选:D.利用分母有理化对A进行判断;根据二次根式的乘法法则对B、C、D进行判断.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7.【答案】A【解析】解:∵1≤x≤4,∴|1−x|−√x2−8x+16=x−1−(4−x)=2x−5.故选:A.直接利用二次根式以及绝对值的性质化简得出答案.此题主要考查了绝对值的性质以及二次根式的性质,正确开平方是解题关键.8.【答案】B【解析】【分析】本题考查了二次根式的化简求值,正确理解完全平方公式,对所求的式子进行变形是关键.把所求的式子化成√(m+n)2−3mn的形式,然后代入求解即可.【解答】解:原式=√(m+n)2−3mn=√22−3×(1+√2)(1−√2)=√4+3=√7.故答案是:√7.故选B.9.【答案】C【解析】【分析】此题考查整式的混合运算,解题的关键是熟练掌握整式的混合运算法则,较为简单.根据题意按顺序列出式子进行解答即可.【解答】解:根据题意可得(a3−a)÷a+1=a2−1+1=a2,7/ 12故选C.10.【答案】B【解析】【分析】本题考查了数字的变化类,利用了数字的变化规律.根据观察数列,可得,每三个数一循环,根据有序数对的表示方法,可得有序数对表示的数,根据是数的运算,可得答案【解答】解:每三个数一循环:1、√2、√3,则前7排共有1+2+3+4+5+6+7=28个数,因此(8,2)在排列中是第28+2=30个,30÷3=10,(8,2)表示的数正好是第10轮的最后一个,即(8,2)表示的数是√3,前2014排共有1+2+3…+2014=(1+2014)×2014÷2=2029105个数,2029105÷3=676368…1,(2014,2014)表示的数正好是第676369轮的一个数,即(2014,2014)表示的数是1,∴(8,2)与(2014,2014)表示的两个数的积是√3×1=√3.故选B.11.【答案】x≤1【解析】[分析]根据二次根式中被开方数为非负数求解即可.[详解]由题意得1−x≥0,x≤1.故答案为:x≤1.[点睛]本题考查的是二次根式的条件,掌握二次根式中被开方数为非负数是解题的关键.12.【答案】5【解析】分析:用括号中的每一项分别与−√5相除,然后把所得结果相加即可.详解:2√45)÷(−√5)(√5÷(−√5)−2√45÷(−√5)=−1+6=5.=√5故答案是:5.点睛:考查了二次根式的混合运算,掌握二次根式的混合运算的顺序是解题的关键.13.【答案】<【解析】解:∵3√2=√18,√10<√18,∴√10<3√2,故答案为:<.根据3√2=√18,√10<√18,即可得到结论.此题主要考查了实数大小比较的方法,解答此题的关键是要明确:正实数>0>负实数,两个负实数比较时绝对值大的反而小.14.【答案】14√3【解析】解:原式=4√3−2√3+12√3=14√3.故答案是:14√3.首先对二次根式进行化简,然后合并同类二次根式即可求解.主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.在进行二次根式的运算时要先化简再计算可使计算简便.15.【答案】√69/ 12【解析】解:√3×√2=√3×2=√6.故答案为:√6.根据二次根式的乘法法则计算.考查二次根式的乘法法则:√a⋅√b=√ab(a≥0,b≥0).16.【答案】√5+2【解析】【解答】解:原式=[(√5−2)(√5+2)]2018⋅(√5+2)=(5−4)2018⋅(√5+2)=√5+2,故答案为√5+2.【分析】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.先根据积的乘方得到原式=[(√5−2)(√5+2)]2018⋅(√5+2),然后利用平方差公式计算.17.【答案】解:原式=17−14=3.【解析】利用平方差公式计算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【答案】解:根据二次根式有意义的条件可得:{a−3≥03−a≥0−(b+1)2≥0,∴a=3,b=−1,∴c=2−√5代入代数式c2−ab得:原式=(2−√5)2−3×(−1),=12−4√5.【解析】先依据二次根式有意义的条件,求得a、b的值,然后再代入计算即可.本题主要考查的是二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.19.【答案】解:x2−y2=(x+y)(x−y).∵x=√6+2√2,y=√6−2√2,∴x+y=(√6+2√2)+(√6−2√2)=2√6,x−y=(√6+2√2)−(√6−2√2)=4√2,∴x2−y2=(x+y)(x−y)=2√6×4√2=8√12=16√3.【解析】本题考查了二次根式的混合运算,平方差公式,掌握公式与运算法则是解题的关键.根据平方差公式可得x2−y2=(x+y)(x−y),再把x=√6+2√2,y=√6−2√2代入,分别求出x+y,x−y,然后相乘即可.20.【答案】解:∵a、b、c是△ABC的三边长,∴a+b>c,b+c>a,b+a>c,∴原式=|a+b+c|−|b+c−a|+|c−b−a|=a+b+c−(b+c−a)+(b+a−c)=a+b+c−b−c+a+b+a−c=3a+b−c.【解析】根据三角形的三边关系定理得出a+b>c,b+c>a,b+a>c,根据二次根式的性质得出含有绝对值的式子,最后去绝对值符号后合并即可.本题考查了合并同类项,二次根式的性质,绝对值的应用,关键是去掉绝对值符号.21.【答案】解:(1)p=12(4+5+6)=152.p−a=152−4=72,p−b=152−5=52,p−c=152−6=32.S=√p(p−a)(p−b)(p−c)=√152×72×52×32=15√74;(2)∵S=12cℎ,11/ 12∴ℎ=2Sc =2×15√74÷6=5√74.【解析】(1)先根据a、b、c的值求出p,再代入公式计算可得;(2)由题意得出12cℎ=15√74,解之可得.本题主要考查二次根式的应用,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.22.【答案】解:第1个数,当n=1时,√5[(1+√52)n−(1−√52)n]=1√5(1+√52−1−√52)=√5√5 =1.第2个数,当n=2时,1√5[(1+√52)n−(1−√52)n]=√5[(1+√52)2−(1−√52)2]=√5(1+√52+1−√52)(1+√52−1−√52)=1√51×√5=1.【解析】此题考查二次根式的混合运算与化简求值,理解题意,找出运算的方法是解决问题的关键.分别把1、2代入式子化简求得答案即可.。

华东师大版九年级数学上册 第21章 二次根式 单元测试题(有答案)

华东师大版九年级数学上册 第21章  二次根式 单元测试题(有答案)

第21章二次根式单元测试题(满分120分;时间:120分钟)一、选择题(本题共计9 小题,每题3 分,共计27分,)1. 化简√(−4)2的结果是()A.−4B.4C.±4D.162. 给出下列各数:①1+√5②1−√5③−1④√5,其中是方程x2−(1+√5)x+√5= 0的解的个数有()A.1个B.2个C.3个D.0个3. 下列二次根式中,最简二次根式是()D.√0.2A.√a2+1B.√5a2C.√a54. 化简(√2−x)2+√(x−3)2的结果为()A.−1B.2x−5C.1D.5−2x5. 已知x=√3+1,y=√3−1,则代数式√x2+y2的值为()A.2√3B.2√2C.4D.±2√26. 化简二次根式的正确结果是()A. B. C. D.7. 化简+-的结果为()A.0B.2C.−2D.28. 下列计算正确的是()A.√12−√3=√3B.a6÷a3=a2C.(a+b)2=a2+b2D.2a+3b=5ab9. 已知a为实数,则代数式√27−12a+2a2的最小值为()A.0B.3C.3√3D.9二、填空题(本题共计9 小题,每题3 分,共计27分,)10. 在√16√28√23√15中,是最简二次根式的是________.11. 计算(√5−√7)(√5+√7)+2的结果等于________.12. 若等式√2m−1m−3=√2m−1√m−3成立,则m的取值范围是________.13. 在实数范围内,使二次根式√3−a有意义的a的取值范围是a________.14. 若矩形的长为(√12+√3)cm,宽为√3cm,则此矩形的面积为________cm2.15. 二次根式√2x+4中x的取值范围是________.16. 若二次根式√3x−2有意义,则x的取值范围为________.17. 计算(2√12−√13)×√6=________.18. 化简并计算:√x(√x+1)(√x+1)(√x+2)(√x+2)(√x+3)(√x+19)(√x+20)=________.(结果中分母不含根式)三、解答题(本题共计7 小题,共计66分,)19. 设长方形的面积为S,相邻两边分别为a,b(1)已知a=√8,b=√12,求S;(2)已知a=2√50,b=3√32,求S.20. 已知√25−x2−√15+x2=4,求√25−x2×√15+x2的值.21. 若最简二次根式32√4a2+1与23√6a2−1是同类二次根式,求a的值.22. 计算:(1)(√7)2(2)(−√7)2(3)√(−7)2(4)−√(±7)2(5)√(−2)2−√4(6)√(√3−√2)2 (7)√(3−π)2(8)√x2−2x+1(x≥1).23. 计算:(1)√412−402√32+42(2)100√x5y0.5√x2y(3)√245÷32√135(4)√ab (√ba÷√1b).24. 计算.(1)√20+√32−(√5+2√2).(2)√75×√63÷√2.(3)(√2+√3)2−√24.(4)√2(√2+1)(√7+√3)(√7−√3).25. 阅读材料,解答下列问题.例:当a>0时,如a=6则|a|=|6|=6,故此时a的绝对值是它本身;当a=0时,|a|=0,故此时a的绝对值是零;当a<0时,如a=−6则|a|=|−6|=−(−6),故此时a的绝对值是它的相反数.∴ 综合起来一个数的绝对值要分三种情况,即|a|={a(a>0) 0(a=0)−a(a<0),这种分析方法渗透了数学的分类讨论思想.问:((1))请仿照例中的分类讨论的方法,分析二次根式√a2的各种展开的情况;(2)猜想√a2与|a|的大小关系.参考答案与试题解析一、选择题(本题共计9 小题,每题 3 分,共计27分)1.【答案】B【解答】解:√(−4)2=√16=4.故选B.2.【答案】A【解答】x2−(1+√5)x+√5=0(x−1)(x−√5)=0,解得;x1=1,x2=√5,故①1+√5②1−√5③−1④√5,其中√5是方程x2−(1+√5)x+√5=0的解.3.【答案】A【解答】解:A、√a2+1是最简二次根式;B、√5a2=√5a,被开方数含能开得尽方的因数,不是最简二次根式;C、√a5=√5a5,被开方数含分母,不是最简二次根式;D、√0.2=√210=√55,被开方数含分母,不是最简二次根式.故选A.4.【答案】D【解答】解:∴ √2−x有意义,∴ 2−x≥0,∴ x≤2,∴ x−3<0,∴ (√2−x)2+√(x−3)2=2−x+3−x =5−2x.故选D.5.【答案】B【解答】解:当x=√3+1,y=√3−1时,√x2+y2=√(√3+1)2+(√3−1)2=√8=2√2.故选:B.6.【答案】C【解答】解:…二次根式√−a3有意义,则−a3≥0,即a≤0…原式=√−a3=−a√−a故选:C.7.【答案】D【解答】此题暂无解答8.【答案】A【解答】A、√12−√3=√3,故此选项正确;B、a6÷a3=a3,故此选项错误;C、(a+b)2=a2+b2+2ab,故此选项错误;D、2a+3b无法计算,故此选项错误;9.【答案】B【解答】∴ 原式=√27−12a+2a2=√2(a2−6a+9)+9=√2(a−3)2+9∴ 当(a−3)2=0,即a=3时代数式√27−12a+2a2的值最小,为√9即3二、填空题(本题共计9 小题,每题 3 分,共计27分)10.【答案】√15【解答】√16=4,不是最简二次根式;√28=2√7,不是最简二次根式;√2 3=√63,不是最简二次根式;√15,是最简二次根式;11.【答案】【解答】解:(√5−√7)(√5+√7)+2=5−7+2 =0,故答案为:0.12.【答案】m>3【解答】解:∴ 等式√2m−1m−3=√2m−1√m−3成立,∴ 2m−1≥0,且m−3>0;解得m>3.故答案为:m>3.13.【答案】≤3【解答】解:根据题意得:3−a≥0,解得:a≤3.故答案是:a≤3.14.【答案】9【解答】解:此矩形的面积=(√12+√3)√3,=√36+√3×√3,=6+3,=9cm2.故答案为:9.15.【答案】x≥−2【解答】略16.【答案】x≥2 3【解答】此题暂无解答17.【答案】11√2【解答】原式=2√12×6−√13×6=12√2−√2=11√2.18.【答案】400√x−20x400x−x2【解答】解:原式=x x+1x+1x+2x+19x+20=x x+20=x(x+20)=400√x−20x400x−x2.故答案为:400√x−20x400x−x2.三、解答题(本题共计7 小题,每题10 分,共计70分)19.【答案】∴ a=√8,b=√12,∴ S=ab=√8×√12=4√6.∴ a=2√50,b=3√32,∴ S=2√50×3√32=6√25×2×16×2=6×5×2×4=240.【解答】∴ a=√8,b=√12,∴ S=ab=√8×√12=4√6.∴ a=2√50,b=3√32,∴ S=2√50×3√32=6√25×2×16×2=6×5×2×4=240.20.【答案】解:∴ √25−x2−√15+x2=4,∴ (√25−x2−√15+x2)2=42,∴ 25−x2+15+x2−2√25−x2×√15+x2=16,故√25−x2×√15+x2=12.【解答】解:∴ √25−x2−√15+x2=4,∴ (√25−x2−√15+x2)2=42,∴ 25−x2+15+x2−2√25−x2×√15+x2=16,故√25−x2×√15+x2=12.21.【答案】a的值为±1.【解答】解:∴ 最简二次根式32√4a2+1与23√6a2−1是同类二次根式,∴ 4a2+1=6a2−1,解得:a=±1,22.【答案】解:(1)(√7)2=7;(2)(√7)2=7;(3)(√(−7)2)2=7;(4)−√(±7)2=−7;(5)√(−2)2−√4=2−2=0;(6)√(√3−√2)2=√3−√2;(7)√(3−π)2=π−3;(8)∴ x≥1,∴ √x2−2x+1=√(x−1)2=x−1.【解答】解:(1)(√7)2=7;(2)(√7)2=7;(3)(√(−7)2)2=7;(4)−√(±7)2=−7;(5)√(−2)2−√4=2−2=0;(6)√(√3−√2)2=√3−√2;(7)√(3−π)2=π−3;(8)∴ x≥1,∴ √x2−2x+1=√(x−1)2=x−1.23.【答案】解:(1)原式=√81×15=95;(2)原式=200√x3=200x√x;(3)原式=23√245×58=23×16=19;(4)原式=√ab ×b2a=√b.【解答】解:(1)原式=√81×15=95;(2)原式=200√x3=200x√x;(3)原式=23√245×58=23×16=19;(4)原式=√ab ×b2a=√b.24.【答案】原式=2√5+4√2−√5−2√2=2√2+√5;原式=5√3×√63÷√2=5√2÷√2=5;原式=5+2√6−2√6=5;原式=8+4√27−3=2+√2.【解答】原式=2√5+4√2−√5−2√2=2√2+√5;原式=5√3×√63÷√2=5√2÷√2=5;原式=5+2√6−2√6=5;原式=8+4√27−3=2+√2.25.【答案】由题意可得√a2={a(a>0)−a(a<0)0(a=0);由(1)可得:√a2=|a|.【解答】由题意可得√a2={a(a>0)−a(a<0)0(a=0);由(1)可得:√a2=|a|.。

华东师大版九年级数学上册《第二十一章二次根式》单元测试卷及答案

华东师大版九年级数学上册《第二十一章二次根式》单元测试卷及答案

华东师大版九年级数学上册《第二十一章二次根式》单元测试卷及答案一、单选题1.下列计算正确的是()A.√2+√3=√5B.√8=4√2C.3√2−√2=3D.√2×√3=√62.下列根式中是最简二次根式的是()A.√8B.√1C.√12D.√1323.下列二次根式中,能与√2合并的是()A.√48B.√20C.√18D.√234.在√2−x中,x的取值范围是()A.x≤−2B.x≥−2C.x≥2D.x≤25.下列二次根式中,与√3是同类二次根式的是()A.√12B.√18C.√6D.√0.36.若a=√3,b=√2,则√6可以表示为()A.ab B.√ab C.ab2D.a2b7.化简(√3−2)2022•(√3+2)2023的结果为()A.﹣√3﹣2B.√3﹣2C.√3+2D.﹣18.在图示的方格中,横向、纵向及对角线方向上的实数相乘都得出同样的结果,则两个空格中的实数之和为()2√313√626√3A.2√2B.3√2C.4√2D.4√39.实数a在数轴上的位置如图所示,则√(a-3)2-√(a-12)2化简后为()A.9B.﹣9C.2a﹣15D.无法确定10.观察下列式子√223=2√23,√338=3√38,√4415=4√415⋅⋅⋅找出其中规律,用字母n表示第n个式子正确的是()A.√n nn2−1=n√nn2−1B.√(n+1)n+1(n+1)2−1=(n+1)√n+1(n+1)2−1C.√n+nn2−1=n√nn2−1D.√(n+1)+n+1(n+1)2−1=(n+1)√n+1(n+1)2−1二、填空题11.计算√12−√34的结果是.12.计算:√8﹣2√12=,√a2×√−a2b3=.13.当a取值范围为时,√a+2a−7=√a+2√a−7.14.已知a,b是两个连续的整数,若a<√7<b,则√a−1+√b+5= .15.现有一个体积为120√3cm3的长方体,它的高为2√15cm,长为3√10cm,则这个长方体的宽为cm. 16.若a,b,c是△ABC的三边长,化简√(a+b−c)2+|a−b−c|的值为.17.已知x=√6+√3,y=√6−√3,那么x2−xy的值为.18.对于任意不相等的两个实数a,b,定义一种算法a⊗b=√a−ba+b ,例如:6⊗5=√6−56+5=111,12⊗8=三、解答题19.计算(1)√12+3√3−(√27−1)(2)√35÷√223×√85(3)(√5+√2)(√5−√2)−(√2+1)2(4)(√5−√6)2022(√5+√6)202320.先化简,再求值:4aa2−4÷(1+a−2a+2),其中a=√3+2.21.已知a=√2+1,b=√2−1,求下列式子的值:(1)a2−b2;(2)1a +1b.22.如图,张大伯家有一块长方形空地ABCD,长方形空地的长BC为√72m,宽AB为√32m,现要在空地中划出一块长方形地养鸡(即图中阴影部分),其余部分种植蔬菜,长方形养鸡场的长为(√13+1)m,宽为(√13−1)m.(1)长方形ABCD的周长是多少?(结果化为最简二次根式)(2)若市场上某种蔬菜10元/千克,张大伯种植该种蔬菜,每平方米可以产20千克的蔬菜,张大伯如果将所种蔬菜全部销售完,销售收入为多少元?23.观察下列一组式的变形过程,然后回答问题:例√2+1=√2−1(√2+1)(√2−1)=√2−1(√2)2−1=√2−11=√2−1例√3+√2=√3−√2,√4+√3=√4−√3(1)√6+√5=;√100+√99=(2)请你用含n(n为正整数)的关系式表示上述各式子的变形规律.(3)利用上面的结论,求下列式子的值.√2+1√3+√2√4+√3+⋯√100+√99.参考答案:1.D2.D3.C4.D5.A6.A7.C8.C9.C10.D11.32√312.√2−a2b√−b13.a>714.1+2√215.2√216.2b17.6√2+618.11019.(1)2√3+1(2)35(3)−2√2(4)√5+√620.2a−221.(1)4√2(2)2√222.(1)20√2m(2)7200元=√n+1−√n(3)9 23.(1)√6−√5,10−3√11(2)√n+1+√n。

华师大版九年级数学上 第21章 二次根式测试题(含答案)

华师大版九年级数学上 第21章 二次根式测试题(含答案)

第21章二次根式测试题一、单选题1、下列各式中最简二次根式为( )A.B.C.D.2、下列计算中,正确的是A.B.C.D.3、下列各式中,正确的是()A.B.C.D.4、下列根式中,与是同类二次根式的是:A.B.C.D.5、如果1≤≤,则的值是()A.B.C.D.16、已知m=1+,n=1-,则代数式的值为()A.9B.±3C.3D.57、实数、在轴上的位置如图所示,且,则化简的结果为()A.2a+b B.-2a-b C.b D.2a-b8、计算的正确结果是()A.B.C.D.9、已知a、b、c是△ABC三边的长,则+|a+b—c|的值为( )A.2a B.2b C.2c D.2(a一c)二、填空题10、若有意义,则x的取值范围是11、计算的结果是12、已知,则m + n的值是________13、若=7-x,则x的取值范围是______________.14、已知,则的值为15、已知,则代数式的值为_________16、写出一个无理数,使它与的积为有理数____ ____.17、请写出一个式子,使它与的积不含二次根式____ ____三、计算题18、、计算:(1)(2)(3)(4)(6)19、计算:20、计算:.21、计算:(1)(2)(3)(4)22、已知:,,求的?四、解答题(每题x分,共3题)23、已知,求的?24、实数、b在数轴上的位置如图所示,化简:25、当,求代数式的?参考答案1、答案:A(或B)解析:试题分析:满足下列条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.解:A、,均符合最简二次根式的定义,正确;B、=±x,被开方数里含有能开得尽方的因式x2故错误。

C、,D、,均不是最简二次根式,故错误、考点:最简二次根式点评:本题属于基础应用题,只需学生熟练掌握最简二次根式的定义,即可完成2、答案:B解析:试题分析:根据二次根式的运算法则依次分析各选项即可作出判断、A.与不是同类二次根式,无法合并,C.,D.,故错误;B.,本选项正确、考点:二次根式的混合运算点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分3、答案:B解析:试题分析:A;C、;D、;选B。

第21章 二次根式数学九年级上册-单元测试卷-华师大版(含答案)

第21章 二次根式数学九年级上册-单元测试卷-华师大版(含答案)

第21章二次根式数学九年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、若最简二次根式与是同类二次根式,则a的值为()A.-2B.2C.1D.-12、下列二次根式中,是最简二次根式的是()A. B. C. D.3、使二次根式有意义的m的取值范围是( )A.m≥3B.m>3C.m≤3D.m<34、若二次根式在实数范围内有意义,则x的取值范围是()A.x≠5B.x<5C.x≥5D.x≤55、若,则的值为( )A.2B.-2C.D.26、要使根式有意义,x的取值范围是()A.x≠0B.x≠1C.D.7、下列计算正确的是()A. ×=B.x 8÷x 2=x 4C.(2a)3=6a 3D.3a 3•2a 2=6a 68、下列计算中,正确的是()A. =±2B. + =C. + =3D. =9、如果二次根式有意义,那么x的取值范围是()A.x≠2B.x≥0C.x>2D.x≥210、要使二次根式有意义,则x的值可以为()A. B.4 C.2 D.011、要使二次根式有意义,字母必须满足的条件是()A. ≥1B. ≥-1C. >-1D. >112、使有意义的x的取值范围是( )A.x>-1B.x≥-1C.x≠-1D.x≤-113、下列等式一定成立的是()A. B. C. D.14、下列二次根式中,最简二次根式是A. B. C. D.15、代数式在实数范围内有意义,则x的取值范围为()A.x≥1B.x≥﹣1C.x≥D.x≥﹣二、填空题(共10题,共计30分)16、若二次根式有意义,则的取值范围是________.17、已知:,则________.18、化简:①=________;②=________;③﹣=________.19、计算的结果是________.20、计算:(3+ )(3-)= ________.21、使式子1+ 有意义的x的取值范围是________22、计算:﹣=________,=________.23、若是一个整数,则x可取的最小正整数是3.________(判断对错)24、若a、b为实数,且b= +4,则a+b的值为________.25、若最简二次根式和是同类二次根式,则a=________.三、解答题(共5题,共计25分)26、计算:+ --27、已知为整数,试求自然数x的值.28、设,求2x+4y的值.29、如图,∠B=90°,点P从点B开始沿射线BA以1cm/s的速度移动;同时,点Q也从点B开始沿射线BC以2cm/s的速度移动.问:几秒后△PBQ的面积为35cm2?此时PQ的长是多少厘米?(结果用最简二次根式表示.)30、化简(1)(﹣2)×﹣6(2)(+)(﹣)+2.参考答案一、单选题(共15题,共计45分)1、C2、C3、A4、D5、D6、D8、D9、D10、B11、B12、B13、B14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、。

华师大版九年级数学上册《第21章 二次根式》 单元测试卷 含答案

华师大版九年级数学上册《第21章 二次根式》 单元测试卷   含答案

二次根式单元测试卷一.选择题(共20小题)1.下列根式中是最简二次根式的是()A.B.C.D.2.式子在实数范围内有意义,则x的取值范围是()A.x<2B.x≥2C.x=2D.x<﹣23.下列计算正确的是()A.=2B.2C.D.=24.式子有意义的x的取值范围是()A.x≥B.x≠﹣1C.x≤且x≠﹣1D.x<且x≠﹣15.若=x﹣3成立,则满足的条件是()A.x>3B.x<3C.x≥3D.x≤36.已知x=+1,y=﹣1,则x2+xy+y2的值为()A.10B.8C.6D.47.若与最简二次根式是同类二次根式,则m的值为()A.7B.11C.2D.18.实数a,b在数轴上的位置如图所示,则化简﹣﹣的结果是()A.2b B.2a C.2(b﹣a)D.09.下列二次根式中,与﹣5是同类二次根式的是()A.B.C.D.10.下列计算正确的是()A.B.5=5C.D.11.计算的结果是()A.2B.C.D.12.计算=()A.4B.2C.2D.13.已知a=+1,b=﹣1,则a2+b2的值为()A.4B.6C.3﹣2D.3+2 14.下列计算正确的是()A.B.C.D.15.已知a=﹣1,b=,则a与b的关系()A.a=b B.ab=1C.a=﹣b D.ab=﹣116.计算÷×结果为()A.3B.4C.5D.617.化简的结果是()A.﹣B.﹣C.﹣D.﹣18.计算:的结果为()A.3B.9C.1D.19.把化为最简二次根式得()A.B.C.D.20.若,则a+b+ab的值为()A.B.1﹣C.﹣5D.3二.填空题(共21小题)21.当x=﹣1时,代数式x2+2x+2的值是.22.计算:(﹣)×的结果是.23.使得代数式有意义的x的取值范围是.24.计算:=.25.计算:(+)(﹣)=.26.化简的结果是.27.若y=++2,则x+y=.28.计算:(+1)(3﹣)=.29.若=2﹣x,则x的取值范围是.30.计算:=.31.计算:的结果为.32.已知是整数,则满足条件的最小正整数n为.33.=.34.化简:=.35.若最简二次根式与是同类二次根式,则a=.36.实数a、b在数轴上的位置如图所示,化简=.37.计算﹣=.38.已知有理数a,满足|2019﹣a|+=a,则a﹣20192=.39.计算:(﹣2)2019(+2)2019=.40.计算:(2+)2=.41.计算:若a=3﹣,则代数式a2﹣6a﹣2=.三.解答题(共9小题)42.计算(1)(2﹣1)2+(+2)(﹣2)(2)(﹣2)×﹣6.43.已知x=+1,y=﹣1,求下列各式的值:(1)x2+2xy+y2,(2)x2﹣y2.44.计算:()﹣().45.(﹣)×.46.计算:(1)4+﹣+4;(2)(2﹣3)÷.47.计算(1)9+7﹣5+2(2)(2﹣1)(2+1)﹣(1﹣2)2.48.已知:线段a、b、c且满足|a﹣|+(b﹣4)2+=0.求:(1)a、b、c的值;(2)以线段a、b、c能否围成直角三角形.49.化简:(4﹣6)÷﹣(+)(﹣)50.计算:(1)﹣+;(2).答案一.选择题(共20小题)1.下列根式中是最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、=2,不是最简二次根式,故此选项错误;B、=2,不是最简二次根式,故此选项错误;C、=2,不是最简二次根式,故此选项错误;D、是最简二次根式,故此选项正确;故选:D.【点评】此题主要考查了最简二次根式,正确把握最简二次根式的定义是解题关键.2.式子在实数范围内有意义,则x的取值范围是()A.x<2B.x≥2C.x=2D.x<﹣2【分析】直接利用二次根式的性质分析得出答案.【解答】解:∵式子在实数范围内有意义,∴2﹣x≥0,x﹣2≥0,解得:x=2.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.3.下列计算正确的是()A.=2B.2C.D.=2【分析】根据二次根式的除法法则对A进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的加减法对C进行判断;根据立方根的定义对D进行判断.【解答】解:A、原式==,所以A选项错误;B、原式=2×3=6,所以B选项正确;C、原式=2+=3,所以C选项正确;D、原式=﹣2,所以D选项错误.故选:B.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.式子有意义的x的取值范围是()A.x≥B.x≠﹣1C.x≤且x≠﹣1D.x<且x≠﹣1【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,﹣2x+1≥0且x+1≠0,解得x≤且x≠﹣1.故选:C.【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.5.若=x﹣3成立,则满足的条件是()A.x>3B.x<3C.x≥3D.x≤3【分析】直接利用二次根式的性质分析得出答案.【解答】解:∵=x﹣3成立,解得:x≥3.故选:C.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.6.已知x=+1,y=﹣1,则x2+xy+y2的值为()A.10B.8C.6D.4【分析】根据x=+1,y=﹣1,可以求得x+y和xy的值,从而可以求得所求式子的值.【解答】解:∵x=+1,y=﹣1,∴x+y=2,xy=2,∴x2+xy+y2=(x+y)2﹣xy=12﹣2=10,故选:A.【点评】本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.7.若与最简二次根式是同类二次根式,则m的值为()A.7B.11C.2D.1【分析】直接化简二次根式,进而利用同类二次根式的定义分析得出答案.【解答】解:∵=5与最简二次根式是同类二次根式,∴m+1=3,解得:m=2.故选:C.【点评】此题主要考查了同类二次根式,正确把握同类二次根式的定义是解题关键.8.实数a,b在数轴上的位置如图所示,则化简﹣﹣的结果是()A .2bB .2aC .2(b ﹣a )D .0【分析】根据二次根式的性质即可求出答案. 【解答】解:由数轴可知:a >0,b <0,a ﹣b >0, 原式=|a |﹣|b |﹣|a ﹣b | =a +b ﹣(a ﹣b ) =a +b ﹣a +b =2b 故选:A .【点评】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.9.下列二次根式中,与﹣5是同类二次根式的是( )A .B .C .D .【分析】将选项中的各个数化到最简,即可得到哪个数与与是同类二次根式,本题得以解决.【解答】解:∵,,,,∴与﹣5是同类二次根式的是,故选:A .【点评】本题考查同类二次根式,解题的关键是明确什么是同类二次根式,注意要将数化到最简,再找哪几个数是同类二次根式. 10.下列计算正确的是( )A .B .5=5C .D .【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:不能合并,故选项A 错误,,故选项B 错误,,故选项C 错误,,故选项D 正确,故选:D .【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.11.计算的结果是()A.2B.C.D.【分析】先根据二次根式的乘法法则进行变形,再化成最简即可.【解答】解:原式==2a,故选:A.【点评】本题考查了二次根式的乘除和二次根式的性质,能灵活运用二次根式的乘法法则进行化简是解此题的关键,注意:•=(a≥0,b≥0).12.计算=()A.4B.2C.2D.【分析】先化简分子,再约分即可得.【解答】解:原式==2,故选:B.【点评】本题主要考查分母有理化,解题的关键是掌握分母有理化的常用方法.13.已知a=+1,b=﹣1,则a2+b2的值为()A.4B.6C.3﹣2D.3+2【分析】将a、b的值代入原式,根据完全平方公式展开,再合并同类二次根式即可得.【解答】解:当a=+1,b=﹣1时,原式=(+1)2+(﹣1)2=3+2+3﹣2=6,故选:B.【点评】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的性质与运算顺序、完全平方公式.14.下列计算正确的是()A.B.C.D.【分析】直接利用二次根式混合运算法则计算得出答案.【解答】解:A、+,无法计算,故此选项错误;B、3﹣=2,故此选项错误;C、3×=,故此选项错误;D、÷==2,正确.故选:D.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.15.已知a=﹣1,b=,则a与b的关系()A.a=b B.ab=1C.a=﹣b D.ab=﹣1【分析】本题可先将b分母有理化,然后再判断a、b的关系.【解答】解:∵b==,∴a=b.故选:A.【点评】本题主要考查了分母有理化的计算方法,在分母有理化的过程中,正确找出分母的有理化因式是解决问题的关键.16.计算÷×结果为()A.3B.4C.5D.6【分析】根据二次根式的乘除法法则,被开方数相乘除,根指数不变,进行计算,最后化成最简根式即可.【解答】解:原式===4,故选:B.【点评】本题主要考查对二次根式的乘除法,二次根式的性质,最简二次根式等知识点的理解和掌握,能熟练地运用性质进行计算和化简是解此题的关键.17.化简的结果是()A.﹣B.﹣C.﹣D.﹣【分析】直接进行分母有理化即可求解.【解答】解:原式=【点评】本题考查了二次根式的乘除法,解答本题的关键是进行分母有理化.18.计算:的结果为()A.3B.9C.1D.【分析】依次进行二次根式的除法和乘法运算即可得出答案.【解答】解:原式=×=1.故选:C.【点评】此题考查了二次根式的乘除法,属于基础题,关键是掌握二次根式的乘除法则,难度一般.19.把化为最简二次根式得()A.B.C.D.【分析】被开方数含有分母,因此需将根号的分母化去.【解答】解:===.故选:C.【点评】本题化简二次根式的过程:分子、分母同乘以分母的有理化因式,使被开方数不含分母.20.若,则a+b+ab的值为()A.B.1﹣C.﹣5D.3【分析】本题较为简单,直接将a,b的值代入式子中,然后进行计算即可.【解答】解:由题意可得:,a+b+ab=﹣2﹣﹣2++(﹣2﹣)(﹣2+)=﹣4﹣1=﹣5故选:C.【点评】本题考查二次根式的化简求值,直接代入然后进行化简即可.二.填空题(共21小题)21.当x=﹣1时,代数式x2+2x+2的值是24.【分析】先把已知条件变形得到x+1=,再两边平方整理得到x2+2x=22,然后利用整体代入的方法计算.【解答】解:∵x=﹣1,∴x+1=,∴(x+1)2=23,即x2+2x=22,∴x2+2x+2=22+2=24.故答案为24.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.22.计算:(﹣)×的结果是3.【分析】利用二次根式的乘法法则运算.【解答】解:原式=﹣=4﹣1=3.故答案为3.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.23.使得代数式有意义的x的取值范围是x>3.【分析】二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.【解答】解:∵代数式有意义,∴x﹣3>0,∴x>3,∴x的取值范围是x>3,故答案为:x>3.【点评】本题主要考查了二次根式有意义的条件,如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.24.计算:=2019.【分析】根据二次根式的性质即可求出答案.【解答】解:原式=|﹣2019|=2019,故答案为:2019【点评】本题考查二次根式的性质,解题的关键是正确理解=|a|,本题属于基础题型.25.计算:(+)(﹣)=﹣3.【分析】结合二次根式混合运算的运算法则进行求解即可.【解答】解:原式=()2﹣()2=2﹣5=﹣3.故答案为:﹣3.【点评】本题考查了二次根式混合运算的运算法则,解答本题的关键在于熟练掌握二次根式混合运算的运算法则.26.化简的结果是.【分析】直接利用二次根式的性质化简求出答案.【解答】解:原式==.故答案为:.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.27.若y=++2,则x+y=5.【分析】根据二次根式的被开方数是非负数,可得x、y的值,根据有理数的加法,可得答案.【解答】解:由y=++2,得x=3,y=2.x+y=5,故答案为:5.【点评】本题考查了二次根式有意义的条件,二次根式有意义的条件是被开方数是非负数.28.计算:(+1)(3﹣)=2.【分析】先把后面括号内提,然后利用平方差公式计算.【解答】解:原式=(+1)(﹣1)=×(3﹣1)=2.故答案为2.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.29.若=2﹣x,则x的取值范围是x≤2.【分析】根据已知得出x﹣2≤0,求出不等式的解集即可.【解答】解:∵=2﹣x,∴x﹣2≤0,x≤2则x的取值范围是x≤2故答案为:x≤2.【点评】本题考查了二次根式的性质的应用,注意:当a≤0时,=﹣a.30.计算:=2.【分析】先把分子中的二次根式化为最简二次根式,然后合并后进行二次根式的除法运算.【解答】解:原式==2.故答案为2.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.31.计算:的结果为1.【分析】先把除法变成乘法,再根据乘法法则进行计算即可.【解答】解:原式=3××,=3×,=1,故答案为:1.【点评】本题考查了对二次根式的乘除法则的应用,主要考查学生运用法则进行计算的能力.32.已知是整数,则满足条件的最小正整数n为5.【分析】因为是整数,且==2,则5n是完全平方数,满足条件的最小正整数n为5.【解答】解:∵==2,且是整数;∴2是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为:5.【点评】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则=.除法法则=.解题关键是分解成一个完全平方数和一个代数式的积的形式.33.=π﹣3.14.【分析】根据表示(π﹣3.14)2的算术平方根,据此即可求解.【解答】解:∵π>3.14∴π﹣3.14>0∴=π﹣3.14.故答案是:π﹣3.14.【点评】本题主要考查了算术平方根的定义,正确理解定义是解题的关键.34.化简:=3.【分析】二次根式的性质:=a(a≥0),利用性质对进行化简求值.【解答】解:==×=3.故答案是:3.【点评】本题考查的是二次根式的性质和化简,根据二次根式的性质可以把式子化简求值.35.若最简二次根式与是同类二次根式,则a=4.【分析】根据最简同类二次根式的被开方数相同可得关于a的方程,解出即可得出答案.【解答】解:由题意得:3a+2=4a﹣2,解得:a=4.故答案为:4.【点评】本题考查同类二次根式的知识,属于基础题,关键是掌握同类二次根式的被开方数相同.36.实数a、b在数轴上的位置如图所示,化简=﹣b.【分析】本题利用实数与数轴的关系可知:a>0,b<0,利用二次根式的性质,去绝对值化简.【解答】解:由图可知:a>0,b<0,∴a﹣b>0,∴=a﹣b﹣a=﹣b.【点评】本题有一定的综合性,不仅要结合图形,还需要熟悉二次根式的性质.37.计算﹣=.【分析】先把各二次根式化简为最简二次根式,然后合并即可.【解答】解:原式=2﹣故答案为【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.38.已知有理数a,满足|2019﹣a|+=a,则a﹣20192=2019.【分析】根据二次根式有意义的条件可得a﹣2019≥0,解不等式可得a的取值范围,然后再去绝对值可得a﹣2019+=a,再整理可得答案.【解答】解:由题意得:a﹣2019≥0,解得:a≥2019,|2019﹣a|+=a,a﹣2019+=a,=2019,a﹣20192=2019,故答案为:2019.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.39.计算:(﹣2)2019(+2)2019=+2.【分析】先根据同底数幂的乘法进行变形,再由平方差公式进行计算即可.【解答】解:原式=(﹣2)2019(+2)2019•(+2)=[(﹣2)(+2)]2019•(+2)=+2,故答案为+2.【点评】本题考查了二次根式的混合运算以及同底数幂乘法的逆运算,掌握运算法则是解题的关键.40.计算:(2+)2=7+4.【分析】直接利用完全平方公式展开得出答案即可.【解答】解:原式=4+4+3=7+4.故答案为:7+4.【点评】此题考查二次根式的混合运算,掌握完全平方公式是解决问题的关键.41.计算:若a=3﹣,则代数式a2﹣6a﹣2=﹣1.【分析】先根据完全平方公式得出(a﹣3)2﹣11,再代入求出即可.【解答】解:∵,∴a2﹣6a﹣2=(a﹣3)2﹣11=(3﹣﹣3)2﹣11=10﹣11=﹣1,故答案为:﹣1.【点评】本题考查了二次根式的混合运算和求值,完全平方公式的应用,主要考查学生的计算能力.三.解答题(共9小题)42.计算(1)(2﹣1)2+(+2)(﹣2)(2)(﹣2)×﹣6.【分析】(1)利用完全平方公式和平方差公式计算;(2)先利用二次根式的乘法法则运算,然后化简后合并即可.【解答】解:(1)原式=12﹣4+1+3﹣4=12﹣4(2)原式=﹣2﹣3=3﹣6﹣3=﹣6.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.43.已知x=+1,y=﹣1,求下列各式的值:(1)x2+2xy+y2,(2)x2﹣y2.【分析】(1)根据完全平方公式可以解答本题;(2)根据平方差公式可以解答本题.【解答】解:(1)∵x=+1,y=﹣1,∴x+y=+1+﹣1=2,∴x2+2xy+y2=(x+y)2=(2)2=12;(2)∵x=+1,y=﹣1,∴x+y=+1+﹣1=2,x﹣y==2,x2﹣y2=(x+y)(x﹣y)==4.【点评】本题考查代数式求值,解答本题的关键是明确代数式求值的方法,利用完全平方公式和平方差公式解答.44.计算:()﹣().【分析】先将二次根式化为最简,然后去括号,合并同类二次根式即可.【解答】解:原式=(2﹣)﹣(+)=2﹣﹣﹣【点评】此题考查了二次根式的加减法,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.45.(﹣)×.【分析】先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的乘法运算.【解答】解:原式=(4﹣5)×=﹣2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式. 46.计算:(1)4+﹣+4;(2)(2﹣3)÷. 【分析】(1)先把各二次根式化为最简二次根式,再进行计算. (2)观察,可以首先把括号内的化简,合并同类项,然后相乘.【解答】解:(1)原式=4+3﹣2+4=7;(2)原式=(8)=﹣.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算. 47.计算(1)9+7﹣5+2(2)(2﹣1)(2+1)﹣(1﹣2)2.【分析】(1)先化简二次根式,再合并同类二次根式即可;(2)根据平方差公式和完全平方公式进行计算即可.【解答】解:(1)原式=9+14﹣20+(2)原式=12﹣1﹣1+4﹣12=4﹣2.【点评】本题考查了二次根式的混合运算,掌握平方差公式、完全平方公式以及化二次根视为最简二次根式是解题的关键.48.已知:线段a、b、c且满足|a﹣|+(b﹣4)2+=0.求:(1)a、b、c的值;(2)以线段a、b、c能否围成直角三角形.【分析】(1)根据非负数性质可得a、b、c的值;(2)根据勾股定理逆定理可判断.【解答】解:(1)∵|a﹣|+(b﹣4)2+=0,∴a﹣=0,b﹣4=0,c﹣=0,即a=3,b=4,c=5;(2)∵a2+b2=(3)2+(4)2=50,c2=(5)2=50,∴a2+b2=c2,∴线段a、b、c能围成直角三角形.【点评】本题主要考查二次根数的应用,根据非负数性质和勾股定理逆定理得出相应算式是关键,二次根式的化简与运算是根本技能.49.化简:(4﹣6)÷﹣(+)(﹣)【分析】先把各二次根式化为最简二次根式,再把括号内合并,然后根据二次根式的除法法则和平方差公式计算.【解答】解:原式=(4﹣2)÷﹣(5﹣3)=2÷﹣2=2﹣2=0.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.50.计算:(1)﹣+;(2).【分析】(1)是二次根式的加减运算,先化简,再合并;(2)是二次根式的乘除运算,先乘除,再化简.【解答】解:(1)原式=﹣+=0;(2)原式=【点评】为了避免两次化简,做二次根式乘除运算时,也可以先照法则运算,再化简.。

第21章 二次根式 华东师大版数学九年级上册测试卷(含答案)

第21章 二次根式 华东师大版数学九年级上册测试卷(含答案)

第21章测试卷一、选择题:本大题共10小题,每小题3分,合计30分.1. 下列运算,结果正确的是( )A.B.C.D.【答案】D【分析】根据二次根式的运算性质进行计算即可.【解析】A.与不是同类二次根式,不能合并,此选项错误;B.3与不是同类二次根式,不能合并,此选项错误;C.,此选项错误;D.,此选项计算正确;故选:D.2. (2020•洛阳新安期中)如果•=成立,那么( C )A.a≥0B.0≤a≤3C.a≥3D.a取任意实数3. .(2021·驻马店上蔡期中)函数的自变量x的取值范围是()A.,且B.C.D.,且【答案】A【分析】根据分式与二次根式的性质即可求解.【解析】依题意可得x-3≠0,x-2≥0解得,且故选A.4. 实数、在数轴上的位置如图所示,化简的结果是().A.B.0C.D.【答案】A【分析】根据实数a和b在数轴上的位置得出其取值范围,再利用二次根式的性质和绝对值的性质即可求出答案.【解析】由数轴可知-2<a<-1,1<b<2,∴a+1<0,b-1>0,a-b<0,∴===-2故选A.5.(2020·内蒙古赤峰·中考真题)估计的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【答案】A【分析】根据二次根式的混合运算法则进行计算,再估算无理数的大小.【解析】==2+,∵4<6<6.25,2<<2.5,∴4<2+<5,故选:A.6. (2021·洛阳汝阳期末)无论x取任何实数,下列一定是二次根式的是( C )A.B.C.D.8. 已知ab<0,则化简后为:()A. B. C. D.答案:D7. (2020·驻马店上蔡期中)已知:,则ab=()A. 3B. 2C. 5D.6【答案】D【解析】∵=,∴a=3,b=2,ab=3×2=6.9.(2020•南阳唐河期末)下列各式不成立的是( )A.﹣=B.=2C.=+=5D.=﹣【答案】C.【解析】根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.﹣=3﹣=,A选项成立,不符合题意;==2,B选项成立,不符合题意;==,C选项不成立,符合题意;==﹣,D选项成立,不符合题意。

第21章 二次根式数学九年级上册-单元测试卷-华师大版(含答案)

第21章 二次根式数学九年级上册-单元测试卷-华师大版(含答案)

第21章二次根式数学九年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、对于二次根式,以下说法不正确的是A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是32、若一个长方体的长为,宽为,高为,则它的体积为()cm3.A.10B.12C.14D.163、若是二次根式,则x应满足()A.x≥2B.x<2C.x>2D.x≠24、要使式子在实数范围内有意义,则x应满足()A.x≥B.xC.x<D.x>5、下列计算正确的是()A. B. C. D.6、若二次根式有意义,则x的取值范围是( )A.x>1B.x≥1C.x<1D.x≤17、下列各式计算正确的是()A. B. C.D.8、要使有意义,x的取值范围是()A.x≤3B.x<3C.x≥3D.x>39、下列计算正确的是()A. B. C. D.10、把化简后得()A. B. C. D.11、式子在实数范围内有意义,则x的取值范围是()A.x>3B.x≥3C.x<3D.x≤312、下列运算正确的是()A. + =B. =2C. •=D. ÷=213、下列式子一定是二次根式的是()A. B. C. D.14、如果+ 有意义,那么代数式|x﹣1|+ 的值为()A.±8B.8C.与x的值无关D.无法确定15、把化为最简二次根式是()A. B. C. D.二、填空题(共10题,共计30分)16、若在实数范围内有意义,则x的取值范围是________.17、计算:=________.18、计算﹣9 的结果是________.19、若最简二次根式与是同类根式,则________.20、计算:=________.21、若x,y为实数,且|x+5|+ =0,则()2017=________.22、使式子1+ 有意义的x的取值范围是________.23、计算:=________24、中,x的取值范围是________.25、若=3﹣x,则化简﹣=________.三、解答题(共5题,共计25分)26、(1)计算:(2)用配方法解方程:.27、若,求的值.28、某同学作业本上做了这么一道题:“当a=时,试求a+的值”,其中是被墨水弄污的,该同学所求得的答案为,请你判断该同学答案是否正确,说出你的道理.29、已知x=+3,y=﹣3,求下列各式的值:(1)x2﹣2xy+y2(2)x2﹣y2.30、已知x,y为实数,且y=.求xy+3的值.参考答案一、单选题(共15题,共计45分)1、B2、B3、A4、A5、D6、B7、C8、C9、D11、D12、D13、A14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、30、。

第21章 二次根式数学九年级上册-单元测试卷-华师大版(含答案)

第21章 二次根式数学九年级上册-单元测试卷-华师大版(含答案)

第21章二次根式数学九年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、下列二次根式中,与之积为有理数的是()A. B. C. D.﹣2、可以与合并的是()A. B. C. D.3、下列各式中属于最简二次根式的是()A. B. C. D.4、下列二次根式能与合并的是( )A. B. C. D.5、下列二次根式中,最简二次根式是()A. B. C. D.6、若二次根式有意义,则x的取值范围是()A.x≥B.x≤C.x≥D.x≤7、下列计算正确的是()A.2 2=4B.2 0=0C.2 ﹣1=﹣2D. =±28、下列计算错误的是()A. B. C.3=3 D.9、已知a>b>0,并且a+b=6 ,则的值为( )A.2B.C.D.10、下列各式是最简二次根式的是()A. B. C. D.11、下列式子中,属于最简二次根式的是()A. B. C. D.12、下列运算正确的是( )A. -=B. ÷=4C. =-2D.(-) 2=213、下列运算正确的是()A. - =B.3 - =3C. =-4D. -=14、下列二次根式是最简二次根式的是().A. B. C. D.15、等腰三角形的两边a,b满足|a-7|+ =0,则它的周长是( )A.13B.15C.17D.19二、填空题(共10题,共计30分)16、计算:|﹣5|﹣=________.17、 =________;18、使式子有意义的m的取值范围是________19、已知点P(﹣10,1)关于y轴对称点Q(a+b,b﹣1),则的值为________.20、函数中,自变量的取值范围是________.21、当x________时,二次根式-3在实数范围内有意义。

22、化简:⑴计算:________;⑵=________.23、函数y= 的自变量x的取值范围为________.24、若+(y﹣1)2=0,则(x+y)2020=________.25、矩形的长和宽分别是和,则矩形的面积为________.三、解答题(共5题,共计25分)26、计算:.27、先化简,再求值: (+)÷a,其中a=.28、已知x=+3,y=﹣3,求下列各式的值:(1)x2﹣2xy+y2(2)x2﹣y2.29、计算:(1)a﹣a2+3(2)解方程:x(2x﹣5)=4x﹣10(3)化简:(﹣1)3﹣|1﹣|+()﹣2×(π﹣3.14)0﹣.30、如图,长方形ABCD在坐标平面内,点A的坐标是A(2,1),且边AB、CD与x轴平行,边AD、BC与x轴平行,点B、C的坐标分别为B(a,1),C(a,c),且a、c满足关系式.c=++3(1)求B、C、D三点的坐标;(2)怎样平移,才能使A点与原点重合?平移后点B、C、D的对应分别为B1C1D1,求四边形OB1C1D1的面积;(3)平移后在x轴上是否存在点P,连接PD,使S△COP=S四边形OBCD?若存在这样的点P,求出点P的坐标;若不存在,试说明理由.参考答案一、单选题(共15题,共计45分)2、D3、A4、D5、A6、A7、A8、C9、C10、B11、B12、D13、D14、B15、C二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、。

华东师大九年级上册 版第21章《二次根式》章节测试题(含解析答案)

华东师大九年级上册 版第21章《二次根式》章节测试题(含解析答案)

华东师大版九年级上册第22章《二次根式》章节测试题本试卷三个大题共22个小题,全卷满分120分,考试时间100分钟。

一、选择题(本大题共12个小题,每小题4分,共48分。

) 1、下列各式中,是二次根式的是( )A 、1B 、4-C 、38D 、π-3 2、若式子2-x 在实数范围内有意义,则x 的取值范围是( ) A 、2 xB 、2 xC 、2≥xD 、2≤x3、下列计算正确的是( )A 、2312=÷B 、652535=⋅C 、523=+D 、228=- 4、下列属于最简二次根式的是( ) A 、8 B 、5C 、12D 、315、下列二次根式中,与3能合并的是( )A 、6B 、24C 、32D 、43 6、实数a ,b 在数轴上的对应点如图所示,则2a b a --的结果为( ) A 、bB 、b a -2C 、b -D 、a b 2-7、已知()21233-⨯⎪⎪⎭⎫ ⎝⎛-=m ,则( ) A 、56-- m B 、65 m C 、67-- m D 、76 m 8、若xx x x -+=-+3333成立,则x 的取值范围是( ) A 、33 x ≤- B 、3 x C 、3- x D 、33≤-x 9、若最简二次根式b a +7与36+-b b a 是同类二次根式,则b a +的值为( ) A 、2 B 、2- C 、1- D 、1 10、如果0 ab ,0 b a +,那么下列各式:①ba ba=,②1=⋅a b b a ,③b ba ab -=÷,其中正确的是( )学校: 考号: 姓名: 班级:※※※※※※※※※※※密※※※※※※※※※※※※※※※※※封※※※※※※※※※※※※※※※※※※※※※※ 线※※※※※※※※※※※※※A 、①②B 、②③C 、①③D 、①②③11、如果()3322b a +=+,a ,b 为有理数,那么=-b a ( ) A 、3B 、34-C 、2D 、2-12、把()aa --212根号外的因式移入根号内,结果( ) A 、a -2 B 、a --2 C 、2-a D 、2--a二、填空题(本大题共4小题,每小题4分,共16分) 13、如果144+-+-=x x y ,则y x +2的值是_______; 14、已知32+=a ,32-=b ,则_________22=+ab b a ; 15、若12-=x ,则2019323+-+x x x 的值为 ; 16、化简:()()________252520182019=+-.三、解答题:(本大题共6个小题,共56分。

第21章 二次根式 华东师大版九年级数学上册单元测试卷(含答案)

第21章 二次根式 华东师大版九年级数学上册单元测试卷(含答案)

第21章二次根式单元测试卷一.选择题(共10小题,满分30分)1.是整数,正整数n的最小值是( )A.0B.2C.3D.42.下列式子中一定是二次根式的是( )A.B.C.D.3.在实数范围内,要使代数式有意义,则x的取值范围是( )A.x≥2B.x>2C.x≠2D.x<24.如果ab>0,a+b<0,那么下面各式:①•=1;②=;③÷=﹣b,其中正确的是( )A.①②B.①③C.②③D.①②③5.若的整数部分为x,小数部分为y,则(2x+)y的值是( )A.B.3C.D.﹣36.下列各式中,是最简二次根式的是( )A.B.C.D.7.若是整数,则正整数n的最小值是( )A.4B.5C.6D.78.下列式子一定是二次根式的是( )A.B.C.D.9.下列计算正确的是( )A.=±4B.±=3C.D.=﹣3 10.若=2﹣x成立,则x的取值范围是( )A.x≤2B.x≥2C.0≤x≤2D.任意实数二.填空题(共10小题,满分30分)11.化简:= .12.若是整数,则最小正整数n的值为 .13.二次根式有意义的条件是 .14.计算的结果是 .15.已知n为正整数,是整数,则n的最小值是 .16.当x=﹣2时,则二次根式的值为 .17.计算:×= .18.已知实数a、b满足+|6﹣b|=0,则的值为 .19.在、、、、中,最简二次根式是 .20.已知a=3+,b=3﹣,则a2b+ab2= .三.解答题(共6小题,满分90分)21.计算:3•÷(﹣)22.已知二次根式.(1)求x的取值范围;(2)求当x=﹣2时,二次根式的值;(3)若二次根式的值为零,求x的值.23.(1)若y=+4,求xy的平方根.(2)实数x,y使+y2+4y+4=0成立,求的值.24.已知等式=成立,化简|x﹣6|+的值.25.阅读材料,回答问题:观察下列各式=1+﹣=1;;.请你根据以上三个等式提供的信息解答下列问题:(1)猜想:= = ;(2)归纳:根据你的观察、猜想,写出一个用n(n为正整数)表示的等式: ;(3)应用:用上述规律计算.26.当a取什么值时,代数式取值最小?并求出这个最小值.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:∵是整数,∴正整数n的最小值为2,故选:B.2.解:A、当x<0时,不是二次根式,故本选项错误;B、一定是二次根式,故本选项正确;C、当x=0时,不是二次根式,故本选项错误;D、当b<0时,不是二次根式,故本选项错误;故选:B.3.解:要使代数式有意义,则x﹣2≥0,解得:x≥2,故选:A.4.解:∵ab>0,a+b<0,∴a<0,b<0,∴①•=1,正确;②=,错误;③÷=﹣b,正确,故选:B.5.解:∵9<13<16∴3<<4,∴的整数部分x=2,则小数部分是:6﹣﹣2=4﹣,∴y=4﹣,则(2x+)y=(4+)(4﹣)=16﹣13=3.故选:B.6.解:A、=,故此选项不符合题意;B、=2,故此选项不符合题意;C、是最简二次根式,故此选项符合题意;D、=,故此选项不符合题意;故选:C.7.解:∵=2是整数,∴正整数n的最小值是:7.故选:D.8.解:A、,﹣x+2有可能小于0,故不一定是二次根式;B、,x有可能小于0,故不一定是二次根式;C、,x2+1一定大于0,故一定是二次根式,故此选项正确;D、,x2﹣2有可能小于0,故不一定是二次根式;故选:C.9.解:A选项,=4,故该选项错误,不符合题意;B选项,±=±3,故该选项错误,不符合题意;C选项,()2=a(a≥0),故该选项正确,符合题意;D选项,根据=|a|得原式=3,故该选项错误,不符合题意.故选:C.10.解:∵=|x﹣2|=2﹣x,∴x﹣2≤0,∴x≤2,故选:A.二.填空题(共10小题,满分30分)11.解:原式==2.故答案是:2.12.解:∵是整数,∴最小正整数n的值是:5.故答案为:5.13.解:二次根式有意义的条件是:x﹣1≥0,解得:x≥1.故答案为:x≥1.14.解:法一、=|﹣2|=2;法二、==2.故答案为:2.15.解:∵189=32×21,∴=3,∴要使是整数,n的最小正整数为21.故填:21.16.解:原式===4,故答案为:417.解:×=;故答案为:.18.解:∵+|6﹣b|=0,又∵≥0,|6﹣b|≥0,∴a﹣3=0,6﹣b=0.∴a=3,b=6.∴==2.故答案为:19.解:、是最简二次根式,故答案为:、.20.解:∵a=3+,b=3﹣,∴a2b+ab2=ab(a+b)=(3+2)(3﹣2)(3+2+3﹣2)=6;故答案为:6.三.解答题(共6小题,满分90分)21.解:原式=3××(﹣)=﹣2=﹣.22.解:(1)根据题意,得:3﹣x≥0,解得x≤6;(2)当x=﹣2时,===2;(3)∵二次根式的值为零,∴3﹣x=0,解得x=6.23.解:由题意得,解得:x=3,把x=3代入已知等式得:y=4,所以,xy=3×4=12,故xy的平方根是±=.(2)∵+y2+4y+4=0,∴+(y+2)2=0.∴由非负数的性质可知,x﹣3=0,y+2=0.解得x=3,y=﹣2.∴===.24.解:由题意得,,∴3<x≤5,∴|x﹣6|+=6﹣x+x﹣2=4.25.解:(1)根据题意可得:=1+=1;故答案为:1+﹣,1;(2)根据题意可得:=1+﹣=1+;故答案为:=1+﹣=1+;(3)=1+1﹣+1+﹣+1+﹣+•••+1+=10﹣=9.26.解:∵≥0,∴当a=﹣时,有最小值,是0.则+1的最小值是1.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华东师大版九年级数学上册 第21章 二次根式单元测试题
一、选择题
1.二次根式2x +4中x 的取值范围是( ) A .x <-2 B .x ≤-2 C .x >-2 D .x ≥-2
2.下列式子为最简二次根式的是( ) A. 5
B.12
C.a 2
D.
1a
3.若2x -1+1-2x +1在实数范围内有意义,则x 满足的条件是( )
A .x ≥12
B .x ≤1
2
C .x =1
2
D .x ≠1
2
4.代数式3-x +1
x -1
中x 的取值范围在数轴上表示为( )
图1
5.实数a ,b 在数轴上对应点的位置如图2( )
图2
A .-2a +b
B .2a -b
C .-b
D .b 6.下列选项中,正确的是( ) A.x -1有意义的条件是x >1 B. 8是最简二次根式 C. ()
-22=-2
D. 3
2
3
-24=- 6 7.下列计算:(1)(2)2=2,(2)(-2)2=2,(3)(-2 3)2=12,(4)(2+3)(2-3)=-1,其中结果正确的个数为( )
A .1
B .2
C .3
D .4 8.下列计算正确的是( )
A .310-2 5= 5 B.
711×⎝
⎛⎭

117
÷111=11 C .(75-15)÷3=2 5 D.1
3
18-3 8
9
= 2
二、填空题
9.若式子2-x +x -1有意义,则x 的取值范围是________. 10.计算6 5-10
1
5
的结果是________. 11. 12与最简二次根式5
a +1是同类二次根式,则a =________.
12.计算:33
+|3-2|-⎝⎛⎭⎫12-1=________.
13.计算(4+7)(4-7)的结果等于________. 14.计算12+8×6的结果是________.
15.如图3,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是2 3和2,则图中阴影部分的面积是________.
图3
16.当-1<a <0时,则
⎝⎛⎭
⎫a +1a 2
-4-⎝⎛⎭
⎫a -1a 2
+4=________. 17.用教材中的计算器进行计算,开机后依次按下4的程序中,则输出
的结果是________.
图4
18.观察下列各式: 1+112+122=1+11×2, 1+122+132=1+12×3, 1+132+142=1+13×4, …
请利用你所发现的规律,计算1+112+122+1+122+132+1+132+1
42+…+1+192+1
10
2,其结果为________.
三、解答题 19.计算:
(1)2 (3+2)2-48+2-
2;
(2) 9-25÷23+|-1|×5-(π-3.14)0.
20.先化简,再求值:(x +y )(x -y )+y (x +2y )-(x -y )2,其中x =2+3,y =2- 3.
21.先化简,再求值:m 2-4m +4m -1÷⎝⎛⎭⎫3
m -1-m -1,其中m =2-2.
答案
1. D 2. A 3. C 4. A 5. A 6.D 7. D 8. B 9. 1≤x ≤2 10. 4 5 11. 2 12. 0 13. 9 14. 6 3 15. 2 16. 2a 17. 7 18. 99
10
19.解:(1)原式=3+4 3+4-4 3+1
4
=294
. (2)原式=3-32÷8+5-1 =3-4+5-1 =3.
20.解:原式=x 2-y 2+xy +2y 2-x 2+2xy -y 2=3xy . 当x =2+3,y =2-3时, 原式=3×(2+3)×(2-3)=3.
21.解:原式=(m -2)2m -1÷3-m 2+1
m -1
=(m -2)2m -1÷(2+m )(2-m )
m -1
=(m -2)2m -1·m -1(2+m )(2-m )
=2-m
2+m
. 当m =2-2时,原式=2-2+22+2-2=4-2
2
=2 2-1.。

相关文档
最新文档