高二物理选修3-1知识点总结

合集下载

高二物理选修3-1知识点总结

高二物理选修3-1知识点总结

高二物理选修3-1知识点总结高二物理选修3-1课本知识点的整理,对学生复习物理重要内容有很大的作用,下面是店铺给大家带来的高二物理选修3-1知识点,希望对你有帮助。

高二物理选修3-1知识点第一章静电场第1节电荷及其守恒定律一、起电方法的实验探究1. 物体有了吸引轻小物体的性质,就说物体带了电或有了电荷。

2. 两种电荷自然界中的电荷有2种,即正电荷和负电荷。

如:丝绸摩擦过的玻璃棒所带的电荷是正电荷;用干燥的毛皮摩擦过的硬橡胶棒所带的电荷是负电荷。

同种电荷相斥,异种电荷相吸。

相互吸引的一定是带异种电荷的物体吗?不一定,除了带异种电荷的物体相互吸引之外,带电体有吸引轻小物体的性质,这里的“轻小物体”可能不带电。

3. 起电的方法使物体起电的方法有三种:摩擦起电、接触起电、感应起电(1)摩擦起电:两种不同的物体原子核束缚电子的能力并不相同.两种物体相互摩擦时,束缚电子能力强的物体就会得到电子而带负电,束缚电子能力弱的物体会失去电子而带正电.(正负电荷的分开与转移)(2)接触起电:带电物体由于缺少(或多余)电子,当带电体与不带电的物体接触时,就会使不带电的物体上失去电子(或得到电子),从而使不带电的物体由于缺少(或多余)电子而带正电(负电).(电荷从物体的一部分转移到另一部分)(3)感应起电:当带电体靠近导体时,导体内的自由电子会向靠近或远离带电体的方向移动.(电荷从一个物体转移到另一个物体) 三种起电的方式不同,但实质都是发生电子的转移,使多余电子的物体(部分)带负电,使缺少电子的物体(部分)带正电.在电子转移的过程中,电荷的总量保持不变。

二、电荷守恒定律1. 电荷量:电荷的多少。

在国际单位制中,它的单位是库仑,符号是C。

2. 元电荷:电子和质子所带电荷的绝对值1.6×10-19C,所有带电体的电荷量等于e或e的整数倍。

(元电荷就是带电荷量足够小的带电体吗?提示:不是,元电荷是一个抽象的概念,不是指的某一个带电体,它是指电荷的电荷量.另外任何带电体所带电荷量是1.6×10-19C 的整数倍。

(完整版)高中物理选修3-1知识点清单(非常详细)

(完整版)高中物理选修3-1知识点清单(非常详细)

(完整版)高中物理必修3-1知识点清单(非常详细)第一章 静电场一、电荷和电荷守恒定律1.点电荷:形状和大小对研究问题的影响可忽略不计的带电体称为点电荷. 2.电荷守恒定律(1)电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量保持不变.(2)起电方式:摩擦起电、接触起电、感应起电. 二、库仑定律1.内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上.2.公式:F =kq 1q 2r,式中的k =9.0×109 N ·m 2/C 2,叫做静电力常量. 3.适用条件:(1)点电荷;(2)真空. 三、电场强度1.意义:描述电场强弱和方向的物理量. 2.公式(1)定义式:E =F q,是矢量,单位:N/C 或V/m.(2)点电荷的场强:E =k Q r 2,Q 为场源电荷,r 为某点到Q 的距离.(3)匀强电场的场强:E =Ud.3.方向:规定为正电荷在电场中某点所受电场力的方向. 四、电场线及特点1.电场线:电场线是画在电场中的一条条有方向的曲线,曲线上每点的切线方向表示该点的电场强度方向.2.电场线的特点(1)电场线从正电荷或无限远处出发,终止于负电荷或无限远处. (2)电场线不相交.(3)在同一电场里,电场线越密的地方场强越大. (4)沿电场线方向电势降低.(5)电场线和等势面在相交处互相垂直. 3.几种典型电场的电场线(如图所示)考点一 对库仑定律的理解和应用 1.对库仑定律的理解(1)F =kq 1q 2r 2,r 指两点电荷间的距离.对可视为点电荷的两个均匀带电球,r 为两球心间距.(2)当两个电荷间的距离r →0时,电荷不能视为点电荷,它们之间的静电力不能认为趋于无限大.2.电荷的分配规律(1)两个带同种电荷的相同金属球接触,则其电荷量平分.(2)两个带异种电荷的相同金属球接触,则其电荷量先中和再平分. 考点二 电场线与带电粒子的运动轨迹分析1.电荷运动的轨迹与电场线一般不重合.若电荷只受电场力的作用,在以下条件均满足的情况下两者重合:(1)电场线是直线.(2)电荷由静止释放或有初速度,且初速度方向与电场线方向平行. 2.由粒子运动轨迹判断粒子运动情况:(1)粒子受力方向指向曲线的内侧,且与电场线相切. (2)由电场线的疏密判断加速度大小.(3)由电场力做功的正负判断粒子动能的变化. 3.求解这类问题的方法: (1)“运动与力两线法”——画出“速度线”(运动轨迹在初始位置的切线)与“力线”(在初始位置电场线的切线方向),从二者的夹角情况来分析曲线运动的情景.(2)“三不知时要假设”——电荷的正负、场强的方向(或等势面电势的高低)、电荷运动的方向,是题意中相互制约的三个方面.若已知其中的任一个,可顺次向下分析判定各待求量;若三个都不知(三不知),则要用“假设法”分别讨论各种情况.第二章 电势能和电势差一、电场力做功和电势能 1.电场力做功(1)特点:静电力做功与实际路径无关,只与初末位置有关. (2)计算方法①W =qEd ,只适用于匀强电场,其中d 为沿电场方向的距离. ②W AB =qU AB ,适用于任何电场. 2.电势能(1)定义:电荷在电场中具有的势能,数值上等于将电荷从该点移到零势能位置时静电力所做的功.(2)静电力做功与电势能变化的关系:静电力做的功等于电势能的减少量,即W AB =E p A-E p B =-ΔE p .(3)电势能具有相对性. 二、电势、等势面 1.电势(1)定义:电荷在电场中某一点的电势能与它的电荷量的比值.(2)定义式:φ=E p q.(3)相对性:电势具有相对性,同一点的电势因零电势点的选取不同而不同. 2.等势面(1)定义:电场中电势相同的各点构成的面. (2)特点①在等势面上移动电荷,电场力不做功.②等势面一定与电场线垂直,即与场强方向垂直. ③电场线总是由电势高的等势面指向电势低的等势面.④等差等势面的疏密表示电场的强弱(等差等势面越密的地方,电场线越密). 三、电势差1.定义:电荷在电场中,由一点A 移到另一点B 时,电场力所做的功W AB 与移动的电荷的电量q 的比值.2.定义式:U AB =W ABq. 3.电势差与电势的关系:U AB =φA -φB ,U AB =-U BA . 4.电势差与电场强度的关系匀强电场中两点间的电势差等于电场强度与这两点沿电场方向的距离的乘积,即U AB =Ed .特别提示:电势和电势差都是由电场本身决定的,与检验电荷无关,但电场中各点的电势与零电势点的选取有关,而电势差与零电势点的选取无关.考点一 电势高低及电势能大小的比较 1.比较电势高低的方法(1)根据电场线方向:沿电场线方向电势越来越低.(2)根据U AB =φA -φB :若U AB >0,则φA >φB ,若U AB <0,则φA <φB .(3)根据场源电荷:取无穷远处电势为零,则正电荷周围电势为正值,负电荷周围电势为负值;靠近正电荷处电势高,靠近负电荷处电势低.2.电势能大小的比较方法 (1)做功判断法电场力做正功,电势能减小;电场力做负功,电势能增加(与其他力做功无关). (2)电荷电势法正电荷在电势高处电势能大,负电荷在电势低处电势能大. 考点二 等势面与粒子运动轨迹的分析 1电场等势面(实线)图样重要描述匀强电场垂直于电场线的一簇平面点电荷的电场以点电荷为球心的一簇球面等量异种点电荷的电场连线的中垂线上的电势为零等量同种正点电荷的电场连线上,中点电势最低,而在中垂线上,中点电势最高2.带电粒子在电场中运动轨迹问题的分析方法(1)从轨迹的弯曲方向判断受力方向(轨迹向合外力方向弯曲),从而分析电场方向或电荷的正负;(2)结合轨迹、速度方向与静电力的方向,确定静电力做功的正负,从而确定电势能、电势和电势差的变化等;(3)根据动能定理或能量守恒定律判断动能的变化情况. 考点三 公式U =Ed 的拓展应用1.在匀强电场中U =Ed ,即在沿电场线方向上,U ∝d .推论如下:(1)如图甲,C 点为线段AB 的中点,则有φC =φA +φB2.(2)如图乙,AB ∥CD ,且AB =CD ,则U AB =U CD .2.在非匀强电场中U =Ed 虽不能直接应用,但可以用作定性判断. 考点四 电场中的功能关系 1.求电场力做功的几种方法(1)由公式W =Fl cos α计算,此公式只适用于匀强电场,可变形为W =Eql cos α. (2)由W AB =qU AB 计算,此公式适用于任何电场. (3)由电势能的变化计算:W AB =E p A -E p B . (4)由动能定理计算:W 电场力+W 其他力=ΔE k . 注意:电荷沿等势面移动电场力不做功. 2.电场中的功能关系(1)若只有电场力做功,电势能与动能之和保持不变.(2)若只有电场力和重力做功,电势能、重力势能、动能之和保持不变. (3)除重力、弹簧弹力之外,其他各力对物体做的功等于物体机械能的变化. (4)所有外力对物体所做的功等于物体动能的变化.3.在解决电场中的能量问题时常用到的基本规律有动能定理、能量守恒定律和功能关系. (1)应用动能定理解决问题需研究合外力的功(或总功).(2)应用能量守恒定律解决问题需注意电势能和其他形式能之间的转化.(3)应用功能关系解决该类问题需明确电场力做功与电势能改变之间的对应关系. (4)有电场力做功的过程机械能不守恒,但机械能与电势能的总和可以守恒.四、电容器、电容 1.电容器(1)组成:由两个彼此绝缘又相互靠近的导体组成. (2)带电量:一个极板所带电量的绝对值. (3)电容器的充、放电充电:使电容器带电的过程,充电后电容器两板带上等量的异种电荷,电容器中储存电场能.放电:使充电后的电容器失去电荷的过程,放电过程中电场能转化为其他形式的能. 2.电容(1)定义式:C =QU.(2)单位:法拉(F),1 F =106μF =1012pF. 3.平行板电容器(1)影响因素:平行板电容器的电容与正对面积成正比,与介质的介电常数成正比,与两极板间距离成反比.(2)决定式:C =εr S4πkd,k 为静电力常量.特别提醒:C =Q U ⎝ ⎛⎭⎪⎫或C =ΔQ ΔU 适用于任何电容器,但C =εr S4πkd仅适用于平行板电容器.五、带电粒子在电场中的运动 1.加速问题(1)在匀强电场中:W =qEd =qU =12mv 2-12mv 20;(2)在非匀强电场中:W =qU =12mv 2-12mv 20.2.偏转问题(1)条件分析:不计重力的带电粒子以速度v 0垂直于电场线方向飞入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:利用运动的合成与分解. ①沿初速度方向:做匀速运动.②沿电场方向:做初速度为零的匀加速运动. 特别提示:带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.六、带电粒子在电场中的偏转 1.基本规律设粒子带电荷量为q ,质量为m ,两平行金属板间的电压为U ,板长为l ,板间距离为d (忽略重力影响),则有(1)加速度:a =F m =qE m =qUmd.(2)在电场中的运动时间:t =l v 0.(3)位移⎩⎪⎨⎪⎧v x t =v 0t =l 12at 2=y ,y =12at 2=qUl22mv 20d. (4)速度⎩⎪⎨⎪⎧v x =v 0v y =at ,v y =qUtmd, v =v 2x +v 2y ,tan θ=v y v x =qUl mv 20d. 2.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时的偏转角度总是相同的.证明:由qU 0=12mv 20及tan θ=qUl mdv 20得tan θ=Ul2U 0d.(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到电场边缘的距离为l2.3.带电粒子在匀强电场中偏转的功能关系:当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =Udy ,指初、末位置间的电势差.第三章 恒定电流 第四章 闭合电路的欧姆定律一、电流、欧姆定律1.电流(1)定义:自由电荷的定向移动形成电流. (2)方向:规定为正电荷定向移动的方向. (3)三个公式①定义式:I =q /t ;②微观式:I =nqvS ;③I =U R.2.欧姆定律(1)内容:导体中的电流I 跟导体两端的电压U 成正比,跟导体的电阻R 成反比. (2)公式:I =U /R .(3)适用条件:适用于金属和电解液导电,适用于纯电阻电路. 二、电阻、电阻率、电阻定律 1.电阻(1)定义式:R =U I.(2)物理意义:导体的电阻反映了导体对电流阻碍作用的大小,R 越大,阻碍作用越大. 2.电阻定律(1)内容:同种材料的导体,其电阻与它的长度成正比,与它的横截面积成反比,导体的电阻还与构成它的材料有关.(2)表达式:R =ρl S . 3.电阻率(1)计算式:ρ=R S l.(2)物理意义:反映导体的导电性能,是导体材料本身的属性. (3)电阻率与温度的关系①金属:电阻率随温度的升高而增大. ②半导体:电阻率随温度的升高而减小. ③超导体:当温度降低到绝对零度附近时,某些材料的电阻率突然减小为零成为超导体. 三、电功、电功率、焦耳定律 1.电功 (1)实质:电流做功的实质是电场力对电荷做正功,电势能转化为其他形式的能的过程. (2)公式:W =qU =UIt ,这是计算电功普遍适用的公式. 2.电功率(1)定义:单位时间内电流做的功叫电功率.(2)公式:P =W t=UI ,这是计算电功率普遍适用的公式.3.焦耳定律电流通过电阻时产生的热量Q =I 2Rt ,这是计算电热普遍适用的公式. 4.热功率(1)定义:单位时间内的发热量. (2)表达式:P =Q t=I 2R .四、串、并联电路的特点 1.特点对比电阻 R =R 1+R 2+…+R n1R =1R 1+1R 2+…+1R n2.几个常用的推论(1)串联电路的总电阻大于其中任一部分电路的总电阻.(2)并联电路的总电阻小于其中任一支路的总电阻,且小于其中最小的电阻.(3)无论电阻怎样连接,每一段电路的总耗电功率P 总是等于各个电阻耗电功率之和. (4)无论电路是串联还是并联,电路中任意一个电阻变大时,电路的总电阻变大. 五、电源的电动势和内阻 1.电动势(1)定义:电动势在数值上等于非静电力把1 C 的正电荷在电源内从负极移送到正极所做的功.(2)表达式:E =W q.(3)物理意义:反映电源把其他形式的能转化成电能的本领大小的物理量. 2.内阻电源内部也是由导体组成的,也有电阻,叫做电源的内阻,它是电源的另一重要参数. 六、闭合电路欧姆定律1.内容:闭合电路的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比.2.公式⎩⎪⎨⎪⎧I =E R +r只适用于纯电阻电路E =U 外+U 内适用于任何电路3.路端电压U 与电流I 的关系(1)关系式:U =E -Ir . (2)U -I 图象如图所示.①当电路断路即I =0时,纵坐标的截距为电源电动势. ②当外电路电压为U =0时,横坐标的截距为短路电流. ③图线的斜率的绝对值为电源的内阻. 七、测量电路的选择对伏安法测电阻,应根据待测电阻的大小选择电流表不同的接法.1.阻值判断法:当R V ≫R x 时,采用电流表“外接法”; 当R x ≫R A 时,采用电流表“内接法”. 2.倍率比较法:(1)当R V R x =R x R A ,即R x =R V ·R A 时,既可选择电流表“内接法”,也可选择“外接法”;(2)当R V R x >R xR A 即R x <R V ·R A 时,采用电流表外接法;(3)当R V R x <R xR A即R x >R V ·R A 时,采用电流表内接法.3.试触法:ΔU U 与ΔII 比较大小:(1)若ΔU U >ΔII ,则选择电压表分流的外接法;(2)若ΔI I>ΔUU,则选择电流表的内接法.八、实验器材的选择 1.安全因素通过电源、电表、电阻的电流不能超过允许的最大电流. 2.误差因素选择电表时,保证电流和电压均不超过其量程.使指针有较大偏转(一般取满偏度的13~23);使用欧姆表选挡时让指针尽可能在中值刻度附近. 3.便于操作选滑动变阻器时,在满足其他要求的前提下,可选阻值较小的. 4.关注实验的实际要求.第五章 磁场一、磁场、磁感应强度 1.磁场(1)基本性质:磁场对处于其中的磁体、电流和运动电荷有磁力的作用. (2)方向:小磁针的N 极所受磁场力的方向. 2.磁感应强度(1)物理意义:描述磁场强弱和方向.(2)定义式:B =F IL(通电导线垂直于磁场).(3)方向:小磁针静止时N 极的指向. (4)单位:特斯拉,符号T. 二、磁感线及特点 1.磁感线在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致. 2.磁感线的特点(1)磁感线上某点的切线方向就是该点的磁场方向.(2)磁感线的疏密定性地表示磁场的强弱,在磁感线较密的地方磁场较强;在磁感线较疏的地方磁场较弱.(3)磁感线是闭合曲线,没有起点和终点.在磁体外部,从N 极指向S 极;在磁体内部,由S 极指向N 极.(4)同一磁场的磁感线不中断、不相交、不相切. (5)磁感线是假想的曲线,客观上不存在. 3.电流周围的磁场非匀强磁场三、安培力的大小和方向1.安培力的大小(1)磁场和电流垂直时,F=BIL.(2)磁场和电流平行时:F=0.2.安培力的方向(1)用左手定则判定:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向.(2)安培力的方向特点:F⊥B,F⊥I,即F垂直于B和I决定的平面.(注意:B和I可以有任意夹角)四、洛伦兹力1.定义:运动电荷在磁场中所受的力.2.大小(1) v∥B时,F=0.(2) v⊥B时,F=qvB.(3) v与B夹角为θ时,F=qvB sin_θ.3.方向(1)判定方法:应用左手定则,注意四指应指向正电荷运动方向或负电荷运动的反方向.(2)方向特点:F⊥B,F⊥v.即F垂直于B、v决定的平面.(注意B和v可以有任意夹角).由于F始终垂直于v的方向,故洛伦兹力永不做功.五、洛伦兹力和电场力的比较1.洛伦兹力方向的特点(1)洛伦兹力的方向总是垂直于运动电荷速度方向和磁场方向确定的平面.(2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化.(3)左手判断洛伦兹力方向,但一定分正、负电荷.六、带电粒子在匀强磁场中的运动1.圆心的确定(1)已知入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨迹的圆心(如图甲所示,图中P 为入射点,M为出射点).(2)已知入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P 为入射点,M为出射点).2.半径的确定可利用物理学公式或几何知识(勾股定理、三角函数等)求出半径大小.3.运动时间的确定粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为θ时,其运动时间表示为:t=θ2πT⎝⎛⎭⎪⎫或t=θRv.4.求解粒子在匀强磁场中运动问题的步骤:(1)画轨迹:即确定圆心,画出运动轨迹.(2)找联系:轨迹半径与磁感应强度、运动速度的联系,偏转角度与圆心角、运动时间的联系,在磁场中的运动时间与周期的联系.(3)用规律:即牛顿运动定律和圆周运动的规律,特别是周期公式、半径公式.。

高中物理选修3-1知识总结即公式总结

高中物理选修3-1知识总结即公式总结

高中物理选修3-1知识总结即公式总结物理选修3-1知识点即公式总结第一章电场一.电场基本规律1.电荷电荷守恒定律。

自然界中只存在正、负电荷。

1三种带电方式:摩擦起电掠夺式、接触起电均分式、感应起电本能式2元电荷:最小的带电单元,自然界任何物体的带电荷量都是元电荷e=16×10-19c的整数倍,电子、质子的电荷量都等于元电荷,但电性不同,前者为负,后者为正。

2.库伦定律:1定律内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的平方成反.......比,作用力的方向在它们的连线上。

2表达式:FQ1Q2r2=90×109Nm2/C2静电力常量。

q1、q2是电荷带电量Cr是两个电荷的距离m3适用条件:真空中静止的点电荷。

二.电场力的性质:1.电场的基本性质:电场对放入其中的电荷有力的作用。

2.电场强度E:1定义:电荷在电场中某点受到的电场力F与电荷的带电量q的比值,就叫做该点的电场强度。

2定义式:E电荷量C3电场强度是矢量:大小:在数值上为单位电荷受到的电场力。

方向:规定正电荷受力方向,负电荷受力与E的方向相反。

4单位:N/C,V/m1N/C=1V/m5其他的电场强度公式①点电荷的场强公式:EQr2Fq.E与F、q无关,只由电场本身决定。

E是电场强度N/C或V/m均可,1N/C=1V/mF是电场力Nq是Q场源电荷;E是点电荷电场强度N/C或V/m均可,1N/C=1V/m;是静电力常量=90×109Nm/C;Q是点电荷带电量Cr是半径m;②匀强电场场强公式:EUdd沿电场方向等势面间距离;UAB是A.B两点的电势差Vd是距离m;E是电场强度N/C或V/m均可,1N/C=1V/m6场强的叠加:遵循平行四边形法则3.电场线:1意义:形象直观描述电场强弱和方向的理想模型,实际上是不存在的2电场线的特点:①电场线起于正电荷无穷远,止于无穷远负电荷②不封闭,不相交,不相切。

高中物理选修3-1第一章最全知识点归纳总结

高中物理选修3-1第一章最全知识点归纳总结

高中物理选修3-1第一章最全知识点归纳总结物理选修3-1第一章知识归纳第1节电荷及其守恒定律1.电荷的性质同种电荷相斥,异种电荷相吸。

带电体还有吸引不带电物体的性质。

2.两种电荷自然界中的电荷有两种:正电荷和负电荷。

电子“湮灭”不是电子的消失,而是一个正电子结合一个负电子后整体不再显电性而成光子。

3.起电的方法起电的三种方法:摩擦起电、接触起电、感应起电。

实质上是电子的转移。

1.摩擦起电:束缚电子能力强的物体得到电子,束缚电子能力弱的失去电子(即束缚能力)。

2.接触起电:带电体与不带电体接触,电荷转移(即得失电子)。

3.感应起电:带电体靠近导体,自由电子会向靠近或远离带电体的方向移动(即电子移动)。

需要注意的是,被感应体与人接触或与大地接通,被感应体是近端,人是导体,触摸时,人体和地球组成一个导体,地球则为远端。

4.电荷量电荷量的单位是库仑,符号为C。

5.元电荷元电荷是一个抽象的概念,不指具体的带电体,电荷的最小计量单位。

它等于电子和质子所带电荷量的绝对值1.6×10^-19C。

所有带电体的电荷量等于e或e的整数倍。

6.比荷比荷是粒子的电荷量与粒子质量的比值。

在电子枪加速中,动能的变化量等于电场力做的功。

速度与比荷相关。

若粒子的初速度为零,则qU=mv/2,V=√(2qU/m);若粒子的初速度不为零,则qU=mv/2–mv/2,V=√(2qU/m)。

7.电荷守恒定律电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个物体,或从物体的一部分转移到另一部分。

在转移的过程中,电荷的总量保持不变。

在一个与外界没有电荷交换的系统内,正、负电荷的代数和保持不变。

需要注意的是,有两个完全相同的带电绝缘金属小球A、B,分别带电荷量为QA=4q和QB=-2q。

让两个绝缘小球接触再分开,QA=QB=q,需要注意重点是“完全相同”、“绝缘”、“正负”。

另外,电子“湮灭”不是电子的消失,而是一个正电子结合一个负电子后整体不再显电性,转化成中性的光子。

物理选修3-1》知识点总结

物理选修3-1》知识点总结

物理选修3-1》知识点总结物理选修3-1》知识点总结第六章静电场第1课时库仑定律、电场力的性质考点1.电荷、电荷守恒定律在自然界中存在两种电荷:正电荷和负电荷。

例如,用毛皮摩擦过的橡胶棒带负电,用丝绸摩擦过的玻璃棒带正电。

电荷量的基本单位是元电荷,电荷守恒定律指出电荷不能被创造或消灭,只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,电荷的总量保持不变。

考点2.库仑定律库仑定律描述了在真空中静止的两个点电荷之间的作用力与它们的电荷量的乘积成正比,与它们之间的距离的平方成反比,作用力的方向在它们的连线上。

这个作用力的大小可以用公式F=kQ1Q2/r^2来计算,其中k是静电力常量,等于9.0×10^9 N·m^2/C^2.考点3.电场强度电场是存在电荷周围能传递电荷间相互作用的一种特殊物质,对放入其中的电荷有力的作用。

电场强度是放入电场中的电荷受到的电场力F与它的电荷量q的比值,通常用N/C或V/m来表示。

电场强度有三种表达方式:定义式、决定式和关系式。

电场强度是一个向量量,其方向与正电荷在电场中受到的电场力的方向相同,与负电荷在电场中受到的电场力的方向相反。

多个电荷在电场中某点的电场强度为各个电荷单独在该点产生的电场强度的向量和,这种关系叫做电场强度的迭加,电场强度的迭加遵从平行四边形定则。

考点4.电场线、匀强电场电场线是为了形象直观描述电场的强弱和方向,在电场中画出一系列的曲线,曲线上的各点的切线方向代表该点的电场强度的方向,曲线的疏密程度表示场强的大小。

电场线是为了直观形象的描述电场而假想的,实际上是不存在的理想化模型。

匀强电场是指在空间中电场强度大小和方向都相同的电场,可以用平行板电来实现。

1.电场线的性质电场线起始于正电荷或无穷远,终止于负电荷或无穷远,是不闭合的曲线。

任意两条电场线不会相交。

电场线的疏密程度表示电场的强度,而某点切线的方向表示该点的场强方向,但并不代表电荷在电场中的运动轨迹。

高中物理选修3-1知识点归纳总结

高中物理选修3-1知识点归纳总结

⾼中物理选修3-1知识点归纳总结 在⼈教版普通⾼中物理课本选修3-1模块中,有很多⾼考物理考试中会出现的知识点需要我们去进⾏针对性的复习。

下⾯是店铺给⼤家带来的⾼中物理选修3-1知识点,希望对你有帮助。

⾼中物理选修3-1知识点(⼀) ⼀、电动势 (1)定义:在电源内部,⾮静电⼒所做的功W与被移送的电荷q的⽐值叫电源的电动势。

(2)定义式:E=W/q (3)单位:伏(V) (4)物理意义:表⽰电源把其它形式的能(⾮静电⼒做功)转化为电能的本领⼤⼩。

电动势越⼤,电路中每通过1C电量时,电源将其它形式的能转化成电能的数值就越多。

⼆、电源(池)的⼏个重要参数 (1)电动势:它取决于电池的正负极材料及电解液的化学性质,与电池的⼤⼩⽆关。

(2)内阻(r):电源内部的电阻。

(3)容量:电池放电时能输出的总电荷量。

其单位是:A·h,mA·h. ⾼中物理选修3-1知识点(⼆) ⼀、导体的电阻 (1)定义:导体两端电压与通过导体电流的⽐值,叫做这段导体的电阻。

(2)公式:R=U/I(定义式) 说明: A、对于给定导体,R⼀定,不存在R与U成正⽐,与I成反⽐的关系,R只跟导体本⾝的性质有关。

B、这个式⼦(定义)给出了测量电阻的⽅法——伏安法。

C、电阻反映导体对电流的阻碍作⽤ ⼆、欧姆定律 (1)定律内容:导体中电流强度跟它两端电压成正⽐,跟它的电阻成反⽐。

(2)公式:I=U/R (3)适应范围:⼀是部分电路,⼆是⾦属导体、电解质溶液。

三、导体的伏安特性曲线 (1)伏安特性曲线:⽤纵坐标表⽰电流I,横坐标表⽰电压U,这样画出的I-U图象叫做导体的伏安特性曲线。

(2)线性元件和⾮线性元件 线性元件:伏安特性曲线是通过原点的直线的电学元件。

⾮线性元件:伏安特性曲线是曲线,即电流与电压不成正⽐的电学元件。

四、导体中的电流与导体两端电压的关系 (1)对同⼀导体,导体中的电流跟它两端的电压成正⽐。

高二物理选修3一1知识点总结

高二物理选修3一1知识点总结

高二物理选修3一1知识点总结
一、电场
电荷与电场:
自然界中存在两种电荷:正电荷和负电荷。

电荷守恒定律:电荷既不能被创造,也不能被消灭,只能从一个物体转移到另一个物体,或从物体的一部分转移到另一部分,在转移的过程中,电荷的总量保持不变。

库仑定律:描述了点电荷之间的相互作用力。

电场强度与电势:
电场强度:描述电场中某点的电场强弱和方向的物理量。

电势:描述电场中某点电势能的物理量。

等势面:电场中电势相等的各点构成的面。

电势差与电场力做功:
电势差:电场中两点间电势的差值。

电场力做功与电势差的关系。

二、电路
电阻:表示导体对电流的阻碍作用。

欧姆定律:描述了电流、电压和电阻之间的关系。

串联与并联电路:了解串联和并联电路的特点及计算方法。

三、磁场
磁场的基本概念:磁力作用的区域,通过磁感线来描述。

磁感应强度:描述磁场强弱的物理量。

洛伦兹力:带电粒子在磁场中受到的力。

四、电磁感应
电磁感应现象:磁场变化产生电场的现象。

法拉第电磁感应定律:描述了感应电动势与磁通量变化率之间的关系。

此外,高二物理选修3-1还可能涉及光学等其他知识点,如光的反射、折射、干涉和衍射等现象,以及电磁波的基本性质和应用等。

请注意,不同版本的教材和教学大纲可能有所差异,因此在实际学习过程中,建议参考教材和教师提供的教学资料进行详细的复习和总结。

同时,通过多做习题和参加讨论,加深对知识点的理解和应用能力。

高中物理选修3-1重要知识点

高中物理选修3-1重要知识点

高中物理选修3-1重要知识点(一)安培力方向的判断1.安培力的方向总是垂直于磁场方向和电流方向所决定的平面,在判断安培力方向时首先确定磁场和电流所确定的平面,从而判断出安培力的方向在哪一条直线上,然后再根据左手定则判断出安培力的具体方向。

2.已知I、B的方向,可唯一确定F的方向;已知F、B的方向,且导线的位置确定时,可唯一确定I的方向;已知F、I的方向时,磁感应强度B的方向不能唯一确定。

3.由于B、I、F的方向关系在三维立体空间中,所以解决该类问题时,应具有较好的空间想像力.如果是在立体图中,还要善于把立体图转换成平面图。

对磁感应强度的理解1、公式B=F/IL是磁感应强度的定义式,是用比值定义的,磁感应强度B 的大小只决定于磁场本身的性质,与F、I、L均无关。

2、定义式B=FIL成立的条件是:通电导线必须垂直于磁场方向放置。

因为磁场中某点通电导线受力的大小,除了与磁场强弱有关外,还与导线的方向有关。

导线放入磁场中的方向不同,所受磁场力也不相同.通电导线受力为零的地方,磁感应强度B的大小不一定为零,这可能是电流方向与B的方向在一条直线上的原因造成的。

3、磁感应强度的定义式也适用于非匀强磁场,这时L应很短,IL称作“电流元”,相当于静电场中的试探电荷。

4、通电导线受力的方向不是磁场磁感应强度的方向。

高中物理选修3-1重要知识点(二)匀强磁场:如果磁场的某一区域里,磁感应强度的大小和方向处处相同,这个区域的磁场叫做匀强磁场.在匀强磁场中,在通电直导线与磁场方向垂直的情况下,导线所受的安培力F= BIL。

(一)公式F=BIL中L指的是“有效长度”.当B与I垂直时,F最大,F=BIL;当B与I平行时,F=0。

(二)弯曲导线的有效长度L,等于连接两端点直线的长度,如下图相应的电流沿L由始端流向末端。

1、当电流与磁场方向垂直时,F = ILB2、当电流与磁场方向夹θ角时,F = ILBsinθ常见磁场的磁感线1、永久性磁体的磁场:条形,蹄形2、直线电流的磁场剖面图(注意“ ”和“×”的意思)箭头从纸里到纸外看到的是点,从纸外到纸里看到的是叉。

高中物理选修3-1知识点

高中物理选修3-1知识点

高中物理选修3-1知识点总结:第一章静电场(人教版)新知归纳:一、电荷间的相互作用:●电荷间有相互作用力,同种电荷互相排斥,异种电荷相互吸引,两电荷间的相互作用力大小相等,方向相反,作用在同一直线上。

●库仑定律:在真空中两个点电荷间的作用力大小为F=kQ1Q2/r2静电力常量k=9.0×109N・m2/C2。

二、电场强度:●定义式:E=F/q,该式适用于任何电场,E与F、q无关只取决于电场本身,E的方向规定为正点电荷受到电场力的方向。

①场强ε与电场线的关系:电场线越密的地方表示场强越大,电场线上每点的切线方向表示该点的场强方向,电场线的方向与场强ε的大小无直接关系。

②场强的合成:场强ε是矢量,求合场强时应遵守矢量合成的平行四边形法则。

③电场力:F=qE,F与q、E都有关。

●决定式:①E=kQ/r2,仅适用于在真空中点电荷Q形成的电场,E的大小与Q成正比,与r2成反比。

②E=U/d,仅适用于匀强电场。

三、电势能:●电场力做功的特点:电场力对移动电荷做功与路径无关,只与始末位的电势差有关,Wab=qUab●判断电势能变化的方法:①根据电场力做功的正负来判断,不管正负电荷,电场力对电荷做正功,该电荷的电势能一定减少;电场力对电荷做负功,该电荷的电势能一定增加。

②根据电势的定义式U=ε/q来确定。

③利用W=q(Ua-Ub)来确定电势的高低。

四、静电平衡:把金属导体放入电场中时,导体中的电荷重新分布,当感应电荷产生的附加电场E¢与原场强E0叠加后合场强E为零时,即E=E0+E¢=0,金属中的自由电子停止定向移动,导体处于静电平衡状态。

孤立的带电导体和处于电场中的感应导体,处于静电平衡时,主要特点是:①导体内部的合场强处处为零(即感应电荷的场强与原场强大小相等方向相反)没有电场线。

②整个导体是等势体,导体表面是等势面。

③导体外部电场线与导体表面垂直。

④孤立导体上净电荷分布在外表面。

高中物理选修3-1 知识点总结

高中物理选修3-1 知识点总结

物理选修3-1知识总结第一章第1节电荷及其守恒定律一、起电方法的实验探究1.物体有了吸引轻小物体的性质,就说物体带了电或有了电荷。

2.两种电荷自然界中的电荷有2种,即正电荷和负电荷.如:丝绸摩擦过的玻璃棒所带的电荷是正电荷;用枯燥的毛皮摩擦过的硬橡胶棒所带的电荷是负电荷.同种电荷相斥,异种电荷相吸.〔相互吸引的一定是带异种电荷的物体吗?〕不一定,除了带异种电荷的物体相互吸引之外,带电体有吸引轻小物体的性质,这里的“轻小物体〞可能不带电.3.起电的方法使物体起电的方法有三种:摩擦起电、接触起电、感应起电○1摩擦起电:两种不同的物体原子核束缚电子的能力并不相同.两种物体相互摩擦时,束缚电子能力强的物体就会得到电子而带负电,束缚电子能力弱的物体会失去电子而带正电.〔正负电荷的分开与转移〕○2接触起电:带电物体由于缺少(或多余)电子,当带电体与不带电的物体接触时,就会使不带电的物体上失去电子(或得到电子),从而使不带电的物体由于缺少(或多余)电子而带正电(负电).〔电荷从物体的一局部转移到另一局部〕○3感应起电:当带电体靠近导体时,导体内的自由电子会向靠近或远离带电体的方向移动.〔电荷从一个物体转移到另一个物体〕三种起电的方式不同,但实质都是发生电子的转移,使多余电子的物体(局部)带负电,使缺少电子的物体(局部)带正电.在电子转移的过程中,电荷的总量保持不变.二、电荷守恒定律1、电荷量:电荷的多少。

在国际单位制中,它的单位是库仑,符号是C.2、元电荷:电子和质子所带电荷的绝对值×10-19C×10-19C的整数倍.〕3、比荷:粒子的电荷量与粒子质量的比值。

4、电荷守恒定律表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个物体,或从物体的一局部转移到另一局部,在转移的过程中,电荷的总量保持不变。

表述2:在一个与外界没有电荷交换的系统内,正、负电荷的代数和保持不变。

物理选修3-1知识点总结

物理选修3-1知识点总结

高二物理3-1知识点总结第一章静电场第1节电荷及其守恒定律一、起电方法的实验探究1. 物体有了吸引轻小物体的性质,就说物体带了电或有了电荷。

2. 两种电荷自然界中的电荷有2种,即正电荷和负电荷。

如:丝绸摩擦过的玻璃棒所带的电荷是正电荷;用干燥的毛皮摩擦过的硬橡胶棒所带的电荷是负电荷。

同种电荷相斥,异种电荷相吸。

相互吸引的一定是带异种电荷的物体吗?不一定,除了带异种电荷的物体相互吸引之外,带电体有吸引轻小物体的性质,这里的“轻小物体”可能不带电。

3. 起电的方法使物体起电的方法有三种:摩擦起电、接触起电、感应起电(1)摩擦起电:两种不同的物体原子核束缚电子的能力并不相同.两种物体相互摩擦时,束缚电子能力强的物体就会得到电子而带负电,束缚电子能力弱的物体会失去电子而带正电.(正负电荷的分开与转移)(2)接触起电:带电物体由于缺少(或多余)电子,当带电体与不带电的物体接触时,就会使不带电的物体上失去电子(或得到电子),从而使不带电的物体由于缺少(或多余)电子而带正电(负电).(电荷从物体的一部分转移到另一部分)(3)感应起电:当带电体靠近导体时,导体内的自由电子会向靠近或远离带电体的方向移动.(电荷从一个物体转移到另一个物体)三种起电的方式不同,但实质都是发生电子的转移,使多余电子的物体(部分)带负电,使缺少电子的物体(部分)带正电.在电子转移的过程中,电荷的总量保持不变。

二、电荷守恒定律1. 电荷量:电荷的多少。

在国际单位制中,它的单位是库仑,符号是C。

2. 元电荷:电子和质子所带电荷的绝对值1.6×10-19C,所有带电体的电荷量等于e或e的整数倍。

(元电荷就是带电荷量足够小的带电体吗?提示:不是,元电荷是一个抽象的概念,不是指的某一个带电体,它是指电荷的电荷量.另外任何带电体所带电荷量是1.6×10-19C的整数倍。

)3. 比荷:粒子的电荷量与粒子质量的比值。

4. 电荷守恒定律表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个物体,或从物体的一部分转移到另一部分,在转移的过程中,电荷的总量保持不变。

(完整版)高中物理选修3-1公式总结

(完整版)高中物理选修3-1公式总结

2、库仑定律:F k一厂(不带正负号)r(k=9.0 W9N-m2/C2, r为点电荷球心间的距离)3、电场强度定义式:E Fq场强的方向:正检验电荷受力的方向.4、点电荷的场强:E A k-Q2 (Q为场源电「A量)5、电场力做功:W AB qU AB(带正负号)6、电场力做功与电势能变化的关系:W电E p7、电势差的定义式:U AB W AB(带正负q号)8电势的定义式: A W AP(带正负号)q(P代表零势点或无穷远处)9、电势差与电势的关系:U AB A BE丄d(d为沿场强方向的距离)11、初速度为零的带电粒子在电场中加速:v第二章、电路1、电阻定律:R g (I叫电阻率)S2、串联电路电压的分配:与电阻成正比U1 R[ R.1—-—- u 1 1—U总U2 R2,R1 R2 总3、并联电路电流的分配:与电阻成反比I 1 R2 . R2 .丨2 R1 1R R2 干4、串联电路的总电阻:R串R1 R2( nR)5、并联电路的总电阻:R并了字(旦)R1 R2 n6、I-U伏安特性曲线的斜率:k tan 丄R12、带电粒子在电场中的偏转:加速度一一a理mdqU丨22md v]偏转角--- tan qU丨2md v013、初速度为零的带电粒子在电场中加速并偏转:&闭合电路欧姆定律:I —R r9、闭合电路的路端电压与输出电流的关系:U E I r10、电源输出特性曲线:电动势E:等于U轴上的截距内阻r :直线的斜率r tan E I短选修3-1公式第一章、电场qU2 I2yc * 2qU12md -mU2I24dU;1、电荷先中和后均分:q qi2q2(带正负号)14、电容的定义:C单位:法拉15、平行板电容器的电容:10、匀强电场的电场强度与电势差的关系:偏转量R12安培力的方向判断:左手定则 5、磁通量:BSsin 单位:韦伯 Wb(B 为B 和S 的夹角,即线和面的夹角) * 6、力矩:M FL (L 为力F 的力臂) * 7、通电矩形线圈在匀强磁场中绕垂直于磁场的轴旋转的磁力矩:15、热功率:P 热l 2R17、电源输出的最大电功率:第三章、磁场1、 磁场的方向:小磁针静止时 N 极的指向2、 安培定则:判断直线电流、环形电流、 通电螺线管的方向。

高中物理选修3-1知识点归纳(完美版)

高中物理选修3-1知识点归纳(完美版)

高中物理选修3-1知识点归纳(完美版)前言高中物理选修3-1是高三物理的一门选修课,是学习物理的重要组成部分。

下面将会对此课程的主要知识点进行系统的归纳。

第一部分:电磁场基础1. 静电场静电场是指电荷所产生的电场,它是在相对静止的带电粒子周围的区域产生的。

静电场中电场强度矢量的方向是电荷的正向,所以在空间中,静电场的分布形状与带电体形状有关。

静电场的主要概念有:电荷、电场、电势、电场线等。

2. 电容器和电场能电容器是由两个导体构成的器件,它们之间放置绝缘材料,可以储存电荷,并且可以储存电场能。

电场能是指带电粒子在电场中的能量,它的大小与电势有关。

3. 当量电荷和库仑力当量电荷是标准单位电荷,在电磁学中通常使用“库仑”作为当量电荷的计量单位。

库仑力是指电荷之间相互作用的力,它的大小与电荷的数量和距离有关。

第二部分:交流电1. 交流电基础交流电是指电压和电流随时间周期性变化的电流,其频率一般为50Hz或60Hz。

交流电的频率和振幅都是周期性变化的,可以表示为正弦波形。

交流电的主要特点是可以实现远距离传输,并且可以通过变压器进行改变电压。

2. 交流电路分析交流电路是指由交流电源、电感器、电容器和电阻器等组成的电路。

在分析交流电路时,需要用到阻抗的概念,阻抗是指交流电流通过电子元件时产生的电阻力。

3. 电感和互感电感是指通过电流改变电场的电磁器件,其基本特征是电流变化的速率对电压的改变速率有影响。

互感是指两个电磁元件之间相互影响的量,是指相互产生的电感量。

第三部分:电磁波1. 电磁波概述电磁波是指由电场和磁场通过介质或真空中传递的波动。

电磁波的典型特点是不需要介质即可传递,其传播速度是恒定的。

2. 电磁波的特性电磁波的特性包括:频率、波长、速度、偏振等。

其中,频率和波长是电磁波的主要特性,也是区分不同类型电磁波的重要标志。

3. 光的本质与光学显微镜光是电磁波中的一种,是人类最重要的感官之一。

光学显微镜是一种通过光学原理来观察细胞、菌群、细菌和物质组织的一种显微镜。

高二物理选修3-1知识点

高二物理选修3-1知识点

高二物理选修3-1知识点一、电磁感应现象电磁感应是指在变化的磁场中,导体中会产生电动势和电流的现象。

这一现象由法拉第在19世纪初首次发现,是电磁学中的重要内容。

在高中物理选修3-1中,我们将深入探讨电磁感应的基本原理、定律及其应用。

1.1 法拉第电磁感应定律法拉第电磁感应定律表明,通过闭合回路的电动势与穿过回路的磁通量的变化率成正比。

数学表达式为:ε = -dΦ/dt。

其中,ε表示感应电动势,Φ表示磁通量,t表示时间。

负号表示感应电动势产生的电流方向与磁通量变化的方向相反,这是楞次定律的体现。

1.2 感应电动势的计算在均匀磁场中,当导线以速度v垂直于磁场方向运动时,感应电动势的大小可以通过公式ε = BLv计算,其中B表示磁场强度,L表示导线长度。

若导线与磁场成一定角度,则需要通过向量分解来计算感应电动势。

1.3 电磁感应的应用电磁感应原理在现代科技中有着广泛的应用,如发电机、变压器等。

在发电机中,通过机械能驱动导线在磁场中运动,产生感应电动势和电流,从而将机械能转换为电能。

在变压器中,通过改变磁通量来实现电压的升高或降低。

二、交流电基础知识交流电是指电流方向周期性变化的电流。

与直流电相比,交流电在传输过程中能够通过变压器轻松地改变电压,因此在电力系统中得到了广泛应用。

2.1 交流电的描述交流电的大小和方向随时间变化,可以用正弦波形来描述。

其基本参数包括频率、峰值、有效值和相位。

频率表示交流电周期性变化的速率,单位是赫兹(Hz)。

峰值是交流电在一个周期内的最大值,有效值是交流电热效应等效的直流电大小。

2.2 交流电的产生交流电可以通过多种方式产生,最常见的是通过发电机。

在发电机中,利用机械能驱动磁场中的导线旋转,产生变化的磁通量,从而在导线中感应出交流电动势和电流。

2.3 交流电的传输与变压交流电在长距离传输过程中会遭受能量损失,通过提高传输电压可以减小这种损失。

而变压器则可以在不同电压等级之间转换交流电,实现电能的有效利用。

选修3 1物理知识点总结

选修3 1物理知识点总结

选修3 1物理知识点总结
一、电磁学部分
法拉第电磁感应定律:描述磁场中感应电势的大小与磁感应强度的变化率成正比。

楞次定律:解释感应电流产生的方向,即感应电流会产生反电动势,其方向总是阻碍引起它的变化。

重要公式:ε = -NΔΦ / Δt(法拉第电磁感应定律)U = LdI / dt(自感现象)U = -M dI1 / dt(互感现象)
其中,U表示感应电动势,L表示自感系数,M表示互感系数,I 表示电流,Φ表示磁通量,t表示时间。

二、电场部分
电荷与电场:理解两种电荷及其相互作用,电荷守恒定律,以及元电荷的概念。

库仑定律:描述真空中点电荷之间的相互作用力,以及作用力与电荷量和距离的关系。

电场强度:掌握电场强度的定义、计算及其与电荷量和距离的关系。

电势、电势差与电势能:理解电势、电势差和电势能的定义及它们之间的关系,特别要注意场强、电势、电势差和电势能之间的比较和区别。

三、电路学部分
电源与电动势:理解电源的电动势定义及物理意义,掌握电动势的计算公式E=W/q。

欧姆定律:掌握导体中电流与电压和电阻之间的关系,即电流与电压成正比,与电阻成反比。

此外,选修3-1物理还涉及发电机和变压器的原理,发电机利用电磁感应现象将机械能转化为电能,而变压器则利用电磁感应原理实现电压的升降。

请注意,以上仅为选修3-1物理的部分知识点总结,完整的学习和复习还需要参考教材和课堂讲解,深入理解各个概念和公式的物理意义和应用。

同时,多做习题和实验也是提高物理学习效果的重要途径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电容 带电粒子在电场中的运动知识要点:1.电荷 电荷守恒定律 点电荷⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间的相互作用力就是通过电场发生的。

电荷的多少叫电量。

基本电荷e =⨯-161019.C。

带电体电荷量等于元电荷的整数倍(Q=ne )⑵使物体带电也叫起电。

使物体带电的方法有三种:①摩擦起电 ②接触带电 ③感应起电。

⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。

带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略不计时,这样的带电体就可以看做带电的点,叫做点电荷。

2.库仑定律(1)公式 F K Q Q r=122 (真空中静止的两个点电荷) 在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距离的平方成反比,作用力的方向在它们的连线上,数学表达式为F K Q Q r=122,其中比例常数K 叫静电力常量,K =⨯90109.N m C22·。

(F:点电荷间的作用力(N), Q 1、Q 2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引)(2)库仑定律的适用条件是(1)真空,(2)点电荷。

点电荷是物理中的理想模型。

当带电体间的距离远远大于带电体的线度时,可以使用库仑定律,否则不能使用。

3.静电场 电场线为了直观形象地描述电场中各点的强弱及方向,在电场中画出一系列曲线,曲线上各点的切线方向表示该点的场强方向,曲线的疏密表示电场的弱度。

电场线的特点:(1)始于正电荷 (或无穷远),终止负电荷(或无穷远);(2)任意两条电场线都不相交。

电场线只能描述电场的方向及定性地描述电场的强弱,并不是带电粒子在电场中的运动轨迹。

带电粒子的运动轨迹是由带电粒子受到的合外力情况和初速度共同决定。

4.电场强度 点电荷的电场⑴电场的最基本的性质之一,是对放入其中的电荷有电场力的作用。

电场的这种性质用电场强度来描述。

在电场中放入一个检验电荷q ,它所受到的电场力F 跟它所带电量的比值F q 叫做这个位置上的电场强度,定义式是qF E =,E 是矢量,规定正电荷受电场力的方向为该点的场强方向,负电荷受电场力的方向与该点的场强方向相反。

(E:电场强度(N/C),是矢量,q :检验电荷的电量(C))电场强度E 的大小,方向是由电场本身决定的,是客观存在的,与检验电荷无关。

与放入检验电荷的正、负,及带电量的多少均无关,不能认为E 与F 成正比,也不能认为E 与q 成反比。

点电荷场强的计算式E KQ r =2( r :源电荷到该位置的距离(m ),Q :源电荷的电量(C))要区别场强的定义式E F q =与点电荷场强的计算式E KQ r=2,前者适用于任何电场,后者只适用于真空(或空气)中点电荷形成的电场。

5.电势能 电势 等势面电势能由电荷在电场中的相对位置决定的能量叫电势能。

电势能具有相对性,通常取无穷远处或大地为电势能和零点。

由于电势能具有相对性,所以实际的应用意义并不大。

而经常应用的是电势能的变化。

电场力对电荷做功,电荷的电势能减速少,电荷克服电场力做功,电荷的电势能增加,电势能变化的数值等于电场力对电荷做功的数值,这常是判断电荷电势能如何变化的依据。

电场力对电荷做功的计算公式:W q U=,此公式适用于任何电场。

电场力做功与路径无关,由起始和终了位置的电势差决定。

电势是描述电场的能的性质的物理量在电场中某位置放一个检验电荷q ,若它具有的电势能为ε,则比值εq 叫做该位置的电势。

电势也具有相对性,通常取离电场无穷远处或大地的电势为零电势(对同一电场,电势能及电势的零点选取是一致的)这样选取零电势点之后,可以得出正电荷形成的电场中各点的电势均为正值,负电荷形成的电场中各点的电势均为负值。

电势相等的点组成的面叫等势面。

等势面的特点:(1)等势面上各点的电势相等,在等势面上移动电荷电场力不做功。

(2)等势面一定跟电场线垂直,而且电场线总是由电势较高的等势面指向电势较低的等势面。

(3)规定:画等势面(或线)时,相邻的两等势面(或线)间的电势差相等。

这样,在等势面(线)密处场强较大,等势面(线)疏处场强小。

6.电势差Ⅱ电场中两点的电势之差叫电势差,依教材要求,电势差都取绝对值,知道了电势差的绝对值,要比较哪个点的电势高,需根据电场力对电荷做功的正负判断,或者是由这两点在电场线上的位置判断。

7.匀强电场中电势差和电场强度的关系场强方向处处相同,场强大小处处相等的区域称为匀强电场,匀强电场中的电场线是等距的平行线,平行正对的两金属板带等量异种电荷后,在两极之间除边缘外就是匀强电场。

在匀强电场中电势差与场强之间的关系是U E d=,公式中的d是沿场强方向上的距离(m)。

在匀强电场中平行线段上的电势差与线段长度成正比8.带电粒子在匀强电场中的运动(1)带电粒子在电场中的运动,综合了静电场和力学的知识,分析方法和力学的分析方法基本相同:先分析受力情况,再分析运动状态和运动过程,然后选用恰当的规律解题。

(2)在对带电粒子进行受力分析时,要注意两点:A1要掌握电场力的特点。

如电场力的大小和方向不仅跟场强的大小和方向有关,还与带电粒子的电量和电性有关;在匀强电场中,带电粒子所受电场力处处是恒力;在非匀强电场中,同一带电粒子在不同位置所受电场力的大小和方向都可能不同。

A2是否考虑重力要依据具体情况而定:基本粒子:如电子、质子、α粒子、离子等除有要说明或明确的暗示以外,一般都不考虑重力(但并不忽略质量)。

带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示以外,一般都不能忽略重力。

(3)带电粒子的加速(含偏转过程中速度大小的变化)过程是其他形式的能和功能之间的转化过程。

解决这类问题,可以用动能定理,也可以用能量守恒定律。

如选用动能定理,则要分清哪些力做功?做正功还是负功?是恒力功还是变力功?若电场力是变力,则电场力的功必须表达成W q U a b a b=,还要确定初态动能和末态动能(或初、末态间的动能增量)如选用能量守恒定律,则要分清有哪些形式的能在变化?怎样变化(是增加还是减少)?能量守恒的表达形式有:a 初态和末态的总能量(代数和)相等,即E E 初末=;b 某种形式的能量减少一定等于其它形式能量的增加,即∆∆E E 减增= c 各种形式的能量的增量的代数和∆∆EE 120++=……; (4)、带电粒子在匀强电场中类平抛的偏转问题。

如果带电粒子以初速度v 0垂直于场强方向射入匀强电场,不计重力,电场力使带电粒子产生加速度,作类平抛运动,分析时,仍采用力学中分析平抛运动的方法:把运动分解为垂直于电场方向上的一个分运动——匀速直线运动:v v x =0,x vt =0;另一个是平行于场强方向上的分运动——匀加速运动,v a t a q U m d y ==,,y q U m d x v =1202(),粒子的偏转角为t g v v q U m v d y x ϕ==002。

经一定加速电压(U 1)加速后的带电粒子,垂直于场强方向射入确定的平行板偏转电场中,粒子对入射方向的偏移y q U L m d v U L d U ==1242202221,它只跟加在偏转电极上的电压U 2有关。

当偏转电压的大小极性发生变化时,粒子的偏移也随之变化。

如果偏转电压的变化周期远远大于粒子穿越电场的时间(T >>L v 0),则在粒子穿越电场的过程中,仍可当作匀强电场处理。

应注意的问题:1、电场强度E 和电势U 仅仅由场本身决定,与是否在场中放入电荷 ,以及放入什么样的检验电荷无关。

而电场力F 和电势能ε两个量,不仅与电场有关,还与放入场中的检验电荷有关。

所以E 和U 属于电场,而F 电和ε属于场和场中的电荷。

2、一般情况下,带电粒子在电场中的运动轨迹和电场线并不重合,运动轨迹上的一点的切线方向表示速度方向,电场线上一点的切线方向反映正电荷的受力方向。

物体的受力方向和运动方向是有区别的。

只有在电场线为直线的电场中,且电荷由静止开始或初速度方向和电场方向一致并只受电场力作用下运动,在这种特殊情况下粒子的运动轨迹才是沿电力线的。

如图所示:9.电容器 电容(1)两个彼此绝缘,而又互相靠近的导体,就组成了一个电容器。

(2)电容:表示电容器容纳电荷的本领。

a 定义式:C Q U Q U ==()∆∆,即电容C 等于Q 与U 的比值,不能理解为电容C 与Q 成正比,与U 成反比。

一个电容器电容的大小是由电容器本身的因素决定的,与电容器是否带电及带电多少无关。

b 决定因素式:如平行板电容器C S k d=επ4(不要求应用此式计算) 根据C Q U Q U ==()∆∆和kd S C πε4=导出S kQ C επ4=(3)对于平行板电容器有关的Q 、E 、U 、C 的讨论时要注意两种情况:a 保持两板与电源相连,则电容器两极板间的电压U 不变b 充电后断开电源,则带电量Q 不变(4)电容的定义式:C Q U = (定义式)(5)C 由电容器本身决定。

对平行板电容器来说C 取决于:C S Kd=επ4(决定式)(6)电容器所带电量和两极板上电压的变化常见的有两种基本情况:第一种情况:若电容器充电后再将电源断开,则表示电容器的电量Q 为一定,此时电容器两极的电势差将随电容的变化而变化。

第二种情况:若电容器始终和电源接通,则表示电容器两极板的电压V 为一定,此时电容器的电量将随电容的变化而变化。

10.电流 电动势Ⅰ(1)形成电流的条件:一是要有自由电荷,二是导体内部存在电场,即导体两端存在电压。

(2)电流强度:通过导体横截面的电量q 跟通过这些电量所用时间t 的比值,叫电流强度:I q t =。

(3)电动势:电动势是描述电源把其他形式的能转化为电能本领的物理量。

定义式为:ε=W q。

要注意理解:○1ε是由电源本身所决定的,跟外电路的情况无关。

○2ε的物理意义:电动势在数值上等于电路中通过1库仑电量时电源所提供的电能或理解为在把1 库仑正电荷从负极(经电源内部)搬送到正极的过程中,非静电力所做的功。

○3注意区别电动势和电压的概念。

电动势是描述其他形式的能转化成电能的物理量,是反映非静电力做功的特性。

电压是描述电能转化为其他形式的能的物理量,是反映电场力做功的特性。

11.欧姆定律 闭合电路欧姆定律Ⅱ1、欧姆定律:通过导体的电流强度,跟导体两端的电压成正比,跟导体的电阻成反比,即I U R =,要注意: a :公式中的I 、U 、R 三个量必须是属于同一段电路的具有瞬时对应关系。

b :适用范围:适用于金属导体和电解质的溶液,不适用于气体。

相关文档
最新文档