七年级数学上册1.3.1《有理数的加法(2)》教案(新版)新人教版
人教版七年级数学上册第一章有理数《有理数的加法》第二课时教案
课题 1.3.1有理数的加法(2)备课时间序号授课时间主备人授课班级七年级课标要求理解有理数的运算律,能解决简单问题。
教学目标知识与技能:能用运算律简化有理数加法的运算。
过程与方法:经历有理数加法运算律的探索过程,理解有理数加法的运算律。
情感态度价值观:使学生逐渐养成,“算必讲理”的习惯,培养学生初步的推理能力与表达能力。
教学重点加法交换律和结合律,及其合理、灵活的运用教学难点合理运用运算律教学方法类比教学过程设计师生活动设计意图一、引出课题回顾复习:小学时已学过的加法运算律有哪几条?提出问题:这些运算律在有理数加法中适用吗?这就是这节课我们要研究的课题。
二、分析问题、探究新知1.有理数加法交换律的学习问题1:我们如何知道加法交换律在有理数范围内是否适用?问题2:我们如何用语言来叙述有理数加法的交换律呢?教师归纳后板书:“有理数加法中,两个数相加,交换加数的位置,和不变。
”问题3 :你能把有理数加法的交换律用字母来表示吗?〔1〕式子中的字母分别表示任意的一个有理数。
(如:既可成表示整数,也可以表示分数;既可以表示正数,也可以表示负数或0)。
(2)在同一个式子中,同一个字母表示同一个数.2.有理数加法结合律的学习.(基本步骤同于加法交换律的学习)学生回答后教师接着问:你能用自己的语言或举例子来说明一下加法的交换律与结合律吗?先由教师举一些实际例子来说明,然后鼓励学生举不同的数来验证由学生回答得出a+b=b+a后,教师说明“加法运算律对所有有理数都成立”目前只能直接给出,让学生举例尝试只起到验证的作用.要让学生举不同的数验证,是为避免学生只由一个例子即得出某种结论.鼓动学生用自己的语言表达所发现的贻论或规律.让学生感受字母表示数的含义,同时也让学生体会到数学符号语言的简洁性板书设计:1.3.1 有理数的加法有理数的加法中,两个数相加, 交换加数的位置,和不变。
加法交换律:a+b=b+a有理数的加法中,三个数相加, 先把前两个数相加,或者先把 后两数相加,和不变。
七年级数学上册1.3《有理数的加减法》教案(新版)新人教版
有理数的加减法(一)
[本节课内容]
1.有理数的加法
2.有理数的加法的运算律
[本节课学习目标]
1、理解有理数的加法法则.
2、能够应用有理数的加法法则,将有理数的加法转化为非负数的加减运算.
3、掌握异号两数的加法运算的规律.
4、理解有理数的加法的运算律.
5、能够应用有理数的加法的运算律进行计算.
[知识讲解]
一、有理数加法:
正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出
正数范围.例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做
净胜球数.如果,红队进4个球,失2个球;蓝队进1个球,失1个球.
于是红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1).
这里用到正数和负数的加法.
下面借助数轴来讨论有理数的加法.
看下面的问题:
一个物体作左右方向的运动;我们规定向左为负,向右为正,向右运动 5m记作 5m,向左运动 5m记作-5m;如果物体先向右移动 5m,再向右移动 3m,那么两次运动后总的结
果是什么?
两次运动后物体从起点向右移动了 8m,写成算式就是:5+3 = 8
如果物体先向左运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?
两次运动后物体从起点向左运动了 8m,写成算式就是(-5)+(-3) = -8
1。
山东省德州市第七中学七年级数学上册 1.3.1 有理数的加法导学案2(新版)新人教版
有理数的加法课型:新授【学习目标】:掌握加法运算律并能运用加法运算律简化运算;【学习重点】:灵活运用加法运算律简化运算;【课前预习】:1、填空(有理数加法运算法则)①同号两数相加,取--------------的符号,并把绝对值-----------;②异号两数相加,取-------------------加数的符号,并用较大的绝对值--------------较小的绝对值;------------------的两数相加得0.③一个数同0相加,仍是这个数。
运用法则注意先定-------------,后算-------------2、计算:(1)1( 2.9)(3)10-++(2)13(3)(2)44-+-3、回忆小时候的加法运算法则。
(用字母表示)⑴加法交换律:⑵加法结合律:【课堂学习】:1、动动手:看看我们以前学习的加法交换律和结合律,在我们学习过的有理数中能用吗?(1)思考下面几道题目① 30+(—20)= ,②(—20)+30 =回答:①②(填“﹤”“﹥”或“=”)③ 8+(—5)= ,④(—5)+8 =回答:③④(填“﹤”“﹥”或“=”)总结规律:有理数的加法中,两个有理数相加,加数的位置,和加法交换律:a + b =(2)计算:①【 8 +(—5)】+ (—4)② 8 +【(—5)+(—4)﹞】解:解:回答:⑴⑵(填“﹤”“﹥”或“=”)同学们自己再举2个例子试一试总结规律:三个数相加,先把相加,或者先把数相加,不变。
加法结合律:( a+ b)+c=【合作探究·释疑】:典型例题讲解:例2 计算:(1)16+(—25)+ 24 +(—35)解:16+(—25)+ 24 +(—35)=16 + 24 +﹝(—25)+(—35)﹞=40 + (—60)=—20(2)(—2)+3 + 1 +(—3)+ 2 +(—4)同学们想一想这里用了运算律?请同学们总结几点规律体会:------------------------------例3 综合应用:1、10袋小麦称后重量依次为:91、91、91.5、89、91.2、91.3、88.7、88.8、91.8、91.1(单位:千克)。
人教版数学七年级上册1.3.1《有理数的加法》(第1课时)教学设计
人教版数学七年级上册1.3.1《有理数的加法》(第1课时)教学设计一. 教材分析《有理数的加法》是人教版数学七年级上册第一章第三节的第一课时,本节课主要介绍有理数的加法运算。
学生在学习这一节之前,已经掌握了有理数的概念、加法运算的法则,以及绝对值的概念。
本节课的内容为学生以后学习更高级的数学知识打下基础。
二. 学情分析面对刚从小学升入初中的学生,他们对数学知识有一定的了解,但还需要进一步的引导和培养。
在学习本节课之前,学生已经掌握了有理数的概念和加法运算的法则,但可能对有理数加法的实质理解不够深入,需要通过实例和练习来进一步巩固。
三. 教学目标1.让学生掌握有理数的加法运算方法,理解有理数加法的实质。
2.培养学生运用有理数加法解决实际问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.教学重点:有理数的加法运算方法,有理数加法的实质。
2.教学难点:有理数加法在实际问题中的应用。
五. 教学方法1.采用讲授法,讲解有理数加法的运算方法和实质。
2.采用案例分析法,分析实际问题中有理数加法的应用。
3.采用小组讨论法,培养学生的团队合作能力和逻辑思维能力。
六. 教学准备1.准备相关的教学案例和练习题,用于讲解和巩固有理数加法知识。
2.准备教学PPT,用于展示和讲解有理数加法的运算方法和实质。
3.准备黑板,用于板书和展示例题。
七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生复习有理数的概念和加法运算的法则,为新课的学习做好铺垫。
2.呈现(10分钟)讲解有理数加法的运算方法和实质,结合PPT和板书,让学生清晰地理解有理数加法的运算过程。
3.操练(10分钟)让学生进行一些有关有理数加法的练习题,巩固所学知识。
教师在这个过程中要引导学生正确进行运算,并及时给予反馈。
4.巩固(10分钟)通过一些实际问题,让学生运用有理数加法知识解决问题。
教师要引导学生将所学知识与实际问题相结合,提高学生的应用能力。
七年级数学上册《有理数的加法》教案 (公开课获奖)2 (新版)新人教版
有理数的加法教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.小结 五、课时小结: 本节课我们探索了有理数加法的运算律,灵活运用加法的运算律使运算简便.一般情况下,将互为相反数的数结合相加;同分母的分数能凑整的数结合;正数、负数分别相加,以使计算简便.作 业 1、教科书 习题1.3第1题;2、配套练习相关题目。
板 书 设 计一、 复习引入 二、 讲授新课 三、 例题讲解 四、 当堂检测 五、课时小结教 学 反 思组长查阅2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.(二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角. [师]有了上述概念,同学们来想一想. (演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系. [生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高. [师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程). (投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD . 所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°. [师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条D CA BD CABDCAB理、很规范.下面我们来看大屏幕. (演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到 ∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CA答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.D C A B(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD .又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习EDCA B P1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长. 解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷---(3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.。
人教版数学七年级上册1.3.1有理数的加法(教案)
-强化对有理数加法法则的理解,使学生具备良好的数感和符号意识,为后续数学学习打下坚实基础。
三、教学难点与重点
1.教学重点
(1)有理数加法法则:本节课的核心是使学生掌握有理数的加法法则,包括同号相加、异号相加、绝对值相加等。重点强调以下细节:
2.发展学生的逻辑思维能力和推理能力,提高数学抽象和建模素养。
3.培养学生合作交流、共同探讨的学习习惯,提升数学表达和交流素养。
4.培养学生具备良好的数感和符号意识,加深对有理数加法法则的理解和运用。
具体体现在:
-通过实际问题引入,使学生感受数学与生活的紧密联系,培养数学应用意识。
-在讲解和练习有理数加法过程中,引导学生运用逻辑推理和抽象思维,提高数学建模能力。
其次,实践活动环节,学生们在分组讨论和实验操作过程中表现得积极主动,但我也注意到有些小组在讨论时偏离了主题。为了使实践活动更加有效,我应该在活动前给出更明确的讨论要求和指导,让学生们在讨论时能更聚焦于有理数加法的实际应用。
此外,在学生小组讨论环节,我发现有些学生发言不够积极,可能是因为他们对这个话题不够感兴趣,或者是对自己的观点不够自信。针对这个问题,我打算在以后的课堂中多鼓励学生,创造一个轻松愉快的课堂氛围,让他们敢于表达自己的观点。同时,我也会设计更多有趣的讨论主题,激发学生的兴趣。
-举例说明:+3和+2相加,-3和-2相加,+3和-2相加等。
-计算练习:布置一些典型例题,让学生练习有理数的加法运算。
-互为相反数的概念及运算:+1和-1相加等于零。
-实际问题引入:通过购物找零、温度变化等实例,让学生理解有理数加法的实际意义。
人教版初中七年级上册数学教案(完整版)
七上数学教案第一章有理数教学目标1.知识与技能①通过生活实例,了解学习有理数的必要性.②理解并掌握数轴、相反数、绝对值、有理数等有关概念.③通过本章的学习,掌握有理数的加、减、乘、除、乘方及简单的混合运算.2.过程与方法通过本章的学习,培养学生应用数学知识解决实际问题的能力. 3.情感、态度与价值观结合生活实例引入新课,通过师生共同参与的教学活动,激励学生学习数学的兴趣,让学生真正体验到数学知识来源于生活并服务于生活.教学重点、难点重点:有理数的运算.这一章的主要学习目标都可以归结到有理数的运算上,比如有理数的有关概念---数轴、相反数、绝对值,运算法则,运算律,近似数等内容的学习,直接目标都是落实到有理数的运算上.难点:负数概念的建立,绝对值意义,有理数法则的理解.课时分配内容课时1.1 正数和负数 11.2 有理数 41.3 有理数的加减法 51.4 有理数的乘除法 41.5 有理数的乘方 4单元复习与验收 2教学建议教师在教学过程中注意从实际问题(即联系实际生活的典型例子)引入,让学生参与数学活动,在教师的引导和学生大胆尝试的过程中,使学生自觉地发现问题,分析问题和解决问题,从而使学生自得知识,自觅规律.1.在进行有理数的有关概念的教学时:(1)注意从实际问题引入,使学生知道数学知识来源于生活.•如:从温度与海拔高度引入负数,从而得出有理数的概念;借助温度引出数轴,建立数(有理数)与形(数轴上的点)之间的联系.(2)注意借助数轴的直观性讲述相反数、绝对值,体会用字母表示数的优越性,体现代数的特点,•使学生对概念的认识能更深一步,并为今后学习整式、方程打下基础.2.讲解有理数运算时,有理数加法及乘法法则的导出借助数轴会更直观更形象更易于学生理解,法则要着重强调符号的确定,在此基础上注意绝对值的运算,提高学生计算准确率.1.1 正数和负数教学目标1.知识与技能①了解正数与负数的引入是实际生活的需要.②会判断一个数是正数还是负数.③会用正负数表示互为相反意义的量.2.过程与方法通过正负数的学习,培养学生应用数学知识的意识,训练学生运用新知识解决实际问题的能力.3.情感、态度与价值观通过师生共同的教学活动,激发学生学习数学的兴趣,让学生体验到数学知识来源于生活并为生活服务.教学重点难点重点:会判断一个数是正数还是负数,会运用正负数表示具有相反意义的量,理解0•的含义.难点:负数的引入和理解.教与学互动设计(一)创设情境,导入新课课件展示珠穆朗玛峰和吐鲁番盆地,由同学感受高于水平面和低于水平面的不同情况.(二)合作交流,解读探究1.举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东50米和向西120米等.想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?2.为了用数表示具有相反意义的量,我们把其中一种意义的量,如零上温度,前进、收入、上升、高出等规定为正的,而把与它相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算述里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).活动每组同学之间相互合作交流,一位同学任意说出具有相反意义的两个量,由其他同学用正负数表示.讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?•【总结】正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界.(三)应用迁移,巩固提高例1 举出几对具有相反意义的量,并分别用正、负数表示.【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.【点评】这是一道开放性试题,旨在考查学生用正负数表示具有相反意义量的能力.例2 在某次乒乓球检测中,一只乒乓球超过标准质量0.02克记作+0.02克,•那么-0.03克表示什么?【答案】表示比标准质量低0.03克.例 3 2001年美国的商品进出口总额比上年减少 6.4%可记为-6.4% ,中国增长7.5%可记为+7.5% .备选例题(2004·山东淄博)某项科学研究以45分钟为1个时间单位,•并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上升7:45应记为() A.3 B.-3 C.-2.5 D.-7.45【点拨】读懂题意是解决本题的关键.7:45与10相差135分钟.【答案】 B(四)总结反思,拓展升华为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数也不是负数.1.填空-1,2,-3,4,-5, 6 , -7 , -8 …第81个数是–81 ,第2005个数是–2005 .【提示】通过观察可见,数字绝对值的排列是按由小到大的顺序,符号是负正相间,第奇数个数为负,第偶数个数为正.【点评】本题属于找规律问题,从绝对值和符号两方面考虑. 2.表1-1-1是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):表1-1-1星期日一二三四五六(元)+16 +5.0 -1.2 -2.1 -0.9 +10 -2.6(1)本周小张一共用掉了多少钱?存进了多少钱?【答案】 6.8元,31元.(2)储蓄罐中的钱与原来多了还是少了?【答案】多了.(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.【答案】用文字说明,但前者更简洁.3.数学游戏:4个同学站成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复1.的游戏;(3)这不仅仅是游戏哟!在电脑中,•所有“命令”或“数据”都是用有理数(特别是二进制数)表示的.例如,没有特别的“翻译”程序,电脑就不明白你给屏幕上的卡通人下的是“站”还是“蹲”的命令,这时,就可输入正负数以区别不同的姿势.(五)课堂跟踪反馈夯实基础1.填空题(1)如果节约用水30吨记为+30吨,那么浪费20吨记为-20 吨.(2)如果4年后记作+4,那么8年前记作 -8 .(3)如果运出货物7吨记作-7吨,那么+100吨表示运进货物100吨.(4)一年内,小亮体重增加了3kg,记作+3,小阳体重减少了2 kg,则小阳增长了 2kg .2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,•水位上涨了1米,下午5时,水位又上涨了0.5米.(1)用正数或负数记录下午1时和下午5时的水位;(2)下午5时的水位比中午12时水位高多少?【答案】(1)下午1时,水位0.5米;下午5时,水位-1米(2)0.5+1=1.5(米)提升能力3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.【答案】 +2,-1,-0.2.4.有没有这样的有理数,它既不是正数,也不是负数?【答案】有,是0.5.下列各数中哪些是正数?哪些是负数?-15,-0.02,67,-171,4,-213,1.3,0,3.14,π【答案】正数:67,4,1.3,3.14,π;负数:-15,0.02,-1 71,-213开放探究6.同学聚会,约定在中午12点到会,早到的记为正,迟到的记为负,结果最早到的同学记为+3点,最迟到的同学记为-1.5点,•你知道他们分别是什么时候到的吗?最早到的同学比最迟到的同学早多少小时?【答案】最早的同学上午9点到,最迟的是下午1点半到,最早的比最迟的早到4.5个小时.7.新中考题(2004·玉林)冷库A的温度是-5℃,冷库B的温度是-15℃,•则温度高的是冷库A.教学反思:本节课是学生进入初中的第一节数学课,也是非常重要的一节课-----负数的引入.课堂上我主要采用了体验探究的教学方式,为学生提供了大量亲自操作的机会,使学生直接参与教学活动,学生在动手操作中对抽象的数学知识获取感性的认识,进而通过教师的引导加工总结上升为理性认识,从而获得新知,使学生的学习过程变为一个再创造的过程,同时让学生体会到获取知识的方法,感受在解决问题的过程中与他人合作的重要性,为学生今后获取新知以及探索和发现新知打下基础.1.2 有理数1.2.1 有理数教学目标1.知识与技能①理解有理数的意义.②能把有理数按要求分类.③了解0在有理数分类的作用.2.过程与方法经历本节的学习,培养学生分类讨论的意识和能正确地进行分类的能力.教学重点难点重点:会把已知各数填入相应的数集图里.难点:掌握有理数的两种分类.教与学互动设计(一)创设情境,导入新课讨论交流通过上节课的学习同学们已经知道,我们认识的数除了小学里所学的之外,还有另一类数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究学生列举:3,5.7,-7,-9,-10,0,13,25,-356, -7.4,5.2…议一议你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.说明:我们把所有的这些数统称为有理数.试一试你能对以上各种类型的数作出一张分类表吗?有理数说明:以上分类,若学生思考有困难,可加以引导:因为整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含那些数?分数呢?做一做以上按整数和分数来分,那可不可以按数的性质(正数、负数)来分呢,试一试.有理数⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数零负整数负有理数负分数(3)数的集合把所有正数组成的集合,叫做正数集合.试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.(三)应用迁移,巩固提高例1 把下列各数填入相应的集合内: 127,3.1416,0,2004,-85,-0.23456,10%,10.l ,0.67,-89正数集合 负数集合 整数集合 分数集合 【答案】例2 以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?正数集合227,2004,10%,10.1,0.67,...负数集合-3.1416,-85,-0.23456,-89,...整数集合0,2004,-89,...分数集合127,-3.1416,-85,-0.23456,10%,10.1,0.67,...…………有理数⎧⎧⎪⎨⎪⎩⎨⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负分数有理数⎧⎪⎪⎪⎨⎪⎪⎪⎩正数整数分数负数零【答案】两者都错,前者丢掉了零,后者把正负数、整数、分数混为一谈,分类标准不清楚.【点评】以上是对各类有理数的特点及有理数的分类进行的训练,基础性强,需要重视例3以下结论中正确的有(B)①0是最小的正整数②0是最小的有理数③0不是负数④0既是非正数,也是非负数A.1个B.2个C.3个D.4个例4 如果用字母表示一个数,那a可能是什么样的数,一定为正数吗?与你的伙伴交流一下你的看法.【答案】不一定,a可能是正数,可能是负数,也可能是0.【点评】此题开放性较强.要求学生能用分类的思想对a全面认识,体会用字母表示数的意义.备选例题(2004·浙江温州)观察下列数,按某种规律在横线上填入适当的数,并说明你的理由.23,34,45,________,67,…你的理解是_________.【点拨】找出各项数的特点是本题关键所在,第一个数为23,后一个数是前一个数的分子,分母都加1所得的数.【答案】56(四)总结反思,拓展升华提问:今天你获得了哪些知识?由学生自己小结,然后教师总结:今天我们学习了有理数的定义和有理数的两种分类方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的含义.1.请你在图1-2-1的圈中填上适合的数,使得圈内的数依次为整数集、•有理数集、正数集、分数集、负数集.【答案】答案不唯一,如图1-2-2所示.2.有理数按正、负可分为⎧⎪⎨⎪⎩正有理数零负有理数-1250.4813按整数分,可分为⎧⎨⎩整数分数(1)你能自己再制定一个标准,对有理数进行另一种分类吗? (2)生活中,我们也常常对事物进行分类,请你举例说明. 【答案】 (1)如将有理数分成大于1的数,小于1的数,等于1的数.(2)例如对人按年龄可分为:婴儿、幼儿、儿童、少年、青年、中年、老年.3.下面两个圈分别表示负数集和分数集,你能说出两个图的重叠部分表示什么数的集合呢?答案 负分数 (五)课堂跟踪反馈 夯实基础1.把下列各数填入相应的大括号内: -7,0.125,12,-312,3,0,50%,-0.3 (1)整数集合{-7,3,0}(2)分数集合{0.125,12,-312,50%,-0.3} (3)负分数集合{-312,-0.3}(4)非负数集合{0.125,12,3,0,50%}分数集合负数集合(5)有理数集合{-7,0.125,12,-312,3,0,50%,-0.3}2.下列说法正确的是(D)A.整数就是自然数B.0不是自然数C.正数和负数统称为有理数D.0是整数而不是正数3.某商店出售的三种规格的面粉袋上写着(25±0.1)千克,(25±0.2•千克),(25±0.3)千克的字样,从中任意两袋,它们质量相差最大的是 0.6 千克.提升能力4.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?【答案】a可以表示正整数,正分数,0,负整数或负分数.5.某校对初一新生的男生进行了引体向上的测试,以能做5个为标准,•超过的次数记为正数,不足的次数记为负数,其中10名男生的测试成绩如下:-2 -1 2 -1 3 0 -1 -2 1 0(1)这10名男生有百分之几达标(即达标率)?(2)这10名男生共做了多少个引体向上?【答案】(1)50%;(2)5×10-1=49(个)开放探究6.应用创新题若向东8米记作+8米,如果一个人从A地出发先走+12米,再走-15米,又走+18米,最后走-20米,你能判断这个人此时在何处吗?【答案】在A地西边5米处.7.新中考题(2004·内蒙古赤峰)我市2004年元月某一天的天气预报中,宁城县的最低温度是-22℃,克旗的最低温度是-26℃,这一天宁城县的最低气温比克旗的最低气温高(A)A.4℃ B.-4℃ C.8℃ D.-8℃(六)资料采撷原始的计算工具计算是人类的一种思维活动,人类初期的计算主要是计数.最早用来帮助计数的工具是人类的四肢(手、脚、手指、脚趾)或身边的小石头、贝壳、绳子等.中国有句古话叫“屈指可数”,说明人们常用手指来计算简单的数.在美国纽约的博物馆里,珍藏着一件从秘鲁出土的古代文物,名叫“基普”,意即打了绳结的绳子.基普是古人用来计数和记事的.传说公元前6世纪,•波斯国王在一次征战中曾命令一支部队守桥,他把一条打了结的皮带交给留守将士,要他们每守一天解开一个结,一直守到皮带上的结全部解完了才准撤退.在没有文字的我国古代,人们用在绳子上打结的方法来计数和记事.一件事打一个结,大事打个大结,小事打个小结,办完了一件事就解掉一个结.古人不仅用绳结计数,而且还使用小石子等其他工具来计数.例如,他们饲养的羊,早晨放牧到草地里,晚上必须圈到栅栏里.这样,早晨从栅栏里放出来的时候,出来一只就往罐子里扔一块小石子;傍晚羊进栅栏时,进去一只就从罐子里拿出一块小石子.如果石子全部拿光了,就说明羊全部进圈了;如果罐子里还剩下石子,说明有羊丢失了,必须立刻寻找.教学反思:这节课的教学,我主要采用了探究式的教学方式,为学生提供合作交流的机会,引导学生在已有知识、经验、方法的基础上去思考问题,探寻结果.学生直接参与教学活动,学习积极性高,课堂气氛活跃,通过学生的讨论,抽象的问题简单化.另外教师也可以从学生的回答中受到启发,有方法型的,有技巧型的.教师参与学生的讨论可以增加学生的学习兴趣和动力,学生在讨论的过程中可以相互学习,取长补短,深刻体会到与他人合作的重要性.1.2.2 数轴教学目标1.知识与技能①掌握数轴三要素,能正确画出数轴.②能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.2.过程与方法①使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.②结合本节内容,对学生渗透数形结合的重要思想方法.3.情感、态度与价值观使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.教学重点难点重点:数轴的概念.难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计(一)创设情境,导入新课课件展示在一条东西方向的马路上,有一个学校,学校东50m 和西150m•处分别有一个书店和一个超市,学校西100m和160m处分别有一个邮局和医院,分别用A、B、C、D表示书店、超市、邮局、医院,你会画图表示这一情境吗?(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0•左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来.•也就是本节内容──数轴.点拨(1)引导学生学会画数轴.第一步:画直线定原点第二步:规定从原点向右的方向为正(左边为负方向)第三步:选择适当的长度为单位长度(据情况而定)第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴: 规定了原点、正方向和单位长度的直线叫数轴. 做一做 学生自己练习画出数轴.试一试:你能利用你自己画的数轴上的点来表示数4,1.5,-3,-72,0吗?讨论 若a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?与原点相距多少个单位长度;表示-a 的点在原点的什么位置上?•与原点又相距了多少个长度单位?小结 整数能在数轴上都找到点吗?分数呢?可见,所有的__________都可以用数轴上的点表示___________•都在原点的左边,______________都在原点的右边. (三)应用迁移,巩固提高例1 下列所画数轴对不对?如果不对,指出错在哪里.①4②-1021③④0⑤-101⑥0-3【答案】 ①错.没有原点 ②错.没有正方向 ③正确 ④错.没有单位长度 ⑤错.单位长度不统一 ⑥正确 ⑦错.正方向标错例2 试一试:用你画的数轴上的点表示4,1.5,-3,-73,0 【答案】图中A点表示4,B点表示1.5,C点表示-3,D点表示-73,E点表示0.例3 如果a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?•表示-a 的点在原点的什么位置上呢?【提示】 由数轴上数的特点不准得到,正数都在原点的右边,负数都在原点左边.【答案】 所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数.【点评】 数与数轴上的点结合,这是一种重要的数学思想,数形结合.例4 下列语句:①数轴上的点又能表示整数;②数轴是一条直线;•③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(B)⑦-1-2021-1-45EDC BAA.1个B.2个C.3个D.4个【提示】题中,结合数轴上的点与有理数的特点,可见①中错误的;②、③是正确的;④中可以含有0,•⑤中应该是所有的有理数都可以在数轴上找出对应的点,但并不是数轴上的点都表示有理数.例5 (1)与原点的距离为2.5个单位的点有两个,它们分别表示有理数 2.5 •和-2.5 .(2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7•个单位到达终点,那么终点表示的数是+3 .例6 在数轴上表示-212和123,并根据数轴指出所有大于-212而小于123的整数.【答案】 -2,-1,0,1【点评】本题反映了数形结合的思想方法.例7 数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若这个数轴上随意画出一条长2000cm的线段AB,则线段AB盖住的整点是(C)A.1998或1999 B.1999或2000C.2000或2001 D.2001或2002【提示】分两种情况分析:(1)当线段AB的起点是整点时,•终点也落在整点上,那就盖住2001个整点;(2)是当线段AB的起点不是整点时,•终点也不落在整点上,那么线段AB盖住了2000个整点.【点评】本题体现了新课程标准的探索和实践能力.备选例题(2004·新疆生产建设兵团)在数轴上,离原点距离等于3的数是________.【点拨】 不要忽视在原点的左右两边.【答案】 ±3(四)总结反思,拓展升华数轴是非常重要的工具,它使数和直线上的点建立了对立关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.一条直线的流水线上,依次有5个卡通人,•它们站立的位置在数轴上依次用点M 1、M 2、M 3、M 4、M 5表示,如图:(1)点M 4和M 2所表示的有理数是什么?(2)点M 3和M 5两点间的距离为多少?(3)怎样将点M 3移动,使它先达到M 2,再达到M 5,请用文字说明;(4)若原点是一休息游乐所,那5个卡通人到游乐所休息的总路程为多少?【答案】 (1)M 4表示2,M 2表示3;(2)相距7个单位长度;(3)先向左移动1个单位,再向右移动8个单位长度;(4)17个单5M 4M 3M 2M 1位长度.(五)课堂跟踪反馈夯实基础1.规定了原点、正方向、单位长度的直线叫数轴,所有的有理数都可从用数轴上的点来表示.2.P从数轴上原点开始,向右移动2个单位,再向左移5个单位长度,此时P点所表示的数是 -3 .3.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是(C)A.7 B.-3 C.7或-3 D.不能确定4.在数轴上,原点及原点左边的点所表示的数是(D)A.正数 B.负数 C.不是负数 D.不是正数 5.数轴上表示5和-5的点离开原点的距离是 5 ,但它们分别在原点的两边.提升能力6. 1 是最小的正整数,0 是最小的非负数,0 是最大的非正数.7.与原点距离为 3.5个单位长度的点有 2 个,它们分别是3.5 和-3.5 .8.画一条数轴,并把下列数表示在数轴上:+2,-3,0.5,0,-4.5,4,313【答案】略开放探究9.在数轴上与-1相距3个单位长度的点有 2 个,为-4或2 ;长为3个单位长度的木条放在数轴上,最多能覆盖 4 个整数点.10.新中考题(2004·南京)下列四个数中,在-2到0之间的数是(A)A.-1 B.1 C.-3 D.3教学反思:这节课的学习,我主要采用了体验探究的教学方式,为学生提供了亲自操作的机会,引导学生运用已有经验、知识、方法去探索与发现等式的性质,使学生直接参与教学活动,学生在动手操作中对抽象的数学定理获取感性的认识,进而通过教师的引导加工上升为理性认识,从而获得新知,使学生的学习变为一个再创造的过程,同时让学生学到获取知识的思想和方法,体会在解决问题的过程中与他人合作的重要性,为学生今后获取知识以及探索和发现打下基础。
1.3.1有理数的加法(2)人教版七年级上册 数学
想一想,计 算中使用了哪 些运算定律?
解:每袋小麦超过90kg的记作正数,不足的记作负数. 10袋小麦对应 的分别为:
+1,+1,+1.5, -1,+1.2,+1.3,-1.3,-1.2,+1.8,+1.1 1+1+1.5+(-1)+1.2+1.3+(-1.3)+(-1.2)+1.8+1.1 =[1+(-1)]+[1.2+(-1.2)]+[1.3+(-1.3)]+(1+1.5+1.8 +1.1) =5.4
答案:(1)28元;(2)32元,28元; (3)29000元.
课堂总结
本节小结: 1、通过具体有理数的计算,把加法运算律从非负数
范围扩大到有理数的范围。 2、掌握加法运算律的法则及公式,并适当的运用运
算律进行简化计算。 3、有理数加法解决实际问题,体会求简意识。
作业布置
教材课后配套作业题。
解:原式
4.1
(-
10.1)(
1 2
)(-
1 4
)
7
=(-100)+0+(+15) =-85
6 7 1 1 1 1 1 4 44
4. 有6筐蔬菜,每筐质量分别为(单位:kg): 48,52,47,49,53,54.
(1)如果以50kg为基准,超过的千克数记为正数,不足的千克数记 为负数,则用正、负数表示这6筐蔬菜的质量分别为(单位:kg):
a+ b = b + a
解: 30+(-20) =30-20 =10
(-20)+30 =30-20 =10
两次所得的和 相同吗?
从上述计 算中,你 得出什么
结论?
归纳:
加法交换律:
两个数相加,交换加数的位置,和不变.
a+ b
人教版七年级上数学:1.3.1《有理数的加法(2)》学案(附模拟试卷含答案)
数学:1.3.1《有理数的加法(2)》学案(人教版七年级上)【学习目标】:掌握加法运算律并能运用加法运算律简化运算;【重点难点】:灵活运用加法运算律简化运算;【导学指导】一、温故知新1、想一想,小学里我们学过的加法运算定律有哪些?先说说,再用字母表示写在下面:、2、计算⑴ 30 +(-20)= (-20)+30=⑵ +(-4)= 8 + +(-4)]=思考:观察上面的式子与计算结果,你有什么发现?二、自主探究1、请说说你发现的规律2、自己换几个数字验证一下,还有上面的规律吗3、由上可以知道,小学学习的加法交换律、结合律在有理数范围内同样适应,即:两个数相加,交换加数的位置,和 .式子表示为三个数相加,先把前两个数相加,或者先把后两个数相加,和用式子表示为想想看,式子中的字母可以是哪些数?例1 计算: 1)16 +(-25)+ 24 +(-35)2)(—2.48)+(+4.33)+(—7.52)+(—4.33)例2 每袋小麦的标准重量为90千克,10袋小麦称重记录如下: 91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.110袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克? 想一想,你会怎样计算,再把自己的想法与同伴交流一下。
【课堂练习】课本P20页练习 1、2【要点归纳】:你会用加法交换律、结合律简化运算了吗?【拓展训练】 1.计算:(1)(-7)+ 11 + 3 +(-2); (2)).31()41(65)32(41-+-++-+2.绝对值不大于10的整数有 个,它们的和是 .3、填空:(1)若a >0,b >0,那么a +b 0. (2)若a <0,b <0,那么a +b 0.(3)若a >0,b <0,且│a │>│b │那么a +b 0. (4)若a <0,b >0,且│a │>│b │那么a +b 0.3.某储蓄所在某日内做了7件工作,取出950元,存入5000元,取出800元,存入12000元,取出10000元,取出2000元.问这个储蓄所这一天,共增加多少元?4、课本P20实验与探究【总结反思】:2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如果∠A 的补角与∠A 的余角互补,那么2∠A 是 A .锐角 B .直角 C .钝角 D .以上三种都可能2.在直线l 上有A 、B 、C 三点,AB=5cm,BC=2cm,则线段AC 的长度为( ) A .7cmB .3cmC .7cm 或3cmD .以上答案都不对3.下列各图形是正方体展开图的是( )A.B.C. D.4.如图是某年的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如3,4,5,10,11,12,17,18,19).若用这样的矩形圈圈这张日历表的9个数,则圈出的9个数的和不可能为下列数中的( )A .81B .90C .108D .2165.若方程()3213x x -=的解与关于x 的方程()6223a x -=+的解相同,则a 的值为( ) A.2B.2-C.1D.1-6.下列说法正确的是( )A.3xy5-的系数是3- B.22m n 的次数是2次 C.x 2y 3-是多项式D.2x x 1--的常数项是17.若一个代数式与代数式2ab 2+3ab 的和为ab 2+4ab-2,那么,这个代数式是( ) A .3ab 2+7ab-2 B .-ab 2+ab-2 C .ab 2-ab+2 D .ab 2+ab-28.定义一种正整数n “F ”的运算:①当n 是奇数时,()31F n n =+;②当n 是偶数时,()2k n F n =(其中k 是使得2kn为奇数的正整数......,)两种运算交替重复运行.例如,取24n =,则: 243105F F F −−−→−−−→−−−→⋅⋅⋅⋅⋅⋅第一次第二次第三次②①②,若13n =,则第2019次“F ”运算的结果是( ) A.1B.4C.2019D.201949.下列计算结果中等于3的数是( ) A.74-++B.()()74-++C.74++-D.()()73---10.数轴上点A ,B 表示的数分别是5,-3,它们之间的距离可以表示为( ) A.-3+5B.-3-5C.|-3+5|D.|-3-5|11.有理数a 、b 在数轴上的位置如图所示,则下列各式中错误的是( )A.b <aB.|b|>|a|C.a+b >0D.a-b >012.某项工程,甲单独做30天完成,乙单独做40天完成,若乙先单独做15天,剩下的由甲完成,问甲、乙一共用几天完成工程?若设甲、乙共用x 天完成,则符合题意的是( )A.151513040x -+= B.151513040x ++= C.1513040x x++= D.1513040x x-+= 二、填空题13.若90,90αββγ∠+∠=︒∠+∠=︒,则α∠与γ∠的关系是_______ ,理由是_____ 14.一个角的余角是它的23,则这个角的补角等于____. 15.方程320x -+=的解为________.16.已知a ,b ,c 在数轴上的位置如图所示,化简:|a ﹣b|+|b+c|+|c ﹣a|=_____.17.若1314a =-,2111a a =-,3211a a =-,......,则2019a =________18.如果一个零件的实际长度为a ,测量结果是b ,则称|b ﹣a|为绝对误差,b a a-为相对误差.现有一零件实际长度为5.0cm ,测量结果是4.8cm ,则本次测量的相对误差是_____. 19_____.20.关于x 的一元一次方程ax+3=4x+1的解为正整数,则整数a 的值为__________. 三、解答题21.已知:如图,直线AB 、CD 相交于点O ,OE ⊥OC ,OF 平分∠AOE. (1)若,则∠AOF 的度数为______; (2)若,求∠BOC 的度数。
重庆市綦江区隆盛中学七年级数学上册 1.3.1 有理数的加法(第2课时)学案(无答案)(新版)新人教
有理数的加法课题课型某某上课时间§有理数的加法(2) 新授课学习目标1.有理数加法的运算律。
2. 有理数加法在实际中的应用。
重点1.有理数加法的运算律。
难点运用有理数加法运算律简化运算。
教学过程一、自主学习(一)、自学课文 P19-20(二)、导学练习(一9.18)十6.18=;(2)6.18十(一9.18)=;从上面的式子中,你能得出什么结论?用数学符号表达加法交换律:a+b=____2.在小学中除了学习了加法的交换律,还学习了加法的哪种运算律?计算: [8+(-5)]+(-4)=8+[(-5)+(-4)]=从上面的式子中,你能得出什么结论?用数学符号表达加法结合律:(a+b)+c=_____例:计算下列各题:(1)[8十(一5)]十(一4)= (2)8十[(一5)十(一4)]=(3)[(一7)十(一10)]十(一11)= (4)(一7)十[(一10)十(一11)]= (5)[(一22)十(一27)]十(十27)= (6)(一22)十[(一27)]十(十27)= (三)自学疑难摘要:组长检查等级:组长签名:二合作探究例1:计算:(1) 16+(-25)+24+(-35) (2)例2. 每袋小麦的标准重量为90千克,10袋小麦称重记录如下:(单位:千克)91,91,91.5,89,91.2,91.3,88.7,88.8,91.8,91.1.与标准重量相比较,10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少?三、展示提升1、每个同学自主完成二中的练习后先在小组内交流讨论。
2、每个组根据分配的任务把自己组的结论板书到黑板上准备展示。
3、每个组在展示的过程中其他组的同学认真听作好补充和提问。
四、反馈与检测1.计算:(1)23十(一17)十6十(一22); (2)(一2)十3十1十(一3)十2十(一4)(3)计算:1十)61(31)21(-++-; (4))528(435)532(413-++-.2. 如果,2,3==b a 且b a <; 求b a +的值3222(6)(5)(4)(11)5353++-+++总结巩固 有理数加法小结: 如果c b a ..分别是任一有理数,则 10⎪⎪⎩⎪⎪⎨⎧<<>--><>-<<+->>+=+b a b a a b b a b a b a b a b a b a b a b a 且当且当时当时当,0,0,0,00,0)(0,0。
内蒙古鄂尔多斯市达拉特旗七年级数学上册1.3.1有理数
拼十年寒窗挑灯苦读不畏难;携双亲期盼背水勇战定夺魁。
如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希望为哨兵。
教学目标:1.理解有理数的加法法则2.能利用加法法则进行简单的有理数的加法运算教学重难点:重点:分情况讨论有理数的加法法则的思路的建立;异号两数相加的法则难点:理解有理数的加法法则,利用加法法则进行简单的有理数的加法运算教材分析:有理数的运算是运算的基础,而有理数的加法是学习有理数运算的第一步,是进一步学习有理数减法、乘法的基础,其中蕴含的内容和思想方法在后续学习中示范作用。
有理数加法法则是一种规定,为了让学生理解规定的合理性,教科书利用了学生生活经验,并借助数轴进行说明,虽然加法法则分为三种情况去研究,但探究的方法是一致的,即需要将“原点”与“最初运动的起点”对应,将第一次运动的中终点作为第二次运动的起点,并“将第二次运动的终点与原点的相对位置”与“两数的和’对应,其中将向左运动规定为负,向右运动规定为正,与用正数、负数表示具有相反意义的量的经验一致。
基于以上分析,确定本节课的教学重点为:理解有理数的加法规定的合理性,根据有礼数的加法法则进行有理数的加法运算有理数的加法学情分析有理数的加法是小学学过的加法运算的拓展,学生已经具有了正数、负数、数轴和绝对值等知识,加法法则实际上给出了确定两个有理数的和的“符号”与“绝对值”的规则,它是通过分析两个有理数相加时可能出现的各种不同情况,再归纳出同号相加、异号相加、一个有理数与零相加三种情况而得到的。
由于学生的思维发展水平和知识准备的限制,再分情况讨论、应分成哪几种情况、如何归纳不同情况等方面都需要教师的引导甚至是直接讲解,同号两数的加法法则比较易于理解,而异号两数相加时情况比较复杂,学习难度较大,需要教师加强引导。
另外根据法则做加法,需要注意“按部就班”的计算,这是一个培养良好运算习惯的过程教学设计:1.创设问题情境,引入课题问题1 前面我们学习了有理数,有理数有几种分类方法呢?师生活动:学生回答:有理数可分为正有理数、0和负有理数;有理数还可以分为正数和分数设计意图:复习从不同角度对有理数进行分类,为分情况讨论有例数的加法法则做准备教师:在小学,我们学习过正数和0的加法运算,引入负数后,也要研究有理数的加法运算,日常生活中也会遇到有里数的加法问题,例如在本章引言中,我们曾看到一张“收支情况表”,那里把收入记作正数,支出记作负数,在求“结余”时,需要计算8.5+(-4.5),4+(-5.2)等设计意图:从数学和生活实际两个方面说明学习有理数的加法的必要性。
【人教版】七年级数学上册1.3.1有理数的加法教案及练习(含答案)
有理数的加法(一)1. 认识有理数的加法的意义知识与技术 2.会依据有理数的加法法规进行有理数的加法运算,在现实背景中理解有理数加法的意义.1.经历研究有理数加法法规的过程,理解有理授课目的数的加法法规.2. 能运用有理数的加法法规解决有关实责问过程与方法题。
,能较为熟练地进行有理数的加法运算,并能解决简单的本质间题.感神态度价值观能积极地参加研究有理数加法法规的活动,并学会与他人交流合作.授课重点认识有理数的加法的意义,会依据有理数的加法法规进行有理数的加法运算授课难点有理数加法中的异号两数如何进行加法运算授课过程(师生活动)设计理念设置情境引入课题解析问题研究新知回顾用正负数表示数量的本质例子;前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法。
两个有理数相加,有多少种不相同的状况?我们这节课一起与大家商议的问题.借助数轴来谈论有理数的加法.一个物体向左右方向运动,我们规定向左运动为负,向右为正,向右运动5m,记作5m,向左运动 5m,记作- 5 m .利用数轴,求以下状况时这个物体两次运动的结果:(一)先向右走 5 米,再向右走 3 米,物体从起点向()运动了()米;(二)先向左走 5 米,再向左走 3 米,物体从起点向()运动了()米;现在我们来看看这两个算式,有什么特点呢?(引导学生从式子中数字,运算的特点来看)a. 都是同符号的数字b. 直接相加,再把对应的符号加上去,获取结果。
这两种状况运动结果的算式以下:5+3=8;(— 5) +(— 3) = —8;结论:符号相同的两数相加,结果的符号不变,绝对值相加(三)先向左走 3 米,再向右走 5 米,物体从起点向()运动了()米。
(四)先向右走 3 米,再向左走 5 米,物体从起点向()运动了()米;感觉到有理数相加的几种不相同状况,并能将它分类,浸透分类谈论思想.解析时假设原点 0 为第一次运动起点,第二次运动的起点是第一次运动的终点.把已经得出的几种有理数相加的状况在数轴上用运动的方向表示出来,并求出结果,讲解它的意义.让学生感觉“数学模型”的思想,学会与伙伴交流,并在交流中获益.这两种状况运动结果的算式以下:3+ (— 5) = —2;5+(— 3)= 2现在我们来看看这组算式,有什么特点呢?(依旧引导学生从式子中的数字,运算特点去探究) a. 符号不相同 b. 将负数看作是减去这个数,符号就随从绝对值大的一个结论:符号相反的两数相加,结果的符号与绝对值较大的加数的符号相同,并用较大的绝对值减去较小的绝对值(五)先向右走 5 米,再向左走 5 米,物体从起点向()运动了()米;运动结果的算式以下:(+5)+(— 5)= — 2;(六)若是这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人从起点向东(或向西)运动了 5 米。
【人教版七年级数学上册第一章】1.3.1第2课时《有理数加法的运算律及运用》说课稿1
【人教版七年级数学上册第一章】1.3.1 第2课时《有理数加法的运算律及运用》说课稿1一. 教材分析《有理数加法的运算律及运用》这一节内容,主要让学生掌握有理数的加法运算律,并能够运用运算律简化计算。
本节课的内容是初中的基础内容,对于学生来说,理解起来并不困难,但需要学生熟练掌握运算法则,为后续的学习打下基础。
二. 学情分析面对七年级的学生,他们对有理数的概念已经有了初步的了解,也掌握了有理数的加减法运算。
因此,在理解有理数的加法运算律时,他们会有一定的基础。
但是,学生对运算律的理解可能还停留在表面,需要通过实例来加深理解。
三. 说教学目标1.知识与技能:让学生掌握有理数的加法运算律,能够运用运算律进行简便计算。
2.过程与方法:通过实例分析,让学生理解并掌握加法运算律的应用。
3.情感态度与价值观:培养学生对数学的兴趣,提高学生的逻辑思维能力。
四. 说教学重难点1.重点:掌握有理数的加法运算律。
2.难点:运用加法运算律进行简便计算。
五.说教学方法与手段1.采用问题驱动的教学方法,引导学生主动探究加法运算律。
2.通过实例分析,让学生理解并掌握加法运算律的应用。
3.利用多媒体教学手段,展示实例,增强学生的直观感受。
六. 说教学过程1.导入:回顾有理数的加减法运算,引导学生思考能否简化计算。
2.探究:提出问题,引导学生发现加法运算律。
3.讲解:通过实例分析,讲解加法运算律的应用。
4.练习:让学生自主完成练习题,巩固所学内容。
5.总结:对本节课的内容进行总结,强调加法运算律的重要性。
七. 说板书设计板书设计如下:有理数加法运算律1.加法运算律:a + b + c = a + (b + c)2.应用:简便计算八. 说教学评价教学评价将从学生的知识掌握、能力提高、情感态度三个方面进行。
通过课堂提问、练习完成情况、课后反馈等方式,评估学生对加法运算律的理解和运用能力。
九. 说教学反思在教学过程中,要注意引导学生主动探究,激发学生的学习兴趣。
新人教版七年级数学上册1.3.1《有理数的加法(一)》教学设计2
新人教版七年级数学上册1.3.1《有理数的加法(一)》教学设计2一. 教材分析新人教版七年级数学上册1.3.1《有理数的加法(一)》是学生学习有理数运算的第一部分,为学生今后的数学学习打下基础。
本节课主要介绍有理数的加法运算,通过加法运算的学习,使学生掌握有理数加法的基本规则,培养学生对数学运算的兴趣。
二. 学情分析七年级的学生已经掌握了整数和分数的概念,对基本的运算规则有一定的了解。
但是,对于有理数的加法运算,学生可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生利用已有的知识经验,探究有理数加法运算的规律,提高学生的运算能力。
三. 教学目标1.理解有理数加法的基本概念,掌握有理数加法的基本规则。
2.能够进行简单的有理数加法运算,并能解释运算过程。
3.培养学生的运算能力,提高学生对数学运算的兴趣。
四. 教学重难点1.教学重点:有理数加法的基本概念,有理数加法的基本规则。
2.教学难点:有理数加法运算的规律,有理数加法运算的灵活运用。
五. 教学方法1.情境教学法:通过生活情境,引导学生理解有理数加法的基本概念。
2.引导发现法:教师引导学生利用已有的知识经验,发现有理数加法的基本规则。
3.实践操作法:学生通过实际的运算练习,掌握有理数加法的基本运算方法。
六. 教学准备1.教学课件:制作有关有理数加法的教学课件,帮助学生直观地理解有理数加法的基本概念和运算规则。
2.练习题:准备一些有关有理数加法的练习题,用于学生的课堂练习和课后作业。
七. 教学过程1.导入(5分钟)教师通过生活情境,如购物场景,引导学生理解有理数加法的基本概念。
例如,小明买了一支铅笔2元,又买了一块橡皮1元,他一共花了多少钱?通过这样的情境,让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。
2.呈现(10分钟)教师通过课件展示有理数加法的基本概念和运算规则,让学生直观地理解有理数加法的基本概念。
例如,有理数加法的定义,有理数加法的法则等。
人教版数学七年级上册1.3.1《有理数的加法》教案2
人教版数学七年级上册1.3.1《有理数的加法》教案2一. 教材分析《有理数的加法》是初中数学的重要内容,也是学习更复杂数学运算的基础。
本节课的内容主要包括有理数的加法法则、加法的运算律以及加法运算的优先级。
通过学习,学生能够理解有理数加法的概念,掌握有理数加法的运算方法,并能够运用加法法则解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了有理数的概念、加减法的基本运算,对数学运算有一定的基础。
但部分学生可能对有理数加法的理解不够深入,对于加法的运算律和优先级规则可能存在模糊之处。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行讲解和辅导。
三. 教学目标1.理解有理数加法的概念,掌握有理数加法的运算方法。
2.掌握有理数加法的运算律和优先级规则。
3.能够运用加法法则解决实际问题。
4.培养学生的运算能力和逻辑思维能力。
四. 教学重难点1.有理数加法的运算方法。
2.有理数加法的运算律和优先级规则。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索;通过案例分析,让学生深入了解有理数加法的应用;通过小组合作学习,培养学生的团队协作能力和沟通能力。
六. 教学准备1.PPT课件。
2.教学案例和习题。
3.的黑板和粉笔。
七. 教学过程1.导入(5分钟)利用PPT课件展示生活中的加法实例,如购物时物品的总价、烹饪时食材的配比等,引导学生关注加法在实际生活中的应用。
同时,提出问题:“你们认为加法有什么运算规律吗?”2.呈现(10分钟)通过PPT课件呈现有理数加法的定义和运算方法,讲解加法的运算律和优先级规则。
结合案例,让学生了解加法在数学中的应用。
3.操练(10分钟)让学生进行有理数加法的运算练习,教师巡回指导,及时发现并纠正学生的错误。
在此过程中,引导学生发现加法的运算律和优先级规则,并加以运用。
4.巩固(5分钟)通过PPT课件呈现一些有关有理数加法的应用题,让学生独立解答。
1.3.1有理数的加法(2)
57
=[1 +(- 3)]+[(- )3+(+ )4]
55
77
=(- 2)+(+ 1)=- .9 5 7 35
探索新知
(3)4.1+(+1 )+(- 1)+(-10.1)+7 24
=[4.1+(-10.1)+7]+[(+1 2
1 )+(-4
)]
=1+1 =11 . 44
课件PPT
探索新知
(4)(+125 6
课后思考
课件PPT
有一批味精,标准质量为每袋100 g,现抽取10袋样品进行 检测,其结果是:99,102,101,101,98,99,100,97,99,103(单 位:g),用简便方法求这10袋味精的总质量.
探索新知
课件PPT
【总结提升】有理数加法在实际中的应用 1.将实际问题转化为数学问题. 2.弄清问题的实质,列式计算,解答实际问题.
典题精讲
课件PPT
题组一:加法运算律的运用
1.7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应
用了( )
A.加法交换律
探索新知
(2)这(-10)听+罐5+头0与+5标+准0+质0量+(差- 值的和为: ___5__)+__0_+__5_+_1__0______________ =__[_(_-_1_0_)_+_1__0_]_+_[_5_+__(-_5_)_]_+_5__+_5___ __=__1_0_(_克__),
人教版七年级上数学《有理数的加减法》教案
《有理数的加减法》教案
一、教学目标
(一)知识与技能
1.掌握有理数加减法法则,会进行有理数的加减法运算。
2.初步培养学生数学转化思想。
(二)过程与方法
通过观察、比较、分析、归纳等方法,理解并掌握有理数的加减法法则。
(三)情感态度和价值观
1.积极参与数学活动,体验数学活动中的乐趣。
2.增强学生学好数学的信心和决心。
二、教学重点与难点
(一)教学重点
掌握有理数加减法法则,会进行有理数的加减法运算。
(二)教学难点
理解有理数加减法法则的意义,正确进行运算。
三、教学方法与手段
(一)教学方法
1.实例引入,调动学生学习兴趣。
2.小组合作,探究规律。
3.练习巩固,及时反馈。
4.归纳小结,形成知识系统。
(二)教学手段
1.利用实物、图片等直观方式展示教学内容。
2.设计多样化的练习题目,巩固所学知识。
3.采用多媒体教学设备,提高教学效果。
四、教学步骤
(一)导入新课:通过实例引入,调动学生学习兴趣。
(二)探究新知:小组合作,探究规律。
通过观察、比较、分析、归纳等方法,理解并掌握有理数的加减法法则。
(三)实践应用:练习巩固,及时反馈。
通过多样化的练习题目,检验学生对知识的掌握程度,巩固所学知识。
同时进行小组讨论和交流,提高解题能力和合作意
识。
(四)归纳小结:总结本节课所学内容,强调重点和难点。
通过归纳小结,形成知识系统,帮助学生记忆和理解所学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由此可得:(a+b)+c=__ _ ,这种运算律称为加法___ 律.
3、在括号内填写所依据的运算律:
(-15)+(+7)+(-9)+(+23)
=(-15)+(-9)+(+7)+(+23) ()
=[(-15)+(-9)]+[(+7)+(+23)] ()
(4) 1+(-)+ +(-)
学生参与计算体会
巩固所学知识
课堂小结
加法运算律在运算中的应用。
作业布置
教学反思
1、小学学过的加法运算律有哪些?举例说明运用运算律有何好处?
2. 加法的交换律:
两个数相加,交换的位置, 和不变.用式子表示:a+b=.
3. 加法的结合律:
三个数相加, 先把相加, 或者先把相加, 和不变. 用式子表示:(a+b)+c=.
阅读P19——20,回答问题
学生回顾旧知识
引入加法的运算律
问题探究
反馈提升
1、某天股票A开盘价18元,上午11:30跌1.5元,下午收盘时又涨了0.3元,则股票A 这天收盘价为 ( )
A.0.3元 B.16.2元 C.16.8元 D.18元
2、计算(能完成吗,先自己动动手吧!)
(1)(-7)+6+(-3)+10+(-6) (2)16+(-25)+24+(-35)
(3)31+(-28)+28+63;16
4、10袋小麦称后记录如下(单位:千克 ),91、91、91.5、 89、91.2 、91.3、 88.7 88.8 、91.8 、91.1。10袋小麦一共多少千克?如果每袋小麦以90千克为标准,10袋小麦总计超过多少千克或不足多少千克?
学生自主合作探究
归纳加法运算律在计算中的应用
1、计算:(1)(-8)+(-9)=; (-9)+(-8)=
(2) 4+(-8)=; (-8)+4=
根据计算结果你可发现:(-8)+(-9)(-9)+(-8)4+(-8)(-8)+4(填“>”、“<”或“=”)
由此可得a+b=_____,这种运算律称为加法__ _______律
2.计算:(1)[2+(-3)]+(-8)=__ + ___+_____=____;
有理数的加法
教学目标
知识与技能
使学生掌握有理数加法的交换律和结合律,并能运用加法运算律简化运算
过程与方法
体会有理数的简化计算
情感价值观
感受数学的简洁美
教学重点
能运用加法运算律简化运算
教学难点
灵活运用运算律师运算简便
教学方法
讲练结合法
媒体资源
教 学 过 程
教学流程
教 学 活 动
学生活动
设计意图
自主学习