2013年湖北省黄石市中考数学试卷及答案(word解析版)

合集下载

湖北省黄石市2013年中考数学适应性测试试卷(解析版)

湖北省黄石市2013年中考数学适应性测试试卷(解析版)

某某省某某市2013年中考适应性测试数学试卷一、卷Ⅰ选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1.(3分)(2013•某某模拟)算术平方根等于2的数是()A.4B.±4C.D.±x=3考点:算术平方根分析:根据a(a≥0)的算术平方根就是平方是a的非负数,据此即可判断.解答:解:算术平方根等于2的数是22=4.故选:A.点评:本题考查了算术平方根的定义,正确理解定义是关键.2.(3分)(2013•某某模拟)下列计算正确的是()A.2a+3b=5ab B.x3÷x2=x C.(m+n)2=m2+n2D.a2•a3=a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;完全平方公式分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、不是同类项,不能合并,选项错误;B、正确;C、(m+n)2=m2+2mn+n2,选项错误;D、a2•a3=a5,选项错误.故选B.点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.3.(3分)(2013•某某模拟)今年我区参加初中毕业、升学考试的学生有4993人,把4993保留两个有效数字,用科学记数法表示为()A.4.9×103B.5.0×103C.5.00×103D.49×102考点:科学记数法与有效数字分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:4993=4.993×103≈5.0×103.故选B.点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.4.(3分)(2013•某某模拟)如图,Rt△ABC中,∠ACB=90°,DE经过点C且平行于AB,∠A=65°,则∠BCE的度数是()A.25°B.35°C.65°D.115°考点:平行线的性质专题:探究型.分析:先根据三角形内角和定理求出∠B的度数,再由平行线的性质即可得出结论.解答:解:∵Rt△ABC中,∠ACB=90°,∠A=65°,∴∠B=90°﹣∠A=90°﹣65°=25°,∵DE∥AB,∴∠BCE=∠B=25°.故选A.点评:本题考查的是平行线的性质及三角形内角和定理,熟知三角形的内角和是180°是解答此题的关键.5.(3分)(2013•某某模拟)下列图形中,即是中心对称图形又是轴对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、是中心对称图形,也是轴对称图形,故本选项正确;C、是中心对称图形,不是轴对称图形,故本选项错误;D、不是中心对称图形,是轴对称图形,故本选项错误.故选B.点评:本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2013•某某模拟)数据5,7,8,8,9,9的众数是()A.7B.8C.9D.8和9 考点:众数分析:一组数据中出现次数最多的数据叫做众数,结合数据进行判断即可.解答:解:5,7,8,8,9,9中,8和9出现的次数最多,故众数是8和9.故选D.点评:本题考查了众数的定义,属于基础题,注意一组数据的众数可能不止一个.7.(3分)(2012•德阳)使代数式有意义的x的取值X围是()A.x≥0B.C.x≥0且D.一切实数考点:二次根式有意义的条件;分式有意义的条件分析:根据分式有意义的条件可得2x﹣1≠0,根据二次根式有意义的条件可得x≥0,解出结果即可.解答:解:由题意得:2x﹣1≠0,x≥0,解得:x≥0,且x≠,故选:C.点评:此题主要考查了分式有意义的条件,二次根式有意义的条件,二次根式中的被开方数是非负数;分式有意义的条件是分母不等于零.8.(3分)(2012•六盘水)已知不等式x﹣1≥0,此不等式的解集在数轴上表示为()A .B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式专题:计算题.分析:根据不等式的性质求出不等式的解集,再在数轴上表示出不等式的解集即可.解答:解:∵x﹣1≥0,∴x≥1,在数轴上表示不等式的解集为:,故选C.点评:本题考查了不等式的性质,解一元一次不等式,在数轴上表示不等式的解集等知识点的应用,注意:在数轴上表示不等式的解集时,包括该点,用“黑点”,不包括该点时,用“圆圈”.9.(3分)(2012•某某)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC 于点E,且EC=3,则梯形ABCD的周长是()A.26 B.25 C.21 D.20考点:等腰梯形的性质;平行四边形的判定与性质专压轴题.题:分析:由BC∥AD,DE∥AB,即可得四边形ABED是平行四边形,根据平行四边形的对边相等,即可求得BE的长,继而求得BC 的长,由等腰梯形ABCD,可求得AB的长,继而求得梯形ABCD的周长.解答:解:∵BC∥AD,DE∥AB,∴四边形ABED是平行四边形,∴BE=AD=5,∵EC=3,∴BC=BE+EC=8,∵四边形ABCD是等腰梯形,∴AB=DC=4,∴梯形ABCD的周长为:AB+BC+CD+AD=4+8+4+5=21.故选C.点评:此题考查了等腰梯形的性质与平行四边形的判定与性质.此题比较简单,注意判定出四边形ABED是平行四边形是解此题的关键,同时注意数形结合思想的应用.10.(3分)(2011•某某)一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角∠ACB=45°,则这个人工湖的直径AD为()A.B.C.D.考点:等腰直角三角形;圆周角定理专题:证明题.分析:连接OB.根据圆周角定理求得∠AOB=90°;然后在等腰Rt△AOB中根据勾股定理求得⊙O的半径AO=OB=50m,从而求得⊙O的直径AD=100m.解答:解:连接OB.∵∠ACB=45°,∠ACB=∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠AOB=90°;在Rt△AOB中,OA=OB(⊙O的半径),AB=100m,∴由勾股定理得,AO=OB=50m,∴AD=2O A=100m;故选B.点评:本题主要考查了等腰直角三角形、圆周角定理.利用圆周角定理求直径的长时,常常将直径置于直角三角形中,利用勾股定理解答.11.(3分)(2012•某某)将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A.y=3(x+2)2+3 B.y=3(x﹣2)2+3 C.y=3(x+2)2﹣3 D.y=3(x﹣2)2﹣3考点:二次函数图象与几何变换专题:探究型.分析:直接根据“上加下减,左加右减”的原则进行解答即可.解答:解:由“上加下减”的原则可知,将抛物线y=3x2向上平移3个单位所得抛物线的解析式为:y=3x2+3;由“左加右减”的原则可知,将抛物线y=3x2+3向左平移2个单位所得抛物线的解析式为:y=3(x+2)2+3.故选A.点评:本题考查的是二次函数的图象与几何变换,熟知二次函数图象平移的法则是解答此题的关键.12.(3分)(2013•某某模拟)一个几何体的三视图如图,其中主视图、左视图都是腰长为6、底边长为3的等腰三角形,则这个几何体的侧面展开图的面积为()A.3πB.πC.8πD.9π考点:圆锥的计算;由三视图判断几何体分析:这个几何体有两个视图为三角形,那么可得是锥体,第3个视图是圆,那么这个几何体是圆锥,圆锥的侧面积=π×底面半径×母线长.解答:解:∵这个几何体有两个视图为三角形,∴这个几何体是锥体,∵第3个视图是圆,∴这个几何体是圆锥,底面半径是1.5,母线长为6,∴圆锥的侧面积为:π×1.5×6=9π,故选D.点评:考查圆锥的计算及由三视图判断几何体;判断出几何体的形状及相关数据是解决本题的关键.二、填空题(本大题共5个小题,每小题3分,共15分)请把每小题的答案填在答题卡的相应位置上.13.(3分)(2013•某某模拟)计算:=.考点:二次根式的加减法专题:计算题.分析:先把各二次根式化为最简二次根式得到原式=6×﹣2,然后合并同类二次根式即可.解答:解:原式=6×﹣2 =3﹣2=.故答案为.点评:本题考查了二次根式的加减法:先把各二次根式化为最简二次根式,然后合并同类二次根式.14.(3分)(2013•某某模拟)分式方程=的解为x=3 .考点:解分式方程专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:3(x﹣1)=2x,去括号得:3x﹣3=2x,解得:x=3,经检验x=3是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.(3分)(2013•某某模拟)不等式组的非负整数解是0 .考点:一元一次不等式组的整数解分析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其非负整数解即可.解答:解:由不等式1﹣x>0得x<1,由不等式3x>2x﹣4得x>﹣4,所以其解集为﹣4<x<1,则不等式组的非负整数解是0.故答案为:0.点评:考查不等式组的解法及非负整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.(3分)(2012•某某)若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值X围是a≥﹣1 .考点:根的判别式;一元一次方程的定义;一元二次方程的定义专题:压轴题.分析:当a=0时,方程是一元一次方程,方程的根可以求出,即可作出判断;当a≠0时,方程是一元二次方程,只要有实数根,则应满足:△≥0,建立关于a的不等式,求得a的取值X围即可.解答:解:当a=0时,方程是一元一次方程,有实数根,当a≠0时,方程是一元二次方程,若关于x的方程ax2+2(a+2)x+a=0有实数解,则△=[2(a+2)]2﹣4a•a≥0,解得:a≥﹣1.故答案为:a≥﹣1.点评:此题考查了根的判别式,注意本题分a=0与a≠0两种情况讨论是解决本题的关键.并且利用了一元二次方程若有实数根则应有△≥0.17.(3分)(2013•某某模拟)在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若三角形ABC的边长为1,AE=2,则CD的长为1或3 .考点:等边三角形的性质专题:分类讨论.分析:当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF﹣BC求出CF的长,即可得到CD的长;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=∠EBF=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF+BC求出CF的长,即可得到CD的长.解答:解:当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,可得∠EFB=90°,∵EC=ED,∴F为CD的中点,即CF=DF=CD,∵△ABC为等边三角形,∴∠ABC=60°,∴∠BEF=30°,∵BE=AB+BE=1+2=3,∴FB=EB=,∴CF=FB﹣BC=,则CD=2CF=1;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,可得∠EFC=90°,∵EC=ED,∴F为CD的中点,即CF=DF=CD,∵△ABC为等边三角形,∴∠ABC=∠EBF=60°,∴∠BEF=30°,∵BE=AE﹣AB=2﹣1=1,∴FB=BE=,∴CF=BC+FB=,则CD=2CF=3,综上,CD的值为1或3.故答案为:1或3点评:此题考查了等边三角形的性质,含30度直角三角形的性质,利用了分类讨论的思想,熟练掌握等边三角形的性质是解本题的关键.三、解答题(本大题共9个小题,共69分)解答应写出文字说明,证明过程或演算步骤,并将解答过程写在答题卡上每小题对应的答题区域内.18.(5分)(2013•某某模拟)先化简,再求值:()÷,其中a=﹣2.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后再通分并利用同分母分式的减法法则计算得到最简结果,将a的值代入计算即可求出值.解答:解:原式=•﹣1=﹣1==﹣,当a=2﹣2时,原式=﹣=﹣=﹣.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.19.(6分)(2013•某某模拟)如图,我区某中学计划用一块空地修建一个学生自行车车棚,其中一面靠墙,这堵墙的长度为12米.计划建造车棚的面积为80平方米,已知现有的板材可使新建的板墙的总长为24米.为方便学生出行,学校决定在与墙平行的一面开一个2米宽的门.求这个车棚的长和宽分别是多少米?考点:一元二次方程的应用分析:设与墙垂直的一面为x米,然后可得另两面则为(24﹣2x+2)米,然后利用其面积为80列出方程求解即可.解答:解:设与墙垂直的一面为x米,另一面则为(24﹣2x+2)米根据题意得:x(26﹣2x)=80整理得:x2﹣14x+40=0解得:x1=5,x2=8,当x=5时,26﹣2x=16>12(舍去)当x=8时,26﹣2x=10<12答:这个车棚的长为10米,宽为8米.点评:本题考查了一元二次方程的应用,要结合图形求解.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.20.(6分)(2013•某某模拟)如图,已知“中国渔政310”船(A)在南海执行护渔任务,接到陆地指挥中心(P)命令,得知出事渔船(B)位于陆地指挥中心西南方向,位于“中国渔政310”船正南方向,“中国渔政310”船位于陆地指挥中心北偏西60°方向,距离为80海里的地方.而“中国渔政310”船最大航速为20海里/时.根据以上信息,请你求出“中国渔政310”船接到命令后赶往渔船出事地点最少需要多少时间(结果保留根号)?考点:解直角三角形的应用-方向角问题分析:过点P作PD⊥AB于点D,先解Rt△APD,求出AD、PD的长,再解Rt△BDP,求得DB 的长,从而得到AB=AD+BD,然后根据时间=路程÷速度即可可求得“中国渔政310”船赶往出事地点最少需要多少时间.解答:解:过点P作PD⊥AB于点D.在Rt△APD中,∵AP=80海里,∠APD=90°﹣60°=30°,∴AD=AP=40海里,PD=AD=40海里.在Rt△BDP中,PD=40海里,∠B=45°,∴BD=PD=40海里,∴AB=AD+BD=(40+40)海里,“中国渔政310”船接到命令后赶往渔船出事地点最少需要的时间为=2+2(小时).答:“中国渔政310”船接到命令后赶往渔船出事地点最少需要(2+2)小时.点评:此题考查了解直角三角形的应用﹣方向角问题,难度适中.通过作辅助线,构造直角三角形,并利用解直角三角形的知识求解是解答此题的关键.21.(6分)(2012•某某)某校将举办“心怀感恩•孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为50 ,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为320 ;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.考点:频数(率)分布直方图;用样本估计总体;列表法与树状图法专题:压轴题;图表型.分析:(1)把各时间段的学生人数相加即可;用全校同学的人数乘以40分钟以上(含40分钟)的人数所占的比重,计算即可得解;(2)列出图表,然后根据概率公式计算即可得解.解答:解:(1)8+10+16+12+4=50人,1000×=320人;(2)列表如下:共有12种情况,恰好抽到甲、乙两名同学的是2种,所以P(恰好抽到甲、乙两名同学)==.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力,列表法与树状图,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(6分)(2013•某某模拟)如图,已知A(﹣4,n),B(1,﹣4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求不等式kx+b﹣<0的解集(请直接写出答案).考点:反比例函数与一次函数的交点问题专题:数形结合.分析:(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;(2)对于直线AB,令y=0求出x 的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;(3)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集.解答:解:(1)∵反比例函数y=(m≠0)过点B(1,﹣4),∴m=1×(﹣4)=﹣4,∴y=﹣,将x=﹣4,y=n代入反比例解析式得:n=1,∴A(﹣4,1),∴将A 与B坐标代入一次函数解析式得:,解得:,∴y=﹣x﹣3;(2)在直线y=﹣x﹣3中,当y=0时,x=﹣3,∴C(﹣3,0),即OC=3,∴S△AOB=S△AOC+S△COB=(3×1+3×4)=;(3)不等式kx+b﹣<0的解集是﹣4<x<0或x>1.点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式,一次函数与坐标轴的交点,坐标与图形性质,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.23.(7分)(2011•眉山)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于F.(1)求证:∠DCP=∠DAP;(2)若AB=2,DP:PB=1:2,且PA⊥BF,求对角线BD的长.考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;菱形的性质专题:几何综合题;压轴题.分析:(1)根据菱形的性质得CD=AD,∠CDP=∠ADP,证明△CDP≌△ADP即可;(2)由菱形的性质得CD∥BA,可证△CPD∽△FPB,利用相似比,结合已知DP:PB=1:2,CD=BA,可证A为BF的中点,又PA⊥BF,从而得出PB=PF,已证PA=CP,把问题转化到Rt△PAB中,由勾股定理,列方程求解.解答:(1)证明:∵四边形ABCD为菱形,∴CD=AD,∠CDP=∠ADP,∴△CDP≌△ADP,∴∠DCP=∠DAP;(2)解:∵四边形ABCD为菱形,∴CD∥BA,CD=BA ,∴△CPD∽△FPB,∴===,∴CD=BF,CP=PF,∴A为BF的中点,又∵PA⊥BF,∴PB=PF,由(1)可知,PA=CP,∴PA=PB,在Rt△PAB中,PB2=22+(PB )2,解得PB=,则PD=,∴BD=PB+PD=2.点评:本题考查了全等三角形、相似三角形的判定与性质,菱形的性质及勾股定理的运用.关键是根据菱形的四边相等,对边平行及菱形的轴对称性解题.24.(10分)(2013•某某模拟)如图,在矩形纸片ABCD中,AB=3,BC=4.把△BCD沿对角线BD折叠,使点C落在E处,BE交AD于点F;(1)求证:AF=EF;(2)求tan∠ABF的值;(3)连接AC交BE于点G,求AG的长.考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;矩形的性质分析:(1)由图形折叠的性质得出ED=DC,BE=BC,根据全等三角形的判定定理得出△AFB≌△EFD,由全等三角形的性质即可得出结论;(2)设AF=x,由AB=3,BC=BE=4,AF=EF可知BF=4﹣x,在Rt△ABF中根据勾股定理可求出x的值,根据tan∠ABF即可得出结论;(3)由于四边形ABCD是矩形,所以∠BAD=90°,AD∥BC,再根据勾股定理求出AC的长,由相似三角形的判定定理得出△AGF∽△CGB,所以=,设AG=m,则CG=5﹣m代入比例式即可得出m的值,进而得出结论.解答:(1)证明:∵△EBD是由△CBD折叠而得,∴ED=DC,BE=BC,∵四边形ABCD是矩形,∴AB=CD,∠BAD=∠BED=90°,∴ED=AB,∴∠ABF=∠EDF,∵在△AFB与△EFD中,,∴△AFB≌△EFD(ASA),∴AF=EF;(2)解:设AF=x,∵AB=3,BC=BE=4,AF=EF∴BF=4﹣x,∵∠BAF=90°∴AF2+AB2=BF2,∴x2+32=(4﹣x )2,∴x=,∴tan∠ABF===;(3)解:∵四边形ABCD 是矩形,∴∠BAD=90°,AD∥BC;∴AC===5,∴△AGF∽△CGB,∴=,设AG=m,则CG=5﹣m,∴=,解得m=,即AG=.点评:本题考查的是相似三角形的判定与性质,涉及到全等三角形的判定与性质、矩形的性质及勾股定理,熟知以上知识是解答此题的关键.25.(11分)(2013•某某模拟)4月20日8时2分,某某省某某市芦山县发生了7.0级地震,当地的部分房屋严重受损,上万灾民无家可归,灾情牵动亿万中国人的心.某市积极筹集救灾物质 260吨物资从该市区运往某某甲、乙两地,若用大、小两种货车共20辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:车型运往地甲地(元/辆)乙地(元/辆)大货车720 800小货车500 650(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值X围);(3)在(2)的条件下,若运往甲地的物资不少于132吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.考点:一次函数的应用;一元一次方程的应用;一元一次不等式的应用分析:(1)首先设大货车用x辆,则小货车用(20﹣x)辆,利用所运物资为260吨得出等式方程求出即可;(2)根据安排9辆货车前往甲地,前往甲地的大货车为a辆,得出小货车的辆数,进而得出w与a的函数关系;(3)根据运往甲地的物资不少于132吨,则16a+10(9﹣a)≥132即可得出a的取值X围,进而得出最佳方案.解答:解:(1)设大货车用x辆,则小货车用(20﹣x)辆,根据题意得16x+10(20﹣x)=260,解得:x=10,∴20﹣x=10.答:大货车用10辆,小货车用10辆.(2)由题意得出:w=720a+800(10﹣a)+500(9﹣a)+650[10﹣(9﹣a)]=70a+13150,∴w=70a+13150(0≤a≤10且为整数).(3)由16a+10(9﹣a)≥132,解得a≥7.又∵0≤a≤10,∴7≤a≤10且为整数.∵w=70a+13150,k=70>0,w随a的增大而增大,∴当a=7时,w最小,最小值为W=70×7+13150=13640.答:使总运费最少的调配方案是:7辆大货车、2辆小货车前往甲地;3辆大货车、8辆小货车前往乙地.最少运费为13640元.点评:此题主要考查了一次函数的应用以及一元一次不等式的应用和最佳方案问题,此题综合性较强,难度较大,应注意最佳方案的选择.26.(12分)(2013•某某模拟)如图,在直角坐标系中,⊙P与y轴相切于点C,与x轴交于A(x1,0),B(x2,0)两点,其中x1,x2是方程x2﹣10x+16=0的两个根,且x1<x2,连接BC,AC.(1)求过A、B、C三点的抛物线的解析式;(2)在抛物线的对称轴上是否存在点Q,使△QAC的周长最小?若存在求出点Q的坐标;若不存在,请说明理由;(3)点M在第一象限的抛物线上,当△MBC的面积最大时,求点M的坐标.考点:二次函数综合题专题:综合题.分析:(1)连接PC,则PC⊥y轴,过点P作PE⊥AB于点E,分别求出A、B、C三点坐标,利用待定系数法求出抛物线解析式;(2)利用轴对称求最短路径的知识,可得连接BC,BC与对称轴的交点即是点Q的位置,求出点Q的坐标即可;(3)经过点M且与BC平行的直线,当这条直线与抛物线相切时,点M到BC的距离最大,即此时△MBC的面积最大,求出点M的坐标即可.解答:解:(1)连接PC,∵⊙P与y轴相切于点C∴PC⊥y轴,过点P作PE⊥AB于点E,x1,x2是方程x2﹣10x+16=0的两个根,解得:x1=2,x2=8,即点A 的坐标为(2,0),点B的坐标为(8,0),∵PE⊥AB,∴AE=BE,∴AE=3,BE=3,∴OE=5,PC=PA=5,在Rt△APE中,PE==4,故可得点C的坐标为(0,﹣4),过A、B、C三点的抛物线的解析式为y=a(x﹣2)(x﹣8),将点C(0,﹣4)代入可得:﹣4=a(0﹣2)(0﹣8),解得:a=﹣,故抛物线解析式为y=﹣(x﹣2)(x﹣8)=﹣x2+x﹣4.(2)存在.连接BC,则BC与对称轴交点即是点Q的位置,设直线BC的解析式为y=kx+b,将点B、C的坐标代入可得:,解得:,故直线BC的解析式为y=x﹣4,抛物线的对称轴为x=﹣=5,将x=5代入直线BC解析式可得:y=﹣,故点Q的坐标为(5,﹣).(3)设平行BC且经过点M 的直线解析式为y=x+m ,联立直线与抛物线可得:x+m=﹣x2+x﹣4,即﹣x 2+2x﹣4﹣m=0,△=4﹣4×(﹣)×(﹣4﹣m )=0,解得:m=0,则﹣x2+2x﹣4﹣m=0,可化为:﹣x2+2x﹣4=0,解得:x=4,将x=4代入直线解析式可得:y=2,故点Q的坐标为(4,2).点评:本题考查了二次函数的综合题,涉及了待定系数法求函数解析式、一元二次方程的解、垂径定理及三角形的面积,考察的知识点较多,同学们注意培养自己解答综合题的能力,将所学知识融会贯通.。

中考真题 2013年湖北省黄冈市中考数学试卷及答案

中考真题     2013年湖北省黄冈市中考数学试卷及答案

2013年湖北省黄冈市中考数学试卷及答案一、选择题(下列各题A、B、C、D四个选项中,有且仅有一个是正确的,每小题3分,共24分)1.(3分)﹣(﹣3)2=()A.﹣3 B.3 C.﹣9 D.92.(3分)随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B. C.D.3.(3分)如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=()A.60°B.120°C.150° D.180°4.(3分)下列计算正确的是()A.x4•x4=x16B.(a3)2•a4=a9C.(ab2)3÷(﹣ab)2=﹣ab4D.(a6)2÷(a4)3=15.(3分)已知一个正棱柱的俯视图和左视图如图,则其主视图为()A.B.C.D.6.(3分)已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根为()A.2 B.3 C.4 D.87.(3分)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为()A.πB.4πC.π或4πD.2π或4π8.(3分)一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲、乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间(小时)之间的函数图象是()A.B.C.D.二、填空题(每小题3分,满分21分)9.(3分)计算:=.10.(3分)分解因式:ab2﹣4a=.11.(3分)已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=.12.(3分)已知反比例函数在第一象限的图象如图所示,点A在其图象上,点B为x轴正半轴上一点,连接AO、AB,且AO=AB,则S=.△AOB13.(3分)如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.14.(3分)Diaoyu Island自古就是中国领土,中国政府已对Diaoyu Island开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是.15.(3分)如图,矩形ABCD中,AB=4,BC=3,边CD在直线l上,将矩形ABCD沿直线l作无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为.三、解答题(本大题共10个小题,共86分.每小题给出必要的演算过程或推理步骤.)16.(6分)解方程组:.17.(6分)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.18.(7分)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12吨的约有多少户?19.(6分)如图,有四张背面相同的纸牌A,B,C,D,其正面分别是红桃、方块、黑桃、梅花,其中红桃、方块为红色,黑桃、梅花为黑色.小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张再摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示);(2)求摸出的两张牌同为红色的概率.20.(7分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC 平分∠DAB.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为3,AD=4,求AC的长.21.(8分)为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资.现准备租用甲、乙两种货车,将这批救灾物资一次性全部运往灾区,它们的载货量和租金如下表:如果计划租用6辆货车,且租车的总费用不超过2300元,求最省钱的租车方案.22.(8分)如图,小山顶上有一信号塔AB,山坡BC的倾角为30°,现为了测量塔高AB,测量人员选择山脚C处为一测量点,测得塔顶仰角为45°,然后顺山坡向上行走100米到达E处,再测得塔顶仰角为60°,求塔高AB(结果保留整数,≈1.73,≈1.41)23.(12分)某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完.该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售量x(千件)的关系为:y1=若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为(1)用x的代数式表示t为:t=;当0<x≤4时,y2与x的函数关系为:y2=;当≤x<时,y2=100;(2)求每年该公司销售这种健身产品的总利润w(千元)与国内销售数量x(千件)的函数关系式,并指出x的取值范围;(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?24.(15分)如图,在平面直角坐标系中,四边形ABCO是梯形,其中A(6,0),B(3,),C(1,),动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→C→O的线路以每秒1个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P,Q运动的时间为t(秒).(1)求经过A,B,C三点的抛物线的解析式;(2)当点Q在CO边上运动时,求△OPQ的面积S与时间t的函数关系式;(3)以O,P,Q顶点的三角形能构成直角三角形吗?若能,请求出t的值;若不能,请说明理由;(4)经过A,B,C三点的抛物线的对称轴、直线OB和PQ能够交于一点吗?若能,请求出此时t的值(或范围),若不能,请说明理由).2013年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(下列各题A、B、C、D四个选项中,有且仅有一个是正确的,每小题3分,共24分)1.(3分)(2013•黄冈)﹣(﹣3)2=()A.﹣3 B.3 C.﹣9 D.9【分析】根据有理数的乘方的定义解答.【解答】解:﹣(﹣3)2=﹣9.故选C.【点评】本题考查了有理数的乘方的定义,是基础题,熟记概念是解题的关键.2.(3分)(2013•黄冈)随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B. C.D.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选A.【点评】本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.(3分)(2013•黄冈)如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=()A.60°B.120°C.150° D.180°【分析】根据两直线平行,同旁内角互补由AB∥CD得到∠BAC+∠ACD=180°,可计算出∠ACD=60°,然后由AC∥DF,根据平行线的性质得到∠ACD=∠CDF=60°.【解答】解:∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠BAC=120°,∴∠ACD=180°﹣120°=60°,∵AC∥DF,∴∠ACD=∠CDF,∴∠CDF=60°.故选A.【点评】本题考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补.4.(3分)(2013•黄冈)下列计算正确的是()A.x4•x4=x16B.(a3)2•a4=a9C.(ab2)3÷(﹣ab)2=﹣ab4D.(a6)2÷(a4)3=1【分析】根据同底数幂的乘除法则及幂的乘方法则,结合各选项进行判断即可.【解答】解:A、x4×x4=x8,原式计算错误,故本选项错误;B、(a3)2•a4=a10,原式计算错误,故本选项错误;C、(ab2)3÷(﹣ab)2=ab4,原式计算错误,故本选项错误;D、(a6)2÷(a4)3=1,计算正确,故本选项正确;故选D.【点评】本题考查了同底数幂的乘除、幂的乘方与积的乘方的知识,解答本题的关键是掌握各部分的运算法则.5.(3分)(2013•黄冈)已知一个正棱柱的俯视图和左视图如图,则其主视图为()A.B.C.D.【分析】首先根据俯视图和左视图判断该几何体,然后确定其主视图即可;【解答】解:根据此正棱柱的俯视图和左视图得到该几何体是正五棱柱,其主视图应该是矩形,而且有看到两条棱,背面的棱用虚线表示,故选D.【点评】本题考查了几何体的三种视图,掌握定义是关键.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.6.(3分)(2013•黄冈)已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根为()A.2 B.3 C.4 D.8【分析】利用根与系数的关系来求方程的另一根.【解答】解:设方程的另一根为α,则α+2=6,解得α=4.故选C.【点评】本题考查了根与系数的关系.若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.7.(3分)(2013•黄冈)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为()A.πB.4πC.π或4πD.2π或4π【分析】分底面周长为4π和2π两种情况讨论,先求得底面半径,再根据圆的面积公式即可求解.【解答】解:①底面周长为4π时,半径为4π÷π÷2=2,底面圆的面积为π×22=4π;②底面周长为2π时,半径为2π÷π÷2=1,底面圆的面积为π×12=π.故选C.【点评】考查了圆柱的侧面展开图,注意分长为底面周长和宽为底面周长两种情况讨论求解.8.(3分)(2013•黄冈)一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲、乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间(小时)之间的函数图象是()A.B.C.D.【分析】分三段讨论,①两车从开始到相遇,这段时间两车距迅速减小,②相遇后向相反方向行驶到特快到达甲地,这段时间两车距迅速增加,③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大,结合实际选符合的图象即可.【解答】解:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶到特快到达甲地这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选:C.【点评】本题考查了函数的图象,解答本题关键是分段讨论,要结合实际解答,明白每条直线所代表的实际含义及拐点的含义.二、填空题(每小题3分,满分21分)9.(3分)(2013•黄冈)计算:=﹣(或).【分析】分母相同,直接将分子相减再约分即可.【解答】解:原式===﹣,(或).【点评】本题考查了分式的加减,分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可.10.(3分)(2013•黄冈)分解因式:ab2﹣4a=a(b﹣2)(b+2).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ab2﹣4a=a(b2﹣4)=a(b﹣2)(b+2).故答案为:a(b﹣2)(b+2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.11.(3分)(2013•黄冈)已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=.【分析】根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△BDC中,由勾股定理求出BD 即可.【解答】解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=1,∴AD=DC=1,∵△ABC是等边三角形,∴BC=AC=1+1=2,BD⊥AC,在Rt△BDC中,由勾股定理得:BD==,即DE=BD=,故答案为:.【点评】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长.12.(3分)(2013•黄冈)已知反比例函数在第一象限的图象如图所示,点A在其图象上,点B为x 轴正半轴上一点,连接AO、AB,且AO=AB,则S=6.△AOB【分析】根据等腰三角形的性质得出CO=BC,再利用反比例函数系数k的几何意义得出S即可.△AOB【解答】解:过点A作AC⊥OB于点C,∵AO=AB,∴CO=BC,∵点A在其图象上,∴AC×CO=3,∴AC×BC=3,∴S=6.△AOB故答案为:6.【点评】此题主要考查了等腰三角形的性质以及反比例函数系数k的几何意义,正确分割△AOB是解题关键.13.(3分)(2013•黄冈)如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.【分析】首先连接OC,由M是CD的中点,EM⊥CD,可得EM过⊙O的圆心点O,然后设半径为x,由勾股定理即可求得:(8﹣x)2+22=x2,解此方程即可求得答案.【解答】解:连接OC,∵M是CD的中点,EM⊥CD,∴EM过⊙O的圆心点O,设半径为x,∵CD=4,EM=8,∴CM=CD=2,OM=8﹣OE=8﹣x,在Rt△OCM中,OM2+CM2=OC2,即(8﹣x)2+22=x2,∴所在圆的半径为:.故答案为:.【点评】此题考查了垂径定理以及勾股定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.14.(3分)(2013•黄冈)Diaoyu Island自古就是中国领土,中国政府已对Diaoyu Island开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y (海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是7:00.【分析】根据函数图象和题意可以求出开始的速度为80海里/时,故障排除后的速度是100海里/时,设计划行驶的路程是a海里,就可以由时间之间的关系建立方程求出路程,再由路程除以速度就可以求出计划到达时间.【解答】解:由图象及题意,得故障前的速度为:80÷1=80海里/时,故障后的速度为:(180﹣80)÷1=100海里/时.设航行额全程有a海里,由题意,得,解得:a=480,则原计划行驶的时间为:480÷80=6小时,解法二:设原计划行驶的时间为t小时,80t=80+100(t﹣2)故计划准点到达的时刻为:7:00.故答案为:7:00.【点评】本题考查了运用函数图象的意义解答行程问题的运用,行程问题的数量关系路程=速度×时间的运用,解答时先根据图象求出速度是关键,再建立方程求出距离是难点.15.(3分)(2013•黄冈)如图,矩形ABCD中,AB=4,BC=3,边CD在直线l上,将矩形ABCD沿直线l 作无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为6π.【分析】如图根据旋转的性质知,点A经过的路线长是三段:①以90°为圆心角,AD长为半径的扇形的弧长;②以90°为圆心角,AB长为半径的扇形的弧长;③90°为圆心角,矩形ABCD对角线长为半径的扇形的弧长.【解答】解:∵四边形ABCD是矩形,AB=4,BC=3,∴BC=AD=3,∠ADC=90°,对角线AC(BD)=5.∵根据旋转的性质知,∠ADA′=90°,AD=A′D=BC=3,∴点A第一次翻滚到点A′位置时,则点A′经过的路线长为:=.同理,点A′第一次翻滚到点A″位置时,则点A′经过的路线长为:=2π.点A″第一次翻滚到点A1位置时,则点A″经过的路线长为:=.则当点A第一次翻滚到点A1位置时,则点A经过的路线长为:+2π+=6π.故答案是:6π.【点评】本题考查了弧长的计算、矩形的性质以及旋转的性质.根据题意画出点A运动轨迹,是突破解题难点的关键.三、解答题(本大题共10个小题,共86分.每小题给出必要的演算过程或推理步骤.)16.(6分)(2013•黄冈)解方程组:.【分析】把方程组整理成一般形式,然后利用代入消元法其求即可.【解答】解:方程组可化为,由②得,x=5y﹣3③,③代入①得,5(5y﹣3)﹣11y=﹣1,解得y=1,把y=1代入③得,x=5﹣3=2,所以,原方程组的解是.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.17.(6分)(2013•黄冈)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.【分析】根据菱形的对角线互相平分可得OD=OB,再根据直角三角形斜边上的中线等于斜边的一半可得OH=OB,然后根据等边对等角求出∠OHB=∠OBH,根据两直线平行,内错角相等求出∠OBH=∠ODC,然后根据等角的余角相等证明即可.【解答】证明:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO.【点评】本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.18.(7分)(2013•黄冈)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12吨的约有多少户?【分析】(1)根据条形图中数据得出平均用水11吨的户数,进而画出条形图即可;(2)根据平均数、中位数、众的定义分别求解即可;(3)根据样本估计总体得出答案即可.【解答】解:(1)根据条形图可得出:平均用水11吨的用户为:100﹣20﹣10﹣20﹣10=40(户),如图所示:(2)平均数为:(20×10+40×11+12×10+13×20+10×14)=11.6(吨),根据11出现次数最多,故众数为:11,根据100个数据的最中间为第50和第51个数据,按大小排列后第50,51个数据是11,故中位数为:11;答:这100个样本数据的平均数,众数和中位数分别是11.6,11,11;(3)样本中不超过12吨的有20+40+10=70(户),答:黄冈市直机关500户家庭中月平均用水量不超过12吨的约有:500×=350(户).【点评】此题主要考查了平均数、众数、中位数的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.19.(6分)(2013•黄冈)如图,有四张背面相同的纸牌A,B,C,D,其正面分别是红桃、方块、黑桃、梅花,其中红桃、方块为红色,黑桃、梅花为黑色.小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张再摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示);(2)求摸出的两张牌同为红色的概率.【分析】(1)画出树状图即可;(2)根据树状图可以直观的得到共有12种情况,都是红色情况有2种,进而得到概率.【解答】解:(1)如图所示:(2)根据树状图可得共有12种情况,都是红色情况有2种,概率为P==.【点评】本题考查概率公式,即如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20.(7分)(2013•黄冈)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为3,AD=4,求AC的长.【分析】(1)连接OC,由OA=OC可以得到∠OAC=∠OCA,然后利用角平分线的性质可以证明∠DAC=∠OCA,接着利用平行线的判定即可得到OC∥AD,然后就得到OC⊥CD,由此即可证明直线CD与⊙O相切于C点;(2)连接BC,根据圆周角定理的推理得到∠ACB=90°,又∠DAC=∠OAC,由此可以得到△ADC∽△ACB,然后利用相似三角形的性质即可解决问题.【解答】(1)证明:连接OC∵OA=OC∴∠OAC=∠OCA∵AC平分∠DAB∴∠DAC=∠OAC∴∠DAC=∠OCA∴OC∥AD∵AD⊥CD∴OC⊥CD∴直线CD与⊙O相切于点C;(2)解:连接BC,则∠ACB=90°.∵∠DAC=∠OAC,∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴,∴AC2=AD•AB,∵⊙O的半径为3,AD=4,∴AB=6,∴AC=2.【点评】此题主要考查了切线的性质与判定,解题时首先利用切线的判定证明切线,然后利用切线的想这已知条件证明三角形相似即可解决问题.21.(8分)(2013•黄冈)为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资.现准备租用甲、乙两种货车,将这批救灾物资一次性全部运往灾区,它们的载货量和租金如下表:如果计划租用6辆货车,且租车的总费用不超过2300元,求最省钱的租车方案.【分析】先设租甲型货车x辆,则乙型货车(6﹣x)辆,根据题意列出不等式组,求出x的取值范围,再根据x为正整数,求出租车方案,再分别求出每种方案的费用,即可得出答案.【解答】解:设租甲型货车x辆,则乙型货车(6﹣x)辆,根据题意得:,解得:4≤x≤5,∵x为正整数,∴共有两种方案,方案1:租甲型货车4辆,乙型货车2辆,方案2:租甲型货车5辆,乙型货车1辆,方案1的费用为:4×400+2×300=2200元;方案2的费用为:5×400+1×300=2300元;2200<2300,则选择方案1最省钱,即最省钱的租车方案是租甲型货车4辆,乙型货车2辆.【点评】此题考查了一元一次不等式组的应用,关键是读懂题意,根据题目中的数量关系列出不等式组,注意x为正整数.22.(8分)(2013•黄冈)如图,小山顶上有一信号塔AB,山坡BC的倾角为30°,现为了测量塔高AB,测量人员选择山脚C处为一测量点,测得塔顶仰角为45°,然后顺山坡向上行走100米到达E处,再测得塔顶仰角为60°,求塔高AB(结果保留整数,≈1.73,≈1.41)【分析】先判断△ACE为等腰三角形,在Rt△AEF中表示出EF、AF,在Rt△BEF中求出BF,根据AB=AF ﹣BF即可得出答案.【解答】解:依题意可得:∠AEB=∠EAB=30°,∠ACE=15°,又∵∠AEB=∠ACE+∠CAE∴∠CAE=15°,即△ACE为等腰三角形,∴AE=CE=100m,在Rt△AEF中,∠AEF=60°,∴EF=AEcos60°=50m,AF=AEsin60°=50m,在Rt△BEF中,∠BEF=30°,∴BF=EFtan30°=50×=m,∴AB=AF﹣BF=50﹣=≈58(米).答:塔高AB大约为58米.【点评】本题考查了解直角三角形的知识,解答本题的关键是构造直角三角形,利用三角函数表示出相关线段的长度,难度一般.23.(12分)(2013•黄冈)某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完.该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售量x(千件)的关系为:y1=若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为(1)用x的代数式表示t为:t=6﹣x;当0<x≤4时,y2与x的函数关系为:y2=5x+80;当4≤x<6时,y2=100;(2)求每年该公司销售这种健身产品的总利润w(千元)与国内销售数量x(千件)的函数关系式,并指出x的取值范围;(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?【分析】(1)由该公司的年产量为6千件,每年可在国内、国外市场上全部售完,可得国内销售量+国外销售量=6千件,即x+t=6,变形即为t=6﹣x;根据平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系及t=6﹣x即可求出y2与x的函数关系:当0<x≤4时,y2=5x+80;当4<x<6时,y2=100;(2)根据总利润=国内销售的利润+国外销售的利润,结合函数解析式,分三种情况讨论:①0<x≤2;②2<x≤4;③4<x≤6;(3)先利用配方法将各解析式写成顶点式,再根据二次函数的性质,求出三种情况下的最大值,再比较即可.【解答】解:(1)由题意,得x+t=6,∴t=6﹣x;∵,∴当0<x≤4时,2≤6﹣x<6,即2≤t<6,此时y2与x的函数关系为:y2=﹣5(6﹣x)+110=5x+80;当4≤x<6时,0<6﹣x≤2,即0<t≤2,此时y2=100.故答案为:6﹣x;5x+80;4,6;(2)分三种情况:①当0<x≤2时,w=(15x+90)x+(5x+80)(6﹣x)=10x2+40x+480;②当2<x≤4时,w=(﹣5x+130)x+(5x+80)(6﹣x)=﹣10x2+80x+480;③当4<x≤6时,w=(﹣5x+130)x+100(6﹣x)=﹣5x2+30x+600;综上可知,w=;=600;(3)当0<x≤2时,w=10x2+40x+480=10(x+2)2+440,此时x=2时,w最大=640;当2<x≤4时,w=﹣10x2+80x+480=﹣10(x﹣4)2+640,此时x=4时,w最大当4<x≤6时,w=﹣5x2+30x+600=﹣5(x﹣3)2+645,4<x<6时,w<640;∵a=﹣5,∴当x>3时,w随x的增大而减小,.∴没有w最大故该公司每年国内、国外的销售量各为4千件、2千件,可使公司每年的总利润最大,最大值为640千元.【点评】本题考查的是二次函数在实际生活中的应用,有一定难度.涉及到一次函数、二次函数的性质,分段函数等知识,进行分类讨论是解题的关键.24.(15分)(2013•黄冈)如图,在平面直角坐标系中,四边形ABCO是梯形,其中A(6,0),B(3,),C(1,),动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→C→O 的线路以每秒1个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P,Q运动的时间为t(秒).(1)求经过A,B,C三点的抛物线的解析式;(2)当点Q在CO边上运动时,求△OPQ的面积S与时间t的函数关系式;(3)以O,P,Q顶点的三角形能构成直角三角形吗?若能,请求出t的值;若不能,请说明理由;(4)经过A,B,C三点的抛物线的对称轴、直线OB和PQ能够交于一点吗?若能,请求出此时t的值(或范围),若不能,请说明理由).【分析】(1)利用待定系数法求出二次函数解析式即可;(2)根据已知得出△OPQ的高,进而利用三角形面积公式求出即可;(3)根据题意得出:0≤t≤3,当0≤t≤2时,Q在BC边上运动,得出若△OPQ为直角三角形,只能是∠OPQ=90°或∠OQP=90°,当2<t≤3时,Q在OC边上运动,得出△OPQ不可能为直角三角形;(4)首先求出抛物线对称轴以及OB直线解析式和PM的解析式,得出(1﹣t)×=3﹣t﹣2t,恒成立,即0≤t≤2时,P,M,Q总在一条直线上,再利用2<t≤3时,求出t的值,根据t的取值范围得出答案.【解答】解:(1)设所求抛物线的解析式为y=ax2+bx+c,把A(6,0),B(3,),C(1,)三点坐标代入得:,解得:,即所求抛物线解析式为:y=﹣x2+x+;(2)如图1,依据题意得出:OC=CB=2,∵C(1,),∴tan∠COA=,∴∠COA=60°,∴当动点Q运动到OC边时,OQ=4﹣t,∴△OPQ的高为:OQ×sin60°=(4﹣t)×,又∵OP=2t,∴S=×2t×(4﹣t)×=﹣(t2﹣4t)(2≤t≤3);(3)根据题意得出:0≤t≤3,当0≤t≤2时,Q在BC边上运动,此时OP=2t,OQ=,PQ==,∵∠POQ<∠POC=60°,∴若△OPQ为直角三角形,只能是∠OPQ=90°或∠OQP=90°,若∠OPQ=90°,如图2,则OP2+PQ2=QO2,即4t2+3+(3t﹣3)2=3+(3﹣t)2,解得:t1=1,t2=0(舍去),若△OPQ为直角三角形,只能是∠OPQ=90°或∠OQP=90°,若∠OQP=90°,如图,3,则OQ2+PQ2=PO2,即(3﹣t)2+6+(3t﹣3)2=4t2,解得:t=2,当2<t≤3时,Q在OC边上运动,此时OP=2t>4,∠POQ=∠COP=60°,OQ<OC=2,故△OPQ不可能为直角三角形,综上所述,当t=1或t=2时,△OPQ为直角三角形;(4)由(1)可知,抛物线y=﹣x2+x+=﹣(x﹣2)2+,其对称轴为x=2,又∵OB的直线方程为y=x,∴抛物线对称轴与OB交点为M(2,),又∵P(2t,0)设过P,M的直线解析式为:y=kx+b,∴,解得:,即直线PM的解析式为:y=x﹣,即(1﹣t)y=x﹣2t,又0≤t≤2时,Q(3﹣t,),代入上式,得:(1﹣t)×=3﹣t﹣2t,恒成立,即0≤t≤2时,P,M,Q总在一条直线上,即M在直线PQ上;当2<t≤3时,OQ=4﹣t,∠QOP=60°,∴Q(,),代入上式得:×(1﹣t)=﹣2t,解得:t=2或t=(均不合题意,舍去).∴综上所述,可知过点A、B、C三点的抛物线的对称轴OB和PQ能够交于一点,此时0≤t≤2.。

2013年湖北省黄石市中考数学模拟试题(word版含答案)

2013年湖北省黄石市中考数学模拟试题(word版含答案)

黄石市2009年初中毕业生学业考试数 学 试 题 卷(2009年黄石市)1.12-的倒数是( ) A .2 B .12 C .12- D .2-2.实数a 在数轴上对应的点如图所示,则a ,a -,1-的大小关系是( )A .1a a -<<-B .a a a -<-<C .1a a <-<-D .1a a <-<- 3.下列根式中,不是..最简二次根式的是( ) ABCD4.下列图形中,对称轴有且只有3条的是( ) A .菱形 B .等边三角形 C .正方形D .圆5.一次函数y kx b =+的图象只经过第一、二、三象限,则( )A .00k b <>,B .00k b >>,C .00k b ><,D .00k b <<,6.一个几何体的三视图如图所示,则此几何体是( ) A .圆锥 B .棱柱 C .圆柱 D .棱台 7.三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为( ) A .14 B .12 C .12或14 D .以上都不对8.为了防控输入性甲型H1N1流感,某市医院成立隔离治疗发热流涕病人防控小组,决定从内科5位骨干医师中(含有甲)抽调3人组成,则甲一定抽调到防控小组的概率是( )A .35B .25 C .45 D .159.如图,ABC △为O ⊙的内接三角形,130AB C =∠=,°,则O ⊙的内接正方形的面积为( ) A .2 B .4C .8D .1610.已知二次函数2y ax bx c =++的图象如图所示,有以下结论: ①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<; ⑤1c a ->其中所有正确结论的序号是( ) A .①② B . ①③④ C .①②③⑤ D .①②③④⑤二、认真填一填(本题有6个小题,每小题3分,共18分)11.因式分解34a a -= .(第2题图)(第6题图)俯视图 主视图 左视图(第10题图)12.如图,1502110AB CD ∠=∠=∥,°,°,则3∠= .13.在ABCD 中,E 在DC 上,若:1:2DE EC =,则:BF BE = .14.汶川大地震时,航空兵空投救灾物质到指定的区域(圆A )如图所示,若要使空投物质落在中心区域(圆B )的概率为12,则B ⊙与A ⊙的半径之比为 .15.下图中正比例函数与反比例函数的图象相交于A B 、两点,分别以A B 、两点为圆心,画与x 轴相切的两个圆,若点A 的坐标为(2,1),则图中两个阴影部分面积的和是 . 16.若抛物线23y ax bx =++与232y x x =-++的两交点关于原点对称,则a b 、分别为 . 三、全面答一答(本题有9个小题,共72分)解答应写出文字说明、证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17.(本小题满分7分)求值112|20093tan 303-⎛⎫+--+ ⎪⎝⎭°.18.(本小题满分7分)如图,C F 、在BE 上,A D AC DF BF EC ∠=∠=,∥,. 求证:AB DE =.19.(本小题满分7分) 先化简,再求值A B D C (第12题图) 1 2 3 D C ABFE(第13题图) (第14题图)AB C F ED(第18题图)222366510252106a a a a a a a a--+÷++++其中a =20.(本小题满分8分)已知关于x 的函数21y ax x =++(a 为常数)(1)若函数的图象与x 轴恰有一个交点,求a 的值;(4分)(2)若函数的图象是抛物线,且顶点始终在x 轴上方,求a 的取值范围.(4分) 21.(本小题满分8分)三楚第一山——东方山是黄石地区的佛教圣地,也是国家AAA 级游览景区.它的主峰海拔约为600米,主峰AB 上建有一座电信信号发射架BC ,现在山脚P 处测得峰顶的仰角为α,发射架顶端的仰角为β,其中35tan tan 58αβ==,,求发射架高BC .22.(本小题满分8分)全国实施“限塑令”于今年6月1日满一年,某报三名记者当日分别在武汉三大商业集团门口,同时采用问卷调查的方式,随机调查了一定数量的顾客,在“限塑令”实施前后使用购物袋的情况.下面是这三名记者根据汇总的数据绘制的统计图.请你根据以上信息解答下列问题(1)图1中从左到右各长方形的高度之比为2∶8∶8∶3∶3∶1,又知此次调查中使用4个和5个塑料购(第21题图) 米 山顶图1 塑料袋数(个)“限塑令”实施前,平均一次购物使用不同数量塑料购物袋的人数统计图“限塑令”实施后,使用各种购物袋的人数分布统计图 图2物袋的顾客一共24人,问这三名记者一共调查了多少人?(2分) (2)“限塑令”实施前,如果每天约有6000人到该三大商场购物,根据记者所调查的一定数量顾客平均一次购物使用塑料购物袋的平均数,估计这三大商业集团每天需要为顾客提供多少个塑料购物袋?(3分)(3)据武汉晚报报道,自去年6月1日到去年12月底,三大商业集团下属所有门店,塑料袋的使用量与上一年同期相比,从12927万个下降到3355万个,降幅为 (精确到百分之一).这一结果与图2中的收费塑料购物袋 %比较,你能得出什么结论,谈谈你的感想.(3分) 23.(本小题满分8分)为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y (台)与补贴款额x (元)之间大致满足如图①所示的一次函数关系.随着补贴款额x 的不断增大,销售量也不断增加,但每台彩电的收益Z (元)会相应降低且Z 与x 之间也大致满足如图②所示的一次函数关系.(1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元?(2分)(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y 和每台家电的收益Z 与政府补贴款额x 之间的函数关系式;(3分)(3)要使该商场销售彩电的总收益w (元)最大,政府应将每台补贴款额x 定为多少?并求出总收益w 的最大值.(3分) 24.(本小题满分9分) 如图,ABC △中,点O 是边AC 上一个动点,过O 作直线MN BC ∥,设MN 交BCA ∠的平分线于点E ,交BCA ∠的外角平分线于点F .(1)探究:线段OE 与OF 的数量关系并加以证明;(3分)(2)当点O 在边AC 上运动时,四边形BCFE 会是菱形吗?若是,请证明,若不是,则说明理由;(3分)(3)当点O 运动到何处,且ABC △满足什么条件时,四边形AECF 是正方形?(3分)) 图② A F N M E25.(本小题满分10分)正方形ABCD 在如图所示的平面直角坐标系中,A 在x 轴正半轴上,D 在y 轴的负半轴上,AB 交y 轴正半轴于E BC ,交x 轴负半轴于F ,1OE =,抛物线24y ax bx =+-过A D F 、、三点. (1)求抛物线的解析式;(3分)(2)Q 是抛物线上D F 、间的一点,过Q 点作平行于x 轴的直线交边AD 于M ,交BC 所在直线于N ,若32FQN AFQM S S =△四边形,则判断四边形AFQM 的形状;(3分) (3)在射线DB 上是否存在动点P ,在射线CB 上是否存在动点H ,使得AP PH ⊥且AP PH =,若存在,请给予严格证明,若不存在,请说明理由.(4分)黄石市2009年初中毕业生学业考试数学答案及评分标准11.(2)(2)a a a +- 12.60° 13.3∶5 14.2 15.π 16.332-, 三、解答题(9小题,共72分) 17.解:原式321333=++ ································································· 4分6= ························································································· 3分 18.证明:AC DF ∥,ACE DFB ∴∠=∠,(第25题图)A∴ACB DFE ∠=∠. ·············································· 2分又BF EC =,BF CF EC CF ∴-=-,即BC EF =. ···················· 2分 又A D ∠=∠, ABC DEF ∴△≌△.AB DE ∴=. ······························································································· 3分 19.解:原式2(6)(6)2(5)5(5)6(6)a a a a a a a a +-++=+-+ ·················································· 4分 2a=. ······················································································ 2分 当a =2=. ··········································································· 1分 20.解:(1)当0a =时,函数为1y x =+,它的图象显然与x 轴只有一个交点(10)-,. ···················································································· 2分 当0a ≠时,依题意得方程210ax x ++=有两等实数根.140a ∴∆=-=,14a ∴=. ∴当0a =或14a =时函数图象与x 轴恰有一个交点. ··········································· 2分 (2)依题意有4104a a ->分类讨论解得14a >或0a <.当14a >或0a <时,抛物线顶点始终在x 轴上方. ··············································· 4分21.解:在Rt PAB △中,∵tan ABPAα=,∴6001000m 3tan 5AB PA α===. ··················· 3分 在Rt PAC △中, ∵tan AC PAβ=,∴5tan 1000625m 8AC PA β===. ······························································ 3分∴62560025m BC =-=. ············································································ 2分答:发射架高为25m . 22.解:(1)设一次购物用6个袋的人数为x 人,则依条件有33244x x x +==,则记者共调查了4(288331)100+++++=人. ················ 2分 (2)这100位顾客平均一次购物使用购物袋的平均数为81322323124125463100⨯+⨯+⨯+⨯+⨯+⨯=(个)6000318000⨯=个.估计这三大商业集团为顾客每天提供18000个塑料购物袋. ···································· 3分 (3)74%;25;多数人环保意识增强,(只要是涉及环保节能等方面思想向上的即可). ····················· 3分 23.解:(1)该商场销售家电的总收益为800200160000⨯=(元) ························ 2分 (2)依题意可设1800y k x =+,2200Z k x =+∴有14008001200k +=,2200200160k +=,解得12115k k ==-,. 所以800y x =+,12005Z x =-+. ································································ 3分 (3)1(800)2005W yZ x x ⎛⎫==+-+ ⎪⎝⎭21(100)1620005x =--+政府应将每台补贴款额x 定为100元,总收益有最大值. 其最大值为162000元. ·················································································· 3分 24.解:(1)OE OF =.其证明如下:∵CE 是ACB ∠的平分线,12∴∠=∠.∵MN BC ∥,∴13∠=∠. ∴23∠=∠. ∴OE OC =. 同理可证OC OF =. ∴OE OF =. ··············································· 3分(2)四边形BCFE 不可能是菱形,若BCFE 为菱形,则BF EC ⊥,而由(1)可知FC EC ⊥,在平面内过同一点F 不可能有两条直线同垂直于一条直线. ········································· 3分(3)当点O 运动到AC 中点时,OE OF =,OA OC =,则四边形AECF 为,要使AECF 为正方形,必须使EF AC ⊥.∵EF BC ∥,∴AC BC ⊥,∴ABC △是以ACB ∠为直角的直角三角形, ∴当点O 为AC 中点且ABC △是以ACB ∠为直角的直角三角形时, 四边形AECF 是正方形. ················································································ 3分 25.解:(1)依条件有(04)D -,,(01)E ,.由OEA ADO △∽△知24OA OE OD ==.∴(20)A ,由Rt Rt ADE ABF △≌△得DE AF =. ∴(30)F -,.AF N D CB M EO (第24题图) 1 2 54 3 6将A F 、的坐标代入抛物线方程, 得42409340a b a b +-=⎧⎨--=⎩23a b ⇒==.∴抛物线的解析式为222433y x x =+-. ··························································· 3分 (2)设QM m =,1(5)||2Q AFQM S m y =+四边形,1(5)||2FQN Q S m y =-△.∴3(5)||(5)||12Q Q m y m y m +=-⇒=设()Q a b ,,则(1)M a b +,∴222432(1)4b a a a b a ⎧=+-⎪⎨⎪=+-⎩2230a a ⇒--=,1a ∴=-(舍去3a =) 此时点M 与点D 重合,QF AM =,AF QM >,AF QM ∥,则AFQM 为等腰梯形. ·················································································· 3分 (3)在射线DB 上存在一点P ,在射线CB 上存在一点H . 使得AP PH ⊥,且AP PH =成立,证明如下:当点P 如图①所示位置时,不妨设PA PH =,过点P 作PQ BC ⊥,PM CD ⊥,PN AD ⊥,垂足分别为Q M N 、、.若PA PH =.由PM PN =得:AN PQ =,Rt Rt PQH APN ∴△≌△ HPQ PAN ∴∠=∠.又90PAN APN ∠+∠=°90APN HPQ ∴∠+∠=°AP PH ∴⊥. ····························································································· 2分 当点P 在如图②所示位置时,过点P 作PM BC ⊥,PN AB ⊥, 垂足分别为M N ,.B A N D MC Q H P ① HNAD CB M P ③BADM C QHP②N同理可证Rt Rt PMH PAN △≌△. MHP NAP ∠=∠. 又MHP HPN ∠=∠,90HPA NPA HPN MHP HPM ∠=∠+∠=∠+∠=°,PH PA ∴⊥. ······························································································ 1分 当P 在如图③所示位置时,过点P 作PN BH ⊥,垂足为N ,PM AB ⊥延长线,垂足为M . 同理可证Rt Rt PHM PMA △≌△.PH PA ∴⊥. ······························································································ 1分 注意:分三种情况讨论,作图正确并给出一种情况证明正确的,同理可证出其他两种情况的给予4分;若只给出一种正确证明,其他两种情况未作出说明,可给2分,若用四点共圆知识证明且证明过程正确的也没有讨论三种情况的.只给2分.。

【精校】2013年湖北省黄冈市中考数学试题(含答案)

【精校】2013年湖北省黄冈市中考数学试题(含答案)

湖北省黄冈市2013年中考数学试题一、 选择题(下列各题A 、B 、C 、D 四个选项中,有且只有一个是正确的,每小题3分,共24分)1.-(-3)2=( )A.-3B.3C.-9D.92.随着人民生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是( )3.如图,AB ∥CD ∥EF ,AC ∥DF ,若∠BAC=120°,则∠CDF=( )A.60°B.120°C.150°D.180°4.下列计算正确的是( )A .1644x x x =⋅ B.()9423a a a =⋅ C.()()4232ab ab ab -=-÷ D.()()13426=÷a a5.已知一个正棱柱的俯视图和左视图如图,则其主视图为( )A B C D 3题图 5题图 7题图6.已知一元二次方程062=+-c x x 有一个根为2,则另一根为( )A.2B.3C.4D.87.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为( )A. B. 4 C.或4 D.2或48.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t (小时)之间的函数图象是( )二、 填空题(每小题3分,共21分)9.计算:()()=---221313x x x .10.分解因式:=-a ab 42 .11.已知⊿ABC 为等边三角形,BD 为中线,延长BC 至E ,使CE=CD=1,连接DE ,则DE= .11题图12.已知反比例函数x y 6在第一象限的图象如图所示,点A 在其图象上,点B 为轴正半轴上一点,连接AO 、AB ,且AO=AB ,则S ⊿AOB = .13.如图,M 是CD 的中点,EM ⊥CD ,若CD=4,EM=8,则CED 所在圆的半径为 .14.钓鱼岛自古就是中国领土,中国政府已对钓鱼岛开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程(海里)与所用时间t (小时)的函数图象,则该巡逻艇原计划准点到达的时刻是 .15.如图,矩形ABCD 中,AB=4,BC=3,边CD 在直线L 上,将矩形ABCD 沿直线L 作无滑动翻滚,当点A 第一次翻滚到点A 1位置时,则点A 经过的路线长为 .三、解答题(共75分) 12题图 13题图 14题图15题图16.(6分)解方程组:()()()()⎪⎩⎪⎨⎧=--+-=+--3223121432y x y x y x y x17.(6分)如图,四边形ABCD 是菱形,对角线AC 、BD 相交于点O ,DH ⊥AB 于H ,连接OH ,求证:∠DHO=∠DCO.18(7分)为了倡导“节约用水,从我做起”,黄岗市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图.(1) 请将条形统计图补充完整;(2) 求这100个样本数据的平均数,众数和中位数;(3) 根据样本数据,估计黄岗市直机关500户家庭中月平均用水量不超过12吨的约有多少户?17题图19.(6分)如图,有四张背面相同的纸牌A、B、C、D,其正面分别是红桃、方块、黑桃、梅花,其中红桃、方块为红色,黑桃、梅花为黑色,小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A、B、C、D表示);(2)求摸出的两张牌同为红色的概率.20.(7分)如图,AB为⊙O的直径,C为⊙O上一点,AD的过C点的直线互相垂直,垂足为D,且AC 平分∠DAB.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为3,AD=4,求AC的长.18题图19题图21.(8分)为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资,现准备租用甲、乙两种货车,将这批救灾物资一次性全部运往灾区,它们的载货量和租金如下表: 甲种货车乙种货车载货量(吨/辆) 45 30租金(元/辆) 400300 如果计划租用6辆货车,且租车的总费用不超过2300元,求最省钱的租车方案.22.(8分)如图,小山顶上有一信号塔AB ,山坡BC 的倾角为30°,现为了测量塔高AB ,测量人员选择山脚C 处为一测量点,测得塔顶仰角为45°,然后顺山坡向上行走100米到达E 处,再测得塔顶仰角为60°,求塔高AB.(结果保留整数41.1273.13≈≈,)23.(12分)某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,20题图 22题图该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润1y (元)与国内销售数量(千件)的关系为:()()⎩⎨⎧≤+-≤+=6213052090151ππx x x x y 若在国外销售,平均每件产品的利润2y (元)与国外的销售数量t (千件)的关系为:()()⎩⎨⎧≤+-≤=621105201002ππt t t y (1)用的代数式表示t 为:t= ;当0<≤4时,2y 与的函数关系式为:2y = ;当4≤< 时,2y =100;(2)求每年该公司销售这种健身产品的总利润W (千元)与国内的销售数量(千件)的函数关系式,并指出的取值范围;(3)该公司每年国内、国外的销量各为多少时,可使公司每年的总利润最大?最大值为多少?24.(15分)如图,在平面直角坐标系中,四边形ABCO 是梯形,其中A (6,0),B (3,3),C (1,3),动点P 从点O 以每秒2个单位的速度向点A 运动,动点Q 也同时从点B 沿B → C → O 的线路以每秒1个单位的速度向点O 运动,当点P 到达A 点时,点Q 也随之停止,设点P 、Q 运动的时间为t (秒).(1)求经过A 、B 、C 三点的抛物线的解析式;(2)当点Q 在CO 边上运动时,求△OPQ 的面积与时间t 的函数关系式;(3)以O 、P 、Q 为顶点的三角形能构成直角三角形吗?若能,请求出t 的值,若不能,请说明理由;(4)经过A 、B 、C 三点的抛物线的对称轴、直线OB 和PQ 能够交于一点吗?若能,请求出此时t 的值(或范围),若不能,请说明理由.24题图考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。

2013-2018年湖北省黄石市中考数学试题汇编(含参考答案与解析)

2013-2018年湖北省黄石市中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2013—2018年湖北省黄石市中考数学试题汇编(含参考答案与解析)1、2013年湖北省黄石市中考数学试题及参考答案与解析 (2)2、2014年湖北省黄石市中考数学试题及参考答案与解析 (29)3、2015年湖北省黄石市中考数学试题及参考答案与解析 (51)4、2016年湖北省黄石市中考数学试题及参考答案与解析 (73)5、2017年湖北省黄石市中考数学试题及参考答案与解析 (94)6、2018年湖北省黄石市中考数学试题及参考答案与解析 (115)2013年湖北省黄石市中考数学试题及参考答案与解析一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每个小题给出的四个选项中,只有一个是正确的.1.﹣7的倒数是()A.17-B.7 C.17D.﹣72.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.4960亿千米.用科学记数法表示1个天文单位应是()A.1.4960×107千米B.14.960×107千米C.1.4960×108千米D.0.14960×108千米3.分式方程3121x x=-的解为()A.x=﹣1 B.x=2 C.x=4 D.x=34.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①②B.②③C.②④D.③④5.已知直角三角形ABC的一条直角边AB=12cm,另一条直角边BC=5cm,则以AB为轴旋转一周,所得到的圆锥的表面积是()A.90πcm2B.209πcm2C.155πcm2D.65πcm26关于这15名学生所捐款的数额,下列说法正确的是()A.众数是100 B.平均数是30 C.极差是20 D.中位数是207.四川雅安地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(既不多也不少)能容纳这60名灾民,则不同的搭建方案有()A.1种B.11种C.6种D.9种8.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()A.95B.215C.185D.529.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5 C.4 D10.如图,已知某容器都是由上下两个相同的圆锥和中间一个与圆锥同底等高的圆柱组合而成,若往此容器中注水,设注入水的体积为y,高度为x,则y关于x的函数图象大致是()A.B.C.D.二、认真填一填(本题有6个小题,每小题3分,共18分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.分解因式:3x2﹣27=.12.若关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,则实数k的值为.13.甲、乙玩猜数字游戏,游戏规则如下:有四个数字0、1、2、3,先由甲心中任选一个数字,记为m,再由乙猜甲刚才所选的数字,记为n.若m、n满足|m﹣n|≤1,则称甲、乙两人“心有灵犀”,则甲、乙两人“心有灵犀”的概率是.14.如图所示,在边长为3的正方形ABCD中,⊙O1与⊙O2外切,且⊙O2分别于DA、DC边外切,⊙O1分别与BA、BC边外切,则圆心距,O1O2为.15.如图所示,在平面直角坐标系中,一次函数y=ax+b (a≠0)的图象与反比例函数ky x=(k≠0)的图象交于二、四象限的A 、B 两点,与x 轴交于C 点.已知A (﹣2,m ),B (n ,﹣2),tan ∠BOC=25,则此一次函数的解析式为 .16.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”,而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为一天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制比较如下表:请将二进位制数10101010(二)写成十进位制数为.三、全面答一答(本题有9个小题,共72分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17.(7分)计算:()131|3|tan3020133π-⎛⎫-︒--+ ⎪⎝⎭. 18.(7分)先化简,再求值:()11b a b b aa b ++++,其中a =b =. 19.(7分)如图,AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,E 是⊙O 上一点,D 是AM 上一点,连接DE 并延长交BN 于点C ,且OD ∥BE ,OF ∥BN . (1)求证:DE 与⊙O 相切; (2)求证:OF=12CD .20.(8分)解方程组:2212223x y x ⎧-=-⎪⎨⎪-=⎩.21.(8分)青少年“心理健康”问题越来越引起社会的关注,某中学为了了解学校600名学生的心理健康状况,举行了一次“心理健康”知识测试,并随即抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制了下面未完成的频率分布表和频率分布直方图.请回答下列问题:(1)填写频率分布表中的空格,并补全频率分布直方图;(2)若成绩在70分以上(不含70分)为心理健康状况良好,同时,若心理健康状况良好的人数占总人数的70%以上,就表示该校学生的心理健康状况正常,否则就需要加强心里辅导.请根据上述数据分析该校学生是否需要加强心里辅导,并说明理由.22.(8分)高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由. 1.732)23.(8分)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y 1千米,出租车离甲地的距离为y 2千米,两车行驶的时间为x 小时,y 1、y 2关于x 的函数图象如图所示:(1)根据图象,直接写出y 1、y 2关于x 的函数图象关系式; (2)若两车之间的距离为S 千米,请写出S 关于x 的函数关系式;(3)甲、乙两地间有A 、B 两个加油站,相距200千米,若客车进入A 加油站时,出租车恰好进入B 加油站,求A 加油站离甲地的距离.24.(9分)如图1,点C 将线段AB 分成两部分,如果AC BCAB AC=,那么称点C 为线段AB 的黄金分割点.某数学兴趣小组在进行课题研究时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为S 1、S 2,如果121S S S S =,那么称直线l 为该图形的黄金分割线. (1)如图2,在△ABC 中,∠A=36°,AB=AC ,∠C 的平分线交AB 于点D ,请问点D 是否是AB 边上的黄金分割点,并证明你的结论;(2)若△ABC 在(1)的条件下,如图3,请问直线CD 是不是△ABC 的黄金分割线,并证明你的结论;(3)如图4,在直角梯形ABCD 中,∠D=∠C=90°,对角线AC 、BD 交于点F ,延长AB 、DC 交于点E ,连接EF 交梯形上、下底于G 、H 两点,请问直线GH 是不是直角梯形ABCD 的黄金分割线,并证明你的结论.25.(10分)如图1所示,已知直线y=kx+m 与x 轴、y 轴分别交于点A 、C 两点,抛物线y=﹣x 2+bx+c 经过A 、C 两点,点B 是抛物线与x 轴的另一个交点,当12x =-时,y 取最大值254. (1)求抛物线和直线的解析式;(2)设点P是直线AC上一点,且S△ABP:S△BPC=1:3,求点P的坐标;(3)直线12y x a=+与(1)中所求的抛物线交于点M、N,两点,问:①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,请说明理由.②猜想当∠MON>90°时,a的取值范围.(不写过程,直接写结论)(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M、N两点之间的距离为||MN=参考答案与解析一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每个小题给出的四个选项中,只有一个是正确的.1.﹣7的倒数是()A.17-B.7 C.17D.﹣7【知识考点】倒数【思路分析】根据倒数的定义解答.【解答过程】解:﹣7的倒数是17 -,故选A.【总结归纳】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.4960亿千米.用科学记数法表示1个天文单位应是()A.1.4960×107千米B.14.960×107千米C.1.4960×108千米D.0.14960×108千米【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.。

2013湖北省黄石市中考数学试题及答案(Word解析版)

2013湖北省黄石市中考数学试题及答案(Word解析版)

2013湖北省黄石市中考数学试题及答案(Word解析版)黄石市2013年初中毕业生学业考试数学试题卷考试时间120分钟,满分120分。

一、仔细选一选(本题有10个小题,每小题3分,共30分)1. 7的倒数是A.11B. 7C.D. -7 772.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间平均距离,即1.4960亿千米,用科学记数法表示1个天文单位应是A. 1.4960 107千米B. 14.960 107千米C. 1.4960 108千米D.0.***** 109千米3.分式方程31的解为2xx 1A.x 1B. x 2C. x 4D. x 34.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不相同的几何体是④球①正方体②圆柱③圆锥A.①② B.②③ C.②④ D.③④ 5.已知直角三角形ABC 的一条直角边AB 12cm,另一条直角边BC 5cm,则以AB为轴旋转一周,所得到的圆锥的表面积是A.90 cm2B. 209 cm2C. 155 cm2D. 65 cm26.为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:关于这15名同学所捐款的数额,下列说法正确的是A.众数是100B.平均数是30C.极差是20D.中位数是207.四川雅安地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(即不多不少)能容纳这60名灾民,则不同的搭建方案有A.4种B.11种C.6种D.9种8.如右图,在Rt ABC中,ACB 90 ,AC 3,BC 4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为A.***** B. C. D. 5552B9.把一副三角板如图甲放置,其中ACB DEC 90 ,斜边AB 6,DC 7,A 45 ,D 30 ,把三角板DCE绕着点C顺时针旋转(如图乙),此时AB与15 得到△D1CE1DAAA. B. 5CEBCB 1CD1交于点O,则线段AD1的长度为图甲图乙E1 10.如右图,已知某容器是由上下两个相同的圆锥和中间一个与圆锥同底等高的圆柱组合而成,若往此容器中注水,设注入水的体积为y,高度为x,则y关于x的函数图像大致是二、认真填一填(本题有6个小题,每小题3分,共18分)11.分解因式:3x2 27=12.若关于x的函数y kx 2x 1与x轴仅有一个公共点,则实数k的值为13.甲、乙两人玩猜数字游戏,游戏规则如下:有四个数字0、1、2、3,先由甲心中任选一个数字,记为m,再由乙猜甲刚才所选的数字,记为n。

2013年湖北省黄冈市中考数学试卷-答案

2013年湖北省黄冈市中考数学试卷-答案

湖北省黄冈市2013年中考数学试卷数学答案解析一、选择题 1.【答案】C【解析】2(3)9--=-.故选C .【提示】根据有理数的乘方的定义求解析. 【考点】有理数的乘方 2.【答案】A【解析】A .是中心对称图形,故本选项正确; B .不是中心对称图形,故本选项错误; C .不是中心对称图形,故本选项错误; D .不是中心对称图形,故本选项错误;故选A .【提示】根据中心对称图形的定义,结合选项所给图形进行判断即可. 【考点】中心对称图形 3.【答案】A【解析】AB CD ∥,180∴∠+∠=︒BAC ACD .120∠=︒BAC ,18012060ACD ∴∠=︒-︒=︒.AC DF ∥,ACD CDF ∴∠=∠,60CDF ∴∠=︒.故选A .【提示】根据两直线平行,同旁内角互补由AB CD ∥得到180BAC ACD ∠+∠=︒,可计算出60ACD ∠=︒,然后由AC DF ∥,根据平行线的性质得到60ACD CDF ∠=∠=︒. 【考点】平行线的性质 4.【答案】D【解析】解:A .448x x x +=,原式计算错误,故本选项错误; B .32410()a a a =,原式计算错误,故本选项错误; C .2324()(ab)ab ab ÷-=,原式计算错误,故本选项错误; D .6243()()1a a ÷=,计算正确,故本选项正确;故选D .【提示】根据同底数幂的乘除法则及幂的乘方法则,结合各选项进行判断即可. 【考点】同底数幂的除法,同底数幂的乘法,幂的乘方与积的乘方 5.【答案】D【解析】根据此正棱柱的俯视图和左视图得到该几何体是正五棱柱,其主视图应该是矩形,而且有看到两△为等边三角形,,BD为中线,【解析】ABC.CD CE =.E CDE ∠+∠.BD 是AC 中线,CD =.ABC △是等边三角形,,在Rt BDC △中,由勾股定理得:213-=,即根据等腰三角形和三角形外角性质求出BC ,AO AB =,A 点在其图象上,2.故答案为:6.,M 是CD 过O 的圆心点,4CD =,122CD =R t O E △2O C ,即,解得:174x =44过O 的圆心点【解析】四边形根据旋转的性质知,故答案是:6π.【解析】方程组可化为511153x y x y -=-⎧⎨-+=⎩①②,由②得53x y =-③,③代入①得5(53)111y y --=-,解得1y =.把1y =代入③得532x =-=,所以,原方程组的解是21x y =⎧⎨=⎩.【提示】把方程组整理成一般形式,然后利用代入消元法其求即可. 【考点】解二元一次方程组 17.【答案】见解析【解析】证明:四边形ABCD 是菱形,OD OB ∴=,90COD ∠=︒.DH AB ⊥,OH OB ∴=,OHB OBH ∴∠=∠,又AB CD ∥,OBH ODC ∴∠=∠,在Rt COD △中,90ODC DCO ∠+∠=︒,在Rt GHB △中,90DHO OHB ∠+∠=︒,DHO DCO ∴∠=∠.【提示】根据菱形的对角线互相平分可得OD OB =,再根据直角三角形斜边上的中线等于斜边的一半可得OH OB =,然后根据等边对等角求出OHB OBH ∠=∠,根据两直线平行,内错角相等求出OBH ODC ∠=∠,然后根据等角的余角相等证明即可. 【考点】菱形的性质 18.【答案】(1)见下图(2)平均数为11.6吨,众数为11,中位数为11 (3)350户【解析】(1)根据条形图可得出:平均用水11吨的用户为:1002010201040---=-(户),图如下:119.【答案】(1)见下图16【解析】(1)如图所示:21,OA OC=.AC平分.AD CD⊥直线CD与O相切于点90︒.DAC∠=90ADC ACB=∠=︒,∴△AC AB AD AB.O的半径为26AC∴=与O相切于点2)连接BC然后利用相似三角形的性质即可解决问题.又A E B∠=∠A E F中,30BEF=︒【提示】先判断ACE △为等腰三角形,在Rt AEF △中表示出EF AF 、,在Rt BEF △中求出BF ,根据AB AF BF ∴=-即可得出答案.【考点】解直角三角形的应用——仰角俯角问题 23.【答案】(1)6x -580x +4 6(2)2221040480(02)1080480(24)530600(46)x x x w x x x x x x ⎧++<≤⎪=-++<≤⎨⎪-++<<⎩(3)该公司每年国内、国外的销售量各为4千件、2千件,可使公司每年的总利润最大,最大值为64万元【解析】(1)由题意,得6x t +=,6t x ∴=-.2100(02)5110(26)t y t t <≤⎧=⎨-+≤<⎩,∴当04x <≤时,266x ≤<-,即26t ≤<,此时2y 与x 的函数关系为:25(6x)110580y x =--+=+.当46x ≤<时,062x ≤<-,即02t ≤<,此时2100y =.故答案为6x -;580x +;4,6.(2)分三种情况:①当02x <≤时,(1590)(580)(6)w x x x x =+++=-21040480x x ++; ②当24x <≤时,(5130)(580)(6)w x x x x =-+++-=21080480x x -++; ③当46x <<时,(5130)100(6)w x x x =-++-=2530600x x -++;综上可知,2221040480(02)1080480(24)530600(46)x x x w x x x x x x ⎧++<≤⎪=-++<≤⎨⎪-++<<⎩.(3)当02x <≤时,22104048010(2)440w x x x =++=++,此时2x =时,=600w 最大;当24x <≤时,22108048010(4)640w x x x =-++=--+;此时4x =时,=640w 最大;当46x <<时,225306005(3)645w x x x =-++=--+,46x <<时,640w <.4x ∴=时,=640w 最大.故该公司每年国内、国外的销售量各为4千件、2千件,可使公司每年的总利润最大,最大值为64万元. 【提示】(1)由该公司的年产量为6千件,每年可在国内、国外市场上全部售完,可得国内销售量+国外销售量=6千件,即6x t +=,变形即为6t x =-;根据平均每件产品的利润2y (元)与国外的销售数量t (千又2OP t =,12222S t =⨯⨯POQ∠<∴若OPQ△如图2,则综上所述,当1t=或2t=时,OPQ△为直角三角形.又OB的直线方程为抛物线对称轴与又(2,0)P t,设过23=23k⎧⎪⎨11 / 11。

2013年湖北省黄冈卷中考数学试卷+答案

2013年湖北省黄冈卷中考数学试卷+答案

黄冈市2013年初中毕业生学业水平考数学试题(含答案全解全析)(满分120分时间120分钟)第Ⅰ卷(选择题,共24分)一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的...1.-(-3)2=()A.-3B.3C.-9D.92.随着人民生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()3.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=()A.60°B.120°C.150°D.180°4.下列计算正确的是()A.x4·x4=x16B.(a3)2·a4=a9C.(ab2)3÷(-ab)2=-ab4D.(a6)2÷(a4)3=15.已知一个正棱柱的俯视图和左视图如图,则其主视图为()6.已知一元二次方程x2-6x+c=0有一个根为2,则另一根为()A.2B.3C.4D.87.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为()A.πB.4πC.π或4πD.2π或4π8.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间t(小时)之间的函数图象是()第Ⅱ卷(非选择题,共96分)二、填空题(本题共21分,每小题3分)9.计算:---=.10.分解因式:ab2-4a=.11.已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连结DE,则DE=.12.已知反比例函数y=在第一象限的图象如图所示,点A在其图象上,点B为x轴正半轴上一点,连结AO、AB,且AO=AB,则S△AOB=.13.如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.14.钓鱼岛自古就是中国领土,中国政府已对钓鱼岛开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是.15.如图,矩形ABCD中,AB=4,BC=3,边CD在直线l上,将矩形ABCD沿直线l做无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为.三、解答题(本题共75分)16.(6分)解方程组:-----17.(6分)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连结OH,求证:∠DHO=∠DCO.18.(7分)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12吨的约有多少户?19.(6分)如图,有四张背面相同的纸牌A、B、C、D,其正面分别是红桃、方块、黑桃、梅花,其中红桃、方块为红色,黑桃、梅花为黑色,小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A、B、C、D表示);(2)求摸出的两张牌同为红色的概率.20.(7分)如图,AB为☉O的直径,C为☉O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.(1)求证:DC为☉O的切线;(2)若☉O的半径为3,AD=4,求AC的长.21.(8分)为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资,现准备租用甲、乙两种货车,将这批救灾物资一次性全部运往灾区,它们的载货量和租金如下表:如果计划租用6辆货车,且租车的总费用不超过2300元,求最省钱的租车方案.22.(8分)如图,小山顶上有一信号塔AB,山坡BC的倾角为30°,现为了测量塔高AB,测量人员选择山脚C处为一测量点,测得塔顶仰角为45°,然后顺山坡向上行走100米到达E处,再测得塔顶仰角为60°,求塔高AB.(结果保留整数,≈1.73,≈1.41)23.(12分)某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售若在国外销售,平均每件产品的利润y2(元)数量x(千件)的关系为:y1=-与国外的销售数量t(千件)的关系为:y2=-(1)用x的代数式表示t为:t=;当0<x≤4时,y2与x的函数关系为:y2=;当≤x<时,y2=100;(2)求每年该公司销售这种健身产品的总利润w(千元)与国内的销售数量x(千件)的函数关系式,并指出x的取值范围;(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?24.(15分)如图,在平面直角坐标系中,四边形ABCO是梯形,其中A(6,0),B(3,),C(1,),动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→C→O的线路以每秒1个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P、Q运动的时间为t(秒).(1)求经过A、B、C三点的抛物线的解析式;(2)当点Q在CO边上运动时,求△OPQ的面积S与时间t的函数关系式;(3)以O、P、Q为顶点的三角形能构成直角三角形吗?若能,请求出t的值;若不能,请说明理由;(4)经过A、B、C三点的抛物线的对称轴、直线OB和PQ能够交于一点吗?若能,请求出此时t的值(或范围);若不能,请说明理由.答案全解全析:1.C ∵-(-3)2=-9,故选C.2.A 根据中心对称图形的概念知只有A中的图形符合,而C、D中的图形均是轴对称图形,B 中的图形既不是中心对称图形也不是轴对称图形,故选A.3.A ∵AB∥CD∥EF,∠BAC=120°,∴∠ACD=60°.∵AC∥DF,∴∠CDF=∠ACD=60°.故选A.4.D ∵x4·x4=x4+4=x8,(a3)2·a4=a6·a4=a10,(ab2)3÷(-ab)2=(a3b6)÷(a2b2)=ab4,(a6)2÷(a4)3=a12÷a12=1,∴计算正确的只有D,故选D.评析本题主要考查同底数幂的乘法、积的乘方、幂的乘方、同底数幂的除法和单项式除以单项式法则.熟练掌握几种相关法则是解题关键,属容易题.5.D 根据三视图的概念和画法规则可想象此正棱柱的主视图是D项的图形.评析本题主要考查三视图的概念的应用和学生的空间想象能力.注意画三视图时,看不见的线画虚线,看得见的线画实线.6.C 设所求的方程另一根为x.则x+2=6,∴x=4.故选C.7.C 设圆柱底面圆的半径为r.由于圆柱侧面展开图的矩形的一边长为圆柱底面圆的周长.∴2πr=2π或2πr=4π.则r=1或r=2,∴圆柱底面圆的面积为π或4π.故选C.8.C 图象反映了快车与特快车之间的距离y与快车行驶时间t之间的函数图象.首先必须弄清楚实际问题的背景是两列火车从甲乙两地同时出发相向而行,其次要将这一过程分为三个阶段,一是从出发到两车相遇,二是从相遇后到特快车到达终点,三是特快车到达终点后到快车到达终点,这样,我们就找到三个“拐点”.第一个“拐点”:==4,∴其坐标为(4,0).第二个“拐点”:=,100×=,∴其坐标为,.第三个“拐点”:=10,∴其坐标为(10,1 000).故应选择C.评析此题考查了一次函数的图象在实际生活中的运用,函数图象与实际问题背景的相互对照,此题找准三个“拐点”是难点.属较难的题目.9.答案--或-解析∵(-)-(-)=-(-)=(-)(-)=--,∴答案为--或-.10.答案a(b-2)(b+2)解析ab2-4a=a(b2-4)=a(b-2)(b+2).11.答案解析∵△ABC是等边三角形,BD是中线,∴∠BDC=90°,∠BCD=60°,∠DBC=30°.又∵CE=CD=1,∠BCD=∠E+∠CDE,∴∠E=∠CDE=∠BCD=30°.∴∠DBC=∠E=30°.∴BD=DE,在Rt△BDC中,BD=°==.故填.12.答案 6解析如图,过A作AF⊥OB,垂足为F.∵OA=AB,∴OF=FB=OB,∴S△AOB=2S△AOF.又由题易知S△AOF=|k|=×6=3.∴S△AOB=2S△AOF=6.13.答案解析如图,连结OD.设所在圆的半径为R,则OM=8-R.∵EM⊥CD,CD=4,∴MD=CD=2,在Rt△OMD中,由勾股定理得22+(8-R)2=R2,解得R=.14.答案7:00解析由题图象可知,巡逻艇原来的速度为80海里/小时,排除故障后的速度为-=100(海里/小时),不妨设巡逻艇经过t小时后准时到达,据题意得80t=80+100(t-2), -解得t=6.由于是凌晨1:00出发,故6+1=7.∴原计划准点到达的时刻是7:00.15.答案6π解析如图所示.当矩形ABCD沿直线l做无滑动翻滚,当点A第一次翻滚到A1位置时,点A经过的路线分为三段:,,,其中==π,==2π.∵∠A B C1=90°,A B =4,B C1=3,∴A C1=5.∵∠A B C1=∠C1D1A1=90°,A B =C1D1=4,B C1=D1A1=3,∴△A B C1≌△C1D1A1,∴∠1=∠2,又∠2+∠3=90°,∴∠1+∠3=90°.又∠B C1D1=180°,∴∠A C1A1=90°.∴==π,∴点A经过的路线长为π+2π+π=6π.评析此题考查弧长公式,同时考查了勾股定理以及构造全等三角形,综合性较强,属较难题.16.解析原方程组整理得,,由 得x=5y-3,③将③代入 得25y-15-11y=-1,即14y=14,解得y=1,将y=1代入③得x=2,∴原方程组的解为, .17.证明∵四边形ABCD是菱形,∴OD=OB,∠COD=90°.∵DH⊥AB于H,∴∠DHB=90°,∴OH=BD=BO,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC.∴∠OHB=∠ODC.在Rt△COD中,∠ODC+∠OCD=90°,在Rt△DHB中,∠DHB=∠DHO+∠OHB=90°,∴∠DHO=∠DCO.18.解析(1)(2)平均数:==11.6(吨).中位数:11(吨).众数:11(吨).(3)×500=350(户).答:不超过12吨的用户约有350户.19.解析(1)树状图:列表法:(2)所求概率P==.20.解析(1)证明:连结OC,∵OC=OA,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,∴OC⊥CD.∴DC为☉O的切线.(2)连结BC,易知△ADC∽△ACB,∴=,即AC2=AD·AB,∵☉O的半径为3,∴AB=6,又∵AD=4,∴AC=2.评析本题是一道以圆为载体的几何证明、计算题,主要考查圆的有关性质,圆的切线的判定以及相似三角形的判定与性质等知识的综合运用,属中等难度题.21.解析设租甲种货车x辆,则乙种货车(6-x)辆,依题意有(-),解得4≤x≤5.(-),∵x为正整数,∴共有两种方案.方案一:租甲种货车4辆,乙种货车2辆;方案二:租甲种货车5辆,乙种货车1辆.方案一费用:4×400+2×300=2 200元;方案二费用:5×400+1×300=2 300元.∵2 200<2 300,∴选择方案一,即租用甲种货车4辆,乙种货车2辆时最省钱.22.解析依题意可知∠AEB=30°,∠ACE=15°,又∠AEB=∠ACE+∠CAE,∴∠CAE=15°,即△ACE为等腰三角形,∴AE=CE=100米.在Rt△AEF中,∠AEF=60°,∴EF=AE·cos 60°=50米,AF=AE·sin 60°=50米.在Rt△BEF中,∠BEF=30°,∴BF=EF·tan 30°=50×=米.∴AB=AF-BF=50-=≈58米.答:塔高AB大约为58米.23.解析(1)t=6-x;当0<x≤4时,y2=-5(6-x)+110=5x+80;当4≤x<6时,y2=100.(2)当0<x≤2时,w=(15x+90)x+(5x+80)(6-x)=10x2+40x+480; 当2<x≤4时,w=(-5x+130)x+(5x+80)(6-x)=-10x2+80x+480; 当4<x<6时,w=(-5x+130)x+100(6-x)=-5x2+30x+600.w=(), -(),-().(3)当0<x≤2时,w=10x2+40x+480=10(x+2)2+440,x=2时,w最大=600.当2<x≤4时,w=-10x2+80x+480=-10(x-4)2+640,x=4时,w最大=640.当4<x<6时,w=-5x2+30x+600=-5(x-3)2+645,w<640.∴x=4时,w最大=640.即国内销售4千件,国外销售2千件时,可使公司每年利润最大,最大利润为64万元(或640千元).评析本题是一道函数综合应用题,题目设置有梯度,主要考查数学的转化、建模、分类讨论思想,属较难题.24.解析(1)设所求抛物线解析式为y=ax2+bx+c,把A(6,0),B(3,),C(1,)三点坐标代入得,,,,解得a=-,b=,c=.即所求抛物线为y=-x2+x+.(2)依题意,可知OC=CB=2,∠COA=60°,∴当动点Q运动到OC边上时,OQ=4-t,∴△OPQ的边OP上的高为OQ·sin 60°=(4-t)×, 又OP=2t,∴S=×2t×(4-t)×=-(t2-4t)(2≤t≤3).(3)依题意,可知0≤t≤3.当0≤t≤2时,Q 在BC 边上运动,此时OP=2t,OQ= ( - ) ,PQ= -( - )= ( - ),∵∠POQ<∠POC=60°,∴若△OPQ 为直角三角形,只能是∠OPQ=90°或∠OQP=90°, 若∠OPQ=90°,则OP 2+PQ 2=OQ 2,即4t 2+3+(3t-3)2=3+(3-t)2,解得t=1或t=0(舍); 若∠OQP=90°,则OQ 2+PQ 2=OP 2,即6+(3-t)2+(3t-3)2=4t 2,解得t=2.当2<t≤3时,Q 在OC 边上运动,此时PO=2t>4,∠POQ=∠COP=60°,OQ<OC=2, ∴△OPQ 不可能为直角三角形.综上所述:当t=1或t=2时,△OPQ 为直角三角形. (4)由(1)可知:抛物线y=-x 2+x+ =-(x-2)2+ ,其对称轴为x=2.又直线OB 的方程为y=x, ∴抛物线对称轴与OB 交点为M ,, 又P(2t,0),设过P 、M 的直线解析式为y=kx+b, ∴, · ,解得( - ), -( - ),即直线PM:y=( - )x-( - ),即 (1-t)y=x-2t.又0≤t≤2时,Q(3-t, ),代入上式,得 (1-t)× =3-t-2t 恒成立, 即0≤t≤2时,P 、M 、Q 总在一条直线上, 即M 在直线PQ 上;2<t≤3时,OQ=4-t,∠QOP=60°,∴Q-,(-),代入上式,得(-)×(1-t)=--2t,解得t=2或t=,均不合题意,应舍去.综上所述,过A、B、C三点的抛物线的对称轴、OB和PQ能够交于一点,此时0≤t≤2.评析本题是二次函数,梯形,直角三角形有关的动态几何综合题,难度较大.其解题关键是灵活运用“动中取静”的策略,找到临界位置探究问题,尤其是第(4)小题运用解析法解题,学生不易想到.。

2013年湖北省黄冈市中考数学试卷及解析

2013年湖北省黄冈市中考数学试卷及解析

2013年湖北省黄冈市中考数学试卷一、选择题(下列各题A 、B 、C 、D 四个选项中,有且仅有一个十正确的,每小题3分,共24分)1.﹣(﹣3)2=( ) A . ﹣3 B . 3 C . ﹣9 D . 9考点: 有理数的乘方. 分析: 根据有理数的乘方的定义解答. 解答: 解:﹣(﹣3)2=﹣9. 故选C . 点评: 本题考查了有理数的乘方的定义,是基础题,熟记概念是解题的关键.2.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是( ) A .B .C .D .考点: 中心对称图形. 分析: 根据中心对称图形的定义,结合选项所给图形进行判断即可. 解答: 解:A 、是中心对称图形,故本选项正确;B 、不是中心对称图形,故本选项错误;C 、不是中心对称图形,故本选项错误;D 、不是中心对称图形,故本选项错误; 故选A . 点评: 本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.如图,AB ∥CD ∥EF ,AC ∥DF ,若∠BAC=120°,则∠CDF=( )A . 60°B . 120°C . 150°D . 180°考点: 平行线的性质. 专题: 计算题. 分析: 根据两直线平行,同旁内角互补由AB ∥CD 得到∠BAC+∠ACD=180°,可计算出∠ACD=60°,然后由AC ∥DF ,根据平行线的性质得到∠ACD=∠CDF=60°. 解答: 解:∵AB ∥CD ,∴∠BAC+∠ACD=180°,∵∠BAC=120°, ∴∠ACD=180°﹣120°=60°, ∵AC ∥DF , ∴∠ACD=∠CDF , ∴∠CDF=60°. 故选A . 点评: 本题考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补.4.下列计算正确的是( )A . x 4•x 4=x 16B . (a 3)2•a 4=a 9C . (ab 2)3÷(﹣ab )2=﹣ab 4D . (a 6)2÷(a 4)3=1考点: 同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析: 根据同底数幂的乘除法则及幂的乘方法则,结合各选项进行判断即可.解答: 解:A 、x 4×x 4=x 8,原式计算错误,故本选项错误; B 、(a 3)2•a 4=a 10,原式计算错误,故本选项错误;C 、(ab 2)3÷(﹣ab )2=ab 4,原式计算错误,故本选项错误;D 、(a 6)2÷(a 4)3=1,计算正确,故本选项正确; 故选D . 点评: 本题考查了同底数幂的乘除、幂的乘方与积的乘方的知识,解答本题的关键是掌握各部分的运算法则.5.已知一个正棱柱的俯视图和左视图如图,则其主视图为( )A .B .C .D .考点: 由三视图判断几何体;简单组合体的三视图. 分析: 首先根据俯视图和左视图判断该几何体,然后确定其主视图即可; 解答: 解:根据此正棱柱的俯视图和左视图得到该几何体是正五棱柱,其主视图应该是矩形,而且有看到两条棱,背面的棱用虚线表示, 故选D . 点评: 本题考查了几何体的三种视图,掌握定义是关键.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.6.已知一元二次方程x 2﹣6x+C=0有一个根为2,则另一根为( ) A . 2 B . 3 C . 4 D . 8考点: 根与系数的关系. 分析: 利用根与系数的关系来求方程的另一根.解答: 解:设方程的另一根为α,则α+2=6,解得α=4. 故选C . 点评: 本题考查了根与系数的关系.若二次项系数为1,常用以下关系:x 1,x 2是方程x 2+px+q=0的两根时,x 1+x 2=﹣p ,x 1x 2=q ,反过来可得p=﹣(x 1+x 2),q=x 1x 2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.7. 已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为( )A . πB . 4πC . π或4πD . 2π或4π考点: 几何体的展开图. 分析: 分底面周长为4π和2π两种情况讨论,先求得底面半径,再根据圆的面积公式即可求解.解答: 解:①底面周长为4π时,半径为4π÷π÷2=2,底面圆的面积为π×22=4π;②底面周长为2π时,半径为2π÷π÷2=1,底面圆的面积为π×12=π. 故选C . 点评: 考查了圆柱的侧面展开图,注意分长为底面周长和宽为底面周长两种情况讨论求解.8.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y (千米)与快车行驶时间(小时)之间的函数图象是( ) A . B . C .D .考点: 函数的图象. 分析: 分三段讨论,①两车从开始到相遇,这段时间两车距迅速减小,②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加,③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大,结合实际选符合的图象即可. 解答: 解:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加; ③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大; 结合图象可得C 选项符合题意. 故选C . 点评: 本题考查了函数的图象,解答本题关键是分段讨论,要结合实际解答,明白每条直线所代表的实际含义及拐点的含义.二、填空题(每小题3分,满分21分)9.计算:=﹣(或).考点:分式的加减法.专题:计算题.分析:分母相同,直接将分子相减再约分即可.解答:解:原式===﹣,(或).点评:本题考查了分式的加减,分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可.10.分解因式:ab2﹣4a=a(b﹣2)(b+2).考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解:ab2﹣4a=a(b2﹣4)=a(b﹣2)(b+2).故答案为:a(b﹣2)(b+2).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.11.已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=.考点:等边三角形的性质;等腰三角形的判定与性质.分析:根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△△BDC中,由勾股定理求出BD即可.解答:解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=1,∴AD=DC=1,∵△ABC是等边三角形,∴BC=AC=1+1=2,BD⊥AC,在Rt△△BDC中,由勾股定理得:BD==,即DE=BD=,故答案为:.点评:本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长.12.已知反比例函数在第一象限的图象如图所示,点A在其图象上,点B为x轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB=6.考点:反比例函数系数k的几何意义;等腰三角形的性质.分析:根据等腰三角形的性质得出CO=BC,再利用反比例函数系数k的几何意义得出S△AOB 即可.解答:解:过点A作AC⊥OB于点C,∵AO=AB,∴CO=BC,∵点A在其图象上,∴AC×CO=3,∴AC×BC=3,∴S△AOB=6.故答案为:6.点评:此题主要考查了等腰三角形的性质以及反比例函数系数k的几何意义,正确分割△AOB是解题关键.13.如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.考点:垂径定理;勾股定理.专题:探究型.分析:首先连接OC,由M是CD的中点,EM⊥CD,可得EM过⊙O的圆心点O,然后设半径为x,由勾股定理即可求得:(8﹣x)2+22=x2,解此方程即可求得答案.解答:解:连接OC,∵M是CD的中点,EM⊥CD,∴EM过⊙O的圆心点O,设半径为x,∵CD=4,EM=8,∴CM=CD=2,OM=8﹣OE=8﹣x,在Rt△OEM中,OM2+CM2=OC2,即(8﹣x)2+22=x2,解得:x=.∴所在圆的半径为:.故答案为:.点评:此题考查了垂径定理以及勾股定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.14.钓鱼岛自古就是中国领土,中国政府已对钓鱼岛开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是7:00.考点:一次函数的应用.分析:根据函数图象和题意可以求出开始的速度为80海里/时,故障排除后的速度是100海里/时,设计划行驶的路程是a海里,就可以由时间之间的关系建立方程求出路程,再由路程除以速度就可以求出计划到达时间.解答:解:由图象及题意,得故障前的速度为:80÷1=80海里/时,故障后的速度为:(180﹣80)÷1=100海里/时.设航行额全程由a海里,由题意,得,解得:a=480,则原计划行驶的时间为:480÷80=6小时,故计划准点到达的时刻为:7:00.故答案为:7:00.点评:本题考查了运用函数图象的意义解答行程问题的运用,行程问题的数量关系路程=速度×时间的运用,解答时先根据图象求出速度是关键,再建立方程求出距离是难点.15.如图,矩形ABCD中,AB=4,BC=3,边CD在直线l上,将矩形ABCD沿直线l作无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为6π.考点:弧长的计算;矩形的性质;旋转的性质.专题:规律型.分析:如图根据旋转的性质知,点A经过的路线长是三段:①以90°为圆心角,AD长为半径的扇形的弧长;②以90°为圆心角,AB长为半径的扇形的弧长;③90°为圆心角,矩形ABCD对角线长为半径的扇形的弧长.解答:解:∵四边形ABCD是矩形,AB=4,BC=3,∴BC=AD=3,∠ADC=90°,对角线AC(BD)=5.∵根据旋转的性质知,∠ADA′=90°,AD=A′D=BC=3,∴点A第一次翻滚到点A′位置时,则点A′经过的路线长为:=.同理,点A′第一次翻滚到点A″位置时,则点A′经过的路线长为:=2π.点″第一次翻滚到点A1位置时,则点A″经过的路线长为:=.则当点A第一次翻滚到点A1位置时,则点A经过的路线长为:+2π+=6π.故答案是:6π.点评:本题考查了弧长的计算、矩形的性质以及旋转的性质.根据题意画出点A运动轨迹,是突破解题难点的关键.三、解答题(本大题共10个小题,共86分.每小题给出必要的演算过程或推理步骤.)16.(6分)解方程组:.考点:解二元一次方程组.专题:计算题.分析:把方程组整理成一般形式,然后利用代入消元法其求即可.解答:解:方程组可化为,由②得,x=5y﹣3③,③代入①得,5(5y﹣3)﹣11y=﹣1,解得y=1,把y=1代入③得,x=5﹣3=2,所以,原方程组的解是.点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.17.(6分)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.考点:菱形的性质.专题:证明题.分析:根据菱形的对角线互相平分可得OD=OB,再根据直角三角形斜边上的中线等于斜边的一半可得OH=OB,然后根据等边对等角求出∠OHB=∠OBH,根据两直线平行,内错角相等求出∠OBH=∠ODC,然后根据等角的余角相等证明即可.解答:证明:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△GHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO.点评:本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.18.(7分)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12吨的约有多少户?考点:条形统计图;用样本估计总体;加权平均数;中位数;众数.分析:(1)根据条形图中数据得出平均用水11吨的户数,进而画出条形图即可;(2)根据平均数、中位数、众的定义分别求法即可;(3)根据样本估计总体得出答案即可.解答:解:(1)根据条形图可得出:平均用水11吨的用户为:100﹣20﹣10﹣20﹣10=40(户),如图所示:(2)平均数为:(20×10+40×11+12×10+13×20+10×14)=11.6(吨),根据11出现次数最多,故众数为:11,根据100个数据的最中间为第50和第51个数据,按大小排列后第50,51个数据是11,故中位数为:11;(3)样本中不超过12吨的有20+40+10=70(户),∴黄冈市直机关500户家庭中月平均用水量不超过12吨的约有:500×=350(户).点评:此题主要考查了平均数、众数、中位数的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.19.(6分)如图,有四张背面相同的纸牌A,B,C,D,其正面分别是红桃、方块、黑桃、梅花,其中红桃、方块为红色,黑桃、梅花为黑色.小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张再摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示);(2)求摸出的两张牌同为红色的概率.考点:列表法与树状图法.分析:(1)画出树状图即可;(2)根据树状图可以直观的得到共有12种情况,都是红色情况有2种,进而得到概率.解答:解:(1)如图所示:(2)根据树状图可得共有12种情况,都是红色情况有2种,概率为=.点评:本题考查概率公式,即如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20.(7分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为3,AD=4,求AC的长.考点:切线的判定;相似三角形的判定与性质.分析:(1)连接OC,由OA=OC可以得到∠OAC=∠OCA,然后利用角平分线的性质可以证明∠DAC=∠OCA,接着利用平行线的判定即可得到OC∥AD,然后就得到OC⊥CD,由此即可证明直线CD与⊙O相切于C点;(2)连接BC,根据圆周角定理的推理得到∠ACB=90°,又∠DAC=∠OAC,由此可以得到△ADC∽△ACB,然后利用相似三角形的性质即可解决问题.解答:(1)证明:连接OC∵OA=OC∴∠OAC=∠OCA∵AC平分∠DAB∴∠DAC=∠OAC∴∠DAC=∠OCA∴OC∥AD∵AD⊥CD∴OC⊥CD∴直线CD与⊙O相切于点C;(2)解:连接BC,则∠ACB=90°.∵∠DAC=∠OAC,∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴,∴AC2=AD•AB,∵⊙O的半径为3,AD=4,∴AB=6,∴AC=2.点评:此题主要考查了切线的性质与判定,解题时首先利用切线的判定证明切线,然后利用切线的想这已知条件证明三角形相似即可解决问题.21.(8分)为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资,现准备租用甲、乙两种货车,将这批救灾物资一次性全部运往灾区,它们的载货量和租金如下表:甲种货车乙种货车载货量(吨/辆)45 30租金(元/辆)400 300如果计划租用6辆货车,且租车的总费用不超过2300元,求最省钱的租车方案.考点:一元一次不等式组的应用.分析:根据设租用甲种货车x辆,则租用乙种6﹣x辆,利用某市民政局组织募捐了240吨救灾物资,以及每辆货车的载重量得出不等式求出即可,进而根据每辆车的运费求出最省钱方案.解答:解:设租用甲种货车x辆,则租用乙种6﹣x辆,根据题意得出:45x+30(6﹣x)≥240,解得:x≥4,则租车方案为:甲4辆,乙2辆;甲5辆,乙1辆;甲6辆,乙0辆;租车的总费用分别为:4×400+2×300=2200(元),5×400+1×300=2300(元),6×400=2400(元)>2300(不合题意舍去),故最省钱的租车方案是租用甲货车4辆,乙货车2辆.点评:此题主要考查了一元一次不等式的应用,根据已知得出不等式求出所有方案是解题关键.22.(8分)如图,小山顶上有一信号塔AB,山坡BC的倾角为30°,现为了测量塔高AB,测量人员选择山脚C处为一测量点,测得塔顶仰角为45°,然后顺山坡向上行走100米到达E处,再测得塔顶仰角为60°,求塔高AB(结果保留整数,≈1.73,≈1.41)考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:先判断△ACE为等腰三角形,在Rt△AEF中表示出EF、AF,在Rt△BEF中求出BF,根据AB=AF﹣BF即可得出答案.解答:解:依题意可得:∠AEB=30°,∠ACE=15°,又∵∠AEB=∠ACE+∠CAE∴∠CAE=15°,即△ACE为等腰三角形,∴AE=CE=100m,在Rt△AEF中,∠AEF=60°,∴EF=AEcos60°=50m,AF=AEsin60°=50m,在Rt△BEF中,∠BEF=30°,∴BF=EFtan30°=50×=m,∴AB=AF﹣BF=50﹣=≈58(米).答:塔高AB大约为58米.点评:本题考查了解直角三角形的知识,解答本题的关键是构造直角三角形,利用三角函数表示出相关线段的长度,难度一般.23.(12分)某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完.该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售量x(千件)的关系为:y1=若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为y2=(1)用x的代数式表示t为:t=6﹣x;当0<x≤4时,y2与x的函数关系为:y2=5x+80;当4<x<6时,y2=100;(2)求每年该公司销售这种健身产品的总利润w(千元)与国内销售数量x(千件)的函数关系式,并指出x的取值范围;(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?考点:二次函数的应用.分析:(1)由该公司的年产量为6千件,每年可在国内、国外市场上全部售完,可得国内销售量+国外销售量=6千件,即x+t=6,变形即为t=6﹣x;根据平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系及t=6﹣x即可求出y2与x的函数关系:当0<x≤4时,y2=5x+80;当4≤x<6时,y2=100;(2)根据总利润=国内销售的利润+国外销售的利润,结合函数解析式,分三种情况讨论:①0<x≤2;②2<x≤4;③4<x<6;(3)先利用配方法将各解析式写成顶点式,再根据二次函数的性质,求出三种情况下的最大值,再比较即可.解答:解:(1)由题意,得x+t=6,∴t=6﹣x;∵,∴当0<x≤4时,2≤6﹣x<6,即2≤t<6,此时y2与x的函数关系为:y2=﹣5(6﹣x)+110=5x+80;当4≤x<6时,0≤6﹣x<2,即0≤t<2,此时y2=100.故答案为6﹣x;5x+80;4,6;(2)分三种情况:①当0<x≤2时,w=(15x+90)x+(5x+80)(6﹣x)=10x2+40x+480;②当2<x≤4时,w=(﹣5x+130)x+(5x+80)(6﹣x)=﹣10x2+80x+480;③当4<x<6时,w=(﹣5x+130)x+100(6﹣x)=﹣5x2+30x+600;综上可知,w=;(3)当0<x≤2时,w=10x2+40x+480=10(x+2)2+440,此时x=2时,w最大=600;当2<x≤4时,w=﹣10x2+80x+480=﹣10(x﹣4)2+640,此时x=4时,w最大=640;当4<x<6时,w=﹣5x2+30x+600=﹣5(x﹣3)2+645,4<x<6时,w<640;∴x=4时,w最大=640.故该公司每年国内、国外的销售量各为4千件、2千件,可使公司每年的总利润最大,最大值为64万元.点评:本题考查的是二次函数在实际生活中的应用,有一定难度.涉及到一次函数、二次函数的性质,分段函数等知识,进行分类讨论是解题的关键.24.(15分)如图,在平面直角坐标系中,四边形ABCD是梯形,其中A(6,0),B(3,),C(1,),动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→C→O的线路以每秒1个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P,Q运动的时间为t(秒).(1)求经过A,B,C三点的抛物线的解析式;(2)当点Q在CO边上运动时,求△OPQ的面积S与时间t的函数关系式;(3)以O,P,Q顶点的三角形能构成直角三角形吗?若能,请求出t的值;若不能,请说明理由;(4)经过A,B,C三点的抛物线的对称轴、直线OB和PQ能够交于一点吗?若能,请求出此时t的值(或范围),若不能,请说明理由).考点:二次函数综合题.分析:(1)利用待定系数法求出二次函数解析式即可;(2)根据已知得出△OPQ的高,进而利用三角形面积公式求出即可;(3)根据题意得出:0≤t≤3,当0≤t≤2时,Q在BC边上运动,得出若△OPQ为直角三角形,只能是∠OPQ=90°或∠OQP=90°,当2<t≤3时,Q在OC边上运动,得出△OPQ 不可能为直角三角形;(4)首先求出抛物线对称轴以及OB直线解析式和PM的解析式,得出(1﹣t)×=3﹣t﹣2t,恒成立,即0≤t≤2时,P,M,Q总在一条直线上,再利用2<t≤3时,求出t的值,根据t的取值范围得出答案.解答:解:(1)设所求抛物线的解析式为y=ax2+bx+c,把A(6,0),B(3,),C(1,)三点坐标代入得:,解得:,即所求抛物线解析式为:y=﹣x2+x+;(2)如图1,依据题意得出:OC=CB=2,∠COA=60°,∴当动点Q运动到OC边时,OQ=4﹣t,∴△OPQ的高为:OQ×sin60°=(4﹣t)×,又∵OP=2t,∴S=×2t×(4﹣t)×=﹣(t2﹣4t)(2≤t≤3);(3)根据题意得出:0≤t≤3,当0≤t≤2时,Q在BC边上运动,此时OP=2t,OQ=,PQ==,∵∠POQ<∠POC=60°,∴若△OPQ为直角三角形,只能是∠OPQ=90°或∠OQP=90°,若∠OPQ=90°,如图2,则OP2+PQ2=QO2,即4t2+3+(3t﹣3)2=3+(3﹣t)2,解得:t1=1,t2=0(舍去),若△OPQ为直角三角形,只能是∠OPQ=90°或∠OQP=90°,若∠OQP=90°,如图,3,则OQ2+PQ2=PO2,即(3﹣t)2+6+(3t﹣3)2=4t2,解得:t=2,当2<t≤3时,Q在OC边上运动,此时QP=2t>4,∠POQ=∠COP=60°,OQ<OC=2,故△OPQ不可能为直角三角形,综上所述,当t=1或t=2时,△OPQ为直角三角形;(4)由(1)可知,抛物线y=﹣x2+x+=﹣(x﹣2)2+,其对称轴为x=2,又∵OB的直线方程为y=x,∴抛物线对称轴与OB交点为M(2,),又∵P(2t,0)设过P,M的直线解析式为:y=kx+b,∴,解得:,即直线PM的解析式为:y=x﹣,即(1﹣t)y=x﹣2t,又0≤t≤2时,Q(3﹣t,),代入上式,得:(1﹣t)×=3﹣t﹣2t,恒成立,即0≤t≤2时,P,M,Q总在一条直线上,即M在直线PQ上;当2<t≤3时,OQ=4﹣t,∠QOP=60°,∴Q(,),代入上式得:×(1﹣t)=﹣2t,解得:t=2或t=(均不合题意,舍去).∴综上所述,可知过点A、B、C三点的抛物线的对称轴OB和PQ能够交于一点,此时0≤t≤2.点评:此题主要考查了二次函数的综合应用以及待定系数法求二次函数解析式和待定系数法求一次函数解析式等知识,利用分类讨论思想得出t的值是解题关键.。

湖北省黄冈市2013年中考数学试题(解析版)

湖北省黄冈市2013年中考数学试题(解析版)

2013年湖北省黄冈市中考数学试卷一、选择题(下列各题A、B、C、D四个选项中,有且仅有一个十正确的,每小题3分,共24分)1.(3分)(2013•黄冈)﹣(﹣3)2=()A.﹣3 B.3C.﹣9 D.9考点:有理数的乘方.分析:根据有理数的乘方的定义解答.解答:解:﹣(﹣3)2=﹣9.故选C.点评:本题考查了有理数的乘方的定义,是基础题,熟记概念是解题的关键.2.(3分)(2013•黄冈)随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的定义,结合选项所给图形进行判断即可.解答:解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选A.点评:本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.(3分)(2013•黄冈)如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=()A.60°B.120°C.150°D.180°考点:平行线的性质.专题:计算题.分析:根据两直线平行,同旁内角互补由AB∥CD得到∠BAC+∠ACD=180°,可计算出∠ACD=60°,然后由AC∥DF,根据平行线的性质得到∠ACD=∠CDF=60°.解答:解:∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠BAC=120°,∴∠ACD=180°﹣120°=60°,∵AC∥DF,∴∠ACD=∠CDF,∴∠CDF=60°.故选A.点评:本题考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补.4.(3分)(2013•黄冈)下列计算正确的是()D.(a6)2÷(a4)3=1 A.x4•x4=x16B.(a3)2•a4=a9C.(ab2)3÷(﹣ab)2=﹣ab4考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘除法则及幂的乘方法则,结合各选项进行判断即可.解答:解:A、x4×x4=x8,原式计算错误,故本选项错误;B、(a3)2•a4=a10,原式计算错误,故本选项错误;C、(ab2)3÷(﹣ab)2=ab4,原式计算错误,故本选项错误;D、(a6)2÷(a4)3=1,计算正确,故本选项正确;故选D .点评:本题考查了同底数幂的乘除、幂的乘方与积的乘方的知识,解答本题的关键是掌握各部分的运算法则.5.(3分)(2013•黄冈) 已知一个正棱柱的俯视图和左视图如图,则其主视图为( )A .B .C .D .考点: 由三视图判断几何体;简单组合体的三视图.分析: 首先根据俯视图和左视图判断该几何体,然后确定其主视图即可; 解答: 解:根据此正棱柱的俯视图和左视图得到该几何体是正五棱柱,其主视图应该是矩形,而且有看到两条棱,背面的棱用虚线表示, 故选D .点评: 本题考查了几何体的三种视图,掌握定义是关键.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.6.(3分)(2013•黄冈)已知一元二次方程x 2﹣6x +C =0有一个根为2,则另一根为( ) A . 2 B .3 C .4 D .8考点: 根与系数的关系.分析: 利用根与系数的关系来求方程的另一根. 解答: 解:设方程的另一根为α,则α+2=6,解得α=4. 故选C .点评: 本题考查了根与系数的关系.若二次项系数为1,常用以下关系:x 1,x 2是方程x 2+px +q =0的两根时,x 1+x 2=﹣p ,x 1x 2=q ,反过来可得p =﹣(x 1+x 2),q =x 1x 2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.7.(3分)(2013•黄冈)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为()A.πB.4πC.π或4πD.2π或4π考点:几何体的展开图.分析:分底面周长为4π和2π两种情况讨论,先求得底面半径,再根据圆的面积公式即可求解.解答:解:①底面周长为4π时,半径为4π÷π÷2=2,底面圆的面积为π×22=4π;②底面周长为2π时,半径为2π÷π÷2=1,底面圆的面积为π×12=π.故选C.点评:考查了圆柱的侧面展开图,注意分长为底面周长和宽为底面周长两种情况讨论求解.8.(3分)(2013•黄冈)一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间(小时)之间的函数图象是()A.B.C.D.考点:函数的图象.分析:分三段讨论,①两车从开始到相遇,这段时间两车距迅速减小,②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加,③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大,结合实际选符合的图象即可.解答:解:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选C.点评:本题考查了函数的图象,解答本题关键是分段讨论,要结合实际解答,明白每条直线所代表的实际含义及拐点的含义.二、填空题(每小题3分,满分21分)9.(3分)(2013•黄冈)计算:=﹣(或).考点:分式的加减法.专题:计算题.分析:分母相同,直接将分子相减再约分即可.解答:解:原式===﹣,(或).点评:本题考查了分式的加减,分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可.10.(3分)(2013•黄冈)分解因式:ab2﹣4a=a(b﹣2)(b+2).考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解:ab2﹣4a=a(b2﹣4)=a(b﹣2)(b+2).故答案为:a(b﹣2)(b+2).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.11.(3分)(2013•黄冈)已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=.考点:等边三角形的性质;等腰三角形的判定与性质.分析:根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△△BDC中,由勾股定理求出BD即可.解答:解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=1,∴AD=DC=1,∵△ABC是等边三角形,∴BC=AC=1+1=2,BD⊥AC,在Rt△△BDC中,由勾股定理得:BD==,即DE=BD=,故答案为:.点评:本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长.12.(3分)(2013•黄冈)已知反比例函数在第一象限的图象如图所示,点A在其图象上,点B为x轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB=6.考点:反比例函数系数k的几何意义;等腰三角形的性质.分析:根据等腰三角形的性质得出CO=BC,再利用反比例函数系数k的几何意义得出S△AOB 即可.解答:解:过点A作AC⊥OB于点C,∵AO=AB,∴CO=BC,∵点A在其图象上,∴AC×CO=3,∴AC×BC=3,∴S△AOB=6.故答案为:6.点评:此题主要考查了等腰三角形的性质以及反比例函数系数k的几何意义,正确分割△AOB 是解题关键.13.(3分)(2013•黄冈)如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.考点:垂径定理;勾股定理.专题:探究型.分析:首先连接OC,由M是CD的中点,EM⊥CD,可得EM过⊙O的圆心点O,然后设半径为x,由勾股定理即可求得:(8﹣x)2+22=x2,解此方程即可求得答案.解答:解:连接OC,∵M是CD的中点,EM⊥CD,∴EM过⊙O的圆心点O,设半径为x,∵CD=4,EM=8,∴CM=CD=2,OM=8﹣OE=8﹣x,在Rt△OEM中,OM2+CM2=OC2,即(8﹣x)2+22=x2,解得:x=.∴所在圆的半径为:.故答案为:.点评:此题考查了垂径定理以及勾股定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.14.(3分)(2013•黄冈)钓鱼岛自古就是中国领土,中国政府已对钓鱼岛开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是7:00.考点:一次函数的应用.分析:根据函数图象和题意可以求出开始的速度为80海里/时,故障排除后的速度是100海里/时,设计划行驶的路程是a海里,就可以由时间之间的关系建立方程求出路程,再由路程除以速度就可以求出计划到达时间.解答:解:由图象及题意,得故障前的速度为:80÷1=80海里/时,故障后的速度为:(180﹣80)÷1=100海里/时.设航行额全程由a海里,由题意,得,解得:a=480,则原计划行驶的时间为:480÷80=6小时,故计划准点到达的时刻为:7:00.故答案为:7:00.点评:本题考查了运用函数图象的意义解答行程问题的运用,行程问题的数量关系路程=速度×时间的运用,解答时先根据图象求出速度是关键,再建立方程求出距离是难点.15.(3分)(2013•黄冈)如图,矩形ABCD中,AB=4,BC=3,边CD在直线l上,将矩形ABCD沿直线l作无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为6π.考点:弧长的计算;矩形的性质;旋转的性质.专题:规律型.分析:如图根据旋转的性质知,点A经过的路线长是三段:①以90°为圆心角,AD长为半径的扇形的弧长;②以90°为圆心角,AB长为半径的扇形的弧长;③90°为圆心角,矩形ABCD对角线长为半径的扇形的弧长.解答:解:∵四边形ABCD是矩形,AB=4,BC=3,∴BC=AD=3,∠ADC=90°,对角线AC(BD)=5.∵根据旋转的性质知,∠ADA′=90°,AD=A′D=BC=3,∴点A第一次翻滚到点A′位置时,则点A′经过的路线长为:=.同理,点A′第一次翻滚到点A″位置时,则点A′经过的路线长为:=2π.点″第一次翻滚到点A1位置时,则点A″经过的路线长为:=.则当点A第一次翻滚到点A1位置时,则点A经过的路线长为:+2π+=6π.故答案是:6π.点评:本题考查了弧长的计算、矩形的性质以及旋转的性质.根据题意画出点A运动轨迹,是突破解题难点的关键.三、解答题(本大题共10个小题,共86分.每小题给出必要的演算过程或推理步骤.)16.(6分)(2013•黄冈)解方程组:.考点:解二元一次方程组.专题:计算题.分析:把方程组整理成一般形式,然后利用代入消元法其求即可.解答:解:方程组可化为,由②得,x=5y﹣3③,③代入①得,5(5y﹣3)﹣11y=﹣1,解得y=1,把y=1代入③得,x=5﹣3=2,所以,原方程组的解是.点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.17.(6分)(2013•黄冈)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB 于H,连接OH,求证:∠DHO=∠DCO.考点:菱形的性质.专题:证明题.分析:根据菱形的对角线互相平分可得OD=OB,再根据直角三角形斜边上的中线等于斜边的一半可得OH=OB,然后根据等边对等角求出∠OHB=∠OBH,根据两直线平行,内错角相等求出∠OBH=∠ODC,然后根据等角的余角相等证明即可.解答:证明:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△GHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO.点评:本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.18.(7分)(2013•黄冈)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12吨的约有多少户?考点:条形统计图;用样本估计总体;加权平均数;中位数;众数.分析:(1)根据条形图中数据得出平均用水11吨的户数,进而画出条形图即可;(2)根据平均数、中位数、众的定义分别求法即可;(3)根据样本估计总体得出答案即可.解答:解:(1)根据条形图可得出:平均用水11吨的用户为:100﹣20﹣10﹣20﹣10=40(户),如图所示:(2)平均数为:(20×10+40×11+12×10+13×20+10×14)=11.6(吨),根据11出现次数最多,故众数为:11,根据100个数据的最中间为第50和第51个数据,按大小排列后第50,51个数据是11,故中位数为:11;(3)样本中不超过12吨的有20+40+10=70(户),∴黄冈市直机关500户家庭中月平均用水量不超过12吨的约有:500×=350(户).点评:此题主要考查了平均数、众数、中位数的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.19.(6分)(2013•黄冈)如图,有四张背面相同的纸牌A,B,C,D,其正面分别是红桃、方块、黑桃、梅花,其中红桃、方块为红色,黑桃、梅花为黑色.小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张再摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示);(2)求摸出的两张牌同为红色的概率.考点:列表法与树状图法.分析:(1)画出树状图即可;(2)根据树状图可以直观的得到共有12种情况,都是红色情况有2种,进而得到概率.解答:解:(1)如图所示:(2)根据树状图可得共有12种情况,都是红色情况有2种,概率为=.点评:本题考查概率公式,即如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20.(7分)(2013•黄冈)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为3,AD=4,求AC的长.考点:切线的判定;相似三角形的判定与性质.分析:(1)连接OC,由OA=OC可以得到∠OAC=∠OCA,然后利用角平分线的性质可以证明∠DAC=∠OCA,接着利用平行线的判定即可得到OC∥AD,然后就得到OC⊥CD,由此即可证明直线CD与⊙O相切于C点;(2)连接BC,根据圆周角定理的推理得到∠ACB=90°,又∠DAC=∠OAC,由此可以得到△ADC∽△ACB,然后利用相似三角形的性质即可解决问题.解答:(1)证明:连接OC∵OA=OC∴∠OAC=∠OCA∵AC平分∠DAB∴∠DAC=∠OAC∴∠DAC=∠OCA∴OC∥AD∵AD⊥CD∴OC⊥CD∴直线CD与⊙O相切于点C;(2)解:连接BC,则∠ACB=90°.∵∠DAC=∠OAC,∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴,∴AC2=AD•AB,∵⊙O的半径为3,AD=4,∴AB=6,∴AC=2.点评:此题主要考查了切线的性质与判定,解题时首先利用切线的判定证明切线,然后利用切线的想这已知条件证明三角形相似即可解决问题.21.(8分)(2013•黄冈)为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资,现准备租用甲、乙两种货车,将这批救灾物资一次性全部运往灾区,它们的载货量和租金如下表:甲种货车乙种货车载货量(吨/辆)45 30租金(元/辆)400 300如果计划租用6辆货车,且租车的总费用不超过2300元,求最省钱的租车方案.考点:一元一次不等式组的应用.分析:根据设租用甲种货车x辆,则租用乙种6﹣x辆,利用某市民政局组织募捐了240吨救灾物资,以及每辆货车的载重量得出不等式求出即可,进而根据每辆车的运费求出最省钱方案.解答:解:设租用甲种货车x辆,则租用乙种6﹣x辆,根据题意得出:45x+30(6﹣x)≥240,解得:x≥4,则租车方案为:甲4辆,乙2辆;甲5辆,乙1辆;甲6辆,乙0辆;租车的总费用分别为:4×400+2×300=2200(元),5×400+1×300=2300(元),6×400=2400(元)>2300(不合题意舍去),故最省钱的租车方案是租用甲货车4辆,乙货车2辆.点评:此题主要考查了一元一次不等式的应用,根据已知得出不等式求出所有方案是解题关键.22.(8分)(2013•黄冈)如图,小山顶上有一信号塔AB,山坡BC的倾角为30°,现为了测量塔高AB,测量人员选择山脚C处为一测量点,测得塔顶仰角为45°,然后顺山坡向上行走100米到达E处,再测得塔顶仰角为60°,求塔高AB(结果保留整数,≈1.73,≈1.41)考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:先判断△ACE为等腰三角形,在Rt△AEF中表示出EF、AF,在Rt△BEF中求出BF,根据AB=AF﹣BF即可得出答案.解答:解:依题意可得:∠AEB=30°,∠ACE=15°,又∵∠AEB=∠ACE+∠CAE∴∠CAE=15°,即△ACE为等腰三角形,∴AE=CE=100m,在Rt△AEF中,∠AEF=60°,∴EF=AEcos60°=50m,AF=AEsin60°=50m,在Rt△BEF中,∠BEF=30°,∴BF=EFtan30°=50×=m,∴AB=AF﹣BF=50﹣=≈58(米).答:塔高AB大约为58米.点评:本题考查了解直角三角形的知识,解答本题的关键是构造直角三角形,利用三角函数表示出相关线段的长度,难度一般.23.(12分)(2013•黄冈)某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完.该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售量x(千件)的关系为:y1=若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为y2=(1)用x的代数式表示t为:t=6﹣x;当0<x≤4时,y2与x的函数关系为:y2=5x+80;当4<x<6时,y2=100;(2)求每年该公司销售这种健身产品的总利润w(千元)与国内销售数量x(千件)的函数关系式,并指出x的取值范围;(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?考点:二次函数的应用.分析:(1)由该公司的年产量为6千件,每年可在国内、国外市场上全部售完,可得国内销售量+国外销售量=6千件,即x+t=6,变形即为t=6﹣x;根据平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系及t=6﹣x即可求出y2与x的函数关系:当0<x≤4时,y2=5x+80;当4≤x<6时,y2=100;(2)根据总利润=国内销售的利润+国外销售的利润,结合函数解析式,分三种情况讨论:①0<x≤2;②2<x≤4;③4<x<6;(3)先利用配方法将各解析式写成顶点式,再根据二次函数的性质,求出三种情况下的最大值,再比较即可.解答:解:(1)由题意,得x+t=6,∴t=6﹣x;∵,∴当0<x≤4时,2≤6﹣x<6,即2≤t<6,此时y2与x的函数关系为:y2=﹣5(6﹣x)+110=5x+80;当4≤x<6时,0≤6﹣x<2,即0≤t<2,此时y2=100.故答案为6﹣x;5x+80;4,6;(2)分三种情况:①当0<x≤2时,w=(15x+90)x+(5x+80)(6﹣x)=10x2+40x+480;②当2<x≤4时,w=(﹣5x+130)x+(5x+80)(6﹣x)=﹣10x2+80x+480;③当4<x<6时,w=(﹣5x+130)x+100(6﹣x)=﹣5x2+30x+600;综上可知,w=;(3)当0<x≤2时,w=10x2+40x+480=10(x+2)2+440,此时x=2时,w最大=600;当2<x≤4时,w=﹣10x2+80x+480=﹣10(x﹣4)2+640,此时x=4时,w最大=640;当4<x<6时,w=﹣5x2+30x+600=﹣5(x﹣3)2+645,4<x<6时,w<640;∴x=4时,w最大=640.故该公司每年国内、国外的销售量各为4千件、2千件,可使公司每年的总利润最大,最大值为64万元.点评:本题考查的是二次函数在实际生活中的应用,有一定难度.涉及到一次函数、二次函数的性质,分段函数等知识,进行分类讨论是解题的关键.24.(15分)(2013•黄冈)如图,在平面直角坐标系中,四边形ABCD是梯形,其中A(6,0),B(3,),C(1,),动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→C→O的线路以每秒1个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P,Q运动的时间为t(秒).(1)求经过A,B,C三点的抛物线的解析式;(2)当点Q在CO边上运动时,求△OPQ的面积S与时间t的函数关系式;(3)以O,P,Q顶点的三角形能构成直角三角形吗?若能,请求出t的值;若不能,请说明理由;(4)经过A,B,C三点的抛物线的对称轴、直线OB和PQ能够交于一点吗?若能,请求出此时t的值(或范围),若不能,请说明理由).考点:二次函数综合题.分析:(1)利用待定系数法求出二次函数解析式即可;(2)根据已知得出△OPQ的高,进而利用三角形面积公式求出即可;(3)根据题意得出:0≤t≤3,当0≤t≤2时,Q在BC边上运动,得出若△OPQ为直角三角形,只能是∠OPQ=90°或∠OQP=90°,当2<t≤3时,Q在OC边上运动,得出△OPQ不可能为直角三角形;(4)首先求出抛物线对称轴以及OB直线解析式和PM的解析式,得出(1﹣t)×=3﹣t﹣2t,恒成立,即0≤t≤2时,P,M,Q总在一条直线上,再利用2<t≤3时,求出t的值,根据t的取值范围得出答案.解答:解:(1)设所求抛物线的解析式为y=ax2+bx+c,把A(6,0),B(3,),C(1,)三点坐标代入得:,解得:,即所求抛物线解析式为:y=﹣x2+x+;(2)如图1,依据题意得出:OC=CB=2,∠COA=60°,∴当动点Q运动到OC边时,OQ=4﹣t,∴△OPQ的高为:OQ×sin60°=(4﹣t)×,又∵OP=2t,∴S=×2t×(4﹣t)×=﹣(t2﹣4t)(2≤t≤3);(3)根据题意得出:0≤t≤3,当0≤t≤2时,Q在BC边上运动,此时OP=2t,OQ=,PQ==,∵∠POQ<∠POC=60°,∴若△OPQ为直角三角形,只能是∠OPQ=90°或∠OQP=90°,若∠OPQ=90°,如图2,则OP2+PQ2=QO2,即4t2+3+(3t﹣3)2=3+(3﹣t)2,解得:t1=1,t2=0(舍去),若△OPQ为直角三角形,只能是∠OPQ=90°或∠OQP=90°,若∠OQP=90°,如图,3,则OQ2+PQ2=PO2,即(3﹣t)2+6+(3t﹣3)2=4t2,解得:t=2,当2<t≤3时,Q在OC边上运动,此时QP=2t>4,∠POQ=∠COP=60°,OQ<OC=2,故△OPQ不可能为直角三角形,综上所述,当t=1或t=2时,△OPQ为直角三角形;(4)由(1)可知,抛物线y=﹣x2+x+=﹣(x﹣2)2+,其对称轴为x=2,又∵OB的直线方程为y=x,∴抛物线对称轴与OB交点为M(2,),又∵P(2t,0)设过P,M的直线解析式为:y=kx+b,∴,解得:,即直线PM的解析式为:y=x﹣,即(1﹣t)y=x﹣2t,又0≤t≤2时,Q(3﹣t,),代入上式,得:(1﹣t)×=3﹣t﹣2t,恒成立,即0≤t≤2时,P,M,Q总在一条直线上,即M在直线PQ上;当2<t≤3时,OQ=4﹣t,∠QOP=60°,∴Q(,),代入上式得:×(1﹣t)=﹣2t,解得:t=2或t=(均不合题意,舍去).∴综上所述,可知过点A、B、C三点的抛物线的对称轴OB和PQ能够交于一点,此时0≤t≤2.点评:此题主要考查了二次函数的综合应用以及待定系数法求二次函数解析式和待定系数法求一次函数解析式等知识,利用分类讨论思想得出t的值是解题关键.。

2013年湖北省黄冈市中考数学试卷含答案

2013年湖北省黄冈市中考数学试卷含答案

2013年湖北省黄冈市中考数学试卷一、选择题(下列各题A、B、C、D四个选项中,有且仅有一个是正确的,每小题3分,共24分)1.(3分)﹣(﹣3)2=()A.﹣3B.3C.﹣9D.92.(3分)随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C.D.3.(3分)如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=()A.60°B.120°C.150°D.180°4.(3分)下列计算正确的是()A.x4•x4=x16B.(a3)2•a4=a9C.(ab2)3÷(﹣ab)2=﹣ab4D.(a6)2÷(a4)3=15.(3分)已知一个正棱柱的俯视图和左视图如图,则其主视图为()A.B.C.D.6.(3分)已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根为()A.2B.3C.4D.87.(3分)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为()A.πB.4πC.π或4πD.2π或4π8.(3分)一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲、乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间(小时)之间的函数图象是()A.B.C.D.二、填空题(每小题3分,满分21分)9.(3分)计算:=.10.(3分)分解因式:ab2﹣4a=.11.(3分)已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=.12.(3分)已知反比例函数在第一象限的图象如图所示,点A在其图象上,点B为x 轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB=.13.(3分)如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.14.(3分)DiaoyuIsland自古就是中国领土,中国政府已对DiaoyuIsland开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是.15.(3分)如图,矩形ABCD中,AB=4,BC=3,边CD在直线l上,将矩形ABCD沿直线l作无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为.三、解答题(本大题共10个小题,共86分.每小题给出必要的演算过程或推理步骤.)16.(6分)解方程组:.17.(6分)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.18.(7分)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12吨的约有多少户?19.(6分)如图,有四张背面相同的纸牌A,B,C,D,其正面分别是红桃、方块、黑桃、梅花,其中红桃、方块为红色,黑桃、梅花为黑色.小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张再摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示);(2)求摸出的两张牌同为红色的概率.20.(7分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为3,AD=4,求AC的长.21.(8分)为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资.现准备租用甲、乙两种货车,将这批救灾物资一次性全部运往灾区,它们的载货量和租金如下表:甲种货车乙种货车载货量(吨/辆)4530租金(元/辆)400300如果计划租用6辆货车,且租车的总费用不超过2300元,求最省钱的租车方案.22.(8分)如图,小山顶上有一信号塔AB,山坡BC的倾角为30°,现为了测量塔高AB,测量人员选择山脚C处为一测量点,测得塔顶仰角为45°,然后顺山坡向上行走100米到达E处,再测得塔顶仰角为60°,求塔高AB(结果保留整数,≈1.73,≈1.41)23.(12分)某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完.该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售量x(千件)的关系为:y1=若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为(1)用x的代数式表示t为:t=;当0<x≤4时,y2与x的函数关系为:y2=;当≤x<时,y2=100;(2)求每年该公司销售这种健身产品的总利润w(千元)与国内销售数量x(千件)的函数关系式,并指出x的取值范围;(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?24.(15分)如图,在平面直角坐标系中,四边形ABCO是梯形,其中A(6,0),B(3,),C(1,),动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B 沿B→C→O的线路以每秒1个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P,Q运动的时间为t(秒).(1)求经过A,B,C三点的抛物线的解析式;(2)当点Q在CO边上运动时,求△OPQ的面积S与时间t的函数关系式;(3)以O,P,Q顶点的三角形能构成直角三角形吗?若能,请求出t的值;若不能,请说明理由;(4)经过A,B,C三点的抛物线的对称轴、直线OB和PQ能够交于一点吗?若能,请求出此时t的值(或范围),若不能,请说明理由).2013年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(下列各题A、B、C、D四个选项中,有且仅有一个是正确的,每小题3分,共24分)1.【分析】根据有理数的乘方的定义解答.【解答】解:﹣(﹣3)2=﹣9.故选:C.【点评】本题考查了有理数的乘方的定义,是基础题,熟记概念是解题的关键.2.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.【点评】本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.【分析】根据两直线平行,同旁内角互补由AB∥CD得到∠BAC+∠ACD=180°,可计算出∠ACD=60°,然后由AC∥DF,根据平行线的性质得到∠ACD=∠CDF=60°.【解答】解:∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠BAC=120°,∴∠ACD=180°﹣120°=60°,∵AC∥DF,∴∠ACD=∠CDF,∴∠CDF=60°.故选:A.【点评】本题考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补.4.【分析】根据同底数幂的乘除法则及幂的乘方法则,结合各选项进行判断即可.【解答】解:A、x4×x4=x8,原式计算错误,故本选项错误;B、(a3)2•a4=a10,原式计算错误,故本选项错误;C、(ab2)3÷(﹣ab)2=ab4,原式计算错误,故本选项错误;D、(a6)2÷(a4)3=1,计算正确,故本选项正确;故选:D.【点评】本题考查了同底数幂的乘除、幂的乘方与积的乘方的知识,解答本题的关键是掌握各部分的运算法则.5.【分析】首先根据俯视图和左视图判断该几何体,然后确定其主视图即可;【解答】解:根据此正棱柱的俯视图和左视图得到该几何体是正五棱柱,其主视图应该是矩形,而且有看到两条棱,背面的棱用虚线表示,故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.6.【分析】利用根与系数的关系来求方程的另一根.【解答】解:设方程的另一根为α,则α+2=6,解得α=4.故选:C.【点评】本题考查了根与系数的关系.若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.7.【分析】分底面周长为4π和2π两种情况讨论,先求得底面半径,再根据圆的面积公式即可求解.【解答】解:①底面周长为4π时,半径为4π÷π÷2=2,底面圆的面积为π×22=4π;②底面周长为2π时,半径为2π÷π÷2=1,底面圆的面积为π×12=π.故选:C.【点评】考查了圆柱的侧面展开图,注意分长为底面周长和宽为底面周长两种情况讨论求解.8.【分析】分三段讨论,①两车从开始到相遇,这段时间两车距迅速减小,②相遇后向相反方向行驶到特快到达甲地,这段时间两车距迅速增加,③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大,结合实际选符合的图象即可.【解答】解:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶到特快到达甲地这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选:C.【点评】本题考查了函数的图象,解答本题关键是分段讨论,要结合实际解答,明白每条直线所代表的实际含义及拐点的含义.二、填空题(每小题3分,满分21分)9.【分析】分母相同,直接将分子相减再约分即可.【解答】解:原式===﹣,(或).【点评】本题考查了分式的加减,分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可.10.【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ab2﹣4a=a(b2﹣4)=a(b﹣2)(b+2).故答案为:a(b﹣2)(b+2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.11.【分析】根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△BDC中,由勾股定理求出BD即可.【解答】解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=1,∴AD=DC=1,∵△ABC是等边三角形,∴BC=AC=1+1=2,BD⊥AC,在Rt△BDC中,由勾股定理得:BD==,即DE=BD=,故答案为:.【点评】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长.12.【分析】根据等腰三角形的性质得出CO=BC,再利用反比例函数系数k的几何意义得出S△AOB即可.【解答】解:过点A作AC⊥OB于点C,∵AO=AB,∴CO=BC,∵点A在其图象上,∴AC×CO=3,∴AC×BC=3,∴S△AOB=6.故答案为:6.【点评】此题主要考查了等腰三角形的性质以及反比例函数系数k的几何意义,正确分割△AOB是解题关键.13.【分析】首先连接OC,由M是CD的中点,EM⊥CD,可得EM过⊙O的圆心点O,然后设半径为x,由勾股定理即可求得:(8﹣x)2+22=x2,解此方程即可求得答案.【解答】解:连接OC,∵M是CD的中点,EM⊥CD,∴EM过⊙O的圆心点O,设半径为x,∵CD=4,EM=8,∴CM=CD=2,OM=8﹣OE=8﹣x,在Rt△OCM中,OM2+CM2=OC2,即(8﹣x)2+22=x2,解得:x=.∴所在圆的半径为:.故答案为:.【点评】此题考查了垂径定理以及勾股定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.14.【分析】根据函数图象和题意可以求出开始的速度为80海里/时,故障排除后的速度是100海里/时,设计划行驶的路程是a海里,就可以由时间之间的关系建立方程求出路程,再由路程除以速度就可以求出计划到达时间.【解答】解:由图象及题意,得故障前的速度为:80÷1=80海里/时,故障后的速度为:(180﹣80)÷1=100海里/时.设航行的全程有a海里,由题意,得,解得:a=480,则原计划行驶的时间为:480÷80=6小时,解法二:设原计划行驶的时间为t小时,80t=80+100(t﹣2)解得:t=6,故计划准点到达的时刻为:7:00.故答案为:7:00.【点评】本题考查了运用函数图象的意义解答行程问题的运用,行程问题的数量关系路程=速度×时间的运用,解答时先根据图象求出速度是关键,再建立方程求出距离是难点.15.【分析】如图根据旋转的性质知,点A经过的路线长是三段:①以90°为圆心角,AD 长为半径的扇形的弧长;②以90°为圆心角,AB长为半径的扇形的弧长;③90°为圆心角,矩形ABCD对角线长为半径的扇形的弧长.【解答】解:∵四边形ABCD是矩形,AB=4,BC=3,∴BC=AD=3,∠ADC=90°,对角线AC(BD)=5.∵根据旋转的性质知,∠ADA′=90°,AD=A′D=BC=3,∴点A第一次翻滚到点A′位置时,则点A′经过的路线长为:=.同理,点A′第一次翻滚到点A″位置时,则点A′经过的路线长为:=2π.点A″第一次翻滚到点A1位置时,则点A″经过的路线长为:=.则当点A第一次翻滚到点A1位置时,则点A经过的路线长为:+2π+=6π.故答案是:6π.【点评】本题考查了弧长的计算、矩形的性质以及旋转的性质.根据题意画出点A运动轨迹,是突破解题难点的关键.三、解答题(本大题共10个小题,共86分.每小题给出必要的演算过程或推理步骤.)16.【分析】把方程组整理成一般形式,然后利用代入消元法其求即可.【解答】解:方程组可化为,由②得,x=5y﹣3③,③代入①得,5(5y﹣3)﹣11y=﹣1,解得y=1,把y=1代入③得,x=5﹣3=2,所以,原方程组的解是.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.17.【分析】根据菱形的对角线互相平分可得OD=OB,再根据直角三角形斜边上的中线等于斜边的一半可得OH=OB,然后根据等边对等角求出∠OHB=∠OBH,根据两直线平行,内错角相等求出∠OBH=∠ODC,然后根据等角的余角相等证明即可.【解答】证明:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO.【点评】本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.18.【分析】(1)根据条形图中数据得出平均用水11吨的户数,进而画出条形图即可;(2)根据平均数、中位数、众的定义分别求解即可;(3)根据样本估计总体得出答案即可.【解答】解:(1)根据条形图可得出:平均用水11吨的用户为:100﹣20﹣10﹣20﹣10=40(户),如图所示:(2)平均数为:(20×10+40×11+12×10+13×20+10×14)=11.6(吨),根据11出现次数最多,故众数为:11,根据100个数据的最中间为第50和第51个数据,按大小排列后第50,51个数据是11,故中位数为:11;答:这100个样本数据的平均数,众数和中位数分别是11.6,11,11;(3)样本中不超过12吨的有20+40+10=70(户),答:黄冈市直机关500户家庭中月平均用水量不超过12吨的约有:500×=350(户).【点评】此题主要考查了平均数、众数、中位数的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.19.【分析】(1)画出树状图即可;(2)根据树状图可以直观的得到共有12种情况,都是红色情况有2种,进而得到概率.【解答】解:(1)如图所示:(2)根据树状图可得共有12种情况,都是红色情况有2种,概率为P==.【点评】本题考查概率公式,即如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20.【分析】(1)连接OC,由OA=OC可以得到∠OAC=∠OCA,然后利用角平分线的性质可以证明∠DAC=∠OCA,接着利用平行线的判定即可得到OC∥AD,然后就得到OC ⊥CD,由此即可证明直线CD与⊙O相切于C点;(2)连接BC,根据圆周角定理的推理得到∠ACB=90°,又∠DAC=∠OAC,由此可以得到△ADC∽△ACB,然后利用相似三角形的性质即可解决问题.【解答】(1)证明:连接OC∵OA=OC∴∠OAC=∠OCA∵AC平分∠DAB∴∠DAC=∠OAC∴∠DAC=∠OCA∴OC∥AD∵AD⊥CD∴OC⊥CD∴直线CD与⊙O相切于点C;(2)解:连接BC,则∠ACB=90°.∵∠DAC=∠OAC,∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴,∴AC2=AD•AB,∵⊙O的半径为3,AD=4,∴AB=6,∴AC=2.【点评】此题主要考查了切线的性质与判定,解题时首先利用切线的判定证明切线,然后利用切线的想这已知条件证明三角形相似即可解决问题.21.【分析】先设租甲型货车x辆,则乙型货车(6﹣x)辆,根据题意列出不等式组,求出x的取值范围,再根据x为正整数,求出租车方案,再分别求出每种方案的费用,即可得出答案.【解答】解:设租甲型货车x辆,则乙型货车(6﹣x)辆,根据题意得:,解得:4≤x≤5,∵x为正整数,∴共有两种方案,方案1:租甲型货车4辆,乙型货车2辆,方案2:租甲型货车5辆,乙型货车1辆,方案1的费用为:4×400+2×300=2200元;方案2的费用为:5×400+1×300=2300元;2200<2300,则选择方案1最省钱,即最省钱的租车方案是租甲型货车4辆,乙型货车2辆.【点评】此题考查了一元一次不等式组的应用,关键是读懂题意,根据题目中的数量关系列出不等式组,注意x为正整数.22.【分析】先判断△ACE为等腰三角形,在Rt△AEF中表示出EF、AF,在Rt△BEF中求出BF,根据AB=AF﹣BF即可得出答案.【解答】解:依题意可得:∠AEB=∠EAB=30°,∠ACE=15°,又∵∠AEB=∠ACE+∠CAE∴∠CAE=15°,即△ACE为等腰三角形,∴AE=CE=100m,在Rt△AEF中,∠AEF=60°,∴EF=AE cos60°=50m,AF=AE sin60°=50m,在Rt△BEF中,∠BEF=30°,∴BF=EF tan30°=50×=m,∴AB=AF﹣BF=50﹣=≈58(米).答:塔高AB大约为58米.【点评】本题考查了解直角三角形的知识,解答本题的关键是构造直角三角形,利用三角函数表示出相关线段的长度,难度一般.23.【分析】(1)由该公司的年产量为6千件,每年可在国内、国外市场上全部售完,可得国内销售量+国外销售量=6千件,即x+t=6,变形即为t=6﹣x;根据平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系及t=6﹣x即可求出y2与x的函数关系:当0<x≤4时,y2=5x+80;当4<x<6时,y2=100;(2)根据总利润=国内销售的利润+国外销售的利润,结合函数解析式,分三种情况讨论:①0<x≤2;②2<x≤4;③4<x≤6;(3)先利用配方法将各解析式写成顶点式,再根据二次函数的性质,求出三种情况下的最大值,再比较即可.【解答】解:(1)由题意,得x+t=6,∴t=6﹣x;∵,∴当0<x≤4时,2≤6﹣x<6,即2≤t<6,此时y2与x的函数关系为:y2=﹣5(6﹣x)+110=5x+80;当4≤x<6时,0<6﹣x≤2,即0<t≤2,此时y2=100.故答案为:6﹣x;5x+80;4,6;(2)分三种情况:①当0<x≤2时,w=(15x+90)x+(5x+80)(6﹣x)=10x2+40x+480;②当2<x≤4时,w=(﹣5x+130)x+(5x+80)(6﹣x)=﹣10x2+80x+480;③当4<x≤6时,w=(﹣5x+130)x+100(6﹣x)=﹣5x2+30x+600;综上可知,w=;(3)当0<x≤2时,w=10x2+40x+480=10(x+2)2+440,此时x=2时,w最大=600;当2<x≤4时,w=﹣10x2+80x+480=﹣10(x﹣4)2+640,此时x=4时,w最大=640;当4<x≤6时,w=﹣5x2+30x+600=﹣5(x﹣3)2+645,4<x<6时,w<640;∵a=﹣5,∴当x>3时,w随x的增大而减小,∴没有w最大.故该公司每年国内、国外的销售量各为4千件、2千件,可使公司每年的总利润最大,最大值为640千元.【点评】本题考查的是二次函数在实际生活中的应用,有一定难度.涉及到一次函数、二次函数的性质,分段函数等知识,进行分类讨论是解题的关键.24.【分析】(1)利用待定系数法求出二次函数解析式即可;(2)根据已知得出△OPQ的高,进而利用三角形面积公式求出即可;(3)根据题意得出:0≤t≤3,当0≤t≤2时,Q在BC边上运动,得出若△OPQ为直角三角形,只能是∠OPQ=90°或∠OQP=90°,当2<t≤3时,Q在OC边上运动,得出△OPQ不可能为直角三角形;(4)首先求出抛物线对称轴以及OB直线解析式和PM的解析式,得出(1﹣t)×=3﹣t﹣2t,恒成立,即0≤t≤2时,P,M,Q总在一条直线上,再利用2<t≤3时,求出t的值,根据t的取值范围得出答案.【解答】解:(1)设所求抛物线的解析式为y=ax2+bx+c,把A(6,0),B(3,),C (1,)三点坐标代入得:,解得:,即所求抛物线解析式为:y=﹣x2+x+;(2)如图1,依据题意得出:OC=CB=2,∵C(1,),∴tan∠COA=,∴∠COA=60°,∴当动点Q运动到OC边时,OQ=4﹣t,∴△OPQ的高为:OQ×sin60°=(4﹣t)×,又∵OP=2t,∴S=×2t×(4﹣t)×=﹣(t2﹣4t)(2≤t≤3);(3)根据题意得出:0≤t≤3,当0≤t≤2时,Q在BC边上运动,此时OP=2t,OQ=,PQ==,∵∠POQ<∠POC=60°,∴若△OPQ为直角三角形,只能是∠OPQ=90°或∠OQP=90°,若∠OPQ=90°,如图2,则OP2+PQ2=QO2,即4t2+3+(3t﹣3)2=3+(3﹣t)2,解得:t1=1,t2=0(舍去),若△OPQ为直角三角形,只能是∠OPQ=90°或∠OQP=90°,若∠OQP=90°,如图,3,则OQ2+PQ2=PO2,即(3﹣t)2+6+(3t﹣3)2=4t2,解得:t=2,当2<t≤3时,Q在OC边上运动,此时OP=2t>4,∠POQ=∠COP=60°,OQ<OC=2,故△OPQ不可能为直角三角形,综上所述,当t=1或t=2时,△OPQ为直角三角形;(4)由(1)可知,抛物线y=﹣x2+x+=﹣(x﹣2)2+,其对称轴为x=2,又∵OB的直线方程为y=x,∴抛物线对称轴与OB交点为M(2,),又∵P(2t,0)设过P,M的直线解析式为:y=kx+b,∴,解得:,即直线PM的解析式为:y=x﹣,即(1﹣t)y=x﹣2t,又0≤t≤2时,Q(3﹣t,),代入上式,得:(1﹣t)×=3﹣t﹣2t,恒成立,即0≤t≤2时,P,M,Q总在一条直线上,即M在直线PQ上;当2<t≤3时,OQ=4﹣t,∠QOP=60°,∴Q(,),代入上式得:×(1﹣t)=﹣2t,解得:t=2或t=(均不合题意,舍去).∴综上所述,可知过点A、B、C三点的抛物线的对称轴OB和PQ能够交于一点,此时0≤t≤2.【点评】此题主要考查了二次函数的综合应用以及待定系数法求二次函数解析式和待定系数法求一次函数解析式等知识,利用分类讨论思想得出t的值是解题关键.第21页(共21页)。

2013年湖北省黄石市中考数学二模试卷及答案(word解析版)

2013年湖北省黄石市中考数学二模试卷及答案(word解析版)

2013年湖北省黄石市中考数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共30分).2.(3分)(2012•门头沟区二模)在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素3.(3分)(2012•陕西)某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱)4.(3分)(2012•长沙)下列平面图形中,既是轴对称图形,又是中心对称图形的是()5.(3分)(2012•吉林)如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣3,2),若反比例函数y=(x>0)的图象经过点A,则k的值为()得:2=6.(3分)(2012•燕山区二模)如图是一个台阶形的零件,两个台阶的高度和宽度都相等,则它的三视图是()解:左视图是主视图是,俯视图是,7.(3分)(2012•佛山)如图,把一个斜边长为2且含有30°角的直角三角板ABC绕直角顶点C顺时针旋转90°到△A1B1C,则在旋转过程中这个三角板扫过的图形的面积是().BC=AC=×,=×,×π×+,ππ,π.8.(3分)(2012•杭州)已知关于x,y的方程组,其中﹣3≤a≤1,给出下列结论:①是方程组的解;②当a=﹣2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;④若x≤1,则1≤y≤4.解:解方程组,得不符合﹣9.(3分)(2012•临沂)如图,若点M是x轴正半轴上任意一点,过点M作PQ∥y轴,分别交函数y=(x>0)和y=(x>0)的图象于点P和Q,连接OP和OQ.则下列结论正确的是()=的面积是(为线段一定为正值,故=|MO PQ==MO 的面积是(10.(3分)(2012•顺义区一模)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=2,D是AB边上一个动点(不与点A、B重合),E是BC边上一点,且∠CDE=30°.设AD=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()B.CE=2,﹣,即可得=,=﹣x+二、填空题(3×6=18)11.(3分)(2006•临沂)分解因式:a3b﹣9ab3=ab(a+3b)(a﹣3b).12.(3分)(2012•义乌)在义乌市中小学生“人人会乐器”演奏比赛中,某班10名学生成绩统计如图所示,则这10名学生成绩的中位数是90分,众数是90分.13.(3分)若不等式的整数解有3个,则m的取值范围是5<m≤6.解:14.(3分)(2012•石景山区二模)已知:如图是斜边为10的一个等腰直角三角形与两个半径为5的扇形的重叠情形,其中等腰直角三角形顶角平分线与两扇形相切,则图中阴影部分面积的和是.半圆面积为:×CD=故图中阴影部分面积的和是:π﹣故答案为:π﹣15.(3分)(2012•石景山区二模)如图所示,圆圈内分别标有1,2,…,12,这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为n,则电子跳蚤连续跳(3n ﹣2)步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳3×1﹣2=1步到标有数字2的圆圈内,完成一次跳跃,第二次则要连续跳3×2﹣2=4步到达标有数字6的圆圈,…依此规律,若电子跳蚤从①开始,那么第3次能跳到的圆圈内所标的数字为10;第2012次电子跳蚤能跳到的圆圈内所标的数字为6.16.(3分)如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D,当OD=AD=3时,这两个二次函数的最大值之和等于.DE=,得出==,代入求出OE=EA===,=AM=PM=(=,=CM=﹣xBF+CM=故答案为:三、解答题(本题有9个小题,共72分)17.(7分)(2012•延庆县二模)计算:2cos30°+tan45°++.按照实数的运算法则依次计算,注意(﹣×+1,负数的奇次幂是负数.18.(7分)(2013•眉山)先化简,再求值:,其中.+x=时,则原式的值为﹣19.(8分)(2008•泰安)如图所示,△ABC是直角三角形,∠ABC=90°,以AB为直径的⊙O交AC于点E,点D是BC边的中点,连接DE.(1)求证:DE与⊙O相切;(2)若⊙O的半径为,DE=3,求AE.AB=2AC=4AE=:∵(.20.(8分)若,求x,y.先根据已知条件得出解:∵y=22;21.(8分)(2012•温州)一个不透明的袋中装有红、黄、白三种颜色球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.×P==所以从剩余的球中摸出一个球是红球的概率=.22.(8分)(2012•兰州)在建筑楼梯时,设计者要考虑楼梯的安全程度,如图(1),虚线为楼梯的倾斜度,斜度线与地面的夹角为倾角θ,一般情况下,倾角越小,楼梯的安全程度越高;如图(2)设计者为了提高楼梯的安全程度,要把楼梯的倾角θ1减至θ2,这样楼梯所占用地板的长度由d1增加到d2,已知d1=4米,∠θ1=40°,∠θ2=36°,楼梯占用地板的长度增加率多少米?(计算结果精确到0.01米,参考数据:tan40°=0.839,tan36°=0.727)23.(8分)(2012•长沙)在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到30元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为:(年获利=年销售收入﹣生产成本﹣投资成本)(1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)第二年,该公司决定给希望工程捐款Z万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围.,﹣﹣x24.(8分)已知菱形ABCD的边长为1,∠ADC=60°,等边△AEF两边分别交DC、CB于点E、F.(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点,求证:菱形ABCD对角线AC、BD的交点O即为等边△AEF的外心;(2)若点E、F始终分别在边DC、CB上移动,记等边△AEF的外心为P.①猜想验证:如图2,猜想△AEF的外心P落在哪一直线上,并加以证明;②拓展运用:如图3,当E、F分别是边DC、CB的中点时,过点P任作一直线,分别交DA边于点M,BC边于点G,DC边的延长线于点N,请你直接写出的值.,根据相似三角形对应边成比例得出=,进而求出ADO=ADC=×OE=AO=为定值=,=,+=2=225.(10分)(2013•红桥区一模)已知抛物线F:y=ax2+bx+c的顶点为P.(Ⅰ)当a=1,b=﹣2,c=﹣3,求该抛物线与x轴公共点的坐标;(Ⅱ)设抛物线F:y=ax2+bx+c与y轴交于点A,过点P作PD⊥x轴于点D.平移该抛物线使其经过点A、D,得到抛物线F:y=a′x2+b′x+c′(如图所示).若a、b、c满足了b2=2ac,求b:b′的值;(Ⅲ)若a=3,b=2,且当﹣1<x<1时,抛物线F与x轴有且只有一个公共点,求c的取值范围.;(,),,,,;≤时,由方程+2x+﹣+2x+,时,﹣c=。

2013年湖北省黄冈市中考数学试卷-答案

2013年湖北省黄冈市中考数学试卷-答案
3 / 11
x ,由勾股定理即可求得: (8 x)2 22 x2 ,解此方程即可求得答案.
【考点】垂径定理,勾股定理
14.【答案】 7 : 00
【解析】由图象及题意可得,故障前的速度为: 80 1 80 海里/时,故障后的速度为: (180 80) 1 100
1 / 11
条棱,背面的棱用虚线表示,故选 D. 【提示】首先根据俯视图和左视图判断该几何体,然后确定其主视图即可.
【考点】由三视图判断几何体,简单组合体的三视图
6.【答案】C 【解析】设方程的另一根为 a ,则 a 2 6 ,解得 a 4 .故选 C. 【提示】利用根与系数的关系来求方程的另一根.
【提示】根据等腰三角形和三角形外角性质求出 BD DE ,求出 BC ,在 Rt△BDC 中,由勾股定理求出
BD 即可.
【考点】等边三角形的性质,等腰三角形的判定与性质
12.【答案】6 【解析】过点 A 作 AC OB 于点 C , AO AB ,CO BC ,
1 2
AC

BC

C. (ab2 )3 (ab)2 ab4 ,原式计算错误,故本选项错误;
D. (a6 )2 (a4 )3 1,计算正确,故本选项正确;故选 D.
【提示】根据同底数幂的乘除法则及幂的乘方法则,结合各选项进行判断即可. 【考点】同底数幂的除法,同底数幂的乘法,幂的乘方与积的乘方 5.【答案】D 【解析】根据此正棱柱的俯视图和左视图得到该几何体是正五棱柱,其主视图应该是矩形,而且有看到两
9.【答案】 3 或 3 x 1 1 x
【解析】原式
3 3x (x 1)2

3(1 x) (x 1)2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄石市2013年初中毕业生学业考试数 学 试 题 卷姓名: 准考证号:注意事项:1. 本试卷分为试题卷和答题卷两部分,考试时间120分钟,满分120分。

2. 考生在答题前请阅读答题卷中的“注意事项”,然后按要求答题。

3. 所有答案均须做在答题卷相应区域,做在其它区域内无效。

一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每个小题给出的四个选项中,只有一个是正确的,请把正确的选项所对应的字母在答题卷中相应的格子涂黑,注意可用多种不同的方法来选取正确答案。

1. 7-的倒数是A. 17-B. 7C. 17D. -7 答案:A解析:数(0)a a ≠的倒数为1a ,因此,-7的倒数为17- 2.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间平均距离,即1.4960亿千米,用科学记数法表示1个天文单位应是A. 71.496010⨯千米B. 714.96010⨯千米C. 81.496010⨯千米D. 90.1496010⨯千米 答案:C解析:科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.1.4960亿千米=1.49600000千米=81.496010⨯千米3.分式方程3121x x =-的解为 A.1x = B. 2x = C. 4x = D. 3x =答案:D解析:去分母,得:3(x -1)=2x ,即3x -3=2x ,解得:x =3,经检验x =3是原方程的根。

4.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不相同的几何体是A .①②B . ②③C . ②④D . ③④①正方体 ②圆柱 ③圆锥 ④球答案:B解析:①的三视图都是正方形,④的三视图都是圆,三个完全相同;②的主视图和侧视图是矩形,俯视图是圆,③的主视图和侧视图都是等腰三角形,俯视图是圆和圆心,故选B 。

5.已知直角三角形ABC 的一条直角边12AB cm =,另一条直角边5BC cm =,则以AB 为轴旋转一周,所得到的圆锥的表面积是A.290cm πB. 2209cm πC. 2155cm πD. 265cm π 答案:A解析:得到的是底面半径为5cm ,母线长为13cm 的圆锥, 底面积为:25π,侧面积为:12513652ππ⨯⨯⨯=,所以,表面积为290cm π 6.为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:关于这15名同学所捐款的数额,下列说法正确的是A.众数是100B.平均数是30C.极差是20D.中位数是20 答案:D解析:由表知捐款20元的有5个,因此众数应是20,故A 错;平均数为:115(10+40+100+150+100)=2263,因此B 错;极差是100-5=95,C 也错;第8个数据为中位数,由表知中位数为20,故选D 。

7.四川雅安地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(即不多不少)能容纳这60名灾民,则不同的搭建方案有 A.4种 B.11种 C.6种 D.9种 答案:C解析:设建可容纳6的帐篷x 个,建容纳4人的帐篷y 个,则6x +4y =60(x ,y 均是非负整数)(1)x=0时,y =15;(2)x =2时,y =12;(3)x =4时,y =9; (4)x =6时,y =6;(5)x =8时,y =3;(6)x =10时,y =0 所以,有6种方案。

8.如右图,在Rt ABC 中,90ACB ∠= ,3AC =,4BC =,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为 A.95 B. 245 C. 185 D. 52答案:C解析:由勾股定理得AB =5,则sinA =45,作CE ⊥AD 于E ,则AE =DE ,在Rt △AEC 中,sinA =CE AC ,即453CE =,所以,CE =125,AE =95,所以,AD =185B9.把一副三角板如图甲放置,其中90ACB DEC ∠=∠= ,45A ∠= ,30D ∠= ,斜边6AB =,7DC =,把三角板DCE 绕着点C 顺时针旋转15 得到△11D CE (如图乙),此时AB 与1CD 交于点O ,则线段1AD 的长度为A. B. 5答案:B解析:如图所示,∠3=15°,∠E 1=90°,∴∠1=∠2=75°,又∵∠B=45°,∴∠OFE 1=∠B+∠1=45°+75°=120°。

∵∠OFE 1=120°,∴∠D 1FO=60°,∵∠CD 1E 1=30°,∴∠4=90°,又∵AC=BC ,AB=6,∴OA=OB=3,∵∠ACB=90°,∴, 又∵CD 1=7,∴OD 1=CD 1-OC=7-3=4, 在Rt △AD 1O 中,。

10.如右图,已知某容器是由上下两个相同的圆锥和中间一个与圆锥同底等高的圆柱组合而成,若往此容器中注水,设注入水的体积为y ,高度为x ,则y 关于x 的函数图像大致是DCAEBAD 1OE 1BC图甲图乙答案:A解析:注入水的体积增加的速度随着高度x 的变化情况是:由慢到快→匀速增长→由快到慢,由慢到快的图象是越来越陡,由快到慢的图象是越来越平缓,所以选A 。

二、认真填一填(本题有6个小题,每小题3分,共18分) 11.分解因式:2327x -= . 答案:3(3)(3)x x +-解析:原式=23(9)x -=3(3)(3)x x +-12.若关于x 的函数221y kx x =+-与x 轴仅有一个公共点,则实数k 的值为 . 答案:0k =或1k =-解析:函数与x 轴只有一个交点,有两个可能:(1)当k =0时,是一次函数,符合;(2)当k ≠0时,△=4+4k =0,解得k =-1,所以,k =0或k =-1。

13.甲、乙两人玩猜数字游戏,游戏规则如下:有四个数字0、1、2、3,先由甲心中任选一个数字,记为m ,再由乙猜甲刚才所选的数字,记为n 。

若m 、n 满足1m n -≤,则称甲、乙两人“心有灵犀”。

则甲、乙两人“心有灵犀”的概率是 . 答案:58解析:记甲乙选的数字为(m ,n ),则有16种可能,符合|m -n |≤1的有:(0,0),(1,1),(2,2),(3,3),(0,1),(1,2),(2,3),(1,0),(2,1),(3,2),共10种,所以,所求概率为:105168= 14.如右图,在边长为3的正方形ABCD 中,圆1O 与圆2O 外切,且圆1O 分别与DA 、DC 边相切,圆2O 分别与BA 、BC 边相切,则圆心距12O O 为 .答案:6-解析:过O 1,O 2分别作O 1M ⊥CD, O 2N ⊥BC ,垂足为M,N设圆O 1半径为R,圆O 2半径为r, 则DO 1,BO 2又解得R +12O OCB15. 如右图,在平面直角坐标系中,一次函数(0)y ax b a =+≠的图像与反比例函数(0)ky k x=≠的图像交于二、四象限的A 、B 两点,与x 轴交于C 点。

已知(2,)A m -,(,2)B n -,2tan 5BOC ∠=,则此一次函数的解析式为 . 答案:3y x =-+ 解析:由2tan 5BOC ∠=,得:225n =,所以,n =5,将B 点坐标(5,-2)代入反比例函数,得k =-10,将A 点代入反比例函数,得:m =5,所以,有:5225k b k b +=-⎧⎨-+=⎩,解得k =-1,b =3,所以所求解析式为:3y x =-+16.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”。

而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据。

已知二进位制与十进位制的比较如下表:(二)写成十进制数为 .答案:170解析:10101010(二)=1×27+1×25+1×23+1×2=170 三、全面答一答(本题有9个小题,共72分)解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答尽量写出来。

17.(本小题满分7011tan 30(2013)()3π---+解析:原式3213=+--+ ············································································ (5分) 4= ·································································································· (2分) 18.(本小题满分7分)先化简,后计算:11()b a b b a a b ++++,其中a =,b =. 解析:原式22()ab a ab b ab a b +++=+ ···················································································· (2分)2()()a ba b ab a b ab++==+ ·································································· (2分) 当a =b = ( 3分)∴12OF CD =ADE CBF ∠=∠ ·································································· (4分)19.(本小题满分7分)如图,AB 是圆O 的直径,AM 和BN 是圆O 的两条切线,E 是圆O 上一点,D 是AM 上一点,连接DE 并延长交BN 于C ,且//OD BE ,//OF BN . (1)求证:DE 是圆O 的切线; (2)求证:12OF CD =.解析:(1)证明:连接OE ,AM 是⊙O 的切线,是⊙的半径∴90DAO ∠=° ∵AD ∥BC∴AOD OBE ∠=∠,DOE OEB ∠=∠ ∵OB OE = ∴OEB OBE ∠=∠ 在△AOD 和△DOE 中OA OE AOD DOE OD OD =⎧⎪∠=∠⎨⎪=⎩∴AOD DOE △≌△∴90DAO DEO ∠=∠=° ∴DE 与⊙O 相切 ·························································································· (3分) (2)∵AM 和BN 是⊙O 的两切线 ∴MA AB ⊥,NB AB ⊥ ∴AD ∥BC∵O 是AB 的中点,OF ∥BN∴OF ∥1()2AD BC +且1()2OF AD BC =+ ∵DE 切⊙O 于点E ∴DA DE =,CB CE = ∴DC AD CB =+20.(本小题满分8分)解方程:2212223x y x ⎧-=-⎪⎨⎪-=⎩解析:N解:依题意2212223x y x ⎧-=-⎪⎨⎪-=⎩ ···················································································· (2分)由①得 22421x y +=- ③由②得23x =+ ④将④代入③化简得2950y ++= ·················································· (4分)即12y y == 代入②得 1216x x ==-∴原方程组的解为121216x x y y ⎧==-⎪⎪⎨⎪==⎪⎩······················································ (4分)21.(本小题满分8分)青少年“心理健康”问题越来越引起社会的关注,某中学为了了解学校600名学生的心理健康状况,举行了一次“心理健康”知识测试,并随机抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制了下面尚未完成的频率请解答下列问题:(1)填写频率分布表中的空格,并补全频率分布直方图;(2)若成绩在70分以上(不含70分)为心理健康状况良好,同时,若心理健康状况良好的人数占总人数的70%以上,就表示该校学生的心理健康状况正常,否则就需要加强心理辅导。

相关文档
最新文档