反比例函数教学设计课题

合集下载

反比例函数教案设计(篇)

反比例函数教案设计(篇)

反比例函数教案设计(优秀篇)一、教学目标:知识与技能:1. 理解反比例函数的定义及其性质;2. 学会如何求反比例函数的解析式;3. 能够运用反比例函数解决实际问题。

过程与方法:1. 通过观察实例,引导学生发现反比例函数的规律;2. 利用图形计算器,让学生直观地感受反比例函数的图像和性质;3. 培养学生运用数学知识解决实际问题的能力。

情感态度与价值观:1. 培养学生对数学的兴趣和好奇心;2. 培养学生勇于探索、积极思考的科学精神;3. 培养学生合作交流、解决问题的能力。

二、教学重点与难点:重点:1. 反比例函数的定义及其性质;2. 反比例函数的图像特征。

难点:1. 反比例函数解析式的求解;2. 反比例函数在实际问题中的应用。

三、教学过程:环节一:导入新课1. 利用实例引入反比例函数的概念;2. 引导学生发现反比例函数的规律;3. 提问:什么是反比例函数?它有哪些特点?环节二:自主探究1. 学生利用图形计算器,观察反比例函数的图像;2. 学生总结反比例函数的性质;3. 学生分组讨论,探讨反比例函数的解析式求解方法。

环节三:课堂讲解1. 教师讲解反比例函数的定义及其性质;2. 教师示范求解反比例函数解析式;3. 教师举例说明反比例函数在实际问题中的应用。

环节四:巩固练习1. 学生完成课后练习题;2. 学生互相讨论,解决练习题中的问题;3. 教师点评并讲解练习题。

环节五:课堂小结1. 学生总结本节课所学内容;2. 教师强调反比例函数的重要性和应用价值;3. 学生分享学习心得和感悟。

四、教学评价:1. 课后练习题的完成情况;2. 学生对反比例函数的理解程度;3. 学生在实际问题中运用反比例函数的能力。

五、教学资源:1. 反比例函数的PPT;2. 图形计算器;3. 课后练习题及答案。

六、教学策略:1. 采用问题驱动的教学方法,引导学生主动探索反比例函数的定义和性质;2. 利用信息技术工具,如图形计算器,直观展示反比例函数的图像,增强学生对函数概念的理解;3. 通过实际问题的引入,让学生体会反比例函数在生活中的应用,提高学生解决实际问题的能力;4. 注重学生合作交流,鼓励学生分组讨论,培养学生的团队协作精神;5. 及时反馈,针对学生的掌握情况,调整教学进度和方法。

《反比例函数》初三数学教案

《反比例函数》初三数学教案

《反比例函数》初三数学教案《反比例函数》初三数学教案作为一名辛苦耕耘的教育工作者,就难以避免地要准备教案,教案是备课向课堂教学转化的关节点。

那要怎么写好教案呢?下面是店铺收集整理的《反比例函数》初三数学教案,仅供参考,希望能够帮助到大家。

《反比例函数》初三数学教案篇1一、创设情境引入课题活动1问题:你们还记得一次函数图象与性质吗?设计意图通过创设问题情境,引导学生复习一次函数图象的知识,激发学生参与课堂学习的热情,为学习反比例函数的图象奠定基础。

师生形为:教师提出问题。

学生思考、交流,回答问题。

教师根据学生活动情况进行补充和完善。

二、类比联想探究交流活动2问题:例2 画出反比例函数y= 与y=- 的图象。

(教师先引导学生思考,示范画出反比例函数y= 的图象,再让学生尝试画出反比例函数y=- 的图象。

)设计意图:通过画反比例函数的图象使学生进一步了解用描点的方法画函数图象的基本步骤,其他函数的图象奠定基础,同时也培养了学生动手操作能力。

师生形为:学生可以先自己动手画图,相互观摩。

在此活动中,教师应重点关注:1学生能否顺利进行三种表示方法的相互转换:2是否熟悉作出函数图象的主要步骤,会作反比例函数的图象;3在动手作图的过程中,能否勤于动手,乐于探索。

比较y= 、y=- 的图象有什么共同特征?它们之间有什么关系?(由学生观察思考,回答问题,并使学生了解反比例函数的图象是一种双曲线。

)设计意图:学生通过观察比较,总结两个反比例函数图象的共同特征(都是双曲线),以及在平面直角坐标系中的位置。

在活动中,让学生自己去观察、类比发现,过程让学生自己去感受,结论让学生自己去总结,实现学生主动参与、探究新知的目的。

师生形为:学生分组针对问题结合画出的图象分类讨论,归纳总结反比例函数图象的共同点,为后面性质的探索打下基础。

教师参与到学生的讨论中去,积极引导。

(三)探索比较发现规律活动3问题:观察反比例函数y= 与y=- 的图象。

反比例函数教学设计(通用)五篇

反比例函数教学设计(通用)五篇

反比例函数教学设计(通用)五篇第一篇:反比例函数教学设计(通用)反比例函数教学设计(通用6篇)作为一位杰出的教职工,就不得不需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

那么写教学设计需要注意哪些问题呢?下面是小编帮大家整理的反比例函数教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。

反比例函数教学设计1教学目标(一)教学知识点1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.(二)能力训练要求结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.(三)情感与价值观要求结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.教学重点经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.教学难点领会反比例函数的意义,理解反比例函数的概念.教学方法教师引导学生进行归纳.教具准备投影片两张第一张:(记作5.1A)第二张:(记作5.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式.如从A地到B地的路程为1200km,某人开车要从A地到B 地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t= 中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.Ⅱ.新课讲解[师]我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数?1.复习函数的定义[师]大家还记得函数的定义吗?[生]记得.在某变化过程中有两个变量x,y.若给定其中一个变量x 的值,y都有唯一确定的值与它对应,则称y是x的函数.[师]大家能举出实例吗?[生]可以.例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y=0.4n.这是一个正比例函数.等腰三角形的顶角的度数y与底角的度数x的关系为y=180-2x,y是x的一次函数.[师]很好,我们复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.[师]请看下面的问题.电流I,电阻R,电压U之间满足关系式U=IR,当U=220V时.(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成下表:R/Ω20406080100I/A当R越来越大时,I怎样变化?当R越来越小呢?(3)变量I是R的函数吗?为什么?请大家交流后回答.[生](1)能用含有R的代数式表示I.由IR=220,得I=.(2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.从表格中的数据可知,当电阻R越来越大时,电流I越来越小;当R越来越小时,I越来越大.(3)变量I是R的函数.由IR=220得I=.当给定一个R的值时,相应地就确定了一个I值,因此I是R的函数.[师]这位同学回答的非常精彩,下面大家再思考一个问题.舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请大家互相交流后回答.[生]根据I=,当R变大时,I变小,灯光较暗;当R变小时,I变大,灯光较亮.所以通过改变电阻R的大小来控制电流I的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.投影片:(5.1A)京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?[师]经过刚才的例题讲解,大家可以独立完成此题.如有困难再进行交流.[生]由路程等于速度乘以时间可知1262=vt,则有t=.当给定一个v的值时,相应地就确定了一个t值,根据函数的定义可知t是v的函数.[师]从上面的两个例题得出关系式I= 和t=.它们是函数吗?它们是正比例函数吗?是一次函数吗?[生]因为给定一个R的值,相应地就确定了一个I的值,所以I是R的函数;同理可知t是v的函数.但是从表达式来看,它们既不是正比例函数,也不是一次函数.[师]我们知道正比例函数的关系式为y=kx(k≠0),一次函数的关系式为y=kx+b(k,b为常数且k≠0).大家能否根据两个例题归纳出这一类函数的表达式呢?[生]可以.由I= 与t= 可知关系式为y=(k为常数且k≠0).[师]很好.一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k≠0)的形式,那么称y是x的反比例函数.从y= 中可知x作为分母,所以x 不能为零.3.做一做投影片(5.1B)1.一个矩形的面积为20cm2,相邻的两条边长分别为x cm和y cm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?2.某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?3.y是x的反比例函数,下表给出了x与y的一些值:x-2-1y2-1(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.[生]由面积等于长乘以宽可得xy=20.则有y=.变量y是变量x的函数.因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数.[生]根据人均占有耕地面积等于总耕地面积除以总人数得m=.给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m= 符合反比例函数的形式,所以是反比例函数.[师]在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式.在y=kx中,要确定关系式的关键是求得非零常数k的值,因此需要一个条件即可;在一次函数y=kx+b中,要确定关系式实际上是要求得b和k的值,有两个待定系数因此需要两个条件.同理,在求反比例函数的表达式时,实际上是要确定k的值.因此只需要一个条件即可,也就是要有一组x与y的值确定k的值.所以要从表格中进行观察.由x=-1,y=2确定k的值.然后再根据求出的表达式分别计算x或y的值.[生]设反比例函数的表达式为y=.(1)当x=-1时,y=2;∴k=-2.∴表达式为y=-.(2)当x=-2时,y=1.当x=-时,y=4;当x= 时,y=-4;当x=1时,y=-2.当x=3时,y=-;当y= 时,x=-3;当y=-1时,x=2.因此表格中从左到右应填-3,1,4,-4,-2,2,-.Ⅲ.课堂练习随堂练习(P131)Ⅳ.课时小结本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y=(k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.Ⅴ.课后作业习题5.1Ⅵ.活动与探究已知y-1与成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数?分析:由y与x成反比例可知y=,得y-1与成反比例的关系式为y-1= =k(x+2),由x=1、y=4确定k的值.从而求出表达式.解:由题意可知y-1= =k(x+2).当x=1时,y=4.所以3k=4-1,k=1.即表达式为y-1=x+2,y=x+3.由上可知y是x的一次函数.板书设计反比例函数教学设计2一、教学目标1.利用反比例函数的知识分析、解决实际问题2.渗透数形结合思想,提高学生用函数观点解决问题的能力二、重点、难点1.重点:利用反比例函数的知识分析、解决实际问题2.难点:分析实际问题中的数量关系,正确写出函数解析式三、例题的意图分析教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。

反比例函数教案(优秀7篇)

反比例函数教案(优秀7篇)

反比例函数教案(优秀7篇)反比例函数教案篇一一、背景分析1.对教材的分析本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。

本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。

本节课前一课时是在具体情境中领会反比例函数的意义和概念。

函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。

同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。

传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。

本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。

因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。

在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。

这也充分体现了重视获取知识过程体验的新课标的精神。

(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。

(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。

(3)难点:探索并掌握反比例函数的主要性质。

2、对学情的分析九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用z+z智能教育平台进行教学,比较形象,便于学生接受。

反比例函数数学教案

反比例函数数学教案

反比例函数数学教案
标题:反比例函数的学习与探索
一、教学目标
(1) 理解并掌握反比例函数的概念和特性。

(2) 能够分析和解决有关反比例函数的实际问题。

(3) 培养学生的观察力、分析能力和解决问题的能力。

二、教学内容
(1) 反比例函数的定义和图像特征
(2) 反比例函数的应用实例
(3) 反比例函数的性质
三、教学过程
1. 导入新课:
可以通过生活中的实例,如电价随使用量的变化等,引入反比例函数的概念。

2. 新知识讲解:
(1) 定义:如果两个变量x和y之间的关系可以用形如y=k/x(k≠0)的函数表示,那么我们就说y是x的反比例函数。

(2) 图像特征:画出几个反比例函数的图像,让学生观察并总结其特点。

(3) 性质:反比例函数具有对称性、渐近线等特性。

3. 实例分析:
给出一些实际问题,让学生通过分析找出其中的反比例函数,并求解。

4. 练习巩固:
设计一些练习题,让学生独立完成,然后进行集体讲解和讨论。

四、教学反思
在课程结束后,反思教学过程,看看哪些地方学生理解得比较好,哪些地方还需要改进。

6.1反比例函数(教案)(3)

6.1反比例函数(教案)(3)
5.培养学生的团队合作意识,通过小组讨论与合作,让学生在探讨反比例函数相关知识的过程中,学会倾听、交流、协作。
三、教学难点与重点
1.教学重点
(1)反比例函数的定义:y = k/x(k≠0),强调k不为零,这是反比例函数成立的前提条件。
举例:在实际问题中,如速度与时间的关系,当时间为零时,速度没有意义,因此k不能为零。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如y = k/x(k≠0)的函数。它在描述现实生活中的反比关系方面具有重要应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了反比例函数在描述物体在反比例力作用下运动的应用,以及它如何帮助我们解决问题。
针对这个问题,我计划在接下来的课程中,增加一些与生活紧密相关的反比例函数实例,让学生更加直观地感受反比例函数的作用。此外,我还将加强对学生的引导,鼓励他们在小组讨论中积极发表自己的观点,提高他们的参与度。
另外,我在课程中强调了反比例函数与一次函数图像的关系,但感觉学生们对此部分的掌握程度并不理想。在今后的教学中,我需要更加注重这方面的讲解和练习,让学生更好地理解两者之间的联系和区别。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了反比例函数的基本概念、图像性质和实际应用。同时,我们也通过实践活动和小组讨论加深了对反比例函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(2)反比例函数的图像与性质:双曲线、在每个象限内y随x的增大而减小(k>0)或增大(k<0)。

反比例函数教案(优秀6篇)

反比例函数教案(优秀6篇)

反比例函数教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!反比例函数教案(优秀6篇)作为一无名无私奉献的教育工作者,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。

26.1.1反比例函数教案

26.1.1反比例函数教案

26.1.1反比例函数教案篇一:九年级下册数学26.1反比例函数教学设计26.1反比例函数板书设计:反比例函数定义:等价形式:篇二:26.1.1反比例函数教案第26章反比例函数26.1.1反比例函数【学习目标】1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。

2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用学情分析:虽然学生在八(上)已学过一次函数及特例“正比例函数”的内容,对函数有了初步的认识。

从学生接触函数所蕴含的“变化与对应”思想至今已经半年有余,学生对与函数相关的概念不可避免会有所遗忘或生疏。

因此,学习本节课的关键是处理好新旧知识的联系,尽可能地减少学生接受新知识的困难。

【学习重点】理解反比例函数的意义,确定反比例函数的解析式【学习难点】反比例函数的解析式的确定【学法指导】自主、合作、探究篇三:26.1反比例函数教案26.1反比例函数学习目标、重点、难点【学习目标】1、理解反比例函数的定义;2、用待定系数法确定反比例函数的表达式;3、反比例函数的图象画法,反比例函数的性质;【重点难点】1、用待定系数法确定反比例函数的表达式;2、反比例函数的图象画法,反比例函数的性质;知识概览图反比例函数的定义反比例函数的图象与性质新课导引【生活链接】学校课外生物小组的同学准备自己动手,用围24m2的矩形饲养场(如右图所示),设它的一边长为x(m),求x(m)之间的函数关系式.【问题探究】这个函数有什么特点?自变量的取值有什么限制?教材精华知识点1反比例函数的定义重点;理解一般地,形如y?k(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数,自变量xx栏建一个面积为另一边长y(m)与的取值范围是不等于0的一切实数,y的取值范围也是不等于0的一切实数,k叫做比例系数,另外,反比例函数的关系式也可写成y=kx-1的形式.y是x的反比例函数?y?k(k≠0)?xy=k(k≠0)?变量y与x成反比例,比例系数为k.x第1页k(k≠0)的左边是函数y,右边是分母为自变量x的分式,也就是说,x 123分母不能是多项式,只能是x的一次单项式,如y?,y?等都是反比例函数,但y?就不是关1xx?1x2拓展(1)在反比例函数y?于x的反比例函数.(2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此可以写成y=kx-1或xy=k的形式.(3)反比例函数中,两个变量成反比例关系.知识点2用待定系数法确定反比例函数的表达式难点:运用由于反比例函数y?k中只有一个待定系数,因此只要有一对对应的x,y值,或已知其图象上x一点坐标,即可求出k,从而确定反比例函数的表达式.其一般步骤:(1)设反比例函数关系式y?k(k≠0).x(2)把已知条件(自变量和函数的对应值)代入关系式,得出关于k的方程.(3)解方程,求出待定系数k的值.(4)将待定系数k的值代回所设的关系式,即得所求的反比例函数关系式.知识点3反比例函数图象的画法难点;运用反比例函数图象的画法是描点法,其步骤如下:(1)列表:自变量的限值应以0为中心点,沿0的两边取三对(或三对以上)相反数,分别计算y的值.(2)描点:先描出一侧,另一侧可根据中心对称的性质去找.(3)连线:按从左到右的顺序用平滑的曲线连接各点,双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不能与坐标轴相交.说明:在图象上注明函数的关系式.拓展(1)反比例函数的图象是双曲线,它有两个分支,它的两个分支是断开的.(2)当k>0时,两个分支位于第一、三象限;当k﹤0时,两个分支位于第二、四象限.第2页(3)反比例函数y?k(k≠0)的图象的两个分支关于原点对称.x(4)反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交,这是因为x≠0,y≠0. k的图象是由两支曲线组x(1)如图17-2所示,反比例函数的图象是双曲线,反比例函数y?成的.当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内。

反比例函数教案(优秀3篇)

反比例函数教案(优秀3篇)

反比例函数教案(优秀3篇)反比例函数教案篇一一、直接导入法所谓的直接导入法,就是指教师在开始上课的时候就向学生说明该堂课的学习目的、要求和内容等,将本堂课的学习任务、程序向学生交代,并点明本堂课的课题和重点。

运用直接导入法,开门见山地导入,学习的重点突出,主题也比较鲜明,还能节省时间,不仅能够快速地将学生的思维定向,还易于激起学生的学习兴趣,快速地进入教学。

案例“用单位圆中的线段表示三角函数值”师:之前我们学习了三角函数的定义,你们还记得是怎样定义的吗?生:是用两条线段的比值来定义三角函数的数值的。

师:是的,但是用两条线段的比值来定义有很多不方便的地方,如果我们只用一条线段来表示,就显得方便多了,这就是我们今天这堂课要学习的内容。

通过直接导入法进行课堂教学的导入,不但明确了该堂课的主题,还说明了该堂课的学习背景是在前面学习的基础上来延伸的。

二、复习导入法复习导入法就是指所谓的“温故而知新”,通过挖掘前后知识点之间的联系来导入新课,降低学生对新知识的陌生感和恐惧感,让学生能快速地将新的知识点融入到原有的知识结构当中,降低学生对新知识点的认知难度。

复习导入法的思路是通过对与新课内容有关的旧知识的复习来分析新旧知识的联系,并从该联系和新课内容的主题来进行导入设计,学生去思考,再由教师点题导入新课。

案例“反函数”师:前面我们已经学习了函数的基础知识,具体有哪些知识点呢?那么还记得吗?生:记得,主要有函数的定义、函数的定义域、值域等。

师:对,但是,你们有没有注意到有这样的一种比较特殊的函数呢?若存在这样两个函数f(x)=2x-1,f′(x)=0.5x+0.5,它们之间有什么关系呢?我们先来作图看看(如图),由图可见,这两个函数是关于直线y=x对称的,像这样的两个函数我们就说这两个函数互为反函数。

那么判断一个函数是否存在反函数的条件有哪些呢?我们可以从前面学习过的函数的基础知识来总结。

生:(讨论、总结)函数的定义域和值域是一一映射的,且与反函数在相应的区间单调性是一致的。

反比例函数教案设计(优秀篇)

反比例函数教案设计(优秀篇)

反比例函数教案设计(优秀篇)一、教学目标1. 知识与技能:理解反比例函数的概念,掌握反比例函数的性质和图像特点;能够运用反比例函数解决实际问题。

2. 过程与方法:通过观察、分析、归纳等方法,探索反比例函数的性质;学会用图像和解析式表示反比例函数。

3. 情感态度价值观:培养学生的数学思维能力,提高学生对数学的兴趣;培养学生合作交流的能力,提高学生的团队协作精神。

二、教学内容1. 反比例函数的概念:反比例函数的定义、形式。

2. 反比例函数的性质:比例系数、定义域、值域、图像特点。

3. 反比例函数的图像:绘制反比例函数的图像,观察图像的形状和特点。

4. 反比例函数的实际应用:解决实际问题,如面积、速度、浓度等问题。

三、教学重点与难点1. 重点:反比例函数的概念、性质和图像特点。

2. 难点:反比例函数的实际应用,特别是复杂问题的解决。

四、教学方法与手段1. 教学方法:采用问题驱动、案例分析、小组讨论等教学方法,引导学生主动探究、积极参与。

2. 教学手段:利用多媒体课件、反比例函数图像软件等辅助教学,提高教学效果。

五、教学过程1. 导入新课:通过一个实际问题,引入反比例函数的概念。

2. 自主学习:学生自主学习反比例函数的定义和性质,理解反比例函数的概念。

3. 合作探究:学生分组讨论,探索反比例函数的图像特点,总结反比例函数的性质。

4. 课堂讲解:教师讲解反比例函数的性质和图像特点,引导学生理解反比例函数的概念。

5. 练习巩固:学生进行课堂练习,运用反比例函数解决实际问题。

6. 课堂小结:教师总结本节课的反比例函数知识点,强调重点和难点。

7. 课后作业:布置相关的课后作业,巩固反比例函数的知识。

六、教学评价1. 评价目标:检查学生对反比例函数的概念、性质和图像特点的理解程度。

2. 评价方法:课堂提问、课堂练习、课后作业、小组讨论等。

3. 评价内容:反比例函数的定义、性质、图像特点,以及实际应用能力的展示。

七、教学反馈1. 课堂反馈:通过课堂提问、练习等环节,及时了解学生的学习情况,对学生的疑惑进行解答。

反比例函数教案设计(6篇)

反比例函数教案设计(6篇)

反比例函数教案设计(6篇)教学目标:1、通过感知生活中的事例,理解并把握反比例的含义,经初步推断两种相关联的量是否成反比例2、培育学生的规律思维力量3、感知生活中的数学学问重点难点1.通过详细问题熟悉反比例的量。

2、把握成反比例的量的变化规律及其特征教学难点:熟悉反比例,能依据反比例的意义推断两个相关联的量是不是成反比例。

教学过程:一、课前预习预习24---26页内容1、什么是成反比例的量?你是怎么理解的?2、情境一中的两个表中量变化关系一样吗?3、三个情境中的两个量哪些是成反比例的量?为什么?二、展现与沟通利用反义词来导入今日讨论的课题。

今日讨论两种量成反比例关系的变化规律情境(一)熟悉加法表中和是12的直线及乘法表中积是12的曲线。

引导学生发觉规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

情境(二)让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每两个相对应的数的乘积各是多少?你有什么发觉?独立观看,思索同桌沟通,用自己的语言表达写出关系式:速度×时间=路程(肯定)观看思索并用自己的语言描述变化关系乘积(路程)肯定情境(三)把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发觉?用自己的语言描述变化关系写出关系式:每杯果汁量×杯数=果汗总量(肯定)5、以上两个情境中有什么共同点?反比例意义引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是肯定的。

这两种量之间是反比例关系。

活动四:想一想二、反应与检测1、推断下面每题是否成反比例(1)出油率肯定,香油的质量与芝麻的质量。

(2)三角形的面积肯定,它的底与高。

(3)一个数和它的倒数。

(4)一捆100米电线,用去长度与剩下长度。

(5)圆柱体的体积肯定,底面积和高。

人教版九年级数学下册:26.1.1《反比例函数》教学设计

人教版九年级数学下册:26.1.1《反比例函数》教学设计

人教版九年级数学下册:26.1.1《反比例函数》教学设计一. 教材分析人教版九年级数学下册第26.1.1节《反比例函数》是学生在学习了正比例函数之后,进一步探索函数的性质和应用。

本节内容通过引入反比例函数的概念,让学生理解反比例函数的定义、性质及其在实际生活中的应用。

教材通过丰富的例题和练习,帮助学生掌握反比例函数的图象和解析式,提高解决实际问题的能力。

二. 学情分析九年级的学生已经具备了一定的函数知识,对正比例函数有一定的了解。

但是,对于反比例函数的概念和性质,学生可能较为抽象,难以理解。

因此,在教学过程中,需要结合学生的实际情况,采用生动形象的实例,引导学生理解反比例函数的定义和性质。

三. 教学目标1.了解反比例函数的概念,理解反比例函数的性质。

2.学会反比例函数的解析式,并能灵活运用。

3.提高解决实际问题的能力,培养学生的数学思维。

四. 教学重难点1.反比例函数的概念和性质。

2.反比例函数的解析式的运用。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过设置问题,引导学生探索反比例函数的性质;以实际案例为例,让学生理解反比例函数的应用;小组讨论,培养学生的合作精神和数学思维。

六. 教学准备1.准备相关的案例和实际问题。

2.准备反比例函数的图象和解析式的资料。

3.准备教学课件和板书设计。

七. 教学过程1.导入(5分钟)通过提问方式复习正比例函数的知识,然后引导学生思考:如果两个量的乘积为定值,这两个量之间是什么关系?从而引出反比例函数的概念。

2.呈现(15分钟)呈现反比例函数的定义和性质,让学生初步了解反比例函数的概念。

通过展示反比例函数的图象,让学生直观地感受反比例函数的性质。

3.操练(15分钟)让学生分组讨论,根据反比例函数的性质,找出实际生活中的反比例关系。

每组选取一个实例,并用反比例函数的解析式表示。

4.巩固(10分钟)让学生独立完成教材中的练习题,检验学生对反比例函数的理解和运用。

反比例函数图像和性质(教学案)

反比例函数图像和性质(教学案)
02 过程与方法
通过观察、比较、分析、归纳等数学活动,培养 学生的数学思维能力,提高学生的数学素养。
03 情感态度与价值观
让学生感受数学与生活的密切联系,激发学生的 学习兴趣和求知欲,培养学生的创新意识和实践 能力。
教学内容
01 反比例函数的概念
通过实例引入反比例函数的概念,让学生理解并 掌握反比例函数的一般形式。
07
课堂小结与作业布置
课堂小结回顾本次课重点内容
01
02
03
反比例函数的概念
回顾反比例函数的定义,
强调函数形式$y
=
frac{k}{x}$($k neq 0$
)。
反比例函数的图像
总结反比例函数图像的特 点,包括图像所在的象限 、与坐标轴的交点情况等 。
反比例函数的性质
归纳反比例函数的主要性 质,如单调性、奇偶性等 ,并解释这些性质在函数 图像上的表现。
02 由于分母不能为零,因此$x neq 0$。
反比例函数表达式及参数意义
反比例函数的一般表达式为$y = frac{k}{x}$( 01 $k$为常数且$k neq 0$)。
参数$k$称为反比例系数,它决定了函数的图像和 02 性质。
当$k > 0$时,反比例函数的图像位于第一、三象 03 限;当$k < 0$时,反比例函数的图像位于第二、
作业布置针对本节课知识点进行巩固练习
绘制反比例函数图像
分析反比例函数性质
解决问题
思考题
要求学生自行选择几个不同的 $k$值,绘制对应的反比例函 数图像,并观察图像的变化规 律。
给出几个具体的反比例函数, 要求学生分析其单调性、奇偶 性等性质,并解释这些性质在 函数图像上的表现。

反比例函数教案6篇

反比例函数教案6篇

反比例函数教案精选6篇作为一无名无私奉献的教育工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。

那么你有了解过教案吗?下面是本文范文为大伙儿带来的6篇《反比例函数教案》,亲的肯定与分享是对我们最大的鼓励。

反比例函数教案篇一教学目标(1)进一步体验现实生活与反比例函数的关系。

(2)能解决确定反比例函数中常数志值的实际问题。

(3)会处理涉及不等关系的实际问题。

(4)继续培养学生的交流与合作能力。

重点:用反比例函数知识解决实际问题。

难点:如何从实际问题中抽象出数学问题,建立数学模型,用数学知识解决实际问题。

教学过程:1、引入新课上节课我们学习了实际问题与反比例函数,使我们认识到了反比例函数在现实生活中的实际存在。

今天我们将继续学习这一部分内容,请看例1(投影出课本第50页例2)。

例1码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间。

轮船到达目的地后开始卸货,卸货速度v(吨/天)与卸货时间t(天)之间有怎样的关系由于紧急情况,船上货物必须在不超过5日内卸载完毕,那么每天至少卸货多少吨2、提出问题、解决问题(1)审完题后,你的切入点是什么,由题意知:船上载物重是30×8=240吨,这是一个不变量,也就是在这个卸货过程中的常量,所以根据卸货速度×卸货天数=货物重量,可以得到v与t的函数关系即vt=240,v=240,所以v是t的反比例函数,且t0.t(2)你们再回忆一下,今天求出的反比例函数与昨天求出的反比例函数在思路上有什么不同(昨天求出的反比例函数,常数k是直接知道的,今天要先确定常数k)(3)明确了问题的区别,那么第二问怎样解决根据反比例函数v=240(t0),当t=5时,v=48。

即每天至少要48吨。

这样做的答案是不错的,这里请同学们再仔细看一下第二问,你有什么想法。

实际上这里是不等式关系,5日内完成,可以这样化简t=240/v,0t≤5,即0240/v≤5,可以知道v≥48即至少要每天48吨。

反比例函数教案设计(篇)

反比例函数教案设计(篇)

反比例函数教案设计(优秀篇)一、教学目标:1. 知识与技能:(1)理解反比例函数的定义,掌握反比例函数的一般形式;(2)学会用图像和解析式表示反比例函数;(3)能够运用反比例函数解决实际问题。

2. 过程与方法:(1)通过观察实例,引导学生发现反比例函数的规律;(2)利用信息技术工具,绘制反比例函数的图像,观察其特点;(3)运用反比例函数解决生活中的实际问题,提高学生的应用能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣,提高学生学习数学的积极性;(2)培养学生合作探究的精神,提高学生的团队协作能力;(3)培养学生运用数学知识解决实际问题的能力,增强学生的实践能力。

二、教学重点与难点:1. 教学重点:(1)反比例函数的定义及其一般形式;(2)反比例函数的图像特点;(3)反比例函数在实际问题中的应用。

2. 教学难点:(1)反比例函数图像的绘制;(2)反比例函数在实际问题中的灵活运用。

1. 导入新课:(1)引导学生回顾正比例函数的知识,为新课的学习做好铺垫;(2)通过展示实例,引导学生发现反比例函数的规律。

2. 自主探究:(1)让学生根据实例,总结反比例函数的定义及其一般形式;(2)引导学生利用信息技术工具,绘制反比例函数的图像,观察其特点;(3)组织学生进行小组讨论,分享各自的学习心得。

3. 课堂讲解:(1)讲解反比例函数的定义及其一般形式;(2)讲解反比例函数的图像特点;(3)讲解反比例函数在实际问题中的应用。

4. 巩固练习:(1)设计练习题,让学生巩固反比例函数的知识;(2)鼓励学生运用反比例函数解决实际问题,提高学生的应用能力。

5. 小结与拓展:(1)对本节课的内容进行总结,加深学生对反比例函数的理解;(2)布置课后作业,让学生进一步巩固反比例函数的知识。

四、教学评价:1. 学生对反比例函数的定义、一般形式和图像特点的掌握程度;2. 学生运用反比例函数解决实际问题的能力;3. 学生在课堂上的参与程度、合作意识和团队协作能力。

反比例函数教案设计(篇)

反比例函数教案设计(篇)

反比例函数教案设计(优秀篇)第一章:反比例函数的引入1.1 学习目标理解反比例函数的概念。

掌握反比例函数的定义和性质。

1.2 教学内容反比例函数的定义:如果两个变量x和y之间的关系是y=k/x(其中k是常数,k≠0),函数y=k/x称为反比例函数。

反比例函数的性质:当x增大时,y值减小;当x减小时,y值增大。

反比例函数的图像是一条通过原点的曲线,称为双曲线。

1.3 教学活动通过实际例子引入反比例函数的概念,让学生感受反比例函数在生活中的应用。

引导学生通过观察实际例子,发现反比例函数的性质。

让学生通过绘制反比例函数的图像,加深对反比例函数性质的理解。

第二章:反比例函数的图像2.1 学习目标学会绘制反比例函数的图像。

理解反比例函数图像的特点。

2.2 教学内容反比例函数的图像是一条通过原点的曲线,称为双曲线。

双曲线的两支分别沿着x轴的正方向和负方向延伸,且越来越接近x轴,但永远不会与x轴相交。

2.3 教学活动引导学生通过绘制反比例函数的图像,观察和总结反比例函数图像的特点。

让学生通过分析反比例函数图像,理解反比例函数的性质。

第三章:反比例函数的性质3.1 学习目标掌握反比例函数的性质。

能够应用反比例函数的性质解决实际问题。

3.2 教学内容反比例函数的性质:当x增大时,y值减小;当x减小时,y值增大。

反比例函数的图像是一条通过原点的曲线,称为双曲线。

3.3 教学活动通过实际例子,引导学生理解和掌握反比例函数的性质。

让学生通过绘制反比例函数的图像,加深对反比例函数性质的理解。

设计练习题,让学生应用反比例函数的性质解决实际问题。

第四章:反比例函数的应用4.1 学习目标学会应用反比例函数解决实际问题。

能够运用反比例函数的知识进行综合分析。

4.2 教学内容反比例函数在实际中的应用,例如在物理学中描述两个变量之间的关系。

4.3 教学活动通过实际例子,引导学生学会应用反比例函数解决实际问题。

设计练习题,让学生运用反比例函数的知识进行综合分析。

关于反比例函数数学教案5篇

关于反比例函数数学教案5篇

关于反比例函数数学教案5篇关于反比例函数数学教案5篇数学教学鼓励学生进行创新思维和批判性思考。

学生应该有独立思考能力,能够对于数学问题进行分析、评价和解决方案的提出。

下面给大家分享反比例函数数学教案,欢迎阅读!反比例函数数学教案篇1教学内容:教科书第22—24页反比例的意义,练习六的第4—6题。

教学目的:1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。

2.使学生进一步认识事物之间的相互联系和发展变化规律。

3.初步渗透函数思想。

教具准备:投影仪、投影片、小黑板。

教学过程:一、复习1.让学生说说什么是成正比例的量:2.用投影片出示下面的题:(1)下面各题中哪两种量成正比例为什么①笔记本单价一定,数量和总价:⑨汽车行驶速度一定.行驶的路程和时间。

②工作效率一定.’工作时间和工作总量。

①一袋大米的重量一定.吃了的和剩下的。

(2)说出每小时加工零件数、加工时间和加工零件总数三者间的数量关系。

在什么条件下,其中两种量成正比例二、导入新课教师:如果加工零件总数一定。

每小时加工数和加工时间会成什么样的变化.关系怎样就是我们这节课要学习的内容。

三、新课1.教学例4。

出示例4;丰机械厂加工一批机器零件。

每小时加工的数量和所需的加工时间如下表。

让学生观察这个表,然后每四人一组讨论下面的问题:(1)表中有哪两种量(2)所需的加工时间怎样随着每小时加工的个数变化(3)每两个相对应的数的乘积各是多少学生分组讨论后集中发言。

然后每个小组选代表回答上面的问题。

随着学生的回答,教师板书如下:每小时加工数加工时间10 × 60 =600。

30 × 20 =600。

40 × 15 =600,“这个积600。

实际上是什么”在“加工时间”后面板书:零件总数“积一定,就说明零件总数怎样”在零件总数后面板书:(一定)“每小时加工数、加工时间和零件总数这三种量有什么关系呢”学生回答后,教师小结:通过刚才的观察分析.我门可以看出。

反比例函数教案设计(篇)

反比例函数教案设计(篇)

反比例函数教案设计(优秀篇)一、教学目标:知识与技能:1. 学生能理解反比例函数的概念,掌握反比例函数的定义和性质。

2. 学生能够运用反比例函数解决实际问题,提高解决问题的能力。

过程与方法:1. 学生通过观察、分析、归纳等方法,探索反比例函数的性质。

2. 学生能够利用反比例函数的性质进行函数图象的识别和分析。

情感态度价值观:1. 学生培养对数学的兴趣和好奇心,体验成功的喜悦。

2. 学生培养合作精神,学会与他人交流和分享。

二、教学内容:1. 反比例函数的定义:学生通过观察实例,理解反比例函数的概念,掌握反比例函数的定义。

2. 反比例函数的性质:学生通过实验、观察、分析等方法,探索反比例函数的性质,如单调性、奇偶性等。

3. 反比例函数图象的识别:学生通过观察图象,学会识别反比例函数图象,理解图象的特点。

4. 反比例函数的应用:学生通过解决实际问题,运用反比例函数的知识,提高解决问题的能力。

5. 反比例函数的综合练习:学生通过练习题,巩固反比例函数的知识,提高解题能力。

三、教学重点与难点:重点:1. 反比例函数的概念和性质。

2. 反比例函数图象的识别和分析。

难点:1. 反比例函数的性质的深入理解和运用。

2. 解决实际问题中反比例函数的应用。

四、教学方法与手段:1. 教学方法:采用问题驱动法、案例教学法、合作学习法等,激发学生的学习兴趣,培养学生的探究能力和合作精神。

2. 教学手段:利用多媒体课件、实物模型、反比例函数图象软件等,直观展示反比例函数的知识,帮助学生理解和掌握。

五、教学过程:1. 导入新课:通过展示实例,引导学生思考反比例函数的概念,激发学生的学习兴趣。

2. 知识讲解:讲解反比例函数的定义和性质,引导学生通过观察、分析、归纳等方法,探索反比例函数的性质。

3. 实例分析:分析实际问题,引导学生运用反比例函数的知识,解决问题。

4. 课堂练习:学生独立完成练习题,巩固反比例函数的知识。

6. 课后作业:布置作业,让学生进一步巩固反比例函数的知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

26.1.2反比例函数的图像和性质(1)
[教材分析]
本节课学习的主要内容是画反比例函数的图像,并研究反比例函数的特征。

反比例函数的图像是在学生已经知道了研究函数图象的一般方法,以及一次函数的图像是一条直线的基础之上进一步研究的。

同时,反比例函数的图像也与众不同。

针对教材及学生的实际情况,本节课的设计是让学生多动手去探索规律,并运用规律解决问题。

[学情分析]
前面已经学习了一次函数和二次函数,学生对研究函数有了一定的方法,即画出图像并根据图像研究其性质。

所以本节课的设计符合学生的认知规律。

[教学目标]
(一)、知识与技能:能用描点画出反比例函数的图象并掌握反比例函数的图像和性质。

(二)过程与方法:经历反比例函数图象及性质的探索过程,培养学生观察分析探究归纳概括能力和综合解决问题的能力。

(三)情感态度价值观:让学生初步感知反比例函数的对称性,体会数形结合思想。

[教学重点和难点]
1.重点:本节教学的重点是反比例函数的图象及图象的性质。

2.难点:理解反比例函数的性,并能灵活运用。

[教学方法]启发演示法
教学手段:运用多媒体
[教学过程]
一、情境创设
你还记得一次函数的图象吗?二次函数的图像呢?在回忆与交流中,进一步认识函数图象的直观有助于理解函数的性质。

转而导人关注新的函数——反比例函数的图象研究:反比例函数的图象又会是什么样子呢?
设计意图:通过创设问题情境,激发学生参与课堂学习的热情,为学习反比例函数的图像奠定基础。

二、类比探究:用描点法来画出反比例函数的图象.
画出反比例函数y=6
x 和y=-6
x
的图象.
解:列表思考:取什么值更易描出来
描点,以表中各对应值为坐标,在直角坐标系中描出各点.
连线,用平滑的曲线把所描的点依次(从大到小或从小到大的顺序)连接起来
教师大屏幕演示画图像过程。

找找看他们有什么共同特征?这两个函数图像在位置上有什么关系?设计意图:学生通过观察比较,总结两个反比例函数的共同特
征都是双曲线。

活动中学生自己观察类比发现结论,实现学生的主动参与。

三、探索发现 :
学生分组画出函数 或 的图象,看谁画得又快又好。

根据大家所画出的函数图象,从以下几个方面出发,你能发现反比例函数x k y =(k ≠0)的图象及性质有哪些?
①、这几个函数图象有什么共同点?
②、函数图象分别位于哪几个象限?
③、在每个象限内y 随x 的变化如何变化?
师演示 把他们的图象放到同一坐标系中,观察归纳共同特征。

引导学生从图像形状、位置、增减性、对称性、渐进性等方面归纳
总结: 反比例函数x k y =(k ≠0)的图象是由两个分支组成的曲线。

当0>k 时,图象在一、三象限在每一象限内,y 随x 的增大而减小; 当0<k 时,图象在二、四象限。

在每一象限内,y 随x 的增大而增大: 反比例函数x k y =(k ≠0)的图象关于原点和直线y=±x 对称.
双曲线无限接近x 轴与 y 轴但永远不相交。

设计意图:让学生明白性质的可靠性并体验知识产生形成的过程,逐步达到培养学生抽象概括能力和激发求知欲望。

四、新知拓展:图形面积与反比例函数x
k y =(k ≠0)的关系
y = 8 x y
= 8 x
- = y 3 x y =- 3 x
出示例题:设p(m,n)是双曲线
x
k
y (k≠0)上任意一点,则过p向x轴或y轴作垂线,垂足该点与原点围成图形的面积与k的关系。

设计意图:提高学生的迁移拓展能力和综合解决问题的能力。

五、应用知识,体验成功
设计意图:这一环节的设计,既利于学生复习学过的知识,对知识有一个简单的梳理,又使学生又成就感,利于激励学生。

六、归纳小结,反思提高
设计意图:教师引导学生归纳本节课的知识要点和思想方法,使学生对反比例函数的图像和性质有较为整体全面的认识,同时养成良好的学习习惯。

七、目标检测:
【小试牛刀】
1.函数的图象在第________象限,
在每一象限内,Y 随x 的增大而_________.
2. 函数y 的图象在第________象限,
在每一象限内,Y 随x 的增大而_________.
3. 函数y , 当x>0时,图象在第____象限,
y =
4
x
=
-4
x
=
5
x
Y 随x 的增大而_________.
4.下列函数中,图象位于第二、四象限的有 ;在图象所在象限内,y 的值随x 的增大而增大的有 。

(1) (2) (3)
(4) (5) y=2x-3 5、已知反比例函数 x k
y -=4若函数的图象位于第一、三象限, 则
k___ ;若在每一象限内,y 随x 增大而增大, 则k____.
【学以致用】
1.已知点A(-2,y 1),B(-1,y 2)都在反比例函数 的图象上,则y 1与y 2的大小关系(从大到小)为 .
2.已知点A(-2,y 1),B(-1,y 2)都在反比例函数
x k y = (k<0) 的图象上,则y 1与y 2的大小关系(从大到小)为 。

3.已知点A(x 1,y 1),B(x 2,y 2)且x 1 < 0< x 2 都在反比例函数
x k y = (k<0) 的图象上,则y1与y2的大小关系(从大到小)为 。

4.如图,点P 是反比例函数图象上的一点,过点P 分别向x 轴、y 轴作垂线,若阴影部分面积为3,则这个反比例函数的关系式是 。

= 2 3x y = 2 x 3 y = - 2 3x
y = - 2 x 3 y y = 4 x
设计意图:检测学生对本节知识的掌握情况。

x。

相关文档
最新文档