高中物理选修3-5知识点整理
选修3-5必记知识点
领域。
( 或碰后具有共同的速
的连线在同 的连线不在同一
而发生的碰撞。
,所以多数粒子碰撞后飞向四面八方。
(2)在相互作用过程中,相互作用力先是急剧增大,然后再急剧减小,平均作用力很大,远远大于外 力,因此作用过程的动量可看成守恒。 2.位移的特点:碰撞、爆炸、打击过程是在一瞬间发生的,时间极短,所以在物体发生碰撞、爆炸、 打击的瞬间可忽略物体的位移。可以认为物体在碰撞、爆炸、打击前后在同一位置。 3.能量的特点:爆炸过程系统的动能增加,碰撞、打击过程系统的动能不会增加,可能减少,也可 能不变。 三种碰撞类型的特点 1.弹性碰撞:碰撞过程中不仅动量守恒,而且机械能守恒,碰撞前后系统动能相等。同时,在碰撞 问题中常做动量和动能的换算。 2.非弹性碰撞:碰撞过程中动量守恒,碰撞结束后系统动能小于碰撞前系统动能。减少的动能转化 为其他形式的能量。 3.完全非弹性碰撞:碰撞过程中动量守恒,碰撞结束后两物体结合为一整体以相同的速度运动,系 统动能损失最大。 碰撞问题中遵循的规律 在所给的条件不足的情况下,碰撞结果有各种可能,但不管哪种结果必须同时满足以下三条: 1.动量守恒,即 p1+p2=p1′+p2′。
p 1 2Ek Ek= ,Ek= pv,p= 2mEk,p= 2m 2 v
等于它在这个过程中 的冲量。
2
碰撞时可产生冲击力,要增大这种冲击力就要设法 危害,就要减小冲击力,设法 动量定理的理解和应用 1.对动量定理的理解: (1) 动量定理反映了合外力的冲量是动量变化的原因。 其作用时间。
冲击力的作用时间。要防止冲击力带来的
高中物理选修 3-5 记背知识点
郑光久 廊坊市第八高级中学 2014/3/10
选修 3-5 记背知识点
第 16 章记背知识点
高中物理高考选修3-5知识点整理汇总
高中物理高考选修3-5知识点整理汇总一、动量;动量守恒定律1、动量可以从两个侧面对动量进行定义或解释①物体的质量跟其速度的乘积,叫做物体的动量。
②动量是物体机械运动的一种量度。
动量的表达式P=mv。
单位是。
动量是矢量,其方向就是瞬时速度的方向。
因为速度是相对的,所以动量也是相对的。
2、动量守恒定律当系统不受外力作用或所受合外力为零,则系统的总动量守恒。
动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。
运用动量守恒定律要注意以下几个问题:①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。
②对于某些特定的问题, 例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。
③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。
④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。
⑤动量守恒定律也可以应用于分动量守恒的情况。
有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。
⑥动量守恒定律有广泛的应用范围。
只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。
系统内部各物体相互作用时,不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,还是分裂成碎块,动量守恒定律也都适用。
3、动量与动能、动量守恒定律与机械能守恒定律的比较。
动量与动能的比较:①动量是矢量, 动能是标量。
②动量是用来描述机械运动互相转移的物理量,而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。
比如完全非弹性碰撞过程研究机械运动转移——速度的变化可以用动量守恒,若要研究碰撞过程改变成内能的机械能则要用动能为损失去计算了。
人教版高中物理选修3-5知识点整理及重点题型梳理] 原子结构
人教版高中物理选修3-5知识点梳理重点题型(常考知识点)巩固练习原子结构【学习目标】1.知道电子是怎样发现的;2.知道电子的发现对人类探索原子结构的重大意义; 3.了解汤姆孙发现电子的研究方法. 4.知道α粒子散射实验;5.明确原子核式结构模型的主要内容; 6.理解原子核式结构提出的主要思想.【要点梳理】要点诠释: 要点一、原子结构 1.阴极射线(1)气体的导电特点:通常情况下,气体是不导电的,但在强电场中,气体能够被电离而导电.平时我们在空气中看到的放电火花,就是气体电离导电的结果.在研究气体放电时一般都用玻璃管中的稀薄气体,导电时可以看到发光放电现象.(2)1858年德国物理学家普里克发现了阴极射线.①产生:在研究气体导电的玻璃管内有阴、阳两极.当两极间加一定电压时,阴极便发出一种射线,这种射线为阴极射线.②阴极射线的特点:碰到荧光物质能使其发光. 2.汤姆孙发现电子(1)从1890年起英国物理学家汤姆孙开始了对阴极射线的一系列实验研究. (2)汤姆孙利用电场和磁场能使带电的运动粒子发生偏转的原理检测了阴极射线的带电性质,并定量地测定了阴极射线粒子的比荷(带电粒子的电荷量与其质量之比,即e m). (3)1897年汤姆孙发现了电子(阴极射线是高速电子流).电子的电量()191.602177334910C e =⨯-,电子的质量319.109389710kg m =⨯-,电子的比荷111.758810C/kg em=⨯.电子的质量约为氢原子质量的1 1836.3.汤姆孙对阴极射线的研究(1)阴极射线电性的发现.为了研究阴极射线的带电性质,他设计了如图所示装置.从阴极发出的阴极射线,经过与阳极相连的小孔,射到管壁上,产生荧光斑点;用磁铁使射线偏转,进入集电圆筒;用静电计检测的结果表明,收集到的是负电荷.(2)测定阴极射线粒子的比荷.4.密立根实验美国物理学家密立根在1910年通过著名的“油滴实验”简练精确地测定了电子的电量密立根实验更重要的发现是:电荷是量子化的,即任何电荷只能是元电荷e的整数倍.5.电子发现的意义以前人们认为物质由分子组成,分子由原子组成,原子是不可再分的最小微粒.现在人们发现了各种物质里都有电子,而且电子的质量比最轻的氢原子质量小得多,这说明电子是原子的组成部分.电子是带负电,而原子是电中性的,可见原子内还有带正电的物质,这些带正电的物质和带负电的电子如何构成原子呢?电子的发现大大激发了人们研究原子内部结构的热情,拉开了人们研究原子结构的序幕.6.19世纪末物理学的三大发现对阴极射线的研究,引发了19世纪末物理学的三大发现:(1)1895年伦琴发现了X射线;(2)1896年贝克勒尔发现了天然放射性;(3)1897年汤姆孙发现了电子.要点二、原子的核式结构模型1.汤姆孙的原子模型“枣糕模型”.“葡萄干布丁模型”(如图所示).“葡萄干面包模型”.汤姆孙的原子模型是在发现电子的基础上建立起来的,汤姆孙认为,原子是一个球体,正电荷均匀分布在球内,电子像枣糕里的枣子一样,镶嵌在原子里面,所以汤姆孙的原子模型也叫枣糕式原子结构模型.【注意】汤姆孙的原子结构模型虽然能解释一些实验事实,但这一模型很快就被新的实验事实——仅粒子散射实验所否定.2.α粒子散射实验1909~1911年卢瑟福和他的助手做α粒子轰击金箔的实验,获得了重要的发现. (1)实验装置(如图所示)由放射源、金箔、荧光屏等组成.特别提示:①整个实验过程在真空中进行. ②金箔很薄,α粒子(42He 核)很容易穿过.(2)实验现象与结果.绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大角度的偏转,极少数α粒子偏转角超过90︒,有的几乎达到180︒,沿原路返回.仅粒子散射实验令卢瑟福万分惊奇.按照汤姆孙的原子结构模型:带正电的物质均匀分布,带负电的电子质量比α粒子的质量小得多.α粒子碰到电子就像子弹碰到一粒尘埃一样,其运动方向不会发生什么改变.但实验结果出现了像一枚炮弹碰到一层薄薄的卫生纸被反弹回来这一不可思议的现象.卢瑟福通过分析,否定了汤姆孙的原子结构模型,提出了核式结构模型.3.原子的核式结构卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转.4.原子核的电荷与尺度由不同原子对α粒子散射的实验数据可以确定各种元素原子核的电荷.又由于原子是电中性的,可以推算出原子内含有的电子数.结果发现各种元素的原子核的电荷数,即原子内的电子数非常接近于它们的原子序数,这说明元素周期表中的各种元素是按原子中的电子数来排列的.原子核的半径无法直接测量,一般通过其他粒子与核的相互作用来确定,α粒子散射是估算核半径最简单的方法.对于一般的原子核半径数量级为1510m -,整个原子半径的数量级是1010m -,两者相差十万倍之多,可见原子内部是十分“空旷”的. 5.解题依据和方法(1)解答与本节知识有关的试题,必须以两个实验现象和发现的实际为基础,应明确以下几点: ①汤姆孙发现了电子,说明原子是可分的,电子是原子的组成部分.②卢瑟福“α粒子散射实验”现象说明:原子中绝大部分是空的,原子的绝大部分质量和全部正电荷都集中在一个很小的核上.(2)根据原子的核式结构,结合前面所掌握的动能、电势能、库仑定律及能量守恒定律等知识,是综合分析解决d 粒子靠近原子核过程中,有关功、能的变化,加速度,速度的变化所必备的知识基础和应掌握的方法.6.对α粒子散射实验的理解如果按照汤姆孙的“枣糕”原子模型,α粒子如果从原子之间或原子的中心轴线穿过时,它受到周围的正负电荷作用的库仑力是平衡的,α粒子不产生偏转;如果α粒子偏离原子的中心轴线穿过,两侧电荷作用的库仑力相当大一部分被抵消,α粒子偏转很小;如果α粒子正对着电子射来,质量远小于α粒子的电子不可能使α粒子发生明显偏转,更不可能使它反弹.所以α粒子的散射实验结果否定了汤姆孙的原子模型.按卢瑟福的原子模型(核式结构),当α粒子穿过原子时,如果离核较远,受到原子核的斥力很小,仅粒子就像穿过“一片空地”一样,无遮无挡,运动方向改变极少,由于原子核很小,这种机会就很多,所以绝大多数α粒子不产生偏转;只有当α粒子十分接近原子核穿过时,才受到很大的库仑斥力,偏转角才很大,而这种机会很少;如果α粒子几乎正对着原子核射来,偏转角就几乎达到180︒,这种机会极少.如图所示.卢瑟福根据α粒子散射实验,不仪建立了原子的核式结构,还估算出了原子核的大小.220121(1)4sin 2m Ze r Mv θπε=⋅+(θ为散射角).原子核的商径数量级在1510m -.原子直径数量级大约是1010m -,所以原子核半径只相当于原子半径的十万分之一.原子的核式结构初步建立了原子结构的正确图景,但跟经典的电磁理论发生了矛盾.(见玻尔的原子模型)7.原子结构的探索历史(1)发现原子核式结构的过程.实验和发现 说明了什么 电子的发现说明原子有复杂结构α粒子散射实验说明汤姆孙(枣糕式)原子模型不符合实际,卢瑟福重新建立原子的核式结构模型(2)原子的核式结构与原子的枣糕式结构的根本区别.核式结构枣糕式结构原子内部是非常空旷的,正电荷集中在一个很小的核里 原子是充满了正电荷的球体 电子绕核高速旋转 电子均匀嵌在原子球体内【典型例题】 类型一、原子结构例1.关于阴极射线的本质,下列说法正确的是( ). A .阴极射线本质是氢原子 B .阴极射线本质是电磁波 C .阴极射线本质是电子 D .阴极射线本质是X 射线【思路点拨】阴极射线基本性质.【答案】C【解析】阴极射线是原子受激发射出的电子,关于阴极射线是电磁波、X 射线都是在研究阴极射线过程中的一些假设,是错误的.【总结升华】对阴极射线基本性质的了解是解题的依据.举一反三:【变式】如图所示,在阴极射线管正上方平行放一通有强电流的长直导线,则阴极射线将( ).A .向纸内偏转B .向纸外偏转C .向下偏转D .向上偏转【答案】D【解析】本题综合考查电流产生的磁场、左手定则和阴极射线的产生和性质.由题目条件不难判断阴极射线所在处磁场垂直纸面向外,电子从负极射出,由左手定则可判定阴极射线(电子)向上偏转.【总结升华】注意阴极射线(电子)从电源的负极射出,用左手定则判断其受力方向时四指的指向和射线的运动方向相反.例2.汤姆孙用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示.真空管内的阴极K 发出的电子(不计初速、重力和电子间的相互作用)经加速电压加速后,穿过A '中心的小孔沿中心轴1O O 的方向进入到两块水平正对放置的平行极板P 和P '间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心O 点处,形成了一个亮点;加上偏转电压U 后,亮点偏离到O '点(O '点与O 点的竖直间距为d ,水平间距可忽略不计).此时,在P 和P '间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B 时,亮点重新回到O 点.已知极板水平方向的长度为1L ,极板间距为b ,极板右端到荧光屏的距离为2L (如图所示). (1)求打在荧光屏O 点的电子速度的大小. (2)推导出电子的比荷的表达式.【答案】(1)UBb(2)2121(/2)Ud B bL L L +【解析】(1)当电子受到的电场力与洛伦兹力平衡时,电子做匀速直线运动,亮点重新回到中心O点,设电子的速度为v ,则evB eE =, 得E v B =, 即U v Bb =. (2)当极板间仅有偏转电场时,电子以速度v 进入后,竖直方向做匀加速运动,加速度为eUa mb =. 电子在水平方向做匀速运动,在电场内的运动时间11L t v=。
人教版高中物理选修3-5知识点汇总_一册全_
人教版高中物理选修3—5知识点总结第十六章动量守恒定律动16.1实验探究碰撞中的不变量碰撞的特点:1、相互作用时间极短。
2.相互作用力极大,即内力远大于外力。
3、速度都发生变化。
一、实验的基本思路1、一维碰撞:我们只研究最简单的情况——两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动。
2、猜想与假设:一个物体的质量与它的速度的乘积是不是不变量?3、碰撞可能有很多情形。
例如两个物体可能碰后分开,也可能粘在一起不再分开。
二、需要考虑的问题①如何保证碰撞是一维的?即两个物体在碰撞之前沿同一直线运动,碰撞之后还沿同一直线运动。
在固定的轨道上做实验——气垫导轨。
②怎样测量物体的质?用天平测量。
③怎样测量两个物体在磁撞前后的速度?速度的测量:可以充分利用所学的运动学知识,如利用匀速运动、平抛运动,并借助于斜槽、气垫导轨、打点计时器和纸带等来达到实验目的和控制实验条件。
④数据处理:列表。
参考案例一气垫导轨和光电门研究碰撞。
参考案例二利用单摆研究碰撞参考案例三利用打点计时器研究碰撞参考案例四利用平抛运动研究碰撞研究能量损失较小的碰撞时,可以选用参考案例二;研究碰撞后两个物体结合在一起的情况时,可以选用参考案例三。
参考案例四测出小球落点的水平距离可根据平抛运动的规律计算出小球的水平初速度。
实验设计思想巧妙之处在于用长度测量代替速度测量。
16.2动量定理一、动量1、定义:把物体的质量m和速度ʋ的乘积叫做物体的动量p,用公式表示为p = mʋ2、单位:在国际单位制中,动量的单位是千克米每秒,符号是kg•m/s3、动量是矢量:方向由速度方向决定,动量的方向与该时刻速度的方向相同。
4、注意:物体的动量,总是指物体在某一时刻的动量,即具有瞬时性,故在计算时相应的速度应取这一时刻的瞬时速度。
5、动量的变∆p①某段运动过程(或时间间隔)末状态的动量p',跟初状态的动量p的矢量差,称为动量的变化(或动量的增量),即p = p' - p。
高中物理选修3-5知识点梳理
高中物理选修3-5知识点梳理一、动量动量守恒定律 1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积,叫做物体的动量。
②动量是物体机械运动的一种量度。
动量的表达式P = mv 。
单位是s m kg .动量是矢量,其方向就是瞬时速度的方向。
因为速度是相对的,所以动量也是相对的。
2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。
动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。
运用动量守恒定律要注意以下几个问题:①对于某些特定的问题, 例如碰撞、爆炸等,系统在一个非常短的时间,系统部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间遵循动量守恒定律。
②计算动量时要涉及速度,这时一个物体系各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。
③动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。
④动量守恒定律也可以应用于分动量守恒的情况。
有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。
3、碰撞:两个物体相互作用时间极短,作用力又很大,其他作用相对很小,运动状态发生显著化的现象叫做碰撞。
⑴完全弹性碰撞:在弹性力的作用下,系统只发生机械能的转移,无机械能的损失,称完全弹性碰撞。
⑵非弹性碰撞:非弹性碰撞:在非弹性力的作用下,部分机械能转化为物体的能,机械能有了损失,称非弹性碰撞。
⑶完全非弹性碰撞:在完全非弹性力的作用下,机械能损失最大(转化为能等),称完全非弹性碰撞。
碰撞物体粘合在一起,具有相同的速度。
二、验证动量守恒定律(实验、探究)Ⅰ【实验目的】研究在弹性碰撞的过程中,相互作用的物体系统动量守恒.【实验原理】利用图2-1的装置验证碰撞中的动量守恒,让一个质量较大的球从斜槽上滚下来,跟放在斜槽末端上的另一个质量较小的球发生碰撞,两球均做平抛运动.由于下落高度相同,从而导致飞行时间相等,我们用它们平抛射程的大小代替其速度.小球的质量可以测出,速度也可间接地知道,如满足动量守恒式m 1v 1=m 1v 1'+m 2v 2',则可验证动量守恒定律. 【实验器材】两个小球(大小相等,质量不等);斜槽;重锤线;白纸;复写纸;天平;刻度尺;圆规. 【实验步骤】1.用天平分别称出两个小球的质量m 1和m 2;2.按图2-1安装好斜槽,注意使其末端切线水平,并在地面适当的位置放上白纸和复写纸,并在白纸上记下重锤线所指的位置O 点. 3.首先在不放被碰小球的前提下,让入射小球从斜槽上同一位置从静止滚下,图2-1图2-2P重复数次,便可在复写纸上打出多个点,用圆规作出尽可能小的圆,将这些点包括在圆,则圆心就是不发生碰撞时入射小球的平均位置P点如图2-2。
高中物理选修3-5重要知识点总结
选修3-5知识汇总一、动量1.动量:p =mv {方向与速度方向相同}2.冲量:I =Ft {方向由F 决定}3.动量定理:I =Δp 或Ft =mv t –mv o {Δp:动量变化Δp =mv t –mv o ,是矢量式}4.动量守恒定律:p 前总=p 后总或p =p ’也可以是/22/112211v m v m v m v m +=+ 5.(1)弹性碰撞: 系统的动量和动能均守恒'2'1221121v m v m v m v m +=+ ① 2'222'1122221121212121v m v m v m v m +=+ ② 1211'22v m m m v +=其中:当2v =0时,为一动一静碰撞,此时 (2)非弹性碰撞:系统的动量守恒,动能有损失'2'1221121v m v m v m v m +=+(3)完全非弹性碰撞:碰后连在一起成一整体 共v m m v m v m )(212211+=+,且动能损失最多6. 人船模型——两个原来静止的物体(人和船)发生相互作用时,不受其它外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv1 = MV2 (注意:几何关系) 注: (1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等); (4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加; 思考1:利用动量定理和动量守恒定律解题的步骤是什么? 思考2:动量变化Δp 为正值,动量一定增大吗?(不一定) 思考3:两个物体组成的系统动量守恒,其中一个物体的动量增大,另一个物体的动量一定减小吗?动能呢?(不一定)思考4:两个物体碰撞过程遵循的三条规律分别是什么?思考5:一动一静两个小球正碰撞,入射球和被撞球的速度范围怎样计算?思考6:有哪些模型可视为一动一静弹性碰撞?有哪些模型可视为人船模型?人船模型存在哪些特殊规律? 思考7:同样是动量守恒,碰撞,爆炸,反冲三者有何不同?(有弹簧的弹性势能或火药的化学能,或者人体内的化学能转化为动能的情况下,总动能增大) 二、波粒二象性1、1900年普朗克能量子假说,电磁波的发射和吸收是不连续的,而是一份一份的E=hv2、赫兹发现了光电效应,1905年,爱因斯坦量解释了光电效应,提出光子说及光电效应方程3、光电效应① 每种金属都有对应的c ν和W 0,入射光的频率必须大于这种金属极限频率才能发生光电效应 ② 光电子的最大初动能与入射光的强度无关,光随入射光频率的增大而增大(0W h E Km -=ν)。
高中物理选修3-5知识点总结
高中物理选修3-5总结一、动量定理的理解与应用1.容易混淆的几个物理量的区别(1)动量与冲量的区别:2.动量定理的应用(1)应用I=Δp求变力的冲量。
如果物体受到变力作用,则不能直接用I=F·t求变力的冲量,这时可以求出该力作用下物体动量的变化Δp,即等效代换为变力的冲量I。
(2)应用Δp=F·t求恒力作用下的曲线运动中物体动量的变化。
曲线运动中物体速度方向时刻在改变,求动量变化Δp=p′-p需要应用矢量运算方法,比较复杂。
如果作用力是恒力,可以求恒力的冲量,等效代换动量的变化。
(3)用动量定理解释现象。
用动量定理解释的现象一般可分为两类:一类是物体的动量变化一定,分析力与作用时间的关系;另一类是作用力一定,分析力作用时间与动量变化间的关系。
分析问题时,要把哪个量一定、哪个量变化搞清楚。
(4)处理连续流体问题(变质量问题)。
通常选取流体为研究对象,对流体应用动量定理列式求解。
3.应用动量定理解题的步骤(1)选取研究对象。
(2)确定所研究的物理过程及其始、末状态。
(3)分析研究对象在所研究的物理过程中的受力情况。
(4)规定正方向,根据动量定理列方程式。
(5)解方程,统一单位,求解结果。
4.动量守恒定律与机械能守恒定律的比较①系统(或某方向)不受外力作用时,系统(或某方向)动量守恒;②系统(或某方向)受外力但所受外力之和为零,则系统(或某方向)动量守恒;③系统(或某方向)所受合外力虽然不为零,但系统的内力远大于外力时,如碰撞、爆炸等现象中,系统(或某方向)的动量可看成近似守恒;④系统总的来看不符合以上三条中的任意一条,则系统的总动量不守恒。
但是,若系统在某一方向上符合以上三条中的某一条,则系统在该方向上动量守恒。
例1、如图所示,在光滑水平面上放置A、B两个物体,其中B物体与一个质量不计的弹簧相连且静止在水平面上,A物体质量是m,以速度v0逼近物体B,并开始压缩弹簧,在弹簧被压缩过程中( )A.在任意时刻,A、B组成的系统动量相等,都是mv0B.任意一段时间内,两物体所受冲量大小相等.C.在把弹簧压缩到最短过程中,A物体动量减少,B物体动量增加.D.当弹簧压缩量最大时,A、B两物体的速度大小相等例2、有一质量为m=20kg的物体,以水平速度v=5m/s的速度滑上静止在光滑水平面上的小车,小车质量为M=80kg,物体在小车上滑行距离ΔL =4m后相对小车静止。
高中物理选修3-5知识点
第十七章波粒二象性1.黑体:完全吸收入射各波长电磁波不反射2.热辐射现象:①任物在任℃都发射各种波长电磁波②辐射能量大小及波长分布与℃有关③既辐射也反射能量3.黑体辐射:①℃↑,黑体的辐射强度↑②℃↑,辐射强度极大值向波长短方移动4.能量子:①1900年普朗克②普`提振动的带电微粒的能量只是最小能量值ε的整数倍③ε=hν④h普朗克常量=6.63×10-34J·S ν频率光电效应的实验规律1.光电效应:照射金属光,使金属中的电子从表面逸出光电子:逸出电子勒纳德和汤姆孙等相继实验证实2.饱和电流:光色不变,入射光越强,饱和电流越大,单位时间内发射的光电子数越多3.遏止电压:使光电流减小到0的反向电压U c,光电子一定存在初速度满足12m e u c2=eU c颜色不同,频率不同,~不同4.光电子的能量只与入射光的频率有关5.截至频率(极限频率)νc不同金属截至~不同6.入射光频率<νc不发生光电效应7.瞬时性:当频率>νc,立即产光电流光电效应解释中的疑难1.逸出功W0:脱离做功最小值2.不同金属W0不同3.光↑,逸出电子数↑,光电流↑爱因斯坦的光电效应方程1.光:一份一份的由一个个不可分割的ε组成2.频率为ν的光的能量子为hν,h为普朗克常量3.光子:光的能量子为hν4.金属电子吸一光子获能是hν,一部分克服金属的逸出功W0,剩下表现为逸出后电子的初动能E k即hν=E k+W0或E k=hν-W0(爱因斯坦光点效应方程)(W0交于负半轴)若E k光电子的最大初动能E k=12m e u c2一个光子只给一个电子输能·爱因`表明:E k与入射光的频率ν有关hν>W0时,才有光电子逸出,νc=W0ℎ(光电效应截至频率)·电子一次性全吸能,不累能量时间,光电流几乎瞬时产生·同颜色(ν相同)的光,光较强时,包含光子数↑,照射金属产生光电子↑,饱和电流↑康普顿效应1.光的散射:在介质中与物质微粒相互作用,传播方向改变2.康普顿效应:散射X射线时,除与入射光波长λ0相同的成分,还有波长大于λ0的成分3.光电效应:光子具有能量康普顿效应:光子除了具有能量还具有动量光子的动量1.E=mc2E一定的能量m一定的质量2.光子的动量:p=ℎλλ波长h普朗克常量p动量【p=mc①ε=hf②ε=mc2③联解①②③得p=ℎλ】(f=ν=cλc光速f=ν频率)光的波粒二象性1.波粒二象性:光具有波动性+粒子性2.能量ε和动量p:描述物质的粒子性的重要物理量3.波长λ或频率ν:描述物质的波动性的典型物理量粒子的波动性1.德布罗意:①提出假设:实物粒子具有波动性②德布罗意波(物质波、概率波):与实物粒子相联系的波2.概率波1.光的强弱对应光子数目:明纹处光子多,暗纹处光子少光子落在明纹处概率大,暗纹概率小2.光的波动性不是光子之间的相互作用引起,是光子自身固有性质不确定性关系不确定性关系1.托马斯·杨和菲涅耳:光的波动说麦克斯韦:光的电磁理论爱因斯坦:光子理论第十八章原子结构电子的发现原子可以分割,由更小微粒组成电子的发现1.汤姆孙认为阴极射线是带电粒子流2.组成阴极射线的粒子为电子3.热离子发射:金属高温发射粒子现象4.密立根:电荷是量子化,任何带电体的电荷是e的整数倍e=1.602 177 33(49)×10-19C 原子的核式结构模型汤姆孙:提出“枣糕模型”和“西瓜模型”α粒子散射实验1.α粒子:放射性物质(如铀和镭)发射出来快速运动粒子,带两个单位正电荷2.卢瑟福α粒子轰击金箔实验(α粒子散射实验)3.卢瑟福原子结构模型:原子核:原子中心一个很小的核原子全部的正电荷和质量集在此带负电电子在核外绕核旋转4.对α粒子散射实验数据分析:可估计原子核大小和正电荷数5.原子序数=核电荷数=质子数=核外电子数(英)汤姆孙:发现电子氢原子光谱光谱1.光谱:光栅或棱镜把各颜色光按波长展开,获光的波长(频率)+强度分布的记录2.线状谱:光谱有一条条的亮线3.连续光谱:非条,连在一起的光带例:炽热气体、液体及高温高压气体产生4.各原子发射光谱都是线状谱5.亮线:原子的特征谱线(元素发出多少频率的光,就吸收多少频率的光)。
高中物理选修3-5知识点总结(填空版)
高二(3233)班选修3-5总结一,动量定理的理解与应用1.容易混淆的几个物理量的区别(1)动量与冲量的区别:2.动量定理的应用(1)应用I=Δp求变力的冲量。
如果物体受到变力作用,则不能直接用I=F·t求变力的冲量,这时可以求出该力作用下物体动量的变化Δp,即等效代换为变力的冲量I。
(2)应用Δp=F·t求恒力作用下的曲线运动中物体动量的变化。
曲线运动中物体速度方向时刻在改变,求动量变化Δp=p′-p需要应用矢量运算方法,比较复杂。
如果作用力是恒力,可以求恒力的冲量,等效代换动量的变化。
(3)用动量定理解释现象。
用动量定理解释的现象一般可分为两类:一类是物体的动量变化一定,分析力与作用时间的关系;另一类是作用力一定,分析力作用时间与动量变化间的关系。
分析问题时,要把哪个量一定、哪个量变化搞清楚。
(4)处理连续流体问题(变质量问题)。
通常选取流体为研究对象,对流体应用动量定理列式求解。
3.应用动量定理解题的步骤(1)选取研究对象。
(2)确定所研究的物理过程及其始、末状态。
(3)分析研究对象在所研究的物理过程中的受力情况。
(4)规定正方向,根据动量定理列方程式。
(5)解方程,统一单位,求解结果。
4.动量守恒定律与机械能守恒定律的比较系统动量成立的条件:①系统(或某方向)不受外力作用时,系统(或某方向)动量守恒;②系统(或某方向)受外力但所受外力之和为零,则系统(或某方向)动量守恒;③系统(或某方向)所受合外力虽然不为零,但系统的内力远大于外力时,如碰撞、爆炸等现象中,系统(或某方向)的动量可看成近似守恒;④系统总的来看不符合以上三条中的任意一条,则系统的总动量不守恒。
但是,若系统在某一方向上符合以上三条中的某一条,则系统在该方向上动量守恒。
一、黑体辐射(了解)与能量子1.一切物体都在辐射电磁波,这种辐射与物体的温度有关,叫__________2.黑体:某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物体叫黑体。
高中物理选修3-5知识点总结
高中物理选修3-5知识点总结
1、能量守恒定律:能量守恒是指能量在转化和传递过程中,总量保持不变。
能量守恒定律是自然界中最基本的定律之一,也是高中物理中的一个重要知识点。
2、动力学:动力学是研究物体运动状态变化的原因和规律的科学。
在高中
物理选修3-5中,主要包括牛顿运动定律、动量定理、动量守恒定律、机械能守恒定律等知识点。
3、振动与波:振动与波是自然界中常见的现象,也是高中物理选修3-5中的重要知识点。
主要包括简谐振动、机械波、电磁波等知识点。
4、光学:光学是研究光的现象和性质的科学。
在高中物理选修3-5中,主要包括光的折射、反射、干涉、衍射等知识点。
5、量子物理:量子物理是研究微观领域内原子、分子等物质的运动和变化
的科学。
在高中物理选修3-5中,主要包括量子力学的基本概念和原理,如波粒二象性、不确定性原理等。
人教版高中物理选修3-5章总结复习素材:第十九章 原子核知识点
19.1 原子核的组成 一、天然放射现象 1、物质发射射线的性质称为放射性,它可以穿透黑纸使照相底片感光。 2、具有放射性的元素称为放射性元素。 3、放射性的元素自发地发出射线的现象叫做天然放射现象。 二、射线到底是什么 1、三种射线分别叫做带正电荷α射线、带负电荷β射线和不带电γ射线。 2、α射线的穿透能力最弱,γ射线的穿透能力最强。 3、α射线是高速粒子流,粒子带正电,电荷量是电子的 2 倍,质量是氢原子的 4 倍, 电子质量的 7300 倍,实际上就是氦原子核。 4、β射线是高速电子流。 5、γ射线是能量很高的电磁波。 6、α射线,β射线都是高速运动的粒子, 能量很高,Y 射线是波长很短的光子,能 量也很高。 三、原子核的组成 1、质子 p:它是氢原子核,带正电,电量与电子相等。 2、中子 n:不带电,质量与质子相等。 3、核子:质子和中子组成的原子核。 4、原子核中的两个等式: ①核电荷数 Z=质子数=原子序数=荷外电子数 ②质量数 A=核子数=质子数+中子数 例如:23592U——铀原子核:有 92 个质子,143 个中子。质量数为 235。 5、同位素:具有相同质子数而中子数不同的原子核、在元素周期表中处于同一位置。 6、几种常用的原子核的表示
探测射线的方法
19.4 放射性的应用与防护 一、核反应 1、核反应分两种 (1)核自发衰变。(不可控) ①α衰变:α射线的实质就是高速运动的氦核流 ②β衰变:β射线的实质就是高速运动的电子流。 ③没有单独的γ衰变:γ射线是一种电磁波(光子)。 (2)人工转变:原子核在其他粒子的轰击下产生新原子核的过程。(可控) ①其他粒子指:α粒子、质子、中子,光子等 2、在核反应中,质量数守恒、电荷数守恒。 二、人工放射性同位素 1、同位素:具有相同质子数而中子数不同的原子核、在元素周期表中处于同一位置的 元素。有些同位素具有放射性,叫做放射性同位素。放射性同位素又分为天然和人工放 射性同位素。 2、与天然的放射性物质相比,人工放射性同位素的优点: ①放射强度容易控制 ③可以制成各种需要的形状 ④半衰期更短 ⑤放射性废料容易处理 三、放射性同位素的应用 ①使用射线来测厚度----利用γ射线的穿透性强的特点 ②放疗----利用细胞对射线承受力不同 ③选种和保鲜
高中物理选修3-5知识点复习
(1) 小球B 的初速度V 0大小;(2) AB 球碰后粘在一起在半圆轨道上运动的最大速度; (3) AB 球在速度最大时,球对轨道的压力的大小。
例6.如图所示,光滑水平面上有A 、B 、C 三个物块,其质量分别为m A = 2.0kg ,m B = 1.0kg ,m C = 1.0kg .现用一轻弹簧将A 、B 两物块连接,并用力缓慢压缩弹簧使A 、B 两物块靠近,此过程外力做108J (弹簧仍处于弹性限度内),然后同时释放A 、B ,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C 恰以4m/s 的速度迎面与B 发生碰撞并粘连在一起. 求:(1)弹簧刚好恢复原长时(B 与C 碰撞前)A 和B 物块速度的大小. (2黑体辐射强度和波长的关系: 波粒二象性:光电效应实验(饱和电流、(反向)遏止电压、截止频率、逸出功);1/2mv 2=eU C ;E K =hv-W 0; ·例7.例8.研究光电效应电路如图所示.用频率相同、强度不同的光分别照射密封真空管的钠极板(阴极K),钠极板发射出的光电子被阳极A吸收,在电路中形成光电流.下列光电流I 与A、K之间的电压U AK的关系图象中,正确的是.图示为氢原子能级示意图,现有大量的氢原子处于辐射出若干不同频率的光. 下列关于这些光的说法正确的是A. 最容易表现出衍射现象的光是由n=4能级跃迁到n=3能级产生的B. 频率最小的光是由n=2能级跃迁到n=l能级时产生的C. 这些氢原子总共可辐射出3种不同频率的光D. 用n=2能级跃迁到n=1能级时辐射出的光照射逸出功为6.34eV的金属铂能产生光电效应原子核:天然放射现象(α、β、r射线的辨别;α为42He;β为0-1e;r为光子;三者可通过磁场偏转辨别;三者的穿透性从弱到强;电离能力从强到弱)例13.图为三种射线在同一磁场中的运动轨迹,磁场方向为垂直纸面向里,分别辨认出三条射线各为何种射线。
例14.置于铅盒中的放射源发射的α、β、r三种射线,由铅盒的小孔射出,在小孔外放一张铝箔,铝箔后的空间有一匀强电场。
高中物理选修3-5知识点归纳
高中物理选修3-5知识点归纳第一章动量1.冲量物体所受外力和外力作用时间的乘积;矢量;过程量;I=Ft;单位是N·s。
2.动量物体的质量与速度的乘积;矢量;状态量;p=mv;单位是kg ·m/s;1kg ·m/s=1 N·s。
3.动量守恒定律一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。
4.动量守恒定律成立的条件系统不受外力或者所受外力的矢量和为零;内力远大于外力;如果在某一方向上合外力为零,那么在该方向上系统的动量守恒。
5.动量定理系统所受合外力的冲量等于动量的变化;I=mv末-mv初。
6.反冲在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化;系统动量守恒。
7.碰撞物体间相互作用持续时间很短,而物体间相互作用力很大;系统动量守恒。
8.弹性碰撞如果碰撞过程中系统的动能损失很小,可以略去不计,这种碰撞叫做弹性碰撞。
9.非弹性碰撞碰撞过程中需要计算损失的动能的碰撞;如果两物体碰撞后黏合在一起,这种碰撞损失的动能最多,叫做完全非弹性碰撞。
第二章波粒二象性1.热辐射一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫做热辐射。
2.黑体如果某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物质就是绝对黑体,简称黑体。
3.黑体辐射黑体辐射的电磁波的强度按波长分布,只与黑体的温度有关。
4.黑体辐射规律一方面随着温度升高各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。
5.能量子普朗克认为振动着的带电粒子的能量只能是某一最小能量ε的整数倍,这个不可再分的最小能量值ε叫做能量子;并且ε=hν,ν是电磁波的频率,h为普朗克常量,h=6.63⨯1034-J·s;光子的能量为hν。
6.光电效应照射到金属表面的光使金属中的电子从表面逸出的现象;逸出的电子称为光电子;电子脱离某种金属所做功的最小值叫逸出功;光电子的最大初动能E k =h ν-W ;每种金属都有发生光电效应的极限频率和相应的红线波长;光电子的最大初动能随入射光频率的增大而增大。
高中物理选修3—5知识点
物理选修3-5知识点总结一、动量守恒定律1、动量守恒定律的条件:系统所受的总冲量为零(不受力、所受外力的矢量和为零或外力的作用远小于系统内物体间的相互作用力),即系统所受外力的矢量和为零。
(碰撞、爆炸、反冲) 注意:内力的冲量对系统动量是否守恒没有影响,但可改变系统内物体的动量。
内力的冲量是系统内物体间动量传递的原因,而外力的冲量是改变系统总动量的原因。
2、动量守恒定律的表达式m1v1+m2v2=m1v1/+m2v2/ (规定正方向) △p1=-△p、某一方向动量守恒的条件:系统所受外力矢量和不为零,但在某一方向上的力为零,则系统在这个方向上的动量守恒。
必须注意区别总动量守恒与某一方向动量守恒。
4、碰撞(1)完全非弹性碰撞:获得共同速度,动能损失最多动量守恒,(2)弹性碰撞:动量守恒,碰撞前后动能相等;动量守恒,;动能守恒,; 特例1:A、B两物体发生弹性碰撞,设碰前A初速度为v0,B静止,则碰后速度,vB=. 特例2:对于一维弹性碰撞,若两个物体质量相等,则碰撞后两个物体互换速度(即碰后A的速度等于碰前B的速度,碰后B的速度等于碰前A的速度)(3)一般碰撞:有完整的压缩阶段,只有部分恢复阶段,动量守恒,动能减小。
5、人船模型--两个原来静止的物体(人和船)发生相互作用时,不受其它外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv = MV (注意:几何关系)二、量子理论的建立黑体和黑体辐射1、量子理论的建立:1900年德国物理学家普朗克提出振动着的带电微粒的能量只能是某个最小能量值ε的整数倍,这个不可再分的能量值ε叫做能量子ε= hν。
h为普朗克常数(6.63×10-34J.S)①存在饱和电流,这表明入射光越强,单位时间内发射的光电子数越多;②存在遏止电压: ;③截止频率:光电子的能量与入射光的频率有关,而与入射光的强弱无关,当入射光的频率低于截止频率时不能发生光电效应;④效应具有瞬时性:光电子的发射几乎是瞬时的,一般不超过10-9s。
高中物理选修3-5动量-原子知识点
Ft=mv′-mv(1)上述公式是一矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向. (2)公式中的F是研究对象所受的包括重力在内的所有外力的合力.(3)动量定理的研究对象可以是单个物体,也可以是物体系统.对物体系统,只需分析系统受的外力,不必考虑系统内力.系统内力的作用不改变整个系统的总动量.(4)动量定理不仅适用于恒定的力,也适用于随时间变化的力.对于变力,动量定理中的力F应表达式:m 1 v 1 +m 2 v 2 =m 1 v 1′+m 2 v 2′(1)动量守恒定律成立的条件①系统不受外力或系统所受外力的合力为零.②系统所受的外力的合力虽不为零,但系统外力比内力小得多,如碰撞问题中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略不计.③系统所受外力的合力虽不为零,但在某个方向上的分量为零,则在该方向上系统的总动量的分量保持不变.(2)动量守恒的速度具有“四性”:①矢量性;②瞬时性;③相对性;④普适性.4.爆炸与碰撞(1)爆炸、碰撞类问题的共同特点是物体间的相互作用突然发生,作用时间很短,作用力很大,且远大于系统受的外力,故可用动量守恒定律来处理.(2)在爆炸过程中,有其他形式的能转化为动能,系统的动能爆炸后会增加,在碰撞过程中,系统的总动能不可能增加,一般有所减少而转化为内能.(3)由于爆炸、碰撞类问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程简化处理.即作用后还从作用前瞬间的位置以新的动量开始运动.5.反冲现象:反冲现象是指在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化的现象.喷气式飞机、火箭等都是利用反冲运动的实例.显然,在反冲现象里,系统的动量是守恒的.动量第1单元动量冲量动量定理一、动量和冲量1.动量——物体的质量和速度的乘积叫做动量:p=mv⑴动量是描述物体运动状态的一个状态量,它与时刻相对应。
高中物理选修3-5动量守恒定律知识点总结
高中物理选修3-5动量守恒定律知识点总结动量守恒定律是物理课本选修3-5的内容,高中学生需要掌握重点知识点,下面小编给大家带来高中物理动量守恒定律知识点,希望对你有帮助。
高中物理动量守恒定律知识点 1. 动量守恒定律:研究的对象是两个或两个以上物体组成的系统,而满足动量守恒的物理过程常常是物体间相互作用的短暂时间内发生的。
2. 动量守恒定律的条件:(1)理想守恒:系统不受外力或所受外力合力为零(不管物体间是否相互作用),此时合外力冲量为零,故系统动量守恒。
当系统存在相互作用的内力时,由牛顿第三定律得知,相互作用的内力产生的冲量,大小相等,方向相反,使得系统内相互作用的物体动量改变量大小相等,方向相反,系统总动量保持不变。
即内力只能改变系统内各物体的动量,而不能改变整个系统的总动量。
(2)近似守恒:当外力为有限量,且作用时间极短,外力的冲量近似为零,或者说外力的冲量比内力冲量小得多,可以近似认为动量守恒。
(3)单方向守恒:如果系统所受外力的矢量和不为零,而外力在某方向上分力的和为零,则系统在该方向上动量守恒。
3. 动量守恒定律应用中需注意:(1)矢量性:表达式m1v1+m2v2=中守恒式两边不仅大小相等,且方向相同,等式两边的总动量是系统内所有物体动量的矢量和。
在一维情况下,先规定正方向,再确定各已知量的正负,代入公式求解。
(2)系统性:即动量守恒是某系统内各物体的总动量保持不变。
(3)同时性:等式两边分别对应两个确定状态,每一状态下各物体的动量是同时的。
(4)相对性:表达式中的动量必须相对同一参照物(通常取地球为参照物).4. 碰撞过程是指物体间发生相互作用的时间很短,相互作用过程中的相互作用力很大,所以通常可认为发生碰撞的物体系统动量守恒。
按碰撞前后物体的动量是否在一条直线上,有正碰和斜碰之分,中学物理只研究正碰的情况;碰撞问题按性质分为三类。
(1)弹性碰撞碰撞结束后,形变全部消失,碰撞前后系统的总动量相等,总动能不变。
物理选修3-5-知识点总结
高中物理选修3—5知识点梳理一、动量动量守恒定律1、动量:P = mv。
单位是。
动量是矢量,其向就是瞬时速度的向。
因为速度是相对的,所以动量也是相对的.冲量:冲量是矢量,在作用时间力的向不变时,冲量的向与力的向相同;如果力的向是变化的,则冲量的向与相应时间物体动量变化量的向相同。
若力为同一向均匀变化的力,该力的冲量可以用平均力计算;若力为一般变力,则不能直接计算冲量。
同一向上动量的变化量=这一向上各力的冲量和.动量定理:动量与力的关系:物体动量的变化率等于它所受的力.2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。
(适用于目前物理学研究的一切领域。
)动量守恒定律成立的条件:①系统不受外力作用。
②系统虽受到了外力的作用,但所受合外力为零。
③系统所受的外力远远小于系统各物体间的力时,系统的总动量近似守恒(碰撞,击打,爆炸,反冲).④系统所受的合外力不为零,但在某一向上合外力为零,则系统在该向上动量守恒。
⑤系统受外力,但在某一向上力远大于外力,也可认为在这一向上系统的动量守恒。
常见类型:①由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短或拉伸到最长时,弹簧两端的两个物体的速度必然相等.②在物体滑上斜面(斜面放在光滑水平面上)的过程中,由于物体间弹力的作用,斜面在水平向上将做加速运动,物体滑到斜面上最高点的临界条件是物体与斜面沿水平向具有共同的速度,物体到达斜面顶端时,在竖直向上的分速度等于零。
③子弹刚好击穿木块的临界条件为子弹穿出时的速度与木块的速度相同,子弹位移为木块位移与木块厚度之和。
二、验证动量守恒定律(实验、探究)Ⅰ【注意事项】1.“水平"和“正碰"是操作中应尽量予以满足的前提条件.2.入射球的质量应大于被碰球的质量.3.入射球每次都必须从斜槽上同一位置由静止开始滚下.法是在斜槽上的适当高度处固定一档板,小球靠着档板后放手释放小球.4.若利用气垫导轨进行实验,调整气垫导轨时注意利用水平仪器确保导轨水平。
高中物理知识点总结 碰撞与动量守恒课件 选修3-5
四、碰撞 1.概念:碰撞是指物体间的相互作用持续的时间很短, 而物体间相互作用力很大的现象. 2.特点:在碰撞现象中,一般都满足内力________外力, 可认为相互碰撞的系统动量________. 3.分类 (1)弹性碰撞:碰撞过程中机械能________,即碰撞前后 系统总动能相等. (2)非弹性碰撞:碰撞过程中机械能________,即碰撞后 的机械能________碰撞前的机械能. (3)完全非弹性碰撞:碰撞后物体________,具有 ________的速度,这种碰撞系统动能损失________.
第十三页,共21页。
(1)如果m1=m2,则v1′=v2,v2′=v1,即交换速度. (2)如果碰前一物体静止,设v2=0,则碰撞后的速度为
v1′=mm11- +mm22v1,v2′=m12+m1m2v1 具体的有以下几种情况
①m1=m2时,则有v1′=0,v2′=v1 即碰后实现了动量和动能的全部转移(交换速度). ②m1≫m2时,有v1′≈v1,v2′≈2v1 即碰后m1的速度几乎未变,仍按原来的方向运动,质量 小的物体m2将以m1速度的两倍向前运动. ③m1≪m2时,有v1′≈-v1,v2′≈0 即碰后m1按原来的速率弹回,m2几乎未动.
第八页,共21页。
1.研究对象:相互作用的物体组成的系统. 2.正确理解“总动量保持不变”,不仅指系统的初末两个 时刻的总动量相等,而且指系统在整个过程中任意两个时刻 的总动量相等.
第九页,共21页。
3.动量守恒定律的三性 (1)矢量性:对于作用前后物体的运动方向都在同一直线 上的问题,应选取统一的正方向,凡是与选取正方向相同的 动量为正,相反为负.若方向未知,可设为与正方向相同列 动量守恒方程,通过解得结果的正负,判定未知量的方向. (2)同时性:动量是一个瞬时量,动量守恒指的是系统任 一瞬时的动量守恒,列方程m1v1+m2v2=m1v1′+m2v2′时,等 号左侧是作用前(或某一时刻)各物体的动量和,等号右侧是作 用后(或另一时刻)各物体的动量和,不同时刻的动量不能相 加.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理选修3-5知识点梳理一、动量 动量守恒定律1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积,叫做物体的动量。
②动量是物体机械运动的一种量度。
动量的表达式P = mv 。
单位是s m kg .动量是矢量,其方向就是瞬时速度的方向。
因为速度是相对的,所以动量也是相对的。
2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。
动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。
运用动量守恒定律要注意以下几个问题: ①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。
②对于某些特定的问题, 例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。
③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。
④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。
⑤动量守恒定律也可以应用于分动量守恒的情况。
有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。
⑥动量守恒定律有广泛的应用范围。
只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。
系统内部各物体相互作用时,不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,还是分裂成碎块,动量守恒定律也都适用。
3、动量与动能、动量守恒定律与机械能守恒定律的比较。
动量与动能的比较: ①动量是矢量, 动能是标量。
②动量是用来描述机械运动互相转移的物理量而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。
比如完全非弹性碰撞过程研究机械运动转移——速度的变化可以用动量守恒,若要研究碰撞过程改变成内能的机械能则要用动能为损失去计算了。
所以动量和动能是从不同侧面反映和描述机械运动的物理量。
动量守恒定律与机械能守恒定律比较:前者是矢量式,有广泛的适用范围,而后者是标量式其适用范围则要窄得多。
这些区别在使用中一定要注意。
4、碰撞:两个物体相互作用时间极短,作用力又很大,其他作用相对很小,运动状态发生显著化的现象叫做碰撞。
以物体间碰撞形式区分,可以分为“对心碰撞”(正碰), 而物体碰前速度沿它们质心的连线;“非对心碰撞”——中学阶段不研究。
以物体碰撞前后两物体总动能是否变化区分,可以分为:“弹性碰撞”。
碰撞前后物体系总动能守恒;“非弹性碰撞”,完全非弹性碰撞是非弹性碰撞的特例,这种碰撞,物体在相碰后粘合在一起,动能损失最大。
各类碰撞都遵守动量守恒定律和能量守恒定律,不过在非弹性碰撞中,有一部分动能转变成了其他形式能量,因此动能不守恒了。
二、验证动量守恒定律(实验、探究) Ⅰ【实验目的】研究在弹性碰撞的过程中,相互作用的物体系统动量守恒.【实验原理】利用图2-1的装置验证碰撞中的动量守恒,让一个质量较大的球从斜槽上滚下来,跟放在斜槽末端上的另一个质量较小的球发生碰撞,两球均做平抛运动.由于下落高度相同,从而导致飞行时间相等,我们用它们平抛射程的大小代替其速度.小球的质量可以测出,速度也可间接地知道,如满足动量守恒式m 1v 1=m 1v 1'+m 2v 2',则可验证动量守恒定律.进一步分析可以知道,如果一个质量为m 1,速度为v 1的球与另一个质量为m 2,速度为v 2的球相碰撞,碰撞后两球的速度分别为v 1'和v 2',则由动量守恒定律有:m 1v 1=m 1v 1'+m 2v 2'. 【实验器材】两个小球(大小相等,质量不等);斜槽;重锤线;白纸;复写纸;天平;刻度尺;圆规. 【实验步骤】1.用天平分别称出两个小球的质量m 1和m 2;2.按图2-1安装好斜槽,注意使其末端切线水平,并在地面适当的位置放上白纸和复写纸,并在白纸上记下重锤线所指的位置O 点.3.首先在不放被碰小球的前提下,让入射小球从斜槽上同一位置从静止滚下,重复数次,便可在复写纸上打出多个点,用圆规作出尽可能小的圆,将这些点包括在圆内,则圆心就是不发生碰撞时入射小球的平均位置P 点如图2-2。
4.将被碰小球放在斜槽末端上,使入射小球与被碰小球能发生正碰;5.让入射小球由某一定高度从静止开始滚下,重复数次,使两球相碰,按照步骤(3)的办法求出入球落地点的平均位置M 和被碰小球落地点的平均位置N ;6.过ON 在纸上做一条直线,测出OM 、OP 、ON 的长度;7.将数据代入下列公式,验证公式两边数值是否相等(在实验误差允许的范围内):m 1·OP=m 1·OM+m 2·ON 【注意事项】1.“水平”和“正碰”是操作中应尽量予以满足的前提条件.2.测定两球速度的方法,是以它们做平抛运动的水平位移代表相应的速度.3.斜槽末端必须水平,检验方法是将小球放在平轨道上任何位置,看其能否都保持静止状态. 4.入射球的质量应大于被碰球的质量. 5.入射球每次都必须从斜槽上同一位置由静止开始滚下.方法是在斜槽上的适当高度处固定一档板,小球靠着档板后放手释放小球.6.实验过程中,实验桌、斜槽、记录的白纸的位置要始终保持不变. 7.m 1·OP=m 1·OM+m 2·ON 式中相同的量取相同的单位即可. 【误差分析】误差来源于实验操作中,两个小球没有达到水平正碰,一是斜槽不够水平,二是两球球心不在同一水平面上,给实验带来误差.每次静止释放入射小球的释放点越高,两球相碰时作用力就越大,动量守恒的误差就越小.应进行多次碰撞,落点取平均位置来确定,以减小偶然误差. 下列一些原因可能使实验产生误差: 1.若两球不能正碰,则误差较大;图2-1 图2-2 P2.斜槽末端若不水平,则得不到准确的平抛运动而造成误差; 3.O 、P 、M 、N 各点定位不准确带来了误差; 4.测量和作图有偏差;5.仪器和实验操作的重复性不好,使得每次做实验时不是统一标准.三、弹性碰撞和非弹性碰撞 Ⅰ碰撞:相互运动的物体相遇,在极短的时间内,通过相互作用,运动状态发生显著变化的过程叫碰撞。
⑴完全弹性碰撞:在弹性力的作用下,系统内只发生机械能的转移,无机械能的损失,称完全弹性碰撞。
⑵非弹性碰撞:非弹性碰撞:在非弹性力的作用下,部分机械能转化为物体的内能,机械能有了损失,称非弹性碰撞。
⑶完全非弹性碰撞:在完全非弹性力的作用下,机械能损失最大(转化为内能等),称完全非弹性碰撞。
碰撞物体粘合在一起,具有相同的速度。
四、普朗克量子假说 黑体和黑体辐射 Ⅰ 一、量子论1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。
2.量子论的主要内容: ①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。
②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。
3.量子论的发展 ①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。
②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。
③到1925年左右,量子力学最终建立。
二、黑体和黑体辐射 1.热辐射现象任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。
以物体间碰撞形式分类 以物体间碰撞前后两物体的总动能是否发生变化分类 碰撞的种类 正碰 斜碰弹性碰撞 非弹性碰完全非弹性这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。
①.物体在任何温度下都会辐射能量。
②.物体既会辐射能量,也会吸收能量。
物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。
辐射和吸收的能量恰相等时称为热平衡。
此时温度恒定不变。
实验表明:物体辐射能多少决定于物体的温度(T )、辐射的波长、时间的长短和发射的面积。
2.黑体物体具有向四周辐射能量的本领,又有吸收外界辐射来的能量的本领。
黑体是指在任何温度下,全部吸收任何波长的辐射的物体。
3.实验规律:1)随着温度的升高,黑体的辐射强度都有增加;2)随着温度的升高,辐射强度的极大值向波长较短方向移动。
五、光电效应 Ⅰ 1、光电效应⑴光电效应在光(包括不可见光)的照射下,从物体发射出电子的现象称为光电效应。
⑵光电效应的实验规律:装置:如右图。
①任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能发生光电效应,低于极限频率的光不能发生光电效应。
②光电子的最大初动能与入射光的强度无关,光随入射光频率的增大而增大。
③大于极限频率的光照射金属时,光电流强度(反映单位时间发射出的光电子数的多少),与入射光强度成正比。
④ 金属受到光照,光电子的发射一般不超过10-9秒。
2、波动说在光电效应上遇到的困难 波动说认为:光的能量即光的强度是由光波的振幅决定的与光的频率无关。
所以波动说对解释上述实验规律中的①②④条都遇到困难 3、光子说⑴量子论:1900年德国物理学家普朗克提出:电磁波的发射和吸收是不连续的,而是一份一份的,每一份电磁波的能量νεh =.⑵光子论:1905年爱因斯坦提出:空间传播的光也是不连续的,而是一份一份的,每一份称为一个光子,光子具有的能量与光的频率成正比。
即:νεh =.其中ν是电磁波的频率,h 为普朗克恒量:h =6.63×10-34s J ⋅ 4、光子论对光电效应的解释金属中的自由电子,获得光子后其动能增大,当功能大于脱出功时,电子即可脱离金属表面,入射光的频率越大,光子能量越大,电子获得的能量才能越大,飞出时最大初功能也越大。
5.光电效应方程:0W h E k -=νE k 是光电子的最大初动能,当E k =0 时,νc 为极限频率,νc =hW 0.六、光的波粒二象性 物质波 Ⅰ 光既表现出波动性,又表现出粒子性大量光子表现出的波动性强,少量光子表现出的粒子性强;频率高的光子表现出的粒子性强,频率低的光子表现出的波动性强.实物粒子也具有波动性,这种波称为德布罗意波,也叫物质波。
满则下列关系:Ph h==λεν, 从光子的概念上看,光波是一种概率波.七、原子核式结构模型 Ⅰ1、电子的发现和汤姆生的原子模型: ⑴电子的发现:1897年英国物理学家汤姆生,对阴极射线进行了一系列研究,从而发现了电子。