九年级数学上册第二十二章二次函数22.1二次函数的图象和性质22.1.3二次函数y=ax_h2+k的图象和性质第3课时预

合集下载

武城县第四中学九年级数学上册第二十二章二次函数22.1二次函数的图象和性质22.1.3二次函数y=a

武城县第四中学九年级数学上册第二十二章二次函数22.1二次函数的图象和性质22.1.3二次函数y=a
B
3.如下图 , 直角∠AOB内的任意一点P到这个角的两边的距离之和为6 , 那么图中四边形的周长为( )
A
A.12 B.18 C.24 D.30
4.(教材P18〞随堂练习”变式)如下图 , 在▱ABCD中 , E , F分别是AB , CD的中点 , 连接AF , CE.连接AC , 当
CA=CB时 , 判断四边形AECF是( )
休息时间到啦
同学们,下课休息十分钟。现在是休 息时间,你们休息一下眼睛,
看看远处,要保护好眼睛哦~站起来 动一动,久坐对身体不好哦~
16.(湘潭中考)如图,点 P 为抛物线 y=14 x2 上一动点. (1)若抛物线 y=14 x2 是由抛物线 y=14 (x+2)2-1 通过图象平移得到的, 请写出平移的过程;
4.如图是抛物线 y=a(x+1)2+2 的一部分,
该抛物线在 y 轴右侧部分与 x 轴的交点坐标是(B )
1 A.(2
,0)
B.(1,0) C.(2,0) D.(3,0)
5.(新乡月考)二次函数y=a(x-1)2+k(a>0)中x , y的两组対应值如下表 :
x
-2
1
y
m
n
表中m , n的大小关系为n __<__m.(用〞<”连接)
8.(2019·哈尔滨)将抛物线y=2x2向上平移3个单位长度 , 再向右平移2个单位长度 , 所得到的抛物线为(B ) A.y=2(x+2)2+3 B.y=2(x-2)2+3 C.y=2(x-2)2-3 D.y=2(x+2)2-3
9.(2019·凉山州)将抛物线y=(,_2_)___.
(2)假设直线l经过y轴上一点N , 且平行于x轴 , 点N的坐标为(0 , -1) , 过点P作PM⊥l于M. ①问题探究 : 如下图① , 在対称轴上是否存在一定点F , 使得PM=PF 恒成立 ?假设存在 , 求出点F的坐标 : 假设不存在 , 请说明理由. ②问题解决 : 如下图② , 假设点Q的坐标为(1 , 5) , 求QP+PF的最小值.

03-第二十二章22.1.3二次函数y=a(x-h)2 k的图象和性质

03-第二十二章22.1.3二次函数y=a(x-h)2 k的图象和性质

确的是 ( )
A.开口向下
B.对称轴是x=-1
C.顶点坐标是(-1,2) D.与x轴没有交点
答案 D ∵y=(x-1)2+2,∴抛物线开口向上,对称轴为x=1,顶点坐标为 (1,2),故A、B、C均不正确.∵抛物线开口向上,顶点(1,2)在第一象限, ∴抛物线与x轴没有交点,故D正确.
22.1.3 二次函数y=a(x-h)2+k的图象和性质
的面积为16,则抛物线l2的函数表达式为
.
图22-1-3-2
22.1.3 二次函数y=a(x-h)2+k的图象和性质
栏目索引
解析 当y=0时,有 1 (x-2)2-2=0,
2
解得x1=0,x2=4,∴OA=4.
∵S阴影=OA·AB=16,∴AB=4,
∴抛物线l2的函数表达式为y= 1 (x-2)2-2+4= 1 (x-2)2+2.
当x=0时,y有最大值,y最大值=k
22.1.3 二次函数y=a(x-h)2+k的图象和性质
栏目索引
例1 (2017湖南邵阳模拟)关于二次函数y=-2x2+1的图象,下列说法中,正 确的是 ( ) A.对称轴为直线x=1 B.顶点坐标为(-2,1) C.可以由二次函数y=-2x2的图象向左平移1个单位得到 D.在y轴的左侧,图象上升,在y轴的右侧,图象下降
当x=h时,y有最大值,y最大值=0
22.1.3 二次函数y=a(x-h)2+k的图象和性质
栏目索引
例2 (2017广东潮州潮安期中)二次函数y=3x2+1和y=3(x-1)2,以下说法:
①它们的图象都是开口向上;②它们的图象的对称轴都是y轴,顶点坐标
都是原点(0,0);③当x>0时,它们的函数值y都是随着x的增大而增大;④它

九年级数学上册 第22章 二次函数 22.1 二次函数的图象和性质 22.1.3 第3课时 二次函数

九年级数学上册 第22章 二次函数 22.1 二次函数的图象和性质 22.1.3 第3课时 二次函数

第3课时 二次函数y =a (x -h )2+k 的图象和性质1.二次函数y =(x +2)2-1的图象大致为( )A B C D2.对于二次函数y =-(x -1)2+2的图象与性质,下列说法正确的是( )A .对称轴是直线x =1,最小值是2B .对称轴是直线x =1,最大值是2C .对称轴是直线x =-1,最小值是2D .对称轴是直线x =-1,最大值是23.对于抛物线y =-(x +1)2+3,有下列结论:①抛物线的开口向下;②对称轴为直线x =1;③顶点坐标为(-1,3);④当x >1时,y 随x 的增大而减小.其中正确结论的个数为( )A .1B .2C .3D .44.将抛物线y =2x 2向右平移3个单位长度,再向下平移5个单位长度,得到的抛物线的解析式为( )A .y =2(x -3)2-5B .y =2(x +3)2+5C .y =2(x -3)2+5D .y =2(x +3)2-55.一个小球被抛出后,距离地面的高度h (m)和飞行时间t (s)满足函数关系式:h =-4(t -1)2+5,则小球距离地面的最大高度是____ m.6.已知抛物线y =34(x -1)2-3. (1)写出抛物线的开口方向、对称轴;(2)函数y 有最大值还是最小值?并求出这个最大(小)值.7.如图22­1­14,将函数y =12(x -2)2+1的图象沿y 轴向上平移得到一条新函数的图象,其中点A (1,m ),B (4,n )平移后的对应点分别为点A ′,B ′.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数解析式是( )图22­1­14A .y =12(x -2)2-2 B .y =12(x -2)2+7 C .y =12(x -2)2-5 D .y =12(x -2)2+48.如图22­1­15,已知抛物线y =a (x -1)2-3的图象与y 轴交于点A (0,-2),顶点为B .(1)试确定a 的值,并写出B 点的坐标;(2)若一次函数的图象经过A ,B 两点,试写出一次函数的解析式;(3)试在x 轴上求一点P ,使得△PAB 的周长最小.图22­1­15参考答案【分层作业】1.D 2.B 3.C 4.A 5.5 6.(1)抛物线的开口向上,对称轴为直线x =1. (2)∵a =34>0,∴函数y 有最小值,最小值为-3. 7.D 8.(1)a =1,B (1,-3). (2)y =-x -2. (3)P ⎝ ⎛⎭⎪⎫25,0.。

2022九年级数学上册 第22章 二次函数22.1 二次函数的图象和性质 3二次函数y=a(x-h)

2022九年级数学上册 第22章 二次函数22.1 二次函数的图象和性质 3二次函数y=a(x-h)

1-(-3)=4,∴S△PAB=
1 2
×4×2=4.
考查角度二 二次函数与水流问题 14.(课本P36例4改编)某公园有一喷水池,在水池中央有一垂直于地面的喷 水柱,喷水时,水流在各方向沿形状相同的抛物线落下(如图),假设水流喷 出的高度y(m)与水平距离x(m)之间的函数关系式为y=-(x-1)2+2.25. (1)求喷出的水流离地面的最大高度;
解:(1)∵水流喷出的高度y(m)与水平距离x(m)之间 的函数关系式为y=-(x-1)2+2.25,∴喷出的水流 离地面的最大高度为2.25 m.
(2)求喷嘴离地面的高度;
(2)当x=0时,y=-(0-1)2+2.25=1.25,∴喷嘴离地面的高度为1.25 m.
(3)假设把喷水池改成圆形,那么水池半径至少为多少时,才能使喷出的水 流不落在水池外?
(3)当y=0时,0=-(x-1)2+2.25,解得x1=-0.5(舍 去),x2=2.5.∴水池半径至少为2.5 m时,才能使喷出 的水流不落在水池外.
拔尖角度一 根据对称轴的位置与最值的关系求待定字母的值
15.二次函数y=-(x-h)2+1(h为常数),当自变量x的值满足2≤x≤5时,与 其对应的函数值y的最大值为0,那么h的值为( )
y=2x2
易错点 将图象平移与坐标轴平移混淆
10.函数y=2x2的图象是抛物线,假设抛物线不动,把x轴、y轴分别向 上、向右平移2个单位长度,那么在新坐标系下抛物线的解析式是( )
B A.y=2(x-2)2+2 B.y=2(x+2)2-2 C.y=2(x-2)2-2 D.y=2(x+2)2+2
11.二次函数y=-(x-1)2+m(m是常数),当x分别取-1,1,2时,对应的
知识点二 抛物线y=a(x-h)2+k与y=ax2之间的平移关系

九年级数学上册第二十二章二次函数22.1二次函数的图象和性质22.1.3二次函数y=a(x-h)2+k的图象和性质第

九年级数学上册第二十二章二次函数22.1二次函数的图象和性质22.1.3二次函数y=a(x-h)2+k的图象和性质第

教材分析之前学生已经学过一次函数、反比例函数的图像和性质,以及会建立二次函数的模型和理解二次函数的图像相关概念和性质基础之上进行的。

是前面知识的应用和拓展,又为今后学习二次函数的应用及一元二次方程与二次函数之间的关系作预备。

充分体现了数形结合的思想,因此本课无论在知识上还是培养学生动手能力上都起了很大的作用。

学生已经会了上一节的二次函数图像及性质。

课标要求会用描点法画出二次函数的图像,通过图像了解二次函数的性质。

学情分析可能有些学生对二次函数还不理解,甚至还不会描点法画出函数图像,看图能力差,不能类比一次函数的一些观察图像的方法来学习二次函数的图像。

不能从图中获取相关的信息。

由于放假的原因,学生对上下平移和左右平移的知识有很多淡忘,所以完成本节知识在理解方面会有难点。

教学目标知识目标:让学生经历二次函数y=a(x-h)2+k性质探究的过程,理解函数y=a(x-h)2+k的性质,理解二次函数y=a(x-h)2+k的图象与二次函数y=ax2的图象的关系能力目标:通过画图象独立去探索交流图象的性质培养分析解决问题的能力。

能说出二次函数y =a(x-h)2+k的图象与二次函数y=ax2的图象的关系。

情意目标:在学习中体会知识之间的联系,体会知识的发生发展过程和知识体系。

教学重点:会用描点法画出二次函数y=a(x-h)2+k的图象,理解二次函数y=a(x-h)2+k的性质。

能说出顶点坐标。

教学难点:理解二次函数y=a(x-h)2+k的性质,理解二次函数y=a(x-h)2+k的图象与二次函数y=ax2关系。

教学手段导学案教学方法问答法、练习法、讨论法教学过程1、创设情境::(组织方法)复习两个上下平移及左右平移的二次数学图像,对照图像说出开口方向、对称轴、顶点坐标、最值、性质。

详见导学案。

解决哪些教学目标:在学习中体会知识之间的联系,体会知识的发生发展过程和知识体系。

学生可能出现的困难:忘记或混淆上下平移和左右平移。

2022九年级数学上册 第22章 二次函数22.1 二次函数的图象和性质 3二次函数y=a(x-h)

2022九年级数学上册 第22章 二次函数22.1 二次函数的图象和性质 3二次函数y=a(x-h)
解:(1)由题意,得点A,B1的坐标分别为A(1,0), B1(2,1).设抛物线的解析式为y=a(x-1)2,将 B1(2,1)代入,得1=a(2-1)2,解得a=1,∴抛 物线的解析式为y=(x-1)2.
(2)假设(1)中的抛物线与OB交于点C,与y轴交于点D,求点D,C的坐标.
(2)令x=0,则y=(0-1)2=1,∴点D的坐标为(0,1).由
第二十二章 二次函数
22.1 二次函数的图象和性质
22.1.3 二次函数y=a(x-h)2+k的图象和性质 第2课时 二次函数y=a(x-h)2的图象和性质
知识点一 二次函数y=a(x-h)2的图象和性质 1.在平面直角坐标系中,二次函数y=1 (x-2)2的图象可能是(D )
2
A
B
C
D
2.对于函数y=-2(x-1)2的图象,以下说法不正确的选项D 是( )
15.某抛物线和函数y=2x2的图象形状相同,对称轴平行于y轴,并且顶点
坐标是(-1,0),那么此抛物线的解析式为________
______.
y=2(x+1)2或y=-2(x+1)2
考查角度一 由线段相等求抛物线的解析式
16.如图是二次函数y=1 (x-h)2的图象,其中OA=OC,试求该抛物线的解
A.开口向下
B.对称轴是直线x=1
C.最大值为0
D.顶点坐标是(0,1)
3.以下有关二次函数y=2(x+4)2的性质,描述正确的选项D是( ) A.当x>0时,y随x的增大而减小 B.当x<0时,y随x的增大而增大 C.当x>-4时,y随x的增大而减小 D.当x<-4时,y随x的增大而减小
4.抛物线y=-(x+7)2的开口向____下____,对称轴为直__线__x_=__-__7_,顶点坐标 是_(_-__7_,__0_);当__x_<_-__7__时,y随x的增大而增大;当__x_>_-__7__时,y随x的 增大而减小;当x=_-_7______时,函数y有最_大_____(填“最大〞或“最小〞)值.

2020九年级数学上册 第二十二章 二次函数 22.1 二次函数的图象和性质 22.1.3 二次函数y=a(x-h)2+k的图

2020九年级数学上册 第二十二章 二次函数 22.1 二次函数的图象和性质 22.1.3 二次函数y=a(x-h)2+k的图

22.1.3二次函数y =a(x -h)2+k 的图象与性质(2)——二次函数y =a(x-h)2的图象与性质学习目标:1.会画二次函数y =a (x-h )2的图象;2.掌握二次函数y =a (x-h )2的性质,并要会灵活应用; 一、复习:1.在同一直角坐标系内画出二次函数y = 12 x 2,y = 12 x 2+2,y =12 x 2-2的图象(草图),并回答:(1)三条抛物线的位置关系。

(2)分别说出它们的对称轴、开口方向和顶点坐标。

(3)说出它们所具有的公共性质。

2.(1)在同一直角坐标系中,二次函数y =ax 2+k 与y =ax 2的图象有什么关系? (2)二次函数y =ax 2+k 的图象开口方向、对称轴、 顶点坐标分别是什么?二、探索新知:1.二次函数y =2(x -1)2和y =2(x+1)2的图象与二次函数y =2x 2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系?画出二次函数y =2(x -1)2和y =2(x+1)2与二次函数y =2x 2的图象,并加以观察x … -4 -3 -2 -1 0 1 2 3 4 … y =2x 2…… y =2(x -1)2 …… y =2(x+1)2……161284y 2x431-1 -2 -3 -4 0观察图像得:函数y =2(x -1)2和y =2(x+1)2的图象相同点是: ; 不同的是:函数y =2(x -1)2的顶点坐标是 ,对称轴是 ,有最 值是 ;函数y =2(x+1)2的顶点坐标是 ,对称轴是 ,有最 值是 。

把抛物线y =2x 2向 平移 个单位就得抛物线y =2(x -1)2;把抛物线y =2x 2向 平移 个单位就得抛物线y =2(x+1)2。

2.画出二次函数y =-12 (x +1)2,y=-12 (x -1)2的图象,并考虑它们的开口方向、对称轴、顶点以及最值、增减性.先列表:x… -4 -3 -2 -1 0 1 2 3 4 … y =-12 (x +1)2… … y =-12 (x -1)2……描点并画图.(1)、观察图象,填表:函数开口方向顶点 对称轴 最值增减性(对称轴右侧) 平移y =-12 (x+1)2y =-12(x -1)2三、整理知识点y =ax 2y =ax 2+k y =a (x-h)2a>0a<0a>0a<0a>0a<0开口方向增减性(对称轴左侧)顶点坐标对称轴最值x= 时,y最值=平移对于二次函数的图象,只要|a|相等,则它们的形状_________,只是_________不同.四、课堂训练1.抛物线y=2 (x+3)2的开口______________;顶点坐标为__________________;对称轴是_________;当x>-3时,y______________;当x=-3时,y有_______值是_________.2.抛物线y=4 (x-2)2与y轴的交点坐标是___________,与x轴的交点坐标为________.3.若将抛物线y=2x2+1向下平移2个单位后,得到的抛物线解析式为_______________.4.若抛物线y=m (x+1)2过点(1,-4),则m=_______________.5.抛物线y= -3(x+2)2开口向,对称轴为,顶点坐标为 .6.抛物线y=3(x+0.5)2可以看成由抛物线向平移个单位得到的;7.把抛物线y=3x2向右平移4个单位后,得到的抛物线的表达式为____________________.把抛物线y=3x2向左平移6个单位后,再向上平移2个单位得,到的抛物线的表达式为____________________.8.抛物线y=3(x-3)2可由抛物线y=3x2沿轴向平移个单位得到,也可以由抛物线y=3(x-7)2沿轴向平移个单位得到。

九年级数学上册 第二十二章 22.1 二次函数的图像及性质 22.1.3 二次函数y=ax2+k的图

九年级数学上册 第二十二章 22.1 二次函数的图像及性质 22.1.3 二次函数y=ax2+k的图

第二十二章 22.1.3二次函数y=ax2+k的图象和性质知识点:二次函数y=ax2+k的图象及其性质二次函数y=ax2+k的性质与二次函数y=ax2的性质很多都相同,只是图象顶点坐标及最值有所区别,但也可以由二次函数y=ax2的图象的顶点平移得到二次函数y=a x2+k的图象的顶点的坐标,因而学习二次函数y=ax2+k的性质,可在熟记二次函数y=ax2的性质的基础上类比学习.二次函数图象开口方向顶点坐标对称轴增减性最大(小)值y=ax2+ka>0k>0向上(0,k)y轴当x>0时,y随x的增大而增大;当x<0时,y随x的增大而减小当x=0时,y最小值=ka>0k<0向上(0,k)y轴当x>0时,y随x的增大而增大;当x<0时,y随x的增大而减小当x=0时,y最小值=k a<0k>0向下(0,k)y轴当x>0时,y随x的增大而减小;当x<0时,y随x的增大而增大当x=0时,y最大值=k a<0k<0向下(0,k)y轴当x>0时,y随x的增大而减小;当x<0时,y随x的增大而增大当x=0时,y最大值=k 二次函数的解析式中常数项的变化与其图象移动的关系:上加下减.考点1:二次函数y=ax2+k的图象【例1】小明在某次投篮中,球的运动路线是抛物线y=-x2+3.5的一部分(如图),若投中篮框中心,则他与篮底的距离l是( )A.3.5 mB.4 mC.4.5 mD.4.6 m答案:B点拨:由题意令y=3.05,可得3.05=-x2+3.5,解得x=±1.5(负值不符合题意,舍去),所以他与篮底的距离l=1.5+2.5=4(m).考点2:二次函数y=ax2+k的性质【例2】将抛物线y=-3x2向上平移1个单位后,得到的抛物线对应的函数解析式是.答案:y=-3x2+1点拨:由“上加下减”的规律知,该抛物线向上平移1个单位后得到的抛物线对应的函数解析式为y=-3x2+1.感谢您的支持,我们会努力把内容做得更好!。

九年级数学上册22.1.3 二次函数的图像和性质

九年级数学上册22.1.3 二次函数的图像和性质
则y1,y2,y3的大小关系是(B )
A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y1 (2).已知A(-1,y1),B(-2,y2),C(3,y3)三点都在二次函数y=-2(x+2)2的图象
上,则y1,y2,y3的大小关系是y2>y1>y.3
5. 抛物线y=a(x+1)2经过点(1,-12). 求:(1)a的值; (2)当x在什么范围内取值时,y随x的增大而增大? 解: (1)∵抛物线y=a(x+1)2经过点(1,-12)
A.向上平移1个单位; C.向左平移1个单位;
B.向下平移1个单位; D.向右平移1个单位.
2.抛物线y= 2x2 向上平移5个单位,会得到哪条抛物线. 向下平移3.4个单位呢?
3、把抛物线y= 2x2-4x+2化成y= a(x-h)2的形式,并指出抛物线的开口 方向,对称轴,顶点坐标;函数有最大值还是最小值?是多少?
O
开开口口向上
开口向下
a的绝对值越大,开口越小
对称性 关于y轴对称
顶点坐标是原点(0,0)
顶点
顶点是最低点
顶点是最高点
在在对对增称称减轴轴性左右侧侧递递减增
在对称轴左侧递增 在对称轴右侧递减
二次函数y=ax2+c的性质
y=ax2+c
a>0
a<0
图象
开口 对称性 顶点 增减性
c>0
c<0
c>0
c<0
y 1 x2 2
y 1 (x 2)2 2
观察三条抛物线的 相互关系,并分别指 出它们的开口方向, 对称轴及顶点.

九年级数学上册第二十二章二次函数22.1二次函数的图象和性质22.1.3二次函数y=ax_h2 k的图象和性质第1课时二

九年级数学上册第二十二章二次函数22.1二次函数的图象和性质22.1.3二次函数y=ax_h2 k的图象和性质第1课时二

ቤተ መጻሕፍቲ ባይዱ2019/5/26
最新中小学教学课件
17
谢谢欣赏!
2019/5/26
最新中小学教学课件
18
全的人,主要是担心漏掉重要内容,影响以后的复习与思考.,这样不仅失去了做笔记的意义,也将课堂“听”与“记”的关系本末倒置了﹙太忙于记录, 便无暇紧跟老师的思路﹚。 如果只是零星记下一些突出的短语或使你感兴趣的内容,那你的笔记就可能显得有些凌乱。 做提纲式笔记因不是自始至终全都埋头做笔记,故可在听课时把时间更多地用于理解所听到的内容.事实上,理解正是做好提纲式笔记的关键。 课堂笔记要注意这五种方法:一是简明扼要,纲目清楚,首先要记下所讲章节的标题、副标题,按要点进行分段;二是要选择笔记语句,利用短语、数 字、图表、缩写或符号进行速记;三是英语、语文课的重点词汇、句型可直接记在书页边,这样便于复习时查找﹙当然也可以记在笔记本上,前提是你 能听懂﹚;四是数理化生等,主要记老师解题的新思路、补充的定义、定理、公式及例题;五是政治、历史等,着重记下老师对问题的综合阐述。
讲课内容——对实际材料的讲解课可能需要做大量的笔记。 最讲授的主题是否熟悉——越不熟悉的学科,笔记就越需要完整。 所讲授的知识材料在教科书或别的书刊上是否能够很容易看到——如果很难从别的来源得到这些知识,那么就必须做完整的笔记。 有的同学一味追求课堂笔记做得“漂亮”,把主要精力放在做笔记上,常常为看不清黑板上一个字或一句话,不断向四周同学询问。特意把笔记做得很
22.1.3 二次函数y=a(x-h)2+k的 图象和性质
第1课时 二次函数y=ax2+k的 图象和性质
编后语
做笔记不是要将所有东西都写下,我们需要的只是“详略得当“的笔记。做笔记究竟应该完整到什么程度,才能算详略得当呢?对此很难作出简单回答。 课堂笔记,最祥可逐字逐句,有言必录;最略则廖廖数笔,提纲挈领。做笔记的详略要依下面这些条件而定。

2020九年级数学上册 第二十二章 二次函数 22.1 二次函数的图象和性质 22.1.3 二次函数y=a(x-h)2+k的图

2020九年级数学上册 第二十二章 二次函数 22.1 二次函数的图象和性质 22.1.3 二次函数y=a(x-h)2+k的图

22.1.3二次函数y=a(x-h)2+k的图象与性质(2)——二次函数y=a(x-h)2的图象与性质学习目标:1.会画二次函数y=a(x-h)2的图象;2.掌握二次函数y=a(x-h)2的性质,并要会灵活应用;一、复习:1.在同一直角坐标系内画出二次函数y=12x2,y=12x2+2,y=12x2-2的图象(草图),并回答:(1)三条抛物线的位置关系。

(2)分别说出它们的对称轴、开口方向和顶点坐标。

(3)说出它们所具有的公共性质。

2.(1)在同一直角坐标系中,二次函数y=ax2+k 与y=ax2的图象有什么关系?(2)二次函数y=ax2+k的图象开口方向、对称轴、顶点坐标分别是什么?二、探索新知:1.二次函数y=2(x-1)2和y=2(x+1)2的图象与二次函数y=2x2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系?画出二次函数y=2(x-1)2和y=2(x+1)2与二次函数y=2x2的图象,并加以观察观察图像得:函数y =2(x -1)2和y =2(x+1)2的图象相同点是: ; 不同的是:函数y =2(x -1)2的顶点坐标是 ,对称轴是 ,有最 值是 ;函数y =2(x+1)2的顶点坐标是 ,对称轴是 ,有最 值是 。

把抛物线y =2x 2向 平移 个单位就得抛物线y =2(x -1)2;把抛物线y =2x 2向 平移 个单位就得抛物线y =2(x+1)2。

2.画出二次函数y =-12 (x +1)2,y=-12 (x -1)2的图象,并考虑它们的开口方向、对称轴、顶点以及最值、增减性.先列表:2…描点并画图.(1)、观察图象,填表:三、整理知识点对于二次函数的图象,只要|a|相等,则它们的形状_________,只是_________不同.四、课堂训练1.抛物线y=2 (x+3)2的开口______________;顶点坐标为__________________;对称轴是_________;当x>-3时,y______________;当x=-3时,y有_______值是_________.2.抛物线y=4 (x-2)2与y轴的交点坐标是___________,与x轴的交点坐标为________.3.若将抛物线y=2x2+1向下平移2个单位后,得到的抛物线解析式为_______________.4.若抛物线y=m (x+1)2过点(1,-4),则m=_______________.5.抛物线y= -3(x+2)2开口向,对称轴为,顶点坐标为 .6.抛物线y=3(x+0.5)2可以看成由抛物线向平移个单位得到的;7.把抛物线y=3x2向右平移4个单位后,得到的抛物线的表达式为____________________.把抛物线y=3x2向左平移6个单位后,再向上平移2个单位得,到的抛物线的表达式为____________________.8.抛物线y=3(x-3)2可由抛物线y=3x2沿轴向平移个单位得到,也可以由抛物线y=3(x-7)2沿轴向平移个单位得到。

九年级数学上册第22章二次函数22.1二次函数的图象和性

九年级数学上册第22章二次函数22.1二次函数的图象和性

10. 在同一平面直角坐标系内, 将抛物线 y=(x-1) +3 先向左 平移 1 个单位长度,再向下平移 3 个单位长度后所得抛物线的顶点 坐标为( D ) A.(2,0) B.(2,6) C.(0,6) D.(0,0)
2
第3课时 二次函数y=a(x-h)2+k的图象和性质
B 规律方法综合练
1 11.2017·盐城 如图 22-1-13,将函数 y= (x-2)2+1 的图象沿 2
3.2017·金华 对于二次函数 y=-(x-1) +2 的图象与性质, 下列说法正确的是( B ) A.对称轴是直线 x=1,最小值是 2 B.对称轴是直线 x=1,最大值是 2 C.对称轴是直线 x=-1,最小值是 2 D.对称轴是直线 x=-1,最大值是 2
【解析】二次函数 y=-(x-1)2+2 的图象的对称轴是直线 x=1.∵-1<0, ∴抛物线开口向下,有最大值,最大值是 2.
第3课时 二次函数y=a(x-h)2+k的图象和性质
解:(1)列表: x … -3
1 2 y=- x 2 … -4.5
-2 -2-1 -0.5ຫໍສະໝຸດ 0 01 -0.5
2
3
4 …
… …
-2 -4.5
1 y =- (x 2 … -1)2+2

-2.5
0
1.5
2
1.5
0
-2.5

第3课时 二次函数y=a(x-h)2+k的图象和性质
描点、连线,如图所示:
(2)①下 x=0 ③右 1 上
(0,0)
②下
x=1 (1,2)
1)
2(或上
2 右
第3课时 二次函数y=a(x-h)2+k的图象和性质

磐石市五中九年级数学上册 第二十二章 二次函数22.1 二次函数的图象和性质22.1.3第1课时 二

磐石市五中九年级数学上册 第二十二章 二次函数22.1 二次函数的图象和性质22.1.3第1课时 二
(1)求该抛物线的解析式 ; (2)求当y1≥y2时x的值.
解:(1)∵直线 y1=-x-2 交 x 轴于点 A,交 y 轴于点 B,∴点 A 的坐 标为(-2,0),点 B 的坐标为(0,-2),∵抛物线 y2=a(x-h)2 的顶点为 A, ∴抛物线为 y2=a(x+2)2,∵抛物线过点 B(0,-2),∴-2=4a,a=-21 ,
4.(3分)対于抛物线y=2(x-1)2 , 以下说法中准确的有( C ) ①开口向上 ; ②顶点坐标为(0 , -1) ; ③対称轴为直线x=1 ; ④与x轴的 交点坐标为(1 , 0). A.1个 B.2个 C.3个 D.4个 5.(3分)已知函数y=-(x-1)2图象上两点A(2 , y1) , B(a , y2) , 其中a>
即 m2=(m-12)2+(-21k)2,解得 m=14+41k2,∴PB=14+41k2, ∴P 点坐标为(-21k,14+41k2),当 x=-21k时, 代入抛物线解析式可得 y=14+41k2,∴点 P 在抛物线上
(3)连接 CC′,∵l∥y 轴,∴∠OBC=∠PCB,又 PB=PC, ∴∠PCB=∠PBC,∴∠PBC=∠OBC,又 C,C′关于 BP 对称, 且 C′在抛物线的对称轴上,即在 y 轴上,∴∠PBC=∠PBC′, ∴∠OBC=∠CBP=∠C′BP=60°,在 Rt△OBC 中,OB=12, ∴BC=1,OC= 23,即点 P 的横坐标为 23, 代入抛物线解析式可得 y=( 23)2+14=1,∴点 P 的坐标为( 23,1)
2.(3分)抛物线y=-5(x-2)2的顶点坐标是( B )
A.(-2 , 0) B.(2 , 0) C.(0 , -2) D.(0 , 2)
3.(3分)在以下二次函数中 , 其图象的対称轴为直线x=-1的是( A )

九年级数学上册第二十二章二次函数22.1二次函数的图像和性质22.1.3第1课时二次函数y=ax2k的图象和性质分层

九年级数学上册第二十二章二次函数22.1二次函数的图像和性质22.1.3第1课时二次函数y=ax2k的图象和性质分层

第1课时 二次函数y =ax 2+k 的图象和性质1.[2017·宜兴市一模]关于二次函数y =2x 2+3,下列说法正确的是( ) A .它的开口方向是向下B .当x <-1时,y 随x 的增大而减小C .它的顶点坐标是(2,3)D .当x =0时,y 有最大值是32.将二次函数y =2x 2-1的图象沿y 轴向上平移2个单位长度,所得图象对应的函数解析式为_________________________________.3.(1)填表:(2)(3)它们三者的图象有什么异同?它们的开口方向、对称轴、顶点坐标分别是什么? (4)由抛物线y =-2x 2怎样平移得到抛物线y =-2x 2+1与y =-2x 2-1?4.如图22­1­8,两条抛物线y 1=-12x 2+1,y 2=-12x 2-1与分别经过点(-2,-1),(2,-3),且平行于y 轴的两条平行线围成的阴影部分的面积为( )图22­1­8A.8 B.6C.10 D.45.[2018·玉环市一模]小迪同学以二次函数y=2x2+8的图象为灵感设计了一款杯子,如图22­1­9为杯子的设计稿,若AB=4,DE=3,则杯子的高CE为________.图22­1­96.某水渠的横截面的形状呈抛物线,水面的宽度为AB,现以AB所在直线为x轴,以抛物线的对称轴为y轴建立如图22­1­10的平面直角坐标系,设坐标原点为O.已知AB=8 m,设抛物线的解析式为y=ax2-4.(1)求a的值;(2)点C(-1,m)是抛物线上一点,点C关于原点O的对称点为点D,连接CD,BC,BD,求△BCD的面积.图22­1­10参考答案22.1.3 二次函数y=a(x-h)2+k的图象和性质第1课时二次函数y=ax2+k的图象和性质【分层作业】1.B 2.y=2x2+1 3.(1)-8 -2 0 -2 -8 -7 -1 1 -1 -7 -9 -3 -1 -3 -9(2)略.(3)它们三者图象的形状相同,但位置不同,开口均向下,对称轴均为y轴,顶点不同,分别为(0,0),(0,1),(0,-1).(4)抛物线y =-2x 2+1可由抛物线y =-2x 2向上平移1个单位长度得到;抛物线y =-2x 2-1可由抛物线y =-2x 2向下平移1个单位长度得到.4.A 5.116.(1)a =14. (2)S △BCD =15 m 2.。

第22章 二次函数知识点总结 2023—2024学年人教版数学九年级上册

第22章  二次函数知识点总结   2023—2024学年人教版数学九年级上册

第二十二章二次函数22.1二次函数的图像和性质22.1.1 二次函数知识点一 二次函数的定义1.二次函数的定义:一般地,形如)0a ,,(2≠++=是常数,c b a c bx ax y 的函数,叫做二次函数.2.任何一个二次函数的解析式都可化成)0a ,,(2≠++=是常数,c b a c bx ax y 的形式,因此,把)0a ,,(2≠++=是常数,c b a c bx ax y 叫做二次函数的一般式3.二次函数)0a ,,(2≠++=是常数,c b a c bx ax y 中y x ,是变量,c b a ,,是常量.自变量x 的取值范围是全体实数,b 和c 可以是任意实数,a 必须是不等于 0的实数.知识点二 实际问题中的二次函数22.1.2二次函数2ax y =的图像和性质理解 题意 分析问题中的变量和常量及它们之间的关系列函数 关系式22.1.3二次函数()k h x a y +-=2的图像和性质第一课时 二次函数k ax y +=2的图像和性质第二课时 二次函数()2h x a y -=的图像和性质第三课时 二次函数()k h x a y +-=2的图像和性质22.1.4 二次函数)0a ,,(2≠++=是常数,c b a c bx ax y 的图象和性质第一课时 二次函数c bx ax y ++=2的图象和性质知识点一 二次函数c bx ax y ++=2与()k h x a y +-=2之间的关系 利用二次函数图象平移的规律求平移后的函数的解析式,首先要把函数解析式化为顶点式:()k h x a y +-=2知识点二 二次函数c bx ax y ++=2的图象和性质 1. 二次函数c bx ax y ++=2的图象是一条抛物线,与抛物线2ax y =的形状相同,位置不同,利用配方法可以将c bx ax y ++=2转化成顶点式,即a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++= 2. 二次函数c bx ax y ++=2的性质(1)当0>a 时,抛物线开口向上,对称轴为直线a bx 2-=,顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac ab 44,22c bx ax y ++=20>a0<a开口方向 向上 向下对称轴 直线ab x 2-= 直线ab x 2-= 顶点坐标⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22 ⎪⎪⎭⎫⎝⎛--a b ac a b 44,22 增减性当a b x 2->时,y 随x 的增大而增大;当a b x 2-<时,y 随x 的增大而减小当abx 2->时,y 随x 的增大而减小;当abx 2-<时,y 随x 的增大而增大最值当ab x 2-=时,ab ac y 442-=最小值当ab x 2-=时,ab ac y 442-=最大值知识点三 二次函数c bx ax y ++=2的图象与系数c b a ,,之间的关系 系数 图像的特征 系数的符号a开口向上 0>a 开口向下0<a b对称轴为y 轴 0=b对称轴在y 轴左侧同号b a ,对称轴在y 轴右侧 异号b a ,c经过原点0=c 与y 轴正半轴相交 0>c 与y 轴负半轴相交0<c第二课时 用待定系数法求二次函数的解析式知识点一 用待定系数法求二次函数的解析式根据已知条件确定二次函数解析式,通常利用待定系数法,用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题便捷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22.1.3 二次函数
y=a(x-h)²+k的图象和性质
第3课时
一、预习目标及范围:
1.会用描点法画出y=a(x-h)2+k (a ≠0)的图象.
2.掌握二次函数y=a(x-h)2+k (a ≠0)的图象的性质并会应用.
3.理解二次函数y=a(x-h)2+k (a ≠0)与y=ax2 (a ≠0)之间的联系.
4.预习范围:35——37页,并完成课后练习
二、预习要点
1.二次函数y=a(x-h) 2+k的图象的特点是什么?
2.二次函数y=a(x-h) 2+k的图象平移的规律是什么?
三、预习检测
1、若点P与坐标原点O关于抛物线y=x2-4x+1的对称轴对称,则点P的坐标为。

2、二次函数y=-x2-2x+3的顶点坐标为。

3、若二次函数y=2x2经过平移后顶点的坐标为(-2,3),则平移后的解析式为 .
4、说出下列抛物线的开口方向、对称轴及顶点:
(1)y =2( x+3) 2+5; (2)y = -3(x-1) 2-2;
(3)y = 4(x-3) 2+7; (4)y = -5(x+2) 2-6.
我的疑惑
在预习过程中的存在哪些困惑与建议填写在下面,并与同学交流。

___________________________________________________________________________ ___________________________________________________________________________
参考答案
预习要点
1.当a>0,开口向上;当a<0,开口向下.
对称轴是x=h,顶点坐标是(h,k).
2.左右平移:括号内左加右减;
上下平移:括号外上加下减.
预习检测:
1(4,0)
2.(-1,4)
3.y=2x2+8x+11
4.(1)开口方向:向上对称轴直线x=-3 顶点(-3,5)(2)开口方向:向下对称轴直线x=1 顶点(1,-2)(3)开口方向:向上对称轴直线x=3 顶点(3, 7)(4)开口方向:向下对称轴直线x=-2 顶点(-2,-6)。

相关文档
最新文档