中考数学模拟试题二

合集下载

2024年河南省九年级中考数学模拟试题(二)

2024年河南省九年级中考数学模拟试题(二)

2024年河南省九年级中考数学模拟试题(二)一、单选题1.2023-的相反数是()A.12023-B.2023-C.2023D.120232.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“学”字一面的相对面上的字是()A.核B.心C.数D.养3.如图,直线m∥n,AC⊥BC于点C,∠1=30°,则∠2的度数为()A.140°B.130°C.120°D.110°4.下列运算正确的是( )A.222()x y x y-=-B.246x x x∙=C.3=-D.236(2)6x x=5.如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边的中点,连接EF.若EF4BD=,则菱形ABCD的周长为()C.D.28 A.4 B.126.若关于x的方程220x x a++=有两个不相等的实数根,则a的值可以是()A.3 B.2 C.1 D.07.申报某个项目时,某7个区域提交的申报表数量的前5名的数据统计如图所示,则这7个区域提交该项目的申报表数量的中位数是()A.8 B.7 C.6 D.58.第七次人口普查数据显示:河北省常住人口中,男性人口约为0.377亿人,女性人口约为0.369亿人,则用科学记数法表示男性人口比女性人口大约多()A.50.810⨯人D.5810⨯人⨯人C.68100.810⨯人B.4A,C在直线y=x上,且点A的坐9.如图,在菱形ABCD中,∠BAD=60°,AB).将菱形ABCD绕原点O逆时针旋转,每次旋转45°,则第85次旋转结束时,点C的坐标为()A.0)B.(0,2)C.(0D.(2,0)10.根据研究,人体内血乳酸浓度升高是运动后感觉疲劳的重要原因,运动员未运动时,体内血乳酸浓度水平通常在40mg/L以下;如果血乳酸浓度降到50mg/L以下,运动员就基本消除了疲劳,体育科研工作者根据实验数据,绘制了一副图象,它反映了运动员进行高强度运动后,体内血乳酸浓度随时间变化而变化的函数关系.下列叙述正确的是()A .运动后40min 时,采用慢跑活动方式放松时的血乳酸浓度与采用静坐方式休息时的血乳酸浓度相同B .运动员高强度运动后,最高血乳酸浓度大约为250mg /LC .采用慢跑活动方式放松时,运动员必须慢跑70min 后才能基本消除疲劳D .运动员进行完剧烈运动,为了更快达到消除疲劳的效果,应该采用慢跑活动方式来放松二、填空题11.请写出一个过点()21,且y 随x 的增大而减小的函数的解析式 . 12.不等式组24331103x x x -≤-⎧⎪⎨-<⎪⎩的解集为. 13.老师为帮助学生正确理解物理变化和化学变化,将四种生活现象:“滴水成冰”“酒精燃烧”“百炼成钢”“木已成舟”制作成无差别卡片,置于暗箱中摇匀,随机抽取两张均为物理变化的概率是.14.如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆交对角线AC 于点E ,以C 为圆心、BC 长为半径画弧交AC 于点F ,则图中阴影部分的面积是.15.如图,已知△ABC 中,∠C =90°,AC =4,BC =3,将△ABC 绕点B 逆时针旋转一定的角度α,若0°<α<90°,直线A 1C 1分别交AB ,AC 于点G ,H ,当△AGH 为等腰三角形时,则CH 的长为.三、解答题16.(1)计算:2011220233-⎛⎫+-- ⎪⎝⎭; (2)化简:2623193a a a a -⎛⎫÷+ ⎪-+⎝⎭. 17.实施乡村振兴计划以来,我市农村经济发展进入了快车道,为了解某村今年一季度经济发展状况,李老师的课题研究小组从该村300户家庭中随机抽取了20户,收集到他们一季度家庭人均收入的数据如下(单位:万元):0.69 0.73 0.74 0.80 0.81 0.98 0.93 0.81 0.89 0.690.74 0.99 0.98 0.78 0.80 0.89 0.83 0.89 0.94 0.89研究小组的同学对以上数据进行了整理分析,得到下表:(1)表格中:=a ______,b =______,c =______;(2)请估计今年一季度该村家庭人均收入不低于0.8万元的户数;(3)该村小强家今年一季度人均收入为0.83万元,能否超过村里一半以上的家庭?请说明理由.18.如图,在正方形OABC 中,2AB =,点M 是AB 的中点,反比例函数()0ky x x=>的图象经过点M 和点12N n ⎛⎫ ⎪⎝⎭,.(1)求反比例函数的解析式.(2)请用无刻度的直尺和圆规过点N 作出x 轴的垂线,(要求:不写作法,保留作图痕迹,使用2B 铅笔作图);若所作垂线交AB 于点P ,请直接写出NP 的长.19.第31届世界大学生运动会于 2023年7月28日在成都举行,主火炬塔位于东安湖体育公园,亮灯之夜,塔身通体透亮,10余道象征太阳光芒的螺旋线全部点亮,璀璨绚丽,流光溢彩(如图1).小杰同学想要通过测量及计算了解火炬塔CD 的大致高度,当他步行至点A 处,测得此时塔顶C 的仰角为42︒,再步行20米至点B 处,测得此时塔顶C 的仰角为65︒(如图2所示,点A ,B ,D 在同一条直线上),请帮小杰计算火炬塔CD 的高.(sin650.91︒≈,cos650.42︒≈,tan 65 2.14︒≈,sin 420.67︒≈,cos420.74︒≈,tan 420.90︒≈,结果保留整数)20.随着2022年北京冬奥会拉开帷幕,冬奥吉祥物“冰墩墩”“雪容融”备受消费者追捧,屡上热搜.某网店第一次用9000元购进冰墩墩钥匙扣,用9000元购进雪容融钥匙扣,其中冰墩墩钥匙扣的进价是雪容融钥匙扣进价的1.5倍,此次购买的雪容融钥匙扣比冰墩墩钥匙扣的个数多100个.其中,该网店雪容融钥匙扣售价为50元,冰墩墩钥匙扣售价为68元.(1)求这两种钥匙扣的进价;(2)第一次进货很快销售一空,该网店在第二次进货时购进这两种钥匙扣共1000个,其中雪容融钥匙扣的购货数量不少于冰墩墩钥匙扣数量的3倍,如何进货能在第二次进货中获得最大利润?并求出最大利润.21.根据心理学研究表明,学生上课对概念的接受能力y 与讲授概念的时间x 之间的关系是二次函数,如图是y 与x 的函数图象,点A 是该抛物线的顶点,且43OC .(1)求y 与x 的函数关系式;(2)研究表明,当学生的接受能力在55及以上时,视为学生接受能力的黄金期.①在学生接受能力的黄金期讲授重点内容,学习效果会更好.请问,张老师在哪个时间段内讲授重点内容合适?②若讲授某个概念的重点内容需要用时12分钟,请你判断其能否在学生接受能力的黄金期内讲完?说明理由.22.古代纺纱工具——手摇纺车,据推测出现在战国时期,常见由木架、锭子、绳轮和手柄四部分组成,常见的手摇纺车是锭子在左,绳轮和手柄在右,中间用绳弦传动,称为卧式(如图1).另一种手摇纺车,则是把锭子安装在绳轮之上,也是用绳弦传动,称为立式(如图2).卧式由一人操作,而立式需要两人同时配合操作,因卧式更适合一家一户的农村副业之用,故一直沿习流传至今.某数学实践小组对卧式手摇铲车纺线时的场景进行了探究:纺线时(如图3),木架水平放置.即绳轮O e 与水平面DE 相切于点E ,线绳绕过绳轮汇聚于点D 处放置的锭子上,即线绳CD 与O e 相切于点C ,过切点E 的直径与O e 交于点A (图中点O A E D C 、、、、在同一平面内).(1)求证:AOC CDE ∠=∠.(2)该小组在实践过程中发现,当纺车的绳轮半径OE 为40cm ,且圆心O 与D 处锭子之间的水平距离DE 在70~120cm 之间时,纺线较为舒适.若30∠=︒CDE ,40cm OE =,请判断该纺车纺线时是否舒适并说明理由. 1.7)23.综合与实践:折纸中的数学折纸是我国传统的民间艺术,也是同学们喜欢的手工活动之一,幸运星、纸飞机、千纸鹤、密信等折纸活动在生活中都是广为流传的,通过折纸我们可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识,折纸往往从矩形纸片开始,下面就让我们带着数学的眼光来探究一下有关矩形纸片的折叠问题,看看折叠矩形纸片蕴含着哪些丰富的数学知识.(1)折纸1:如图1,在一张矩形纸片上任意画一条线段AB ,将纸片沿线段AB 折叠(如图2) 问题1:重叠部分的ABC V 的形状______(是、不是)等腰三角形.问题2:若4cm AB =,5cm =BC ,则重叠部分ABC V 的面积为______2cm(2)折纸2:如图3,矩形纸片ABCD ,点E 为边CD 上一点,将BCE V 沿着直线BE 折叠,使点C 的对应点F 落在边AD 上,请仅用无刻度的尺子和圆规在图3中找出点E 的位置(保留作图痕迹,不写作法).(3)折纸3:如图4,矩形纸片ABCD ,5AB =,6BC =,若点M 为射线BC 上一点,将ABM V 沿着直线AM 折叠,折叠后点B 的对应点为B ',当点B '恰好落在BC 的垂直平分线上时,求BM的长.。

中考数学模拟试题(2)

中考数学模拟试题(2)

中考数学模拟试题一、选择题(每题3分,共30分) 1、-2 021的相反数等于( )A .2 021B .-2 021 C.12 021D .-12 0212、下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为( )3、下列运算正确的是( )A .(-m 2n)3=-m 6n 3B .m 5-m 3=m 2C .(m +2)2=m 2+4D .(12m 4-3m)÷3m=4m 34、由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是( )个. A.4 B.5 C.6 D.75、关于x 的一元二次方程(a +2)x 2-3x +1=0有实数根,则a 的取值范围是( )A .a <14且a≠-2B .a≤14C .a≤14且a≠-2D .a <146、我国古代某数学著作中有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有x 人,y 辆车,则可列方程组为( ) A.{3(y −2)=x2y −9=xB.{3(y +2)=x2y +9=xC.{3(y −2)=x 2y +9=x D.{3(y +2)=x2y −9=x7、如图,D ,E ,F 分别是△ABC 各边中点,则以下说法错误的是( ) A .△BDE 和△DCF 的面积相等 B .四边形AEDF 是平行四边形 C .若AB =BC ,则四边形AEDF 是菱形D .若∠A =90°,则四边形AEDF 是矩形( 第7题图)8、关于x 的不等式组{x −m <0,3x −1>2(x −1)无解,那么m 的取值范围为( )A. m ≤-1B.m<-1C.-1<m ≤0D.-1≤m<09、如图所示,已知点A,B 分别在反比例函数y= 1x (x>0), y=- 4x (x>0))的图象上,且OA ⊥OB,则OBOA 的值为( ) A.√2 B.4 C.√3 D.2( 第9题图)10、如图所示,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是 △ABC 边上一动点,沿B →A →C 的路径移动,过点P 作PD ⊥BC 于点D,设 BD=x,△BDP 的面积为y,则下列能大致反映y 与x 函数关系图象的是( )二、填空题(每题3分,共21分)11、我国某探测器距离地球约3.2亿千米.数据3.2亿千米用科学记数法可以表示为 km.12、一组数据5,2,x,6,4的平均数是4,这组数据的方差_____.13、动物学家通过大量的调查,估计某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,据此若设刚出生的这种动物共有a 只,则现年20岁的这种动物活到25岁的概率是 ________. 14、如图所示,在平行四边形ABCD 中,按以下步骤作图: ①以A 为圆心,任意长为半径作弧,分别交AB,AD 于点 M,N;②分别以M,N 为圆心,以大于12MN 的长为半径作弧, 两弧相交于点P;③作射线AP,交边CD 于点Q,若DQ=2QC,( 第14题图)BC=3,则平行四边形ABCD 的周长为 .15、某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人 4盒牛奶,那么剩下28盒牛奶;如果分给每位老人 5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有__________人.16、如图,在矩形ABCD 中,AB =3,AD =4,E ,F 分 别是边BC ,CD 上一点,EF⊥AE,将△ECF 沿EF 翻折 得△EC′F,连接AC′,当BE =________时,△AEC′是以AE 为腰的等腰三角形. (第16题图)17、如图,已知正方形ABCD 的边长为6,点F 是正方形内一点,连接CF ,DF ,且∠ADF=∠DCF,点E 是AD 边上一动点,连接EB ,EF ,则EB +EF 长度的最小值为 ________________.( 第17题图) 三、解答题(共9小题,计69分)18、(5分)(12)-1-√−83+|√3-2|+2sin 60°.19、(5分)先化简,再求值:(3a+1-a+1)÷a 2−4a 2+2a+1,其中a 从-1,2,3中取一个你认为合适的数代入求值.20、(6分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其他方面完全相同,若背面朝上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面朝上放在桌面上,甲从中随机抽取一张卡片,记该卡片上的数字为m,然后放回洗匀,背面朝上放在桌面上,再由乙从中随机抽取一张卡片,记该卡片上的数字为n,组成一数对(m,n).(1)请写出(m,n)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽一次卡片,卡片上数字之和为奇数则甲赢,数字之和为偶数则乙赢.你认为这个游戏公平吗?请说明理由.21、(6分)如图所示,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角为45°,然后沿着坡度为1∶3的坡面AD走了200 m达到D处,此时在D处测得山顶B的仰角为60°,求山BC的高度.(结果保留根号)22、(7分))某校从全体学生中随机抽取部分学生,调查他们平均每周的劳动时间t(单位:h),按劳动时间分为四组:A组“t<5”,B组“5≤t<7”,C组“7≤t<9”,D 组“t≥9”.将收集的数据整理后,绘制成如图所示的两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次抽样调查的样本容量是,C组所在扇形的圆心角的大小是;(2)将条形统计图补充完整;(3)该校共有1 500名学生,请估计该校平均每周劳动时间不少于7 h的学生人数.23、(9分)某乡镇对河道进行整治,由甲乙两工程队合做 20天可完成.已知甲工程队单独整治需60天完成.(1)乙工程队单独完成河道整治需多少天?(2)若甲乙两工程队合做a天后,再由甲工程队单独做天(用含a 的代数式表示)可完成河道整治任务;(3)如果甲工程队每天施工费为5 000元,乙工程队每天施工费为1.5万元,先由甲乙两工程队合做,剩余工程由甲工程队单独完成,要使支付两工程队费用最少,并且确保河道在40天内(含 40天)整治完毕,问需支付两工程队费用最少多少万元?24、(9分)如图所示,在Rt△ABC中,∠ABC=90°,以AB 为直径作⊙O,点D 为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=2,DE=4,求圆的半径及AC的长.25.(10分)已知在△ABC中,O为BC边的中点,连接AO,将△AOC绕点O顺时针方向旋转(旋转角为钝角),得到△EOF,连接AE,CF.(1)如图1,当∠BAC=90°且AB=AC时,则AE与CF满足的数量关系是;(2)如图2,当∠BAC=90°且AB≠AC时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图3,延长AO到点D,使OD=OA,连接DE,当AO=CF=5,BC =6时,求DE的长.26.(12分)已知,抛物线y=x2+bx+c与x轴交点为A(﹣1,0)和点B,与y轴交点为C(0,﹣3),直线L:y=kx﹣1与抛物线的交点为点A和点D.(1)求抛物线和直线L的解析式;(2)如图,点M为抛物线上一动点(不与A、D重合),当点M在直线L下方时,过点M作MN∥x轴交L于点N,求MN的最大值;(3)点M为抛物线上一动点(不与A、D重合),M'为直线AD上一动点,是否存在点M,使得以C、D、M、M′为顶点的四边形是平行四边形?如果存在,请直接写出点M的坐标,如果不存在,请说明理由.。

2024年中考数学第二次模拟考试+解析(上海卷)

2024年中考数学第二次模拟考试+解析(上海卷)

2024年中考第二次模拟考试(上海卷)数学·全解全析第Ⅰ卷一、选择题(本大题共6个小题,每小题4分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.在下列图形中,为中心对称图形的是( ) A .等腰梯形 B .平行四边形 C .正五边形 D .等腰三角形【答案】B【分析】根据中心对称与轴对称的概念和各图形的特点即可求解.【详解】中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A 、C 、D 都不符合; 是中心对称图形的只有B . 故选B .2.下列方程有实数根的是A .4x 20+=B 1=−C .2x +2x −1=0D .x 1x 1x 1=−− 【答案】C【详解】A .∵x4>0,∴x4+2=0B .,无解,故本选项不符合题意;C .∵x2+2x−1=0,∆ =8>0,方程有实数根,故本选项符合题意;D .解分式方程1xx −=11x −,可得x=1,经检验x=1是分式方程的增根,故本选项不符合题意.故选C .3.计算:AB BA +=( ) A .AB ; B .BA ;C .0;D .0.【答案】C【分析】根据零向量的定义即可判断. 【详解】AB BA +=0. 故选C .4.在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的条件是()A.AC=BD,AB∥CD,AB=CD B.AD∥BC,∠BAC=∠BCDC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC【答案】C【分析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.【详解】解:A,不能,只能判定为矩形,不符合题意;B,不能,只能判定为平行四边形,不符合题意;C,能,符合题意;D,不能,只能判定为菱形,不符合题意.故选C.5.下列命题中,假命题是()A.如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦;B.如果一条直线平分弦所对的两条弧,那么这条直线经过圆心,并且垂直于这条弦;C.如果一条直线经过圆心,并且平分弦,那么该直线平分这条弦所对的弧,并且垂直于这条弦;D.如果一条直线经过圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧.【答案】C【分析】利用垂径定理及其推论逐个判断即可求得答案.【详解】A是真命题;B.如果一条直线平分弦所对的两条弧,那么这条直线一定经过圆心,并且垂直于这条弦,正确,是真命题;C.如果一条直线经过圆心,并且平分弦,那么该直线不一定平分这条弦所对的弧,不一定垂直于这条弦,例如:任意两条直径一定互相平分且过圆心,但不一定垂直.错误,是假命题;D.如果一条直线经过圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧,正确,是真命题.故选C.【点睛】本题考查了垂径定理及其推论,对于一个圆和一条直线来说如果一条直线具备下列,①经过圆心,②垂直于弦,③平分弦(弦不是直径),④平分弦所对的优弧,⑤平分弦所对的劣弧,五个条件中的任何两个,那么也就具备其他三个.6.如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP相切,半径长为5的⊙B与⊙A内含,那么OB的取值范围是()A .4<OB <7 B .5<OB <7C .4<OB <9D .2<OB <7【答案】A【分析】作⊙A 半径AD ,根据含30度角直角三角形的性质可得4OA =,再确认⊙B 与⊙A 相切时,OB 的长,即可得结论.【详解】解:设⊙A 与直线OP 相切时的切点为D , ∴AD OP ⊥,∵∠POQ=30°,⊙A 半径长为2,即2AD =, ∴24OA AD ==,当⊙B 与⊙A 相切时,设切点为C ,如下图,∵5BC =,∴4(52)7OB OA AB =+=+−=,∴若⊙B 与⊙A 内含,则OB 的取值范围为47OB <<. 故选:A .【点睛】本题主要考查了圆与圆的位置关系、切线的性质、含30度角的直角三角形的性质等知识,熟练掌握圆与圆内含和相切的关系是解题关键.二、填空题(本大题共12个小题,每小题4分,共48分) 7.分解因式:2218m −= .【答案】()()233m m +−/()()233m m −+【分析】原式提取2,再利用平方差公式分解即可.【详解】解:2218m −=2(m2-9) =2(m+3)(m -3).故答案为:2(m+3)(m -3).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 8.x −的解是 . 【答案】x =﹣1.【分析】把方程两边平方后求解,注意检验. 【详解】把方程两边平方得x+2=x2, 整理得(x ﹣2)(x+1)=0, 解得:x =2或﹣1,经检验,x =﹣1是原方程的解. 故本题答案为:x =﹣1.【点睛】本题考查无理方程的求法,注意无理方程需验根. 9.函数y =x 的取值范围是 . 【答案】0x ≥且2x ≠【分析】根据二次根式中被开方数大于等于0及分母不为0即可求解.【详解】解:由题意可知:020x x ≥⎧⎨−≠⎩,解得:0x ≥且2x ≠, 故答案为:0x ≥且2x ≠.【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.10.△ABC 中,AD 是中线,G 是重心,,AB a AD b ==,那么BG = (用a b 、表示). 【答案】23a b−+. 【详解】试题分析: ∵在△ABC 中,点G 是重心,AD b =,∴23AG b=,又∵BG AG AB =−,AB a =,∴2233BG b a a b =−=−+;故答案为23a b −+.考点:1.平面向量;2.三角形的重心.11.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是 . 【答案】13【详解】解: 列树状图得共有12种情况,两张图案一样的有4种情况,所以概率是13.12.在方程2234404x x x x+−+=−中,如果设y=x 2﹣4x ,那么原方程可化为关于y 的整式方程是 .【答案】2430y y ++=【分析】先把方程整理出含有x2-4x 的形式,然后换成y 再去分母即可得解. 【详解】方程2234404x x x x +−+=−可变形为x2-4x+214x x −+4=0,因为24y x x =−,所以340y y ++=,整理得,2430y y ++=13.如果⊙O 1与⊙O 2内含,O 1O 2=4,⊙O 1的半径是3,那么⊙O 2的半径r 的取值范围是 . 【答案】7r >/7r <【分析】由题意,⊙O1与⊙O2内含,则可知两圆圆心距d r r <−小大,据此代入数值求解即可.【详解】解:根据题意,两圆内含,故34r−>,解得7r>.故答案为:7r>.【点睛】本题主要考查了两圆位置关系的知识,熟练掌握由数量关系判断两圆位置关系是解题关键.14.某单位10月份的营业额为100万元,12月份的营业额为200万元,假设该公司11、12两个月的增长率都为x,那么可列方程是.【答案】100(1+x)2=200【分析】根据题意,设平均每月的增长率为x,依据10月份的营业额为100万元,12月份的营业额为200万元,即可列出关于x的一元二次方程.故答案为:100(1+x)2=200【详解】设平均每月的增长率为x,根据题意可得:100(1+x)2=200.故答案为:100(1+x)2=200.【点睛】此题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出方程是解题关键.15.菱形ABCD中,已知AB=4,∠B:∠C=1:2,那么BD的长是.【答案】【分析】根据题意画出示意图(见详解),由菱形的性质可得BO=12BD,BD⊥AC,在Rt△ABO中,由cos∠ABO即可求得BO,继而得到BD的长.【详解】解:如图,∵四边形ABCD为菱形,∴AB CD∥,∴∠ABC+∠BCD=180°,∵∠ABC:∠BCD=1:2,∴∠ABC=60°,∴∠ABD=12∠ABC=30°,BO=12BD,BD⊥AC.在Rt△ABO中,cos∠ABO=BOAB=,∴BO=AB⋅cos∠ABO=4×=∴BD=2BO=故答案为:【点睛】本题考查菱形的性质,熟知菱形的对角线互相垂直,利用垂直构造直角三角形,再利用三角函数求解线段长度是解题的关键.16.如图,已知在⊙O中,半径OC垂直于弦AB,垂足为点D.如果CD=4,AB=16,那么OC = .【答案】10【分析】根据垂径定理求出AD的长,设半径OC=OA=r,则OD=r-4,再根据勾股定理列出关于r的方程,解出即可得出OC的长.【详解】设半径OC=OA=r,则OD=OC-CD=r-4半径OC垂直于弦AB,垂足为点D,AB=16∴AD=12AB=8,在Rt△AOD中,OD2+AD2=OA)即(r-4)2+82=r2解得:r=10故答案为10.【点睛】本题考查了垂径定理,勾股定理,熟练掌握定理是解题的关键.17.新定义:有一组对角互余的凸四边形称为对余四边形.如图,已知在对余四边形ABCD 中,10AB =,12BC =,5CD =,3tan 4B =,那么边AD 的长为 .【答案】9【分析】连接AC ,作AE BC ⊥交BC 于E 点,由3tan 4B =,10AB =,可得AE=6,BE=8,并求出AC 的长,作CF AD ⊥交AD 于F 点,可证B DCF ∠=∠,最后求得AF 和DF 的长,可解出最终结果. 【详解】解:如图,连接AC ,作AE BC ⊥交BC 于E 点, 3tan 4B =,10AB =,∴3tan 4AE B BE ==,设AE=3x ,BE=4x ,∴222AE BE AB+=,则()()2223425100x x x +==,解得x=2,则AE=6,BE=8, 又12BC =,∴CE=BC -BE=4,∴AC ==作CF AD ⊥交AD 于F 点,+=90B D ∠∠︒,90D DCF ∠+∠=︒,∴B DCF ∠=∠,3tan 4B ==tan DCF ∠=DF CF ,又5CD =,∴同理可得DF=3,CF=4,∴6AF ==,∴AD=AF+DF=9.故答案为:9.【点睛】本题考查四边形综合问题,涉及解直角三角形,勾股定理,有一定难度,熟练掌握直角三角形和勾股定理知识点,根据题意做出正确的辅助线是解决本题的关键.18.如图,在Rt∆ABC中,∠ACB=90°,BC=4,AC=3,⊙O是以BC为直径的圆,如果⊙O与⊙A相切,那么⊙A的半径长为.2=+可得结论;【分析】分两种情况:①如图,A与O内切,连接AO并延长交A于E,根据AE AO OE=−可得结论.②如图,A与O外切时,连接AO交A于E,同理根据AE OA OE【详解】解:有两种情况,分类讨论如下:①如图1,A与O内切时,连接AO并延长交O于E,O 与A 相内切,E ∴为切点,122OE BC ∴==,90ACB ∠=︒,根据勾股定理得:OA ,2AE OA OE ∴=+;即A 2;②如图2,A 与O 外切时,连接AO 交O 于E ,同理得2AE AO OE =−,即A 2,综上,A 22.2.【点睛】本题考查了相切两圆的性质、勾股定理,解题的关键是通过作辅助线得出AE 是A 的半径.第Ⅱ卷三、解答题(本大题共7个小题,共78分.解答应写出文字说明,证明过程或演算步骤)19.(10()()()202201cot 453sin 30π−−︒+−−︒ .【答案】【分析】先化简各式,然后再进行计算即可解答.202201(cot 45)(3)(sin30)π−−︒++−−︒202211(1)1()2−=−+−112=−=【点睛】本题考查了实数的运算,零指数幂,负整数指数幂、绝对值,特殊角的三角函数值,解题的关键是准确熟练地化简各式.20.(10分)如图,AH 是△ABC 的高,D 是边AB 上一点,CD 与AH 交于点E .已知AB =AC =6,cos B =23, AD ∶DB =1∶2.(1)求△ABC 的面积; (2)求CE ∶DE .【答案】解:(1);(2)31.【详解】试题分析:(1)根据题意和锐角三角函数可以求得BH 和AH 的长,从而可以求得△ABC 的面积; (2)根据三角形的相似和题意可以求得CE :DE 的值.试题解析:解:(1)∵AB=AC=6,cosB=23,AH 是△ABC 的高,∴BH=4,∴BC=2BH=8,=∴△ABC 的面积是;2BC AH ⋅=(2)作DF ⊥BC 于点F .∵DF ⊥BH ,AH ⊥BH ,∴DF ∥AH ,∴AD HF CE CHAB HB DE HF ==,.∵AD :DB=1:2,BH=CH ,∴AD :AB=1:3,∴13HF HB =,∴31CE CH BH DE HF HF ===,即CE :DE=3:1.点睛:本题考查了解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.(10分)如图,在平面直角坐标系xOy 中,点A 是反比例函数y =kx的图象与正比例函数y =kx 的图象在第一象限内的交点,已知点A 的纵坐标为2.经过点A 且与正比例函数y =kx 的图象垂直的直线交反比例函数y =kx的图象于点B (点B 与点A 不是同一点).(1)求k 的值; (2)求点B 的坐标. 【答案】(1)2(2)(4,12)【分析】(1)根据题意得到22k k =,解方程求得k =2; (2)先求得A 的坐标,根据正比例函数的解析式设直线AB 的解析式为y12=−x+b ,把A 的坐标代入解得b 52=,再与反比例函数的解析式联立成方程组,解方程组即可求得点B 的坐标. 【详解】(1)解:∵点A 是反比例函数y kx =的图象与正比例函数y =kx 的图象在第一象限内的交点,点A的纵坐标为2, ∴22kk =, ∴2k =4,解得k =±2, ∵k >0, ∴k =2; (2)∵k =2, ∴反比例函数为y2x =,正比例函数为y =2x ,把y =2代入y =2x 得,x =1, ∴A (1,2), ∵AB ⊥OA ,∴设直线AB 的解析式为y12=−x+b ,把A 的坐标代入得2112=−⨯+b , 解得b52=,解21522y xy x ⎧=⎪⎪⎨⎪=−+⎪⎩得12x y =⎧⎨=⎩或412x y =⎧⎪⎨=⎪⎩, ∴点B 的坐标为(4,12).待定系数法求一次函数的解析式,解题的关键是求出直线AB 的解析式,本题属于中等题型.22.(10分)图1是某区规划建设的过街天桥的侧面示意图,等腰梯形ABCD 的上底BC 表示主跨桥,两腰AB ,CD 表示桥两侧的斜梯,A ,D 两点在地面上,已知AD =40m ,设计桥高为4m ,设计斜梯的坡度为1:2.4.点A 左侧25m 点P 处有一棵古树,有关部门划定了以P 为圆心,半径为3m 的圆形保护区.(1)求主跨桥与桥两侧斜梯的长度之和;(2)为了保证桥下大货车的安全通行,桥高要增加到5m ,同时为了方便自行车及电动车上桥,新斜梯的坡度要减小到1:4,新方案主跨桥的水平位置和长度保持不变.另外,新方案要修建一个缓坡MN 作为轮椅坡道,坡道终点N 在左侧的新斜梯上,并在点N 处安装无障碍电梯,坡道起点M 在AP上,且不能影响到古树的圆形保护区.已知点N距离地面的高度为0.9m,请利用表中的数据,通过计算判断轮椅坡道的设计是否可行.表:轮椅坡道的最大高度和水平长度【答案】(1)主跨桥与桥两侧斜梯的长度之和为26.6m(2)轮椅坡道的设计不可行,理由见解析【分析】(1)根据斜坡AB的坡度以及天桥的高度可求出AE,由勾股定理求出AB,进而求出EF=BC的长,再计算主跨桥与桥两侧斜梯的长度之和;(2)根据坡度的定义求出新方案斜坡A B''的水平距离A E'进而求出点M到点G的最大距离,再由表格中轮椅坡道的最大高度和水平长度的对应值进行判断即可.【详解】(1)解:如图,作直线AD,则AD过点A'和点D',过点B、C分别作BE⊥AD,CF⊥AD,垂足为E、F,延长EB,延长FC,则射线EB过点B',射线FC过点C',由题意得,BE=CF=4m,AP=25m,B'E=5m,∵斜坡AB的坡度为1:2.4,即AE=1:2.4,∴AE=4×2.4=9.6(m),又∵四边形ABCD是等腰梯形,∴AE=DF=9.6m,∴BC=AD﹣AE﹣DF=5.8(m),AB10.4(m)=CD,∴主跨桥与桥两侧斜梯的长度之和为AB+BC+CD=10.4+5.8+10.4=26.6(m),答:主跨桥与桥两侧斜梯的长度之和为26.6m.(2)解:∵斜坡A B ''的坡度为1:4,即B E A E ''=1:4,∴A 'E =5×4=20(m ), ∴A A '=20﹣9.6=11.4(m ),A 'G =4NG =4×0.9=3.6(m ),∴AG =11.4﹣3.6=7.8(m ),点M 到点G 的最多距离MG =25﹣7.8﹣3=14.2(m ), ∵14.2<14.4,∴轮椅坡道的设计不可行.【点睛】本题主要考查了解直角三角形的应用,根据坡度和坡角构造直角三角形,然后分别用解直角三角形的知识坡道的水平距离是解答本题的关键.23.(12分)已知:如图,在梯形ABCD 中,//AD BC ,90B Ð=°,E 是AC 的中点,DE 的延长线交边BC 于点F .(1)求证:四边形AFCD 是平行四边形;(2)如果22AE AD BC =⋅,求证四边形AFCD 是菱形. 【答案】(1)见解析;(2)见解析【分析】(1)由平行四边形的性质可知DAE FCE =∠∠,ADE CFE ∠=∠.再由E 是AC 中点,即AE=CE .即可以利用“AAS”证明AED CEF ≌,得出AD CF =,即证明四边形AFCD 是平行四边形.(2)由22AE AD BC =⋅和E 是AC 中点,即可推出AE ADCB AC =.又因为DAE FCE =∠∠,即证明ADE CAB ∽△△,即可推出DF AC ⊥.即四边形AFCD 是菱形.【详解】(1)∵//AD BC ,∴DAE FCE =∠∠,ADE CFE ∠=∠. 又∵E 是AC 中点, ∴AE=CE ,∴在AED △和CEF △中,ADE CFE DAE FCE AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AED CEF AAS ≌, ∴AD CF =,∴四边形AFCD 是平行四边形. (2)∵//AD BC , ∴DAE FCE =∠∠.∵22AE AD BC =⋅,∴AE AC AD BC ⋅=⋅, ∴AE ADCB AC =, ∴ADE CAB ∽△△, ∴90AED ABC ∠=∠=︒,即DF AC ⊥. ∴四边形AFCD 是菱形.【点睛】本题考查梯形的性质,平行四边形的判定,菱形的判定,全等三角形的判定和性质以及相似三角形的判定和性质.掌握特殊四边形的判定方法是解答本题的关键.24.(12分)在平面直角坐标系中,抛物线235y x bx c =−++与y 轴交于点(0,3)A ,与x 轴的正半轴交于点(5,0)B ,点D 在线段OB 上,且1OD =,联结AD ,将线段AD 绕着点D 顺时针旋转90︒,得到线段DE ,过点E 作直线l x ⊥轴,垂足为H ,交抛物线于点F .(1)求抛物线的表达式; (2)联结DF ,求cot ∠EDF 的值;(3)点P 在直线l 上,且∠EDP =45°,求点P 的坐标. 【答案】(1)2312355y x x =−++;(2)cot 2EDF ∠=;(3)(4,6)或3(4,)2−.【分析】(1)利用待定系数法即可解决问题;(2)证明()OAD HDE AAS ∆∆≌,再根据全等三角形的性质得1EH OD ==,3DH OA ==,可得(4,1)E ,(4,3)F ,求出3FH DH ==,则45DFH ∠=︒,DF =E 作EK DF ⊥于K,根据等腰直角三角形的性质可得KF KE =DK DF KF =−=,在Rt DKE ∆中,根据余切的定义即可求解;(3)分两种情形①点P 在点E 的上方时;②点P 在点E 的下方时,根据相似三角形的判定和性质即可解决问题.【详解】(1)解:把点(0,3)A ,点(5,0)B 代入235y x bx c=−++,得:15503b c c −++=⎧⎨=⎩,解得:1253b c ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为2312355y x x =−++;(2)解:如图:90AOD ADE DHE ∠=∠=∠=︒,90ADO OAD ∴∠+∠=︒,90ADO EDH ∠+∠=︒,OAD EDH ∴∠=∠,AD DE =,()OAD HDE AAS ∴∆∆≌,1EH OD ∴==,3DH OA ==, (4,1)E ∴,过点E 作直线l x ⊥轴,垂足为H ,交抛物线2312355y x x =−++于点F .(4,3)F ∴,3FH ∴=,3FH DH ∴==,90DHE ∠=︒,45DFH ∴∠=︒,DF =过点E 作EK DF ⊥于K ,312EF =−=,KF KE ∴=,DK DF KF ∴=−=在Rt DKE ∆中,cot 2DK EDF KE ∠=;(3)解:①当点P 在点E 的上方时,45EDP DFH ∠=∠=︒,DEP ∠是公共角,EDF EPD ∴∆∆∽,∴EF EDED EP =,2ED EF EP ∴=⋅,设(4,)P y ,则1EP y =−,又2EF =,ED102(1)y ∴=−,解得6y =,∴点P 的坐标为(4,6);②当点P 在点E 的下方时,45EDP DFP ∠=∠=︒,DPF ∠是公共角,PED PDF ∴∆∆∽,∴PE DPPD FP =,2DP PE PF ∴=⋅,设(4,)P y ,则1EP y =−,3FP y =−,DP ,29(1)(3)y y y ∴+=−−,解得32y =−,∴点P 的坐标为3(4,)2−; 综上所述,当45EDP ∠=︒时,点P 的坐标为(4,6)或3(4,)2−. 【点睛】本题是二次函数综合题,考查二次函数的应用、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是熟练掌握二次函数的图象及性质,三角形相似的判定及性质. 25.(14分)如图,半径为1的⊙O 与过点O 的⊙P 相交,点A 是⊙O 与⊙P 的一个公共点,点B 是直线AP 与⊙O 的不同于点A 的另一交点,联结OA ,OB ,OP .(1)当点B 在线段AP 上时, ①求证:∠AOB =∠APO ;②如果点B 是线段AP 的中点,求△AOP 的面积;(2)设点C 是⊙P 与⊙O 的不同于点A 的另一公共点,联结PC ,BC .如果∠PCB =α,∠APO =β,请用含α的代数式表示β.【答案】(1)①见解析;② (2)β=60°﹣23β【分析】(1)①利用圆的半径相等可得∠OAB =∠OBA =∠AOP ,则∠AOB =∠APO ;②首先利用△AOB ∽△APO ,得OA ABAP OA =,可得AP 的长,作AH ⊥PO 于点H ,设OH =x ,则PH x ,利用勾股定理列方程求出OH 的长,从而得出AH ,即可求得面积; (2)联结OC ,AC ,利用圆心角与圆周角的关系得∠ACB =12∠AOB =12β,∠ACO =12∠APO =12β,再利用SSS 说明△OAP ≌△OCP ,得∠OAP =∠OCP ,从而解决问题. 【详解】(1)①证明:∵OA =OB , ∴∠OAB =∠OBA , ∵PA =PO , ∴∠BAO =∠POA , ∴∠OAB =∠OBA =∠AOP , ∴∠AOB =∠APO ;②解:∵∠AOB =∠APO ,∠OAB =∠PAO ,∴△AOB ∽△APO , ∴OA AB AP OA =, ∴OA2=AB•AP =1,∵点B 是线段AP 的中点,∴AP作AH ⊥PO 于点H ,设OH =x ,则PH x ,由勾股定理得,12﹣x22x )2,解得x =,∴OH =4,由勾股定理得,AH ,∴△AOP 的面积为1122OP AH ⨯⨯==; (2)解:如图,联结OC ,AC ,∵∠AOB =∠APO ,∴∠AOB =β,∴∠ACB =12∠AOB =12β,∠ACO =12∠APO =12β,∴∠OCP=β+α,∵OA=OC,AP=PC,OP=OP,∴△OAP≌△OCP(SSS),∴∠OAP=∠OCP=β+α,在△OAP中,2(α+β)+β=180°,∴β=60°﹣23.【点睛】本题是圆的综合题,主要考查了圆的性质,圆心角与圆周角的关系,相似三角形的判定与性质,全等三角形的判定与性质等知识,求出大圆半径是解题的关键.。

台州市三门县中考数学模拟试卷(二)及答案解析

台州市三门县中考数学模拟试卷(二)及答案解析

浙江省台州市三门县中考数学模拟试卷(二)一.选择题(共10小题)1.﹣5的绝对值是()A.B.5 C.﹣5 D.﹣2.函数中,自变量x的取值范围是()A.x≠3 B.x≥3 C.x>3 D.x≤33.已知一次函数y=kx+k﹣1和反比例函数y=,则这两个函数在同一平面直角坐标系中的图象不可能是()A. B.C.D.4.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是()A.3.125 B.4 C.2 D.05.如图,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口A,B,C,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在()A.△ABC的三边高线的交点P处B.△ABC的三角平分线的交点P处C.△ABC的三边中线的交点P处D.△ABC的三边中垂线的交点P处6.北海到南宁的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由北海到南宁的行驶时间缩短了1.5小时.设原来火车的平均速度为x千米/时,则下列方程正确的是()A. +1.8=B.﹣1.8=C. +1.5=D.﹣1.5=7.正方形网格中,∠AOB如图放置,则cos∠AOB的值为()A.B. C. D.8.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22 B.24 C.10D.129.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数的图象交于A 点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3 B.4 C.5 D.610.一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:二.填空题(共6小题)11.因式分解:x3﹣xy2=.12.正十边形的一个外角为度.13.有50个数据,共分成6组,第1~4组的频数分别为10,8,7,11.第5组的频率是0.16,则第6组的频数是.14.如图所示,半径为1的圆心角为60°的扇形纸片OAB在直线L上向右做无滑动的滚动.且滚动至扇形O′A′B′处,则顶点O所经过的路线总长是.15.如图,直角坐标系中,点P(t,0)是x轴正半轴上的一个动点,过点P作y轴的平行线,分别与直线,直线y=﹣x交于A,B两点,以AB为边向右侧作正方形ABCD.当点(3,0)在正方形ABCD内部时,t的取值范围是.16.如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于.三.解答题(共7小题)17.计算:18.解方程:x2﹣5x﹣6=0.19.如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中点A(5,4),B (1,3),将△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1;(2)在旋转过程中点B所经过的路径长为;(3)求在旋转过程中线段AB、BO扫过的图形的面积之和.20.如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.(1)分别求出线段AP、CB的长;(2)如果OE=5,求证:DE是⊙O的切线;(3)如果tan∠E=,求DE的长.21.在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B 处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.22.我县实施新课程后,学生的自主字习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调査了名同学,其中C类女生有名,D 类男生有名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.23.如图,已知抛物线y=ax2+bx+c经过 A(0,4),B(4,0),C(﹣1,0)三点.过点A作垂直于y轴的直线l.在抛物线上有一动点P,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.(1)求抛物线y=ax2+bx+c的解析式;(2)是否存在点P,使得以A、P、Q三点构成的三角形与△AOC相似?如果存在,请求出点P的坐标;若不存在,请说明理由;(3)当点P位于抛物线y=ax2+bx+c的对称轴的右侧.若将△APQ沿AP对折,点Q的对应点为点M.求当点M落在坐标轴上时直线AP的解析式.浙江省台州市三门县中考数学模拟试卷(二)参考答案与试题解析一.选择题(共10小题)1.﹣5的绝对值是()A.B.5 C.﹣5 D.﹣【考点】绝对值.【分析】利用绝对值的定义求解即可.【解答】解:﹣5的绝对值是5,故选:B.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.2.函数中,自变量x的取值范围是()A.x≠3 B.x≥3 C.x>3 D.x≤3【考点】函数自变量的取值范围.【分析】根据二次根式有意义的条件,即根号下大于等于0,求出即可.【解答】解:∵有意义的条件是:x﹣3≥0.∴x≥3.故选:B.【点评】此题主要考查了函数变量的取值范围,此题是中考考查重点,同学们应重点掌握,特别注意根号下可以等于0这一条件.3.已知一次函数y=kx+k﹣1和反比例函数y=,则这两个函数在同一平面直角坐标系中的图象不可能是()A. B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】因为k的符号不确定,所以应根据k﹣1的符号及一次函数与反比例函数图象的性质解答.【解答】解:当k<0时,k﹣1<0,反比例函数y=的图象在二,四象限,一次函数y=kx+k﹣1的图象过二、三、四象限,故选项C错误,符合题意;而选项D正确,不合题意;当k>0时,k﹣1的符号不确定,则反比例函数y=的图象在一、三象限,一次函数y=kx+k﹣1的图象过一、三、四象限或一、二、三象限故选项A,B正确,不符合题意.故选C.【点评】本题主要考查了反比例函数和一次函数的图象性质,正确掌握它们的性质才能灵活解题.4.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是()A.3.125 B.4 C.2 D.0【考点】二次函数的最值.【分析】由图可知,x≤1.5时,y随x的增大而减小,可知在﹣1≤x≤0范围内,x=0时取得最大值,然后进行计算即可得解.【解答】解:∵x≤1.5时,y随x的增大而减小,∴当﹣1≤x≤0时,x=0取得最大值,为y=2.故选C.【点评】本题考查了二次函数的最值问题,主要利用了二次函数的增减性求最值,准确识图是解题的关键.5.如图,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口A,B,C,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在()A.△ABC的三边高线的交点P处B.△ABC的三角平分线的交点P处C.△ABC的三边中线的交点P处D.△ABC的三边中垂线的交点P处【考点】三角形的外接圆与外心.【专题】应用题;压轴题.【分析】根据题意,知猫应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.【解答】解:三角形三边垂直平分线的交点到三个顶点的距离相等.故选D.【点评】考查了三角形的外心的概念和性质.要熟知三角形三边垂直平分线的交点到三个顶点的距离相等.6.北海到南宁的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由北海到南宁的行驶时间缩短了1.5小时.设原来火车的平均速度为x千米/时,则下列方程正确的是()A. +1.8=B.﹣1.8=C. +1.5=D.﹣1.5=【考点】由实际问题抽象出分式方程.【分析】设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x,根据题意可得:由北海到南宁的行驶时间动车比原来的火车少用1.5小时,列方程即可.【解答】解:设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x,由题意得,﹣1.5=.故选:D.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.正方形网格中,∠AOB如图放置,则cos∠AOB的值为()A.B. C. D.【考点】锐角三角函数的定义;勾股定理的逆定理.【专题】常规题型.【分析】找出OB边上的格点C,连接AC,利用勾股定理求出AO、AC、CO的长度,再利用勾股定理逆定理证明△AOC是直角三角形,然后根据余弦=计算即可得解.【解答】解:如图,C为OB边上的格点,连接AC,根据勾股定理,AO==2,AC==,OC==,所以,AO2=AC2+OC2=20,所以,△AOC是直角三角形,cos∠AOB===.故选B.【点评】本题考查了锐角三角函数的定义,勾股定理,勾股定理逆定理,找出格点C并作辅助线构造出直角三角形是解题的关键.8.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22 B.24 C.10D.12【考点】圆的综合题.【分析】易知直线y=kx﹣3k+4过定点D(3,4),运用勾股定理可求出OD,由条件可求出半径OB,由于过圆内定点D的所有弦中,与OD垂直的弦最短,因此只需运用垂径定理及勾股定理就可解决问题.【解答】解:对于直线y=kx﹣3k+4,当x=3时,y=4,故直线y=kx﹣3k+4恒经过点(3,4),记为点D.过点D作DH⊥x轴于点H,则有OH=3,DH=4,OD==5.∵点A(13,0),∴OA=13,∴OB=OA=13.由于过圆内定点D的所有弦中,与OD垂直的弦最短,如图所示,因此运用垂径定理及勾股定理可得:BC的最小值为2BD=2=2×=2×12=24.故选:B.【点评】本题主要考查了直线上点的坐标特征、垂径定理、勾股定理等知识,发现直线恒经过点(3,4)以及运用“过圆内定点D的所有弦中,与OD垂直的弦最短”这个经验是解决该选择题的关键.9.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数的图象交于A 点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3 B.4 C.5 D.6【考点】反比例函数综合题.【专题】计算题.【分析】先设P(0,b),由直线AB∥x轴,则A,B两点的纵坐标都为b,而A,B分别在反比例函数的图象上,可得到A点坐标为(﹣,b),B点坐标为(,b),从而求出AB的长,然后根据三角形的面积公式计算即可.【解答】解:设P(0,b),∵直线AB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=﹣的图象上,∴当y=b,x=﹣,即A点坐标为(﹣,b),又∵点B在反比例函数y=的图象上,∴当y=b,x=,即B点坐标为(,b),∴AB=﹣(﹣)=,∴S△ABC=•AB•OP=•b=3.故选:A.【点评】本题考查了点在函数图象上,点的横纵坐标满足函数图象的解析式.也考查了与坐标轴平行的直线上的点的坐标特点以及三角形的面积公式.10.一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:【考点】正多边形和圆;勾股定理.【专题】计算题;压轴题.【分析】先画出图形,分别求出扇形和圆的半径,再根据面积公式求出面积,最后求出比值即可.【解答】解:如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=1,∵∠AOB=45°,∴OB=AB=1,由勾股定理得:OD==,∴扇形的面积是=π;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=1,∴MC=MB=,∴⊙M的面积是π×()2=π,∴扇形和圆形纸板的面积比是π÷(π)=.故选:A.【点评】本题考查了正方形性质,圆内接四边形性质,扇形的面积公式的应用,解此题的关键是求出扇形和圆的面积,题目比较好,难度适中.二.填空题(共6小题)11.因式分解:x3﹣xy2=x(x﹣y)(x+y).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y).故答案为:x(x﹣y)(x+y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.正十边形的一个外角为36度.【考点】多边形内角与外角.【分析】利用正十边形的外角和是360度,并且每个外角都相等,即可求出答案.【解答】解:正十边形的一个外角为360÷10=36度.【点评】本题主要考查了正多边形的性质:正多边形的各个外角相等,外角和是360度.13.有50个数据,共分成6组,第1~4组的频数分别为10,8,7,11.第5组的频率是0.16,则第6组的频数是6.【考点】频数与频率.【分析】首先根据频率=频数÷数据总数求得第5组的频数,然后根据6个组的频数和等于数据总数即可求得第6组的频数.【解答】解:∵有50个数据,共分成6组,第5组的频率是0.16,∴第5组的频数为50×0.16=8;又∵第1~4组的频数分别为10,8,7,11,∴第6组的频数为50﹣(10+8+7+11+8)=6.故答案为:6.【点评】本题是对频率、频数灵活运用的综合考查,各小组频数之和等于数据总数,各小组频率之和等于1.频率、频数的关系:频率=频数÷数据总数.14.如图所示,半径为1的圆心角为60°的扇形纸片OAB在直线L上向右做无滑动的滚动.且滚动至扇形O′A′B′处,则顶点O所经过的路线总长是π.【考点】弧长的计算;旋转的性质.【分析】仔细观察顶点O经过的路线可得,顶点O到O′所经过的路线可以分为三段,分别求出三段的长,再求出其和即可.【解答】解:顶点O经过的路线可以分为三段,当弧AB切直线l于点B时,有OB⊥直线l,此时O点绕不动点B转过了90°;第二段:OB⊥直线l到OA⊥直线l,O点绕动点转动,而这一过程中弧AB始终是切于直线l的,所以O与转动点的连线始终⊥直线l,所以O点在水平运动,此时O点经过的路线长=BA′=AB的弧长;第三段:OA⊥直线l到O点落在直线l上,O点绕不动点A转过了90°.所以,O点经过的路线总长S=π+π+π=π.故答案是:.【点评】本题考查了旋转的性质,弧长的计算,根据题意,准确分析得到三段的运动过程是解题的关键.15.如图,直角坐标系中,点P(t,0)是x轴正半轴上的一个动点,过点P作y轴的平行线,分别与直线,直线y=﹣x交于A,B两点,以AB为边向右侧作正方形ABCD.当点(3,0)在正方形ABCD内部时,t的取值范围是<t<3.【考点】正方形的性质;一次函数图象上点的坐标特征.【分析】根据点P的横坐标表示出AB,由点C的横坐标大于3列出不等式求解即可.【解答】解:∵点P(t,0),AB∥y轴,∴点A(t, t),B(t,﹣t),∴AB=|t﹣(﹣t)|=|t|,∵t>0时,点C的横坐标为t+t=t,∵点(2,0)在正方形ABCD内部,∴t>3,且t<3,解得t>且t<3,∴<t<3;故答案为:<t<3.【点评】本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,正方形的性质;由点C的横坐标大于3列出不等式求解是解题的关键.16.如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于7.【考点】矩形的性质;平行四边形的判定与性质.【专题】计算题;压轴题.【分析】连接EG,FH,根据题目数据可以证明△AEF与△CGH全等,根据全等三角形对应边相等可得EF=GH,同理可得EG=FH,然后根据两组对边相等的四边形是平行四边形可得四边形EGHF是平行四边形,所以△PEF和△PGH的面积和等于平行四边形EGHF的面积的一半,再利用平行四边形EGHF的面积等于矩形ABCD的面积减去四周四个小直角三角形的面积即可求解.【解答】解:∵在矩形ABCD中,AD=6,AB=4,AF=CG=2,BE=DH=1,∴AE=AB﹣BE=4﹣1=3,CH=CD﹣DH=4﹣1=3,∴AE=CH,在△AEF与△CGH中,,∴△AEF≌△CGH(SAS),∴EF=GH,同理可得,△BGE≌△DFH,∴EG=FH,∴四边形EGHF是平行四边形,∵△PEF和△PGH的高的和等于点H到直线EF的距离,∴△PEF和△PGH的面积和=×平行四边形EGHF的面积,平行四边形EGHF的面积=4×6﹣×2×3﹣×1×(6﹣2)﹣×2×3﹣×1×(6﹣2),=24﹣3﹣2﹣3﹣2,=14,∴△PEF和△PGH的面积和=×14=7.故答案为:7.【点评】本题考查了矩形的性质,平行四边形的判定与性质,作出辅助线并证明出四边形EGHF是平行四边形是解题的关键.三.解答题(共7小题)17.计算:【考点】实数的运算.【分析】本题涉及绝对值、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2=.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.解方程:x2﹣5x﹣6=0.【考点】解一元二次方程-因式分解法.【分析】把方程左边进行因式分解得到(x﹣6)(x+1)=0,则方程就可化为两个一元一次方程x ﹣6=0,或x+1=0,解两个一元一次方程即可.【解答】解:x2﹣5x﹣6=0,∴(x﹣6)(x+1)=0,∴x﹣6=0或x+1=0,∴x1=6,x2=﹣1.【点评】本题考查了运用因式分解法解一元二次方程ax2+bx+c=0(a≠0)的方法:先把方程化为一般式,再把方程左边进行因式分解,然后一元二次方程就可化为两个一元一次方程,解两个一元一次方程即可.19.如图,在边长为1的正方形组成的网格中,△AOB 的顶点均在格点上,其中点A (5,4),B (1,3),将△AOB 绕点O 逆时针旋转90°后得到△A 1OB 1.(1)画出△A 1OB 1;(2)在旋转过程中点B 所经过的路径长为 π ;(3)求在旋转过程中线段AB 、BO 扫过的图形的面积之和.【考点】作图-旋转变换;勾股定理;弧长的计算;扇形面积的计算.【专题】作图题.【分析】(1)根据网格结构找出点A 、B 绕点O 逆时针旋转90°后的对应点A 1、B 1的位置,然后顺次连接即可;(2)利用勾股定理列式求OB ,再利用弧长公式计算即可得解;(3)利用勾股定理列式求出OA ,再根据AB 所扫过的面积=S 扇形A1OA +S △A1B1O ﹣S 扇形B1OB ﹣S △AOB =S 扇形A1OA ﹣S 扇形B1OB 求解,再求出BO 扫过的面积=S 扇形B1OB ,然后计算即可得解. 【解答】解:(1)△A 1OB 1如图所示;(2)由勾股定理得,BO==, 所以,点B 所经过的路径长==π;故答案为:π.(3)由勾股定理得,OA==, ∵AB 所扫过的面积=S 扇形A1OA +S △A1B1O ﹣S 扇形B1OB ﹣S △AOB =S 扇形A1OA ﹣S 扇形B1OB , BO 扫过的面积=S 扇形B1OB ,∴线段AB 、BO 扫过的图形的面积之和=S 扇形A1OA ﹣S 扇形B1OB +S 扇形B1OB ,=S 扇形A1OA , =, =π.【点评】本题考查了利用旋转变换作图,弧长公式,扇形的面积,勾股定理,熟练掌握网格结构准确找出对应点的位置是解题的关键,难点在于(3)表示出两线段扫过的面积之和等于扇形的面积.20.如图,⊙O 中,FG 、AC 是直径,AB 是弦,FG ⊥AB ,垂足为点P ,过点C 的直线交AB 的延长线于点D ,交GF 的延长线于点E ,已知AB=4,⊙O 的半径为.(1)分别求出线段AP 、CB 的长;(2)如果OE=5,求证:DE 是⊙O 的切线;(3)如果tan ∠E=,求DE 的长.【考点】切线的判定.【专题】证明题.【分析】(1)根据圆周角定理由AC为直径得∠ABC=90°,在Rt△ABC中,根据勾股定理可计算出BC=2,再根据垂径定理由直径FG⊥AB得到AP=BP=AB=2;(2)易得OP为△ABC的中位线,则OP=BC=1,再计算出==,根据相似三角形的判定方法得到△EOC∽△AOP,根据相似的性质得到∠OCE=∠OPA=90°,然后根据切线的判定定理得到DE是⊙O的切线;(3)根据平行线的性质由BC∥EP得到∠DCB=∠E,则tan∠DCB=tan∠E=,在Rt△BCD中,根据正切的定义计算出BD=3,根据勾股定理计算出CD=,然后根据平行线分线段成比例定理得=,再利用比例性质可计算出DE=.【解答】(1)解:∵AC为直径,∴∠ABC=90°,在Rt△ABC中,AC=2,AB=4,∴BC==2,∵直径FG⊥AB,∴AP=BP=AB=2;(2)证明∵AP=BP,AO=OC∴OP为△ABC的中位线,∴OP=BC=1,∴=,而==,∴=,∵∠EOC=∠AOP,∴△EOC∽△AOP,∴∠OCE=∠OPA=90°,∴OC⊥DE,∴DE是⊙O的切线;(3)解:∵BC∥EP,∴∠DCB=∠E,∴tan∠DCB=tan∠E=在Rt△BCD中,BC=2,tan∠DCB==,∴BD=3,∴CD==,∵BC∥EP,∴=,即=,∴DE=.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了垂径定理、圆周角定理、勾股定理和相似三角形的判定与性质.21.在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B 处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.【考点】解直角三角形的应用-方向角问题.【分析】(1)根据∠1=30°,∠2=60°,可知△ABC为直角三角形.根据勾股定理解答.(2)延长BC交l于T,比较AT与AM、AN的大小即可得出结论.【解答】解:(1)∵∠1=30°,∠2=60°,∴△ABC为直角三角形.∵AB=40km,AC=km,∴BC===16(km).∵1小时20分钟=80分钟,1小时=60分钟,∴×60=12(千米/小时).(2)能.理由:作线段BR⊥AN于R,作线段CS⊥AN于S,延长BC交l于T.∵∠2=60°,∴∠4=90°﹣60°=30°.∵AC=8(km),∴CS=8sin30°=4(km).∴AS=8cos30°=8×=12(km).又∵∠1=30°,∴∠3=90°﹣30°=60°.∵AB=40km,∴BR=40•sin60°=20(km).∴AR=40×cos60°=40×=20(km).易得,△STC∽△RTB,所以=,,解得:ST=8(km).所以AT=12+8=20(km).又因为AM=19.5km,MN长为1km,∴AN=20.5km,∵19.5<AT<20.5故轮船能够正好行至码头MN靠岸.【点评】此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.22.我县实施新课程后,学生的自主字习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调査了20名同学,其中C类女生有2名,D类男生有1名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【考点】条形统计图;扇形统计图;列表法与树状图法.【分析】(1)由扇形统计图可知,特别好的占总数的15%,人数有条形图可知3人,所以调查的样本容量是:3÷15%,即可得出C类女生和D类男生人数;(2)根据(1)中所求数据得出条形图的高度即可;(3)根据被调査的A类和D类学生男女生人数列表即可得出答案.【解答】解:(1)3÷15%=20,20×25%=5.女生:5﹣3=2,1﹣25%﹣50%﹣15%=10%,20×10%=2,男生:2﹣1=1,故答案为:20,2,1;(2)如图所示:(3)根据张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,可以将A类与D类学生分为以下几种情况:男A 女A1 女A2男D 男A男D 女A1男D 女A2男D女D 女D男A 女A1女D 女A2女D∴共有6种结果,每种结果出现可能性相等,∴两位同学恰好是一位男同学和一位女同学的概率为:P(一男一女)==.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.如图,已知抛物线y=ax2+bx+c经过 A(0,4),B(4,0),C(﹣1,0)三点.过点A作垂直于y轴的直线l.在抛物线上有一动点P,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.(1)求抛物线y=ax2+bx+c的解析式;(2)是否存在点P,使得以A、P、Q三点构成的三角形与△AOC相似?如果存在,请求出点P的坐标;若不存在,请说明理由;(3)当点P位于抛物线y=ax2+bx+c的对称轴的右侧.若将△APQ沿AP对折,点Q的对应点为点M.求当点M落在坐标轴上时直线AP的解析式.【考点】二次函数综合题.【专题】计算题;压轴题.【分析】(1)将A(0,4),B(4,0),C(﹣1,0)分别代入抛物线y=ax2+bx+c,列出方程组,即可求出函数解析式.(2)当P在l下方时,令△AOC∽△AQP,△AOC∽△PQA,根据相似三角形的性质,列比例式,求出点的坐标;当P在l上方时,令△AOC∽△AQP,△AOC∽△PQA,根据相似三角形的性质,列比例式,求出点的坐标;(3)画出函数图形,利用三角形相似,求出P点坐标,再利用待定系数法求出函数解析式.【解答】解:(1)将A(0,4),B(4,0),C(﹣1,0)分别代入抛物线y=ax2+bx+c得,,解得,函数解析式为y=﹣x2+3x+4.(2)P在l下方时,令①△AOC∽△AQP,=,即,由于y=﹣x2+3x+4,则有=,解得x=0(舍去)或x=,此时,y=,P点坐标为(,).②△AOC∽△PQA,,即,由于y=﹣x2+3x+4,则有,解得,x=0(舍去)或x=7,P点坐标为(7,﹣24).③P在l上方时,令△AOC∽△PQA,,即,∵y=﹣x2+3x+4,∴,解得,x=0(舍去)或x=﹣1,P点坐标为(﹣1,0)(不合题意舍去).④△AOC∽△AQP,=,即∴,解得,x=0(舍去)或x=,P点坐标为(,).(3)如图(1),若对称点M在y轴,则∠PAQ=45°,设AP解析式为y=kx+b,则k=1或﹣1,当k=1时,把A(0,4)代入得y=x+4,当k=﹣1时,把A(0,4)代入得y=﹣x+4,此时P在对称轴右侧,符合题意,∴y=x+4,或y=﹣x+4,设点Q(x,4),P(x,﹣x2+3x+4),则PQ=x2﹣3x=PM,∵△AEM∽△MFP.则有=,∵ME=OA=4,AM=AQ=x,PM=PQ=x2﹣3x,∴=,解得:PF=4x﹣12,∴OM=(4x﹣12)﹣x=3x﹣12,Rt△AOM中,由勾股定理得OM2+OA2=AM2,∴(3x﹣12)2+42=x2,解得x1=4,x2=5,均在抛物线对称轴的右侧,故点P的坐标为(4,0)或(5,﹣6).设一次函数解析式为y=kx+b,把(0,4)(4,0)分别代入解析式得,解得,函数解析式为y=﹣x+4.把(0,4)(5,﹣6)分别代入解析式得,解得,函数解析式为y=﹣2x+4.综上所述,函数解析式为y=x+4,y=﹣x+4,y=﹣2x+4.【点评】本题考查了二次函数解析式的求法、二次函数解析式、相似三角形的性质、翻折变换、待定系数法求一次函数解析式等,题目错综复杂,涉及知识面广,旨在考查逻辑思维能力.。

中考模拟数学试题及答案(二)

中考模拟数学试题及答案(二)

中考数学模拟试卷(二)一、选择题(本题共10小题;每小题3分,共30分)下列各题都有代号为A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的.1.13-的值是 ( )A .-3B .3C .13D .-132.函数(1)y k x =-中,如果y 随着x 增大而增大,那么常数k 的取值范围是( ) A .1k < B .1k ≤ C .1>k D .1k ≥ 3.一个几何体的三视图如图所示,则此几何体是( ) A .圆锥 B .棱柱 C .圆柱 D .棱台3.下列计算正确的是 ( )A.422a a a =+; B .236a a a =÷; C .32a a a =⋅; D .532)(a a =. 4.如果b a <,0<c ,那么下列不等式成立的是( ).A. c b c a +<+;B. c b c a +-<+-;C. bc ac <;D.cbc a <. 5.在一个不透明的袋子中装有2个白球,n 个红球,它们除了颜色不同外,其余均相同. 若从中随机摸出一个球,摸到红球的概率是54,则n 的值等于( ) A .15个 B .8个 C .10个 D .6个6.在平面直角坐标系中,若点P (m ,m+2)在第二象限,则mx 的取值范围为 ( ) A .-2 <m<0 B .m <-2 C .m >0 D .m >-2 7.如图所示,点P 为反比例函数y =2x上的一动点,作PD ⊥x 轴于点D ,△POD 的面积为k ,则函数y =k x -1的图像为 ( )8.如图所示,将矩形ABCD 沿对角线BD 折叠,使C 落在C'处, BC'交AD 于E ,则下列结论不一定成立的是 ( ) A .AD =BC' B .∠EBD =∠EDB C .△ABE ∽△CBD D .sin ∠ABE =AEED9.如图所示,已知Rt △ABC 中,∠ABC =90°,∠BAC =30°,AB =3,将△ABC 绕顶点C 顺时针旋转至△A'B'C 的位置,且A 、C 、B'三点在同一条直线上, 则点A 经过的最短路线的长度是 ( )(第3题图)俯视图 主视图左视图A .8cmB .43cmC .323πcm D .83πcm10.如图所示,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C =70°.现给出以下四个结论:①∠A =45°; ②AC =AB ;③AE =BE ;④CE ·AB =2BD 2,其中正确结论的序号是 ( ) A .①②B .②③C .②④D .③④二、填空题(本题共8小题;每小题3分,共24分)请把最后结果填在题中横线上.请把最后结果填在题中横线上.11.分解因式:a 3-a =________________.12.如图所示的围棋盘放在平面直角坐标系内,黑棋A 的坐标为(-1, 2),那么白棋B 的坐标是____________.13.4支排球队进行单循环比赛(参加比赛的每两支球队之间都要进行一 场比赛),则总的比赛场数为_______场.14.若关于x 的分式方程311x a x x--=-无解,则a =_______.15.现在一般超市都是使用环保购物袋,某超市有偿..提供可重复使用的三种环保购物袋,每个售价分别为1元、2元和3元,这三种环保购物袋每个最多分别能装大米3kg 、5kg和8kg .6月7日,小明和爸爸在该超市选购了3个环保购物袋用来装刚购买的20kg 散装大米,他们选购的3个环保购物袋至少..应付给超市___________元. 16.如图所示的抛物线是二次函数y =ax 2-3x +a 2-1的图像,那么a 的值是_______. 17.如图所示,在△ABC 中,AB =AC =13,BC =10,D 是AB 的中点,过点D 作DE ⊥AC 于点E ,则DE 的长是________.18.如图所示为手的示意图,在各个手指间标记字母A 、B 、C 、D .请你按图中箭头所指方向(即A →B →C →D →C →B →A →B →C →…的方式)从A 开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是_______;当字母C 第201次出现时,恰好数到的数是_______;当字母C 第2n +l 次出现时(n 为正整数),恰好数到的数是_______(用含n 的代数式表示).A B CD E(第10题Ox yE DC A B三、解答题(本题共11小题;共76分.解答应写出文字说明、证明过程或演算步骤)19.(本小题5分)计算:0183221π⎛⎫-+⎪-⎝⎭20.(本小题5分)先化简,再求值:2239(1)x xx x---÷,其中31x=21.(本小题5分)解不等式组:12,132,2xx x->⎧⎪⎨-≤+⎪⎩………………①…………②22.(本小题6分)如图所示,△ABC在方格纸中.(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2).并求出B点坐标.(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A'B'C'.(3)计算△A'B'C'的面积S.23.(本小题6分)小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪两个人先下棋,规则如右图所示:(1)请你完成如左图所示游戏一个回合所有可能出现的结果的树状图.(2)求一个回合能确定两人先下棋的概率.解:(1)树状图为:24.(本题满分6分)结合“两纲教育”,某中学600名学生参加了“让青春飞扬”知识竞赛.竞赛组委会从中随机抽取了部分学生的成绩(得分都是整数..,最高分98分)作为样本进行统计分析,并绘制成抽样分析分类统计表和频率分布直方图(如表1和图6,部分数据缺失).试根据所提供的信息解答下列问题:(1) 本次随机抽样调查的样本容量是 ▲ ;(2) 试估计全校所有参赛学生中成绩等第为优良的学生人数;(3) 若本次随机抽样的样本平均数为76.5,又表1中b 比a 大15,试求出a 、b 的值; (4) 如果把满足q x p ≤≤的x 的取值范围记为[p ,q ],表1中a 的取值范围是 ▲ . (A )[69.5,79.5] (B )[65,74] (C )[66.5,75.5] (D )[66,75]25.(本小题8分)如图所示,要在木里县某林场东西方向的两地之间修一条公路MN ,已知C 点周围200m 范围内为原始森林保护区,在MN 上的点A 处测得点C 在点A 的北偏东45°方向上,从A 向东走600m 到达B 处,测得点C 在点B 的北偏西60°方向上. (1)MN 是否穿过原始森林保护区?为什么?(参考数据:3≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?26.(本小题8分)如图a 所示,已知正方形ABCD 的边CD 在正方形DEFG 的边DE 上,连接AE 、GC .成绩范围60<x 8060<≤x80≥x 成绩等第 不合格合格优良人数 40平均成绩57a b表1:抽样分析分类统计表抽样分析频率分布直方图(图6)成绩0.01 0.04 组距频率0.020.0349.5 0.1 0.20.3 0.15 59.5 69.5 79.5 89.599.5(1)试猜想AE 与GC 有怎样的位置关系,并证明你的结论.(2)将正方形DEFG 绕点D 按顺时针方向旋转,使点E 落在BC 边上,如图b 所示,连接AE 和CG .你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.27.(本小题9分)如图所示,已知⊙O 的半径为6cm ,射线PM 经过点O ,OP =10cm ,射线PN 与⊙O 相切于点Q .A 、B 两点同时从点P 出发,点A 以5cm/s 的速度沿射线PM 方向运动,点B 以4cm/s 的速度沿射线PN 方向运动,设运动时间为t s . (1)求PQ 的长.(2)当t 为何值时,直线AB 与⊙O 相切?OPQMNAB28.(本小题9分)某茶厂种植“春蕊”牌绿茶,由历年来市场销售行情知道,从每年的3 月25日起的180天内,绿茶市场销售单价y (元)与上市时间t (天)的关系可以近似地用图a 中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z (元)与上市时间t (天)的关系可以近似地用图b 所示的抛物线表示.B C D EFG A a 图 B C D E F G A b 图(1)直接写出图a中表示的市场销售单价y(元)与上市时间£(天)(t>0)的函数关系式.(2)求出图b中表示的种植成本单价z(元)与上市时间t(天)(t>0)的函数关系式.(3)认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价最大?(说明:市场销售单价和种植成本单价的单位:元/500g.)29.(本小题9分)在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=5分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标.(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式.(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N,使以O 、D 、M 、N 为顶点的四边形是菱形?若存在,请求出点N 的坐标;若不存在,请说明理由.参考答案1~10. BCCAB AACDC 11.()()11a a a +- 12.(-3,-2) 13.6 14.1或-2 15.8 16.-1 17.601318.B 603 6n +3 19.0 20.解:原式=9)32(2-⨯--x xx x x x =)3)(3(3-+⨯-x x x x x=31+x 当13-=x 时,原式=231+=32-21.由①,得x>3. 由②,得x ≤10. ∴原不等式的解集为3<x ≤10. 22.(1)图略.B (2,1) (2)图略(3)16 23.(1)如图所示:(2)3424..解:(1) 80 ; (2) 成绩位于79.5~89.5的频率为25.015.03.02.01.01=+++-)(.所以全校所有参赛学生中成绩等第为优良的学生人数为24015.025.0600=+⨯)((人) (3) 本次随机抽样分析成绩不合格的人数为81.080=⨯(人),成绩优良的人数为324.080=⨯(人),依据题意,可得方程组⎪⎩⎪⎨⎧=+-=++⨯.15,5.76803240857b a ba 解得 ⎩⎨⎧==.87,72b a(4) D .25.(1)MN 不会穿过原始森林保护区 (2)原计划完成这项工程需要25天 26.(1)AE ⊥GC (2)成立 27.(1)8cm (2)当t 为0.5s 或3.5s 时,直线AB 与⊙O 相切28.(1) ()()2160 0<t<120,380 (120t 150),220 150t 1805t y t ⎧-+⎪⎪=≤≤⎨⎪⎪+≤≤⎩(2)()2111020300z t =-+(t>0)(3)在t =10时,纯收益单价最大,最大值为100元。

安徽省中考数学模拟试卷二

安徽省中考数学模拟试卷二

安徽省中考(Kao)数学模拟试卷二数(Shu) 学(Xue) 试(Shi) 题(Ti)注意事(Shi)项:1.你拿到的试卷(Juan)满分为(Wei)150分.考试时间为120分钟。

2.试卷包括“试题卷”和“答题卷”两部分。

3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的。

4.考试结束后,请将“试题卷”和“答题卷”一并交回。

题号一二三四五六七八总分得分一.单项选择题。

(本大题共10小题.每小题4分.共40分。

每小题只得分评卷人有一个正确答案.请将正确的答案的序号填入括号中。

)1.2018的相反数是()A.B.2018 C.﹣2018 D.﹣2.计算(﹣x2)3的结果是()A.﹣x6B.x6C.﹣x5D.﹣x83.下列几何体是由4个相同的小正方体搭成的.其中左视图与俯视图相同的是()A. B. C. D.4.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作.根据规划“一带一路”地区覆盖总人口44亿.这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10105.不等式6﹣3x>0的解集在数轴上表示为()A.B.C.D.6.如图.将矩形ABCD沿GH折叠.点C落在点Q处.点D落在AB边上的点E处.若∠AGE=32°.则∠GHC等于()A.112°B.110°C.108°D.106°7.为了(Liao)解中学(Xue)300名男生的身高(Gao)情况(Kuang).随机抽取若干名男生进行身(Shen)高测量(Liang).将所得(De)数据整理后(Hou).画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12 B.48 C.72 D.968.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书.每个同学都把自己的图书向本组其他成员赠送一本.某组共互赠了210本图书.如果设该组共有x名同学.那么依题意.可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D . x(x﹣1)=2109.已知反比例函数y =的图象在每一个象限内.y随x的增大而增大.那么一次函数y=kx+2的大致图象是()A .B .C .D .10.如图.等腰三角形ABC的底边BC长为4.面积是16.腰AC的垂直平分线EF分别交AC.AB 边于E.F点.若点D为BC边的中点.点M为线段EF上一动点.则△CDM周长的最小值为()A.6 B.8 C.10D.12二、填空题(本大题共4小题.每小题5分.共20分。

湖南省湘潭市2020年中考数学模拟试题(二)有答案精析

湖南省湘潭市2020年中考数学模拟试题(二)有答案精析

湖南省湘潭市2020年中考数学模拟试卷(二)(解析版)一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.|﹣2|=()A.2 B.﹣2 C. D.2.(﹣4x)2=()A.﹣8x2B.8x2C.﹣16x2D.16x23.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.下列命题中,正确的是()A.平行四边形的对角线相等B.矩形的对角线互相垂直C.菱形的对角线互相垂直且平分D.对角线相等的四边形是矩形5.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于()A. B. C. D.16.如图,下列水平放置的几何体中,主视图是三角形的是()A. B. C. D.7.若关于x的方程x2+x﹣a+=0没有实数根,则实数a的取值范围是()A.a≥2 B.a≤2 C.a<2 D.a>28.如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是﹣1,则顶点A的坐标是()A.(2,﹣1)B.(1,﹣2)C.(1,2) D.(2,1)二、填空题(本题共8个小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.化简:﹣=____________.10.如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是____________.11.已知反比例函数y=的图象经过点(2,3),则此函数的关系式是____________.12.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为____________.13.某商店一套西服的进价为300元,按标价的80%销售可获利100元,则该服装的标价为____________元.14.如图,直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,则不等式﹣3≤﹣2x﹣5<kx+b的解集是____________.15.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=____________.16.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为____________.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应位置上,满分72分)17.计算:|﹣|+(﹣)﹣1sin45°+()0.18.解不等式.19.先化简,再求值:÷(1+),其中x=﹣1.20.某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,如图是根据这组数据绘制的统计图,图1中从左到右各长方形A、B、C、D、E高度之比为3:4:5:6:2,已知此次调查中捐10元和15元的人数共27人.(1)他们一共抽查了多少人?这组数据的众数、中位数各是多少?(2)图2中,捐款数为20元的D部分所在的扇形的圆心角的度数是多少?(3)若该校共有1000名学生,请求出D部分学生的人数及D部分学生的捐款总额.21.如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(1)求AC的长度;(2)求每级台阶的高度h.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)22.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.23.红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.24.已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.25.(10分)(2020•湘潭模拟)如图,以矩形ABCD的对角线AC的中点O为圆心,OA 长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K.过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.(1)求证:AE=CK;(2)如果AB=a,AD=a(a为大于零的常数),求BK的长.26.(10分)(2020•长沙)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额﹣生产成本﹣员工工资﹣其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?2020年湖南省湘潭市中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.|﹣2|=()A.2 B.﹣2 C. D.【考点】绝对值.【分析】根据绝对值的性质可直接求出答案.【解答】解:根据绝对值的性质可知:|﹣2|=2.故选:A.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(﹣4x)2=()A.﹣8x2B.8x2C.﹣16x2D.16x2【考点】幂的乘方与积的乘方.【分析】原式利用积的乘方运算法则计算即可得到结果.【解答】解:原式=16x2,故选D.【点评】此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.下列命题中,正确的是()A.平行四边形的对角线相等B.矩形的对角线互相垂直C.菱形的对角线互相垂直且平分D.对角线相等的四边形是矩形【考点】命题与定理.【分析】根据平行四边形的性质对A进行判断;根据矩形的性质对B进行判断;根据菱形的性质对C进行判断;根据矩形的判定方法对D进行判断.【解答】解:A、平行四边形的对角线互相平分,所以A选项错误;B、矩形的对角线互相平分且相等,所以B选项错误;C、菱形的对角线互相垂直且平分,所以C选项正确;D、对角线相等的平行四边形是矩形,所以D选项错误.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部组成.熟练平行四边形和特殊平行四边形的判定与性质是解决此题的关键.5.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于()A. B. C. D.1【考点】列表法与树状图法.【分析】首先分别用A与B表示三角形与矩形,然后根据题意画树状图,由树状图求得所有等可能的结果与能拼成“小房子”(如图2)的情况,再利用概率公式求解即可求得答案,【解答】解:分别用A与B表示三角形与矩形,画树状图得:∵共有12种等可能的结果,能拼成“小房子”的有8种情况,∴任取两张纸片,能拼成“小房子”(如图2)的概率等于:=.故选A.【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.6.如图,下列水平放置的几何体中,主视图是三角形的是()A. B. C. D.【考点】简单几何体的三视图.【分析】找到从正面看所得到的图形是三角形即可.【解答】解:A、主视图为长方形,故本选项错误;B、主视图为三角形,故本选项错误;C、主视图为长方形,故本选项错误;D、主视图为长方形,故本选项错误.故选B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.7.若关于x的方程x2+x﹣a+=0没有实数根,则实数a的取值范围是()A.a≥2 B.a≤2 C.a<2 D.a>2【考点】根的判别式.【分析】根据判别式的意义得到△=12﹣4(﹣a+)<0,然后解不等式即可.【解答】解:∵关于x的方程x2+x﹣a+=0没有实数根,∴△=12﹣4(﹣a+)<0,解得:a<2,故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是﹣1,则顶点A的坐标是()A.(2,﹣1)B.(1,﹣2)C.(1,2) D.(2,1)【考点】菱形的性质;坐标与图形性质.【分析】点A的横坐等于OC的长的一半,点A的纵坐标与点B的纵坐标互为相反数.【解答】解:∵点C的坐标为(4,0),∴OC=4,∴点B的纵坐标是﹣1,∴A(2,1).故选D.【点评】本题综合考查了菱形的性质和坐标的确定,综合性较强.二、填空题(本题共8个小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.化简:﹣=.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.10.如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是4.【考点】三角形的面积.【分析】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.【解答】解:∵△ABC的三条中线AD、BE,CF交于点G,∴S△CGE=S△AGE=S△ACF,S△BGF=S△BGD=S△BCF,∵S△ACF=S△BCF=S△ABC=×12=6,∴S△CGE=S△ACF=×6=2,S△BGF=S△BCF=×6=2,=S△CGE+S△BGF=4.∴S阴影故答案为4.【点评】根据三角形的中线把三角形的面积分成相等的两部分,该图中,△BGF的面积=△BGD的面积=△CGD的面积,△AGF的面积=△AGE的面积=△CGE的面积.11.已知反比例函数y=的图象经过点(2,3),则此函数的关系式是y=.【考点】待定系数法求反比例函数解析式.【分析】已知反比例函数y=的图象经过点(2,3),则把(2,3)代入解析式就可以得到k的值.【解答】解:根据题意得:3=解得k=6,则此函数的关系式是y=.故答案为:y=.【点评】本题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点内容.12.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为.【考点】几何概率.【分析】根据题意,求得正方形与圆的面积,相比计算可得答案.【解答】解:根据题意,针头扎在阴影区域内的概率就是圆与正方形的面积的比值;由题意可得:正方形纸边长为4cm,其面积为16cm2,圆的半径为1cm,其面积为πcm2,故其概率为.【点评】本题考查几何概率的求法:注意圆、正方形的面积计算.用到的知识点为:概率=相应的面积与总面积之比.13.某商店一套西服的进价为300元,按标价的80%销售可获利100元,则该服装的标价为500元.【考点】一元一次方程的应用.【分析】首先理解题意找出题中存在的等量关系:利润=售价﹣进价,根据此等量关系列方程即可.【解答】解:设该服装的标价为x元,则实际售价为80%x,根据等量关系列方程得:80%x﹣300=100,解得:x=500.故答案为:500.【点评】此题主要考查了一元一次方程的应用,理解利润、售价、进价三者之间的关系是解题关键.14.如图,直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,则不等式﹣3≤﹣2x﹣5<kx+b的解集是﹣2<x≤﹣1.【考点】一次函数与一元一次不等式.【分析】把所给两点代入一次函数解析式可得k,b的值,进而求不等式组的解集即可.【解答】解:∵直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,∴,解得,∴不等式变为﹣3≤﹣2x﹣5<﹣x﹣3,解得﹣2<x≤﹣1,故答案为﹣2<x≤﹣1.【点评】考查一次函数和一元一次不等式的相关问题;用待定系数法求得未知函数解析式是解决本题的突破点.15.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=80°.【考点】圆周角定理;垂径定理.【分析】根据垂径定理可得点B是中点,由圆周角定理可得∠BOD=2∠BAC,继而得出答案.【解答】解:∵,⊙O的直径AB与弦CD垂直,∴=,∴∠BOD=2∠BAC=80°.故答案为:80°.【点评】此题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.16.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为.【考点】翻折变换(折叠问题).【分析】首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可.【解答】解:∵AB=3,AD=4,∴DC=3,BC=4∴AC==5,根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,22+x2=(4﹣x)2,解得:x=,故答案为:.【点评】此题主要考查了图形的翻着变换,以及勾股定理的应用,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应位置上,满分72分)17.计算:|﹣|+(﹣)﹣1sin45°+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣2×+1=﹣+1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解不等式.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x≤2,由②得,x>﹣.故不等式组的解集为:﹣<x≤2.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.先化简,再求值:÷(1+),其中x=﹣1.【考点】分式的化简求值.【分析】分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.【解答】解:=÷(+)=÷=×=,把,代入原式====.【点评】此题主要考查了分式混合运算,要注意分子、分母能因式分解的先因式分解;除法要统一为乘法运算是解题关键.20.某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,如图是根据这组数据绘制的统计图,图1中从左到右各长方形A、B、C、D、E高度之比为3:4:5:6:2,已知此次调查中捐10元和15元的人数共27人.(1)他们一共抽查了多少人?这组数据的众数、中位数各是多少?(2)图2中,捐款数为20元的D部分所在的扇形的圆心角的度数是多少?(3)若该校共有1000名学生,请求出D部分学生的人数及D部分学生的捐款总额.【考点】扇形统计图;用样本估计总体;条形统计图;中位数;众数.【分析】(1)根据A、B、C、D、E高度之比为3:4:5:6:2,求得B等和C等所占的百分比,再根据捐10元和15元的人数共27人求得总人数;根据中位数和众数的概念求解;(2)各部分所占的圆心角即为百分比×360°;(3)根据样本估计总体.【解答】解:(1)总人数=27÷=60(人);众数:20(元);中位数15(元).(2)捐款数为20元的D部分所在的扇形的圆心角的度数=×360°=108°;(3)D部分的学生人数=1000×=300(人);D部分学生的捐款总额=300×20=6000(元).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时也考查了中位数、众数、平均数的概念及根据样本估计总体.21.如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(1)求AC的长度;(2)求每级台阶的高度h.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)过点B作BE⊥AC于点E,在Rt△ABE中利用三角函数求出AE,由AC=AE ﹣CE,可得出答案;(2)在Rt△ABE中,求出BE,即可计算每级台阶的高度h.【解答】解:如右图,过点B作BE⊥AC于点E,(1)在Rt△ABE中,AB=3m,cos12°≈0.9781,AE=ABcos12°≈2.934m=293.4cm,∴AC=AE﹣CE=293.4﹣60=233.4cm.答:AC的长度约为233.4cm.(2)h=BE=ABsin12°=×300×0.2079=20.79≈20.8cm.答:每级台阶的高度h约为20.8cm.【点评】本题考查了解直角三角形的应用,难度一般,解答本题的关键是根据坡度和坡角构造直角三角形,并解直角三角形.22.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【考点】全等三角形的判定与性质.【分析】首先得出BC=EF,利用平行线的性质∠B=∠DEF,再利用AAS得出△ABC≌△DEF,即可得出答案.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.【点评】此题主要考查了平行线的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.23.红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.【考点】根的判别式;一元二次方程的解;根与系数的关系.【分析】(1)要证明方程有两个不相等的实数根,即证明△>0即可;(2)将x=1代入方程(x﹣3)(x﹣2)=|m|,求出m的值,进而得出方程的解.【解答】(1)证明:∵(x﹣3)(x﹣2)=|m|,∴x2﹣5x+6﹣|m|=0,∵△=(﹣5)2﹣4(6﹣|m|)=1+4|m|,而|m|≥0,∴△>0,∴方程总有两个不相等的实数根;(2)解:∵方程的一个根是1,∴|m|=2,解得:m=±2,∴原方程为:x2﹣5x+4=0,解得:x1=1,x2=4.即m的值为±2,方程的另一个根是4.【点评】此题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.同时考查了一元二次方程的解的定义.25.(10分)(2020•湘潭模拟)如图,以矩形ABCD的对角线AC的中点O为圆心,OA 长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K.过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.(1)求证:AE=CK;(2)如果AB=a,AD=a(a为大于零的常数),求BK的长.【考点】圆的综合题.【分析】(1)先根据平行线的性质和垂直的定义得出∠AED=90°,再根据矩形的性质判断出Rt△ADE≌Rt△CBK即可;(2)先利用勾股定理求出AC,再用三角形的面积公式求出BK即可.【解答】(1)∵DH∥KB,BK⊥AC,∴DE⊥AC,∴∠AED=90°,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠EAD=∠KCB,在△ADE和△CBK中∴Rt△ADE≌Rt△CBK,∴AE=CK.(2)在Rt△ABC中,AB=a,AD=BC=a,∴AC===,∵S△ABC=AB×BC=AC×BK,∴BK===a.【点评】此题是圆的综合题,主要考查了矩形的性质,平行线的性质,垂直的定义,勾股定理,解本题的关键是判断出Rt△ADE≌Rt△CBK.26.(10分)(2020•长沙)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额﹣生产成本﹣员工工资﹣其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?【考点】一次函数的应用;分段函数.【分析】(1)从图中看,这是一个分段一次函数,40≤x≤60和60<x<100时,函数的表达式不同,每段函数都经过两点,使用待定系数法即可求出函数关系式;(2)利用(1)中的函数关系,当销售单价定为50元时,可计算出月销售量,设可安排员工m人,利润=销售额一生产成本﹣员工工资﹣其它费用,列出方程即可解;(3)先分情况讨论出利润的最大值,即可求解.【解答】解:(1)当40≤x≤60时,令y=kx+b,则,解得,故,同理,当60<x<100时,.故y=;(2)设公司可安排员工a人,定价50元时,由5=(﹣×50+8)(50﹣40)﹣15﹣0.25a,得30﹣15﹣0.25a=5,解得a=40,所以公司可安排员工40人;(3)当40≤x≤60时,利润w1=(﹣x+8)(x﹣40)﹣15﹣20=﹣(x﹣60)2+5,则当x=60时,w max=5万元;当60<x<100时,w2=(﹣x+5)(x﹣40)﹣15﹣0.25×80=﹣(x﹣70)2+10,∴x=70时,w max=10万元,∴要尽早还清贷款,只有当单价x=70元时,获得最大月利润10万元,设该公司n个月后还清贷款,则10n≥80,∴n≥8,即n=8为所求.【点评】本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,是一道综合性较强的代数应用题,能力要求比较高.。

黄冈市中考数学全真模拟试卷(二)含答案解析

黄冈市中考数学全真模拟试卷(二)含答案解析

湖北省黄冈市中考数学全真模拟试卷(二)一.选择题(共6小题,满分15分)1.已知x的取值能使|x﹣3|+|x+2|取得最小值,则所有中整数有()A.1个 B.2个 C.3个 D.4个2.(3分)下列运算正确的是()A.m6÷m2=m3B.(x+1)2=x2+1 C.(3m2)3=9m6D.2a3•a4=2a73.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④4.(3分)一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.45.(3分)小华五次跳远的成绩如下(单位:m):3.9,4.1,3.9,3.8,4.2.关于这组数据,下列说法错误的是()A.极差是0.4 B.众数是3.9 C.中位数是3.98 D.平均数是3.986.(3分)已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB的弦心距为()A.B.2 C.D.二.填空题(共8小题,满分24分,每小题3分)7.(3分)计算:=.8.(3分)分解因式:3x2﹣6x2y+3xy2=.9.(3分)=.10.(3分)现在网购越来越多地成为人们的一种消费方式,刚刚过去的的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为.11.(3分)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果y n=(用含字母x和n的代数式表示).12.(3分)如图,E是正方形ABCD内一点,如果△ABE为等边三角形,那么∠DCE=度.13.(3分)已知圆锥的底面半径为2cm,母线长是4cm,则圆锥的侧面积是cm2(结果保留π).14.(3分)两个直角三角板如图放置,其中AC=5,BC=12,点D为斜边AB的中点.在三角板DEF绕着点D的旋转过程中,边DE与边AC始终相交于点M,边DF与边BC始终相交于点N,则线段MN的最小值为.三.解答题(共10小题,满分64分)15.(5分)解关于x的不等式组:,其中a为参数.16.(6分)如图1,在锐角△ABC中,∠ABC=45°,高线A D、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.17.(6分)已知x1,x2是方程2x2﹣2nx+n(n+4)=0的两根,且(x1﹣1)(x2﹣1)﹣1=,求n的值.18.(6分)甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?19.(7分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.20.(7分)如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB﹣BO﹣OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t >0).(1)求直线AB的解析式;(2)在点P从O向A运动的过程中,求△APQ的面积S与t之间的函数关系式(不必写出t的取值范围);(3)在点E从B向O运动的过程中,完成下面问题:①四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由;②当DE经过点O时,请你直接写出t的值.21.(7分)如图,反比例函数y=(m≠0)与一次函数y=kx+b(k≠0)的图象相交于A、B两点,点A的坐标为(﹣6,2),点B的坐标为(3,n).求反比例函数和一次函数的解析式.22.(8分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.23.(12分)如图,实验数据显示,一般成年人喝半斤低度白酒后,1.5时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可以近似的用二次函数y=﹣200x2+400x刻画,1.5小时后(包括1.5小时)y与x可近似的用反比例函数y=(k>0)刻画.(1)根据上述数学模型计算;①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按照国家规定,车辆驾驶人员血液中酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早晨7:00能否驾车去上班?请说明理由.24.综合与探究:如图,抛物线y=x2﹣x﹣4与x轴交与A,B两点(点B在点A的右侧),与y 轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x 轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A,B,C的坐标.(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m 为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.湖北省黄冈市中考数学全真模拟试卷(二)参考答案与试题解析一.选择题(共6小题,满分15分)1.【解答】解:∵已知x的取值能使|x﹣3|+|x+2|取得最小值,∴当x≥3时,有|x﹣3|+|x+2|=x﹣3+x+2=2x﹣1,∴当x=3时有最小值:2×3﹣1=5;∴当﹣2<x<3时,有|x﹣3|+|x+2|=3﹣x+x+2=5,∴其有最小值5;当x≤﹣2时,有|x﹣3|+|x+2|=3﹣x﹣x﹣2=1﹣2x,∴当x=﹣2时有最小值5,∴﹣2≤x≤3可以使|x﹣3|+|x+2|取得最小值,∴﹣1≤≤,∴所有中整数有﹣1,0,1,共3个,故选:C.2.【解答】解:A、原式=m4,不符合题意;B、原式=x2+2x+1,不符合题意;C、原式=27m6,不符合题意;D、原式=2a7,符合题意,故选:D.3.【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.4.【解答】解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,那么它的表面积=2π×2+π×1×1×2=6π,故选A.5.【解答】解:A、极差是4.2﹣3.8=0.4;B、3.9有2个,众数是3.9;C、从高到低排列后,为4.2,4.1,3.9,3.9,3.8.中位数是3.9;D、平均数为(3.9+4.1+3.9+3.8+4.2)÷5=3.98.故选:C.6.【解答】解:如图,设AC与BD的交点为O,过点O作GH⊥CD于G,交AB于H;作MN⊥AB于M,交CD于点N.在Rt△COD中,∠COD=90°,OG⊥CD;∴∠DOG=∠DCO;∵∠GOD=∠BOH,∠DCO=∠ABO,∴∠ABO=∠BOH,即BH=OH,同理可证,AH=OH;即H是Rt△AOB斜边AB上的中点.同理可证得,M是Rt△COD斜边CD上的中点.设圆心为O′,连接O′M,O′H;则O′M⊥CD,O′H⊥AB;∵MN⊥AB,GH⊥CD;∴O′H∥MN,OM∥GH;即四边形O′HOM是平行四边形;因此OM=O′H.由于OM是Rt△OCD斜边CD上的中线,所以OM=O′H=CD=2.故选:B.二.填空题(共8小题,满分24分,每小题3分)7.【解答】解:原式==,故答案为:8.【解答】解:原式=3x(x﹣2xy+y2),故答案为:3x(x﹣2xy+y2)9.【解答】解:∵=﹣,∴原式=(﹣)+(﹣)+…+(﹣),=1﹣,=.故答案为.10.【解答】解:67 000 000 000=6.7×1010,故答案为:6.7×1010.11.【解答】解:将y1=代入得:y2==;将y2=代入得:y3==,依此类推,第n次运算的结果y n=.故答案为:.12.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD=90°,∵△ABE为等边三角形,∴AE=AB=BE,∠ABE=60°,∴∠EBC=90°﹣60°=30°,BC=BE,∴∠ECB=∠BEC=(180°﹣30°)=75°,∴∠DCE=90°﹣75°=15°.故答案为15.13.【解答】解:底面圆的半径为2,则底面周长=4π,侧面面积=×4π×4=8πcm2.14.【解答】解:当M、N分别为AC、BC的中点时,MN最小.在△ABC中,∵∠C=90°,AC=5,BC=12,∴AB==13.∵M、N分别为AC、BC的中点,∴MN=AB=.故答案为.三.解答题(共10小题,满分64分)15.【解答】解:,解不等式①得:﹣3a<5x≤1﹣3a,﹣a<x≤,解不等式②得:3a<5x≤1+3a,a<x≤,∵当﹣a=a时,a=0,当=时,a=0,当﹣a=时,a=﹣,当a=时,a=,∴当或时,原不等式组无解;当时,原不等式组的解集为:;当时,原不等式组的解集为:.16.【解答】解:(1)BF=AC,理由是:如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC和△BDF中,∵,∴△ADC≌△BDF(AAS),∴BF=AC;(2)NE=AC,理由是:如图2,由折叠得:MD=DC,∵D E∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:△ADC≌△BDF,∵△ADC≌△ADM,∴△BDF≌△ADM,∴∠DBF=∠MAD,∵∠DBA=∠BAD=45°,∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,∴EN=AC.17.【解答】解:∵x1、x2是方程2x2﹣2nx+n(n+4)=0的两根,∴x1+x2=﹣=n ①,x1x2==n(n+4)②,又∵(x1﹣1)(x2﹣1)﹣1=,∴x1x2﹣(x1+x2)=,把①②代入上式得n(n+4)﹣n=,化简得n2=,即n=±.又∵△=b2﹣4ac=4n2﹣4×2×n(n+4)=﹣16n,而原方程有根,∴﹣16n≥0,∴n≤0,∴n=﹣.18.【解答】解:设甲公司人均捐款x元,则乙公司人均捐款x+20元,×=解得:x=80,经检验,x=80为原方程的根,80+20=100(元)答:甲、乙两公司人均捐款分别为80元、100元.19.【解答】解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)700×=56,所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率==.20.【解答】解:(1)在Rt△AOB中,OA=3,AB=5,由勾股定理得OB==4.∴A(3,0),B(0,4).设直线AB的解析式为y=kx+b.∴解得∴直线AB的解析式为;(2)如图1,过点Q作QF⊥AO于点F.∵AQ=OP=t,∴AP=3﹣t.由△AQF∽△ABO,得.∴=.∴QF=t,∴S=(3﹣t)•t,∴S=﹣t2+t;(3)四边形QBED能成为直角梯形.①如图2,当DE∥QB时,∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.此时∠AQP=90°.由△APQ∽△ABO,得.∴=.解得t=;如图3,当PQ∥BO时,∵DE⊥PQ,∴DE⊥BO,四边形QBED是直角梯形.此时∠APQ=90°.由△AQP∽△ABO,得.即=.3t=5(3﹣t),3t=15﹣5t,8t=15,解得t=;(当P从A向0运动的过程中还有两个,但不合题意舍去)②当DE经过点O时,∵DE垂直平分PQ,∴EP=EQ=t,由于P与Q相同的时间和速度,∴AQ=EQ=EP=t,∴∠AEQ=∠EAQ,∵∠AEQ+∠BEQ=90°,∠EAQ+∠EBQ=90°,∴∠BEQ=∠EBQ,∴BQ=EQ,∴EQ=AQ=BQ=AB所以t=,当P从A向O运动时,过点Q作QF⊥OB于F,EP=6﹣t,即EQ=EP=6﹣t,AQ=t,BQ=5﹣t,∴FQ=(5﹣t)=3﹣t,BF=(5﹣t)=4﹣t,∴EF=4﹣BF=t,∵EF2+FQ2=EQ2,即(3﹣t)2+(t)2=(6﹣t)2,解得:t=.∴当DE经过点O时,t=或.21.【解答】解:把点A(﹣6,2)代入中,得m=﹣12.∴反比例函数的解析式为.把点B(3,n)代入中,得n=﹣4.∴B点的坐标为(3,﹣4).把点A(﹣6,2),点B(3,﹣4)分别代入y=kx+b中,得,解得.∴一次函数的解析式为y=﹣x﹣2.22.【解答】解:由题意得:BE=,AE=,∵AE﹣BE=AB=m米,∴﹣=m(米),∴CE=(米),∵DE=n米,∴CD=+n(米).∴该建筑物的高度为:(+n)米.23.【解答】解:(1)∵y=﹣200x2+400x=﹣200(x﹣1)2+200,①∴当x=1时,y取得最大值,此时y=200,答:喝酒后1时血液中的酒精含量达到最大值,最大值为200毫克/百毫升;②∵当x=5时,y=45,∴45=,得k=225,即k的值是225;(2)该驾驶员第二天早晨7:00不能驾车去上班,理由:由(1)知k=225,∴y=,∵晚上20:00到第二天早晨7:00是11个小时,∴将x=11代入y=,得y=,∵,∴该驾驶员第二天早晨7:00不能驾车去上班.24.【解答】解:(1)当y=0时,x2﹣x﹣4=0,解得x1=﹣2,x2=8,∵点B在点A的右侧,∴点A的坐标为(﹣2,0),点B的坐标为(8,0).当x=0时,y=﹣4,∴点C的坐标为(0,﹣4).(2)由菱形的对称性可知,点D的坐标为(0,4).设直线BD的解析式为y=kx+b,则,解得k=﹣,b=4.∴直线BD的解析式为y=﹣x+4.∵l⊥x轴,∴点M的坐标为(m,﹣m+4),点Q的坐标为(m,m2﹣m﹣4).如图,当MQ=DC时,四边形CQMD是平行四边形,∴(﹣m+4)﹣(m2﹣m﹣4)=4﹣(﹣4).化简得:m2﹣4m=0,解得m1=0(不合题意舍去),m2=4.∴当m=4时,四边形CQMD是平行四边形.此时,四边形CQBM是平行四边形.解法一:∵m=4,∴点P是OB的中点.∵l⊥x轴,∴l∥y轴,∴△BPM∽△BOD,∴==,∴BM=DM,∵四边形CQMD是平行四边形,∴DM CQ,∴BM CQ,∴四边形CQBM是平行四边形.解法二:设直线BC的解析式为y=k1x+b1,则,解得k1=,b1=﹣4.故直线BC的解析式为y=x﹣4.又∵l⊥x轴交BC于点N,∴x=4时,y=﹣2,∴点N的坐标为(4,﹣2),由上面可知,点M的坐标为(4,2),点Q的坐标为(4,﹣6).∴MN=2﹣(﹣2)=4,NQ=﹣2﹣(﹣6)=4,∴MN=QN,又∵四边形CQMD是平行四边形,∴DB∥CQ,∴∠3=∠4,∵在△BMN与△CQN中,,∴△BMN≌△CQN(ASA)∴BN=CN,∴四边形CQBM是平行四边形.(3)抛物线上存在两个这样的点Q,分别是Q1(﹣2,0),Q2(6,﹣4).若△BDQ为直角三角形,可能有三种情形,如答图2所示:①以点Q为直角顶点.此时以BD为直径作圆,圆与抛物线的交点,即为所求之Q点.∵P在线段EB上运动,∴﹣8≤x Q≤8,而由图形可见,在此范围内,圆与抛物线并无交点,故此种情形不存在.②以点D为直角顶点.连接AD,∵OA=2,OD=4,OB=8,AB=10,由勾股定理得:AD=,BD=,∵AD2+BD2=AB2,∴△ABD为直角三角形,即点A为所求的点Q.∴Q1(﹣2,0);③以点B为直角顶点.如图,设Q2点坐标为(x,y),过点Q2作Q2K⊥x轴于点K,则Q2K=﹣y,OK=x,BK=8﹣x.易证△Q2KB∽△BOD,∴,即,整理得:y=2x﹣16.∵点Q在抛物线上,∴y=x2﹣x﹣4.∴x2﹣x﹣4=2x﹣16,解得x=6或x=8,当x=8时,点Q2与点B重合,故舍去;当x=6时,y=﹣4,∴Q2(6,﹣4).综上所述,符合题意的点Q的坐标为(﹣2,0)或(6,﹣4).。

【解析版】福建省福州市中考数学模拟试卷(二)

【解析版】福建省福州市中考数学模拟试卷(二)

福建省福州市中考数学模拟试卷(二)一、选择题(共10小题,每题3分,满分30分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.不等式1﹣x>0的解集在数轴上表示正确的是()A. B. C.D.2.如图,已知AB∥CD,与∠1是同位角的角是()A.∠2 B.∠3 C.∠4 D.∠53.下列交通标志图案是轴对称图形的是()A. B. C. D.4.数据0,1,1,x,3,4的平均数是2,则这组数据的中位数是()A. 1 B. 3 C. 1.5 D. 25.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为()A. B. 3 C. 2 D. 46.若代数式x2+ax可以分解因式,则常数a不可以取()A.﹣1 B. 0 C. 1 D. 27.下列计算正确的是()A. 2a+5a=7a B. 2x﹣x=1 C. 3+a=3a D. x2•x3=x68.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A. B.C. D.9.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小10.如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A. B. C. D.πr2二、填空题(共6小题,每题4分,满分24分)11.要使代数式有意义,则实数a的取值范围是.12.将直线y=2x+1平移后经过点,则平移后的直线解析式为.13.已知==3,==10,==15,…观察以上计算过程,寻找规律计算=.14.一个扇形的弧长是20πcm,半径是24cm,则此扇形的圆心角是度.15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为.16.若直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是.三、解答题(共10小题,满分96分)17.计算:+|﹣4|+(﹣1)0﹣()﹣1.18.先化简,再求值:﹣,其中a=+1,b=﹣1.19.解方程:x2+2x﹣3=0.20.如图,点A,C,D在同一条直线上,BC与AE交于点F,AE=AC,AD=BC,FA=FC.求证:∠B=∠D.21.某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.时间 1小时左右 1.5小时左右 2小时左右 2.5小时左右人数 50 80 120 50根据以上信息,请回答下列问题:(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少;补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)22.乔丹体育用品商店开展“超级星期六”促销活动:运动服8折出售,运动鞋每双减20元.活动期间,标价为480元的某款运动服装(含一套运动服和一双运动鞋)价格为400元.问该款运动服和运动鞋的标价各是多少元?23.已知钝角三角形ABC,点D在BC的延长线上,连接AD,若∠DAB=90°,∠ACB=2∠D,AD=2,AC=,根据题意画出示意图,并求tanD的值.24.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;若CF=5,cos∠A=,求BE的长.25.如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.26.如图,在平面直角坐标系xOy中,已知抛物线y=a(x﹣1)(x﹣5)与x轴交于B、C两点,与y轴交于点A(0,4),抛物线的对称轴l与x轴相交于点M.(1)则a=;该抛物线的对称轴为;连接AC,在直线AC下方的抛物线上是否存在一点N,使△NAC的面积为14?若存在,请你求出点N的坐标;若不存在,请说明理由;(3)设P(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以A、O、M、P为顶点的四边形的四条边的长度是四个连续的正整数,求点P的坐标.福建省福州市中考数学模拟试卷(二)参考答案与试题解析一、选择题(共10小题,每题3分,满分30分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.不等式1﹣x>0的解集在数轴上表示正确的是()A. B. C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.分析:根据解不等式的方法,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.解答:解;1﹣x>0,解得x<1,故选:A.点评:本题考查了在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.如图,已知AB∥CD,与∠1是同位角的角是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据同位角的定义得出结论.解答:解:∠1与∠5是同位角.故选:D.点评:本题主要考查了同位角的定义,熟记同位角,内错角,同旁内角,对顶角是关键.3.下列交通标志图案是轴对称图形的是()A. B. C. D.考点:轴对称图形.专题:常规题型.分析:根据轴对称的定义结合选项所给的特点即可得出答案.解答:解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.点评:本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.数据0,1,1,x,3,4的平均数是2,则这组数据的中位数是()A. 1 B. 3 C. 1.5 D. 2考点:中位数;算术平均数.分析:根据平均数的计算公式求出x的值,再把这组数据从小到大排列,根据中位数的定义即可得出答案.解答:解:∵数据0,1,1,x,3,4的平均数是2,∴(0+1+1+x+3+4)÷6=2,解得:x=3,把这组数据从小到大排列0,1,1,3,3,4,最中间两个数的平均数是(1+3)÷2=2,则这组数据的中位数是2;故选:D.点评:此题考查了中位数和平均数,根据平均数的计算公式求出x的值是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).5.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为()A. B. 3 C. 2 D. 4考点:垂径定理;圆周角定理;解直角三角形.专题:计算题.分析:如图,首先证得OA⊥BC;然后由圆周角定理推知∠C=30°,通过解直角△ACD可以求得CD的长度.则BC=2CD.解答:解:如图,设AO与BC交于点D.∵∠AOB=60°,,∴∠C=∠AOB=30°,又∵AB=AC,∴=∴AD⊥BC,∴BD=CD,∴在直角△ACD中,CD=AC•cos30°=2×=,∴BC=2CD=2.故选:C.点评:本题考查了解直角三角形,圆周角定理等知识点.推知△OAB是等边三角形是解题的难点,证得AD⊥BC是解题的关键.6.若代数式x2+ax可以分解因式,则常数a不可以取()A.﹣1 B. 0 C. 1 D. 2考点:因式分解-提公因式法.分析:利用提取公因式法分解因式的方法得出即可.解答:解:∵代数式x2+ax可以分解因式,∴常数a不可以取0.故选:B.点评:此题主要考查了提取公因式法分解因式,理解提取公因式法分解因式的意义是解题关键.7.下列计算正确的是()A. 2a+5a=7a B. 2x﹣x=1 C. 3+a=3a D. x2•x3=x6考点:同底数幂的乘法;合并同类项.分析:根据合并同类项、同底数幂的运算法则计算.解答:解:A、符合合并同类项法则,故本选项正确;B、2x﹣x=x≠1,故本选项错误;C、3和a不是同类项,故本选项错误;D、x2•x3≠x6=x5,故本选项错误.故选:A.点评:本题考查了同底数幂的乘法与合并同类项,熟悉合并同类项法则是解题的关键.8.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A. B.C. D.考点:作图—复杂作图.分析:要使PA+PC=BC,必有PA=PB,所以选项中只有作AB的中垂线才能满足这个条件,故D 正确.解答:解:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC故选:D.点评:本题主要考查了作图知识,解题的关键是根据中垂线的性质得出PA=PB.9.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小考点:反比例函数的性质.专题:常规题型.分析:根据反比例函数的性质,k=2>0,函数位于一、三象限,在每一象限y随x的增大而减小.解答:解:A、把点(1,1)代入反比例函数y=得2≠1不成立,故A选项错误;B、∵k=2>0,∴它的图象在第一、三象限,故B选项错误;C、图象的两个分支关于y=﹣x对称,故C选项错误.D、当x>0时,y随x的增大而减小,故D选项正确.故选:D.点评:本题考查了反比例函数y=(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.10.如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A. B. C. D.πr2考点:扇形面积的计算;等边三角形的性质;切线的性质.专题:计算题;压轴题.分析:过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则在Rt△ADO1中,可求得.四边形ADO1E的面积等于三角形ADO1的面积的2倍,还可求出扇形O1DE的面积,所求面积等于四边形ADO1E的面积减去扇形O1DE的面积的三倍.解答:解:如图,当圆形纸片运动到与∠A的两边相切的位置时,过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则Rt△ADO1中,∠O1AD=30°,O1D=r,.∴.由.∵由题意,∠DO1E=120°,得,∴圆形纸片不能接触到的部分的面积为=.故选:C.点评:本题考查了面积的计算、等边三角形的性质和切线的性质,是基础知识要熟练掌握.二、填空题(共6小题,每题4分,满分24分)11.要使代数式有意义,则实数a的取值范围是a≠﹣1.考点:分式有意义的条件.专题:计算题.分析:使代数式有意义的条件为a+1≠0,就可求得a的取值范围.解答:解:根据题意得:a+1≠0,所以a≠﹣1.故答案为a≠﹣1.点评:此题主要考查了分式的意义,要求掌握.只要令分式中分母不等于0,求得a的取值范围即可.12.将直线y=2x+1平移后经过点,则平移后的直线解析式为y=2x﹣3.考点:一次函数图象与几何变换.分析:根据平移不改变k的值可设平移后直线的解析式为y=2x+b,然后将点代入即可得出直线的函数解析式.解答:解:设平移后直线的解析式为y=2x+b.把代入直线解析式得1=2×2+b,解得 b=﹣3.所以平移后直线的解析式为y=2x﹣3.故答案为:y=2x﹣3.点评:本题考查了一次函数图象与几何变换及待定系数法去函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.13.已知==3,==10,==15,…观察以上计算过程,寻找规律计算=56.考点:规律型:数字的变化类.分析:对于C a b(b<a)来讲,等于一个分式,其中分母是从1到b的b个数相乘,分子是从a开始乘,乘b的个数.解答:解:∵==3,==10,==15,∴==56.故答案为:56.点评:此题主要考查了数字的变化规律,利用已知得出分子与分母之间的规律是解题关键.14.一个扇形的弧长是20πcm,半径是24cm,则此扇形的圆心角是150度.考点:弧长的计算.分析:直接利用弧长公式l=即可求出n的值,计算即可.解答:解:根据l===20π,解得:n=150,故答案为:150.点评:本题考查了扇形弧长公式计算,注意公式的灵活运用是解题关键.15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为1.考点:三角形中位线定理.分析:根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.解答:解:∵DE为△ABC的中位线,∠AFB=90°,∴DE=BC,DF=AB,∵AB=6,BC=8,∴DE=×8=4,DF=×6=3,∴EF=DE﹣DF=4﹣3=1.故答案为:1.点评:本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.16.若直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是0<m<2.考点:二次函数的图象;反比例函数的图象.专题:压轴题;图表型.分析:首先作出分段函数y=的图象,根据函数的图象即可确定m的取值范围.解答:解:分段函数y=的图象如图:故要使直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,常数m的取值范围为0<m<2,故答案为:0<m<2.点评:本题考查了二次函数的图象及反比例函数的图象,首先作出分段函数的图象是解决本题的关键,采用数形结合的方法确定答案是数学上常用的方法之一.三、解答题(共10小题,满分96分)17.计算:+|﹣4|+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3+4+1﹣2=6.点评:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.先化简,再求值:﹣,其中a=+1,b=﹣1.考点:分式的化简求值.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分得到最简结果,将a与b的值代入计算即可求出值.解答:解:原式===a+b,当a=+1,b=﹣1时,原式=+1+﹣1=2.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.解方程:x2+2x﹣3=0.考点:解一元二次方程-因式分解法.专题:计算题.分析:观察方程x2+2x﹣3=0,可因式分解法求得方程的解.解答:解:x2+2x﹣3=0∴(x+3)(x﹣1)=0∴x1=1,x2=﹣3.点评:解方程有多种方法,要根据实际情况进行选择.20.如图,点A,C,D在同一条直线上,BC与AE交于点F,AE=AC,AD=BC,FA=FC.求证:∠B=∠D.考点:全等三角形的判定与性质.专题:证明题.分析:根据三角形全等得到对应角相等即可得出结论.解答:证明:∵FA=FC,∴∠FAC=∠FCA,在△ABC和△EDA中,,∴△ABC≌△EDA,∴∠B=∠D.点评:本题考查了全等三角形的判定与性质,找准对应边和对应角是解题的关键.21.某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.时间 1小时左右 1.5小时左右 2小时左右 2.5小时左右人数 50 80 120 50根据以上信息,请回答下列问题:(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少;补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)考点:加权平均数;用样本估计总体;频数(率)分布直方图;扇形统计图.专题:压轴题;图表型.分析:(1)先求出喝红茶的百分比,再乘总数.先让总数减其它三种人数,再根据数值画直方图.(3)用加权平均公式求即可.解答:解:(1)冰红茶的百分比为100%﹣25%﹣25%﹣10%=40%,冰红茶的人数为400×40%=160(人),即七年级同学最喜欢喝“冰红茶”的人数是160人;补全频数分布直方图如右图所示.(3)(小时).答:九年级300名同学完成家庭作业的平均时间约为1.8小时.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.乔丹体育用品商店开展“超级星期六”促销活动:运动服8折出售,运动鞋每双减20元.活动期间,标价为480元的某款运动服装(含一套运动服和一双运动鞋)价格为400元.问该款运动服和运动鞋的标价各是多少元?考点:二元一次方程组的应用.分析:设运动服、运动鞋的标价分别为x元/套、y元/双,根据标价为480元的某款运动服装价格为400元,列方程组求解.解答:解:设运动服、运动鞋的标价分别为x元/套、y元/双,由题意得,,解得:.答:运动服、运动鞋的标价分别为300元/套、180元/双.点评:本题考查了二元一次方程的应用,解题的关键是读懂题意,设出未知数,找到题目当中的等量关系,列方程求解.23.已知钝角三角形ABC,点D在BC的延长线上,连接AD,若∠DAB=90°,∠ACB=2∠D,AD=2,AC=,根据题意画出示意图,并求tanD的值.考点:解直角三角形.分析:首先根据题意画出示意图,根据三角形外角的性质得出∠ACB=∠D+∠CAD,而∠ACB=2∠D,那么∠CAD=∠D,由等角对等边得到CA=CD,再根据等角的余角相等得出∠B=∠BAC,则AC=CB,BD=2AC=2×=3.然后解Rt△ABD,运用勾股定理求出AB==,利用正切函数的定义求出tanD==.解答:解:如图,∵∠ACB=∠D+∠CAD,∠ACB=2∠D,∴∠CAD=∠D,∴CA=CD.∵∠DAB=90°,∴∠B+∠D=90°,∠BAC+∠CAD=90°,∴∠B=∠BAC,∴AC=CB,∴BD=2AC=2×=3.在Rt△ABD中,∵∠DAB=90°,AD=2,∴AB==,∴tanD==.点评:本题考查了三角形外角的性质,等腰三角形的判定,余角的性质,解直角三角形,勾股定理,正切函数的定义,难度适中.求出BD的值是解题的关键.24.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;若CF=5,cos∠A=,求BE的长.考点:切线的判定.专题:几何综合题.分析:(1)连结OD.先证明OD是△ABC的中位线,根据中位线的性质得到OD∥AB,再由DE⊥AB,得出OD⊥EF,根据切线的判定即可得出直线EF是⊙O的切线;先由OD∥AB,得出∠COD=∠A,再解Rt△DOF,根据余弦函数的定义得到cos∠FOD==,设⊙O的半径为R,解方程=,求出R=,那么AB=2OD=,解Rt△AEF,根据余弦函数的定义得到cos∠A==,求出AE=,然后由BE=AB﹣AE即可求解.解答:(1)证明:如图,连结OD.∵CD=DB,CO=OA,∴OD是△ABC的中位线,∴OD∥AB,AB=2OD,∵DE⊥AB,∴DE⊥OD,即OD⊥EF,∴直线EF是⊙O的切线;解:∵OD∥AB,∴∠COD=∠A.在Rt△DOF中,∵∠ODF=90°,∴cos∠FOD==,设⊙O的半径为R,则=,解得R=,∴AB=2OD=.在Rt△AEF中,∵∠AEF=90°,∴cos∠A===,∴AE=,∴BE=AB﹣AE=﹣=2.点评:本题考查了切线的判定,解直角三角形,三角形中位线的性质知识点.要证某线是圆的切线,已知此线过圆上某点,连结圆心与这点(即为半径),再证垂直即可.25.如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.考点:相似形综合题.专题:压轴题.分析:(1)过点C作CE⊥AB于E,根据CE=BC•sin∠B求出CE,再根据AD=CE即可求出AD;若以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似,则△PCB必有一个角是直角.分两种情况讨论:①当∠PCB=90°时,求出AP,再根据在Rt△ADP中∠DPA=60°,得出∠DPA=∠B,从而得到△ADP∽△CPB,②当∠CPB=90°时,求出AP=3,根据≠且≠,得出△PCB与△ADP不相似.(3)先求出S1=π•,再分两种情况讨论:①当2<x<10时,作BC的垂直平分线交BC于H,交AB于G;作PB的垂直平分线交PB于N,交GH于M,连结BM,在Rt△GBH中求出BG、BN、GN,在Rt△GMN中,求出MN=(x﹣1),在Rt△BMN中,求出BM2=x2﹣x+,最后根据S1=π•BM2代入计算即可.②当0<x≤2时,S2=π(x2﹣x+),最后根据S=S1+S2=π(x﹣)2+π即可得出S的最小值.解答:解:(1)过点C作CE⊥AB于E,在Rt△BCE中,∵∠B=60°,BC=4,∴CE=BC•sin∠B=4×=2,∴AD=CE=2.存在.若以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似,则△PCB必有一个角是直角.①当∠PCB=90°时,在Rt△PCB中,BC=4,∠B=60°,PB=8,∴AP=AB﹣PB=2.又由(1)知AD=2,在Rt△ADP中,tan∠DPA===,∴∠DPA=60°,∴∠DPA=∠CPB,∴△ADP∽△CPB,∴存在△ADP与△CPB相似,此时x=2.②∵当∠CPB=90°时,在Rt△PCB中,∠B=60°,BC=4,∴PB=2,PC=2,∴AP=8.则≠且≠,此时△PCB与△ADP不相似.(3)如图,因为Rt△ADP外接圆的直径为斜边PD,则S1=π•()2=π•,①当2<x<10时,作BC的垂直平分线交BC于H,交AB于G;作PB的垂直平分线交PB于N,交GH于M,连结BM.则BM为△PCB外接圆的半径.在Rt△GBH中,BH=BC=2,∠MGB=30°,∴BG=4,∵BN=PB=(10﹣x)=5﹣x,∴GN=BG﹣BN=x﹣1.在Rt△GMN中,∴MN=GN•tan∠MGN=(x﹣1).在Rt△BMN中,BM2=MN2+BN2=x2﹣x+,∴S2=π•BM2=π(x2﹣x+).②∵当0<x≤2时,S2=π(x2﹣x+)也成立,∴S=S1+S2=π•+π(x2﹣x+)=π(x﹣)2+π.∴当x=时,S=S1+S2取得最小值π.点评:此题考查了相似形综合,用到的知识点是相似三角形的性质与判定、二次函数的最值、勾股定理,关键是根据题意画出图形构造相似三角形,注意分类讨论.26.如图,在平面直角坐标系xOy中,已知抛物线y=a(x﹣1)(x﹣5)与x轴交于B、C两点,与y轴交于点A(0,4),抛物线的对称轴l与x轴相交于点M.(1)则a=;该抛物线的对称轴为x=3;连接AC,在直线AC下方的抛物线上是否存在一点N,使△NAC的面积为14?若存在,请你求出点N的坐标;若不存在,请说明理由;(3)设P(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以A、O、M、P为顶点的四边形的四条边的长度是四个连续的正整数,求点P的坐标.考点:二次函数综合题.分析:(1)首先把x=0,y=4代入y=a(x﹣1)(x﹣5),求出a的值是多少;然后求出B、C两点的坐标,确定出该抛物线的对称轴即可.首先过点N作NG∥y轴交AC于G,求出直线AC的解析式为:y=﹣x+4,设N点的横坐标是t,则此时点N(t,t2﹣+4)(0<t<5);然后求出△CAN面积的最大值为多少,判断出是否存在一点N,使△NAC的面积为14即可.(3)首先判断出以A、O、M、P为顶点的四边形有两条边:AO=4,OM=3,判断出以1、2、3、4为边或以2、3、4、5为边都不符合题意,所以四条边的长只能是3、4、5、6一种情况,然后证明以A、O、M、P为顶点的四边形的四条边的长是3、4、5、6成立,并求出P的坐标是多少即可.解答:解:(1)把x=0,y=4代入y=a(x﹣1)(x﹣5),可得a×(﹣1)×(﹣5)=4,解得a=;∵B、C两点的坐标分别是(1,0)、(5,0),∴该抛物线的对称轴为x=(5+1)÷2=3,即该抛物线的对称轴为x=3.如图1,过点N作NG∥y轴交AC于G,,抛物线y=(x﹣1)(x﹣5)=x2+4,由点A(0,4)和点C(5,0),可得直线AC的解析式为:y=﹣x+4,设N点的横坐标是t,则此时点N(t,t2﹣+4)(0<t<5),把x=t代入y=﹣x+4,可得G(t,﹣t+4),此时NG=﹣t+4﹣(t2﹣+4)=﹣t2+5t,∴S△ACN=S△ANG+S△CGN=×(﹣t2+5t)=﹣2+,∴当t=时,△CAN面积的最大值为:,∴存在一点N,使△NAC的面积为14.(3)如图2,,以A、O、M、P为顶点的四边形有两条边:AO=4,OM=3,又∵点P的坐标中x>5,∴MP>2,AP>2,∴以1、2、3、4为边或以2、3、4、5为边都不符合题意,∴四条边的长只能是3、4、5、6一种情况.在Rt△AOM中,AM==5,∵抛物线的对称轴过点M,∴在抛物线x>5的图象上有关于点A的对称点与M的距离为5,即PM=5,此时点P横坐标为6,即AP=6,∴以A、O、M、P为顶点的四边形的四条边的长是3、4、5、6成立,即P(6,4).故答案为:、x=3.点评:(1)此题主要考查了二次函数综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了从已知函数图象中获取信息,并能利用获取的信息解答相应的问题的能力;此题还考查了三角形的面积的求法,以及数形结合方法的应用,要熟练掌握.。

安徽省合肥XX中学中考数学模拟试卷(二)及答案解析

安徽省合肥XX中学中考数学模拟试卷(二)及答案解析

安徽省合肥XX中学中考数学模拟试卷(二)一、选择题1.﹣2的倒数是()A.﹣B.C.﹣2 D.22.下列运算中,结果是a6的式子是()A.a2•a3B.a12﹣a6C.(a3)3D.(﹣a)63.下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近4.某几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.正方体D.三棱锥5.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.6.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形7.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50° B.60°C.70°D.80°8.方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,则方程x3+2x ﹣1=0的实根x0所在的范围是()A.B.C.D.二、填空题9.据了解,截止5月8日,扬泰机场开通一年,客流量累计达到450000人次,数据450000用科学记数法可表示为.10.分解因式:a3﹣4ab2=.11.在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,当V=200时,p=50,则当p=25时,V=.12.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有条鱼.13.在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=.14.如图,在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,则梯形ABCD的周长为.15.如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O 恰好落在上的点D处,折痕交OA于点C,则的长为.16.已知关于x的方程的解是负数,则n的取值范围为.17.矩形的两邻边长的差为2,对角线长为4,则矩形的面积为.18.如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN=.三、解答题19.(1)计算:;(2)先化简,再求值:(x+1)(2x﹣1)﹣(x﹣3)2,其中x=﹣2.20.已知关于x、y的方程组的解满足x>0,y>0,求实数a的取值范围.21.端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得元购物券,最多可得元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.22.为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率甲组 6.7 3.41 90% 20%乙组7.5 1.69 80% 10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组的学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.23.如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连接AE.(1)求证:AB⊥AE;(2)若BC2=AD•AB,求证:四边形ADCE为正方形.24.某校九(1)、九(2)两班的班长交流了为四川雅安地震灾区捐款的情况:(Ⅰ)九(1)班班长说:“我们班捐款总数为1200元,我们班人数比你们班多8人.”(Ⅱ)九(2)班班长说:“我们班捐款总数也为1200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.25.如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.(1)求证:AB=AC;(2)若AD=4,cos∠ABF=,求DE的长.26.如图,抛物线y=x2﹣2x﹣8交y轴于点A,交x轴正半轴于点B.(1)求直线AB对应的函数关系式;(2)有一宽度为1的直尺平行于y轴,在点A、B之间平行移动,直尺两长边所在直线被直线AB 和抛物线截得两线段MN、PQ,设M点的横坐标为m,且0<m<3.试比较线段MN与PQ的大小.27.如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.(1)求y与x的函数关系式;(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.28.如果10b=n,那么b为n的劳格数,记为b=d(n),由定义可知:10b=n与b=d(n)所表示的b、n两个量之间的同一关系.(1)根据劳格数的定义,填空:d(10)=,d(10﹣2)=;(2)劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n),d()=d(m)﹣d(n).根据运算性质,填空:=(a为正数),若d(2)=0.3010,则d(4)=,d(5)=,d(0.08)=;(3)如表中与数x对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.x 1.5 3 5 6 8 9 12 27d(x)3a﹣b+c 2a﹣b a+c 1+a﹣b﹣c 3﹣3a﹣3c 4a﹣2b 3﹣b﹣2c 6a﹣3b安徽省合肥XX中学中考数学模拟试卷(二)参考答案与试题解析一、选择题1.﹣2的倒数是()A.﹣B.C.﹣2 D.2【考点】倒数.【专题】常规题型.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列运算中,结果是a6的式子是()A.a2•a3B.a12﹣a6C.(a3)3D.(﹣a)6【考点】同底数幂的乘法;合并同类项;幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;有理数的乘方的意义,对各选项计算后利用排除法求解.【解答】解:A、a2•a3=a5,故本选项错误;B、不能进行计算,故本选项错误;C、(a3)3=a9,故本选项错误;D、(﹣a)6=a6,正确.故选:D.【点评】本题考查同底数幂的乘法、幂的乘方和有理数乘方的定义,熟练掌握运算性质是解题的关键.3.下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近【考点】概率的意义.【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A、“明天下雨的概率为80%”指的是明天下雨的可能性是80%,错误;B、这是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料,错误;C、这是一个随机事件,买这种彩票,中奖或者不中奖都有可能,但事先无法预料,错误.D、正确故选D.【点评】正确理解概率的含义是解决本题的关键.4.某几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.正方体D.三棱锥【考点】由三视图判断几何体.【分析】如图所示,根据三视图的知识可使用排除法来解答.【解答】解:如图,俯视图为三角形,故可排除C、B.主视图以及侧视图都是矩形,可排除D.故选A.【点评】本题考查了由三视图判断几何体的知识,难度一般,考生做此类题时可利用排除法解答.5.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.【考点】平行线的判定与性质.【分析】根据平行线的性质求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、∵AB∥CD,∴∠1+∠2=180°,故A错误;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B正确;C、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2;故C错误;D、若梯形ABCD是等腰梯形,可得∠1=∠2,故D错误.故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.此题难度不大,注意掌握数形结合思想的应用.6.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形【考点】多边形内角与外角.【分析】首先求得外角的度数,然后利用360除以外角的度数即可求解.【解答】解:外角的度数是:180﹣108=72°,则这个多边形的边数是:360÷72=5.故选C.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理7.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50° B.60°C.70°D.80°【考点】菱形的性质;全等三角形的判定与性质;线段垂直平分线的性质.【专题】几何综合题.【分析】连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.【解答】解:如图,连接BF,在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC,∠ABC=180°﹣∠BAD=180°﹣80°=100°,∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°,∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=60°.故选:B.【点评】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.8.方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,则方程x3+2x ﹣1=0的实根x0所在的范围是()A.B.C.D.【考点】反比例函数与一次函数的交点问题.【专题】压轴题.【分析】首先根据题意推断方程x3+2x﹣1=0的实根是函数y=x2+2与的图象交点的横坐标,再根据四个选项中x的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x3+2x﹣1=0的实根x所在范围.【解答】解:方程x3+2x﹣1=0,∴x2+2=,∴它的根可视为y=x2+2和的图象交点的横坐标,当x=时,y=x2+2=2,y==4,此时抛物线的图象在反比例函数下方;当x=时,y=x2+2=2,y==3,此时抛物线的图象在反比例函数下方;当x=时,y=x2+2=2,y==2,此时抛物线的图象在反比例函数上方;当x=1时,y=x2+2=3,y==1,此时抛物线的图象在反比例函数上方.故方程x3+2x﹣1=0的实根x所在范围为:<x<.故选:C.【点评】此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.二、填空题9.据了解,截止5月8日,扬泰机场开通一年,客流量累计达到450000人次,数据450000用科学记数法可表示为 4.5×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将450000用科学记数法表示为4.5×105.故答案为:4.5×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.分解因式:a3﹣4ab2=a(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】观察原式a3﹣4ab2,找到公因式a,提出公因式后发现a2﹣4b2符合平方差公式的形式,再利用平方差公式继续分解因式.【解答】解:a3﹣4ab2=a(a2﹣4b2)=a(a+2b)(a﹣2b).故答案为:a(a+2b)(a﹣2b).【点评】本题考查了提公因式法与公式法分解因式,有公因式的首先提取公因式,最后一定要分解到各个因式不能再分解为止.11.在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,当V=200时,p=50,则当p=25时,V=400.【考点】反比例函数的应用.【分析】首先利用待定系数法求得v与P的函数关系式,然后代入P求得v值即可.【解答】解:∵在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,∴设P=∵当V=200时,p=50,∴k=VP=200×50=10000,∴P=当P=25时,得v==400故答案为:400.【点评】本题考查了反比例函数的应用,解题的关键是利用待定系数法求得反比例函数的解析式.12.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有1200条鱼.【考点】用样本估计总体.【分析】先打捞200条鱼,发现其中带标记的鱼有5条,求出有标记的鱼占的百分比,再根据共有30条鱼做上标记,即可得出答案.【解答】解:∵打捞200条鱼,发现其中带标记的鱼有5条,∴有标记的鱼占×100%=2.5%,∵共有30条鱼做上标记,∴鱼塘中估计有30÷2.5%=1200(条).故答案为:1200.【点评】此题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想.13.在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=6.【考点】解直角三角形;等腰三角形的性质.【分析】根据题意做出图形,过点A作AD⊥BC于D,根据AB=AC=5,sin∠ABC=0.8,可求出AD的长度,然后根据勾股定理求出BD的长度,继而可求出BC的长度.【解答】解:过点A作AD⊥BC于D,如图∵AB=AC,∴BD=CD,在Rt△ABD中,∵sin∠ABC==0.8,∴AD=5×0.8=4,则BD==3,∴BC=BD+CD=3+3=6.故答案为:6.【点评】本题考查了解直角三角形的知识,难度一般,解答本题的关键是构造直角三角形并解直角三角形以及勾股定理的应用.14.如图,在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,则梯形ABCD的周长为30.【考点】等腰梯形的性质.【分析】首先过点A作AE∥BC于点E,由在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,可得四边形ADCE是平行四边形,△ABE是等边三角形,继而求得AB=AD=CD=BE=CE=6.继而求得答案.【解答】解:过点A作AE∥BC于点E,∵在梯形ABCD中,AD∥BC,∴四边形ADCE是平行四边形,∴AD=EC,AE=CD,∵AB=CD,∴AB=AE,∵∠ABC=60°,∴△ABE是等边三角形,∴AB=BE,∵AB=AD,∴AD=AB=CD=BE=CE=BC=×12=6,∴梯形ABCD的周长为:AB+AD+CD+BC=30.故答案为:30.【点评】此题考查了等腰梯形的性质、等边三角形的判定与性质以及平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.15.如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O 恰好落在上的点D处,折痕交OA于点C,则的长为5π.【考点】弧长的计算;翻折变换(折叠问题).【分析】如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°﹣∠DOB=50°;然后由弧长公式弧长的公式l=来求的长.【解答】解:如图,连接OD.根据折叠的性质知,OB=DB.又∵OD=OB,∴OD=OB=DB,即△ODB是等边三角形,∴∠DOB=60°.∵∠AOB=110°,∴∠AOD=∠AOB﹣∠DOB=50°,∴的长为=5π.故答案是:5π.【点评】本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB 是等边三角形是解答此题的关键之处.16.已知关于x的方程的解是负数,则n的取值范围为n<2且n≠.【考点】分式方程的解.【分析】求出分式方程的解x=n﹣2,得出n﹣2<0,求出n的范围,根据分式方程得出n﹣2≠﹣,求出n,即可得出答案.【解答】解:,解方程得:x=n﹣2,∵关于x的方程的解是负数,∴n﹣2<0,解得:n<2,又∵原方程有意义的条件为:x≠﹣,∴n﹣2≠﹣,即n≠.故答案为:n<2且n≠.【点评】本题考查了分式方程的解和解一元一次不等式,关键是得出n﹣2<0和n﹣2≠﹣,注意题目中的隐含条件2x+1≠0,不要忽略.17.矩形的两邻边长的差为2,对角线长为4,则矩形的面积为6.【考点】勾股定理;矩形的性质.【分析】设矩形一条边长为x,则另一条边长为x﹣2,然后根据勾股定理列出方程式求出x的值,继而可求出矩形的面积.【解答】解:设矩形一条边长为x,则另一条边长为x﹣2,由勾股定理得,x2+(x﹣2)2=42,整理得,x2﹣2x﹣6=0,解得:x=1+或x=1﹣(不合题意,舍去),另一边为:﹣1,则矩形的面积为:(1+)(﹣1)=6.故答案为:6.【点评】本题考查了勾股定理及矩形的性质,难度适中,解答本题的关键是根据勾股定理列出等式求处矩形的边长,要求同学们掌握矩形面积的求法.18.如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN=.【考点】垂径定理;含30度角的直角三角形;勾股定理.【专题】压轴题.【分析】延长ME交⊙O于G,根据圆的中心对称性可得FN=EG,过点O作OH⊥MG于H,连接MO,根据圆的直径求出OE,OM,再解直角三角形求出OH,然后利用勾股定理列式求出MH,再根据垂径定理可得MG=2MH,从而得解.【解答】解:如图,延长ME交⊙O于G,∵E、F为AB的三等分点,∠MEB=∠NFB=60°,∴FN=EG,过点O作OH⊥MG于H,连接MO,∵⊙O的直径AB=6,∴OE=OA﹣AE=×6﹣×6=3﹣2=1,OM=×6=3,∵∠MEB=60°,∴OH=OE•sin60°=1×=,在Rt△MOH中,MH===,根据垂径定理,MG=2MH=2×=,即EM+FN=.故答案为:.【点评】本题考查了垂径定理,勾股定理的应用,以及解直角三角形,作辅助线并根据圆的中心对称性得到FN=EG是解题的关键,也是本题的难点.三、解答题19.(1)计算:;(2)先化简,再求值:(x+1)(2x﹣1)﹣(x﹣3)2,其中x=﹣2.【考点】整式的混合运算—化简求值;实数的运算;负整数指数幂;特殊角的三角函数值.【分析】(1)根据负整数指数幂的性质和特殊角的三角函数值代入计算即可;(2)利用整式的乘法和完全平方公式展开化简后代入求值即可.【解答】解(1)原式=4﹣2×+2=4+;(2)原式=2x2﹣x+2x﹣1﹣x2+6x﹣9=x2+7x﹣10,当x=﹣2时,原式=4﹣14﹣10=﹣20.【点评】本题考查了实数的运算、负整数指数幂及特殊角的三角函数值,属于基础题,应重点掌握.20.已知关于x、y的方程组的解满足x>0,y>0,求实数a的取值范围.【考点】解二元一次方程组;解一元一次不等式组.【专题】计算题.【分析】先利用加减消元法求出x、y,然后列出不等式组,再求出两个不等式的解集,然后求公共部分即可.【解答】解:,①×3得,15x+6y=33a+54③,②×2得,4x﹣6y=24a﹣16④,③+④得,19x=57a+38,解得x=3a+2,把x=3a+2代入①得,5(3a+2)+2y=11a+18,解得y=﹣2a+4,所以,方程组的解是,∵x>0,y>0,∴,由①得,a>﹣,由②得,a<2,所以,a的取值范围是﹣<a<2.【点评】本题考查的是二元一次方程组的解法,一元一次不等式组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).21.端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得20元购物券,最多可得80元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图即可求得该顾客最少可得20元购物券,最多可得80元购物券;(2)由(1)中的树状图即可求得所有等可能的结果与该顾客所获购物券金额不低于50元的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则该顾客最少可得20元购物券,最多可得80元购物券;故答案为:20,80;(2)∵共有16种等可能的结果,该顾客所获购物券金额不低于50元的有10种情况,∴该顾客所获购物券金额不低于50元的概率为: =.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.22.为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率甲组 6.7 6 3.41 90% 20%乙组7.17.5 1.69 80% 10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是甲组的学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.【考点】条形统计图;加权平均数;中位数;方差.【专题】计算题.【分析】(1)将甲组成绩按照从小到大的顺序排列,找出第5、6个成绩,求出平均数即为甲组的中位数;找出乙组成绩,求出乙组的平均分,填表即可;(2)观察表格,成绩为7分处于中游略偏上,应为甲组的学生;(3)乙组的平均分高于甲组,中位数高于甲组,方差小于甲组,所以乙组成绩好于甲组.【解答】解:(1)甲组的成绩为:3,6,6,6,6,6,7,8,9,10,甲组中位数为6,乙组成绩为5,5,6,7,7,8,8,8,8,9,平均分为(5+5+6+7+7+8+8+8+8+9)=7.1(分),填表如下:组别平均分中位数方差合格率优秀率甲组 6.7 6 3.41 90% 20%乙组7.1 7.5 1.69 80% 10%(2)观察上表可知,小明是甲组的学生;(3)乙组的平均分,中位数高于甲组,方差小于甲组,故乙组成绩好于甲组.故答案为:(1)6;7.1;(2)甲【点评】此题考查了条形统计图,加权平均数,中位数,以及方差,弄清题意是解本题的关键.23.如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连接AE.(1)求证:AB⊥AE;(2)若BC2=AD•AB,求证:四边形ADCE为正方形.【考点】旋转的性质;全等三角形的判定与性质;等腰直角三角形;正方形的判定;相似三角形的判定与性质.【专题】证明题.【分析】(1)根据旋转的性质得到∠DCE=90°,CD=CE,利用等角的余角相等得∠BCD=∠ACE,然后根据“SAS”可判断△BCD≌△ACE,则∠B=∠CAE=45°,所以∠DAE=90°,即可得到结论;(2)由于BC=AC,则AC2=AD•AB,根据相似三角形的判定方法得到△DAC∽△CAB,则∠CDA=∠BCA=90°,可判断四边形ADCE为矩形,利用CD=CE可判断四边形ADCE为正方形.【解答】证明:(1)∵∠ACB=90°,AC=BC,∴∠B=∠BAC=45°,∵线段CD绕点C顺时针旋转90°至CE位置,∴∠DCE=90°,CD=CE,∵∠ACB=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,即∠BCD=∠ACE,在△BCD和△ACE中,∴△BCD≌△ACE,∴∠B=∠CAE=45°,∴∠BAE=45°+45°=90°,∴AB⊥AE;(2)∵BC2=AD•AB,而BC=AC,∴AC2=AD•AB,∵∠DAC=∠CAB,∴△DAC∽△CAB,∴∠CDA=∠BCA=90°,而∠DAE=90°,∠DCE=90°,∴四边形ADCE为矩形,∵CD=CE,∴四边形ADCE为正方形.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等腰直角三角形的性质、三角形全等、相似的判定与性质以及正方形的判定.24.某校九(1)、九(2)两班的班长交流了为四川雅安地震灾区捐款的情况:(Ⅰ)九(1)班班长说:“我们班捐款总数为1200元,我们班人数比你们班多8人.”(Ⅱ)九(2)班班长说:“我们班捐款总数也为1200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.【考点】分式方程的应用.【分析】首先设九(1)班的人均捐款数为x元,则九(2)班的人均捐款数为(1+20%)x元,然后根据九(1)班人数比九(2)班多8人,即可得方程:﹣=8,解此方程即可求得答案.【解答】解:设九(1)班的人均捐款数为x元,则九(2)班的人均捐款数为(1+20%)x元,则:﹣=8,解得:x=25,经检验,x=25是原分式方程的解.九(2)班的人均捐款数为:(1+20%)x=30(元)答:九(1)班人均捐款为25元,九(2)班人均捐款为30元.【点评】本题考查分式方程的应用.注意分析题意,找到合适的等量关系是解决问题的关键.25.如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.(1)求证:AB=AC;(2)若AD=4,cos∠ABF=,求DE的长.【考点】切线的性质;圆周角定理;解直角三角形.【分析】(1)由BF是⊙O的切线,利用弦切角定理,可得∠1=∠C,又由∠ABF=∠ABC,可证得∠2=∠C,即可得AB=AC;(2)首先连接BD,在Rt△ABD中,解直角三角形求出AB的长度;然后在Rt△ABE中,解直角三角形求出AE的长度;最后利用DE=AD﹣AE求得结果.【解答】(1)证明:∵BF是⊙O的切线,∴∠1=∠C,∵∠ABF=∠ABC,即∠1=∠2,∴∠2=∠C,∴AB=AC;(2)解:如图,连接BD,在Rt△ADB中,∠BAD=90°,∵cos∠ADB=,∴BD====5,。

襄阳市谷城县中考数学模拟试卷(2)含答案解析

襄阳市谷城县中考数学模拟试卷(2)含答案解析

湖北省襄阳市谷城县中考数学模拟试卷(2)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各数中,﹣3的倒数是()A.3 B.C.D.﹣32.(3分)下列运算正确的是()A.a2+a3=a5 B.(a+2b)2=a2+2ab+b2C.a6÷a3=a2D.(﹣2a3)2=4a63.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④4.(3分)不等式组的解集在数轴上表示为()A.B.C.D.5.(3分)下列各数中最小的数是()A.B.﹣1 C.D.06.(3分)如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是()A.B.C.D.7.(3分)5月31日,我国飞人苏炳添在美国尤金举行的国际田联钻石联赛100米男子比赛中,获得好成绩,成为历史上首位突破10秒大关的黄种人,如表是苏炳添近五次大赛参赛情况:则苏炳添这五次比赛成绩的众数和中位数分别为()比赛日期﹣8﹣4﹣5﹣21﹣9﹣28﹣5﹣20﹣5﹣31比赛地点英国伦敦中国北京韩国仁川中国北京美国尤金成绩(秒)10.1910.0610.1010.069.99A.10.06秒,10.06秒B.10.10秒,10.06秒C.10.06秒,10.10秒D.10.08秒,10.06秒8.(3分)如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为()A.20°B.25°C.30°D.35°9.(3分)已知AC⊥BC于C,BC=a,CA=b,AB=c,下列图形中⊙O与△ABC的某两条边或三边所在的直线相切,则⊙O的半径为的是()A.B.C.D.10.(3分)在同一平面坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.(3分)现在网购越来越多地成为人们的一种消费方式,刚刚过去的的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为.12.(3分)在﹣2、1、﹣3这三个数中,任选两个数的积作为k的值,使反比例函数y=的图象在第一、三象限的概率是.13.(3分)若干个工人装卸一批货物,每个工人的装卸速度相同,如果这些工人同时工作,则需10小时装卸完毕;现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸完毕,且最后参加的一个人装卸的时间是第一个人的,则按改变的方式装卸,自始至终共需时间小时.14.(3分)如图,从热气球上看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为90m,则这栋楼高为(精确到0.1 m).15.(3分)四边形ABCD是正方形,点E是直线AB上的一动点,且△AEC是以AC为腰的等腰三角形,则∠BCE的度数为.16.(3分)如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=2,O、H分别为边AB、AC的中点,将△ABC绕点B顺时针旋转120°到△A1BC1的位置,则整个旋转过程中线段OH所扫过部分的面积(即阴影部分面积)为.三.解答题(共9小题,满分59分)17.(6分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.18.(6分)如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC 边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC 边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P,Q同时出发,问几秒后,△PBQ的面积为1?19.(6分)已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数y=交于一象限内的P(,n),Q(4,m)两点,且tan∠BOP=.(1)求双曲线和直线AB的函数表达式;(2)求△OPQ的面积;(3)当kx+b>时,请根据图象直接写出x的取值范围.20.(6分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(l)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数.(3)请估计全校共征集作品的什数.(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.21.(7分)如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.(1)若EF=2,求△AEF的面积;(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.22.(8分)如图,在△ABC中,AB=8,BC=5,AC=7,点D在△ABC的外接圆⊙O上,BC=BD,CD交AB于点E.(1)求证:△ABC∽△CBE.(2)求BE的长.23.(10分)重庆市的重大惠民工程﹣﹣公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m2)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:z(元/m2)5052545658…x(年)12345…(1)求出z与x的函数关系式;(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值.(参考数据:,,)24.(10分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E 在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE ,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.25.已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.湖北省襄阳市谷城县中考数学模拟试卷(2)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:∵相乘得1的两个数互为倒数,且﹣3×﹣=1,∴﹣3的倒数是﹣.故选:B.2.【解答】解:∵a2+a3≠a5,∴选项A不正确;∵(a+2b)2=a2+4ab+b2,∴选项B不正确;∵a6÷a3=a3,∴选项C不正确;∵(﹣2a3)2=4a6,∴选项D正确.故选:D.3.【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.4.【解答】解:,由①得,x>1,由②得,x≥2,故此不等式组得解集为:x≥2.在数轴上表示为:.故选:A.5.【解答】解:根据实数比较大小的方法,可得﹣<﹣<﹣1<0,∴各数中最小的数是:﹣.故选:C.6.【解答】解:从左面看易得上面一层左边有1个正方形,下面一层有2个正方形.故选:A.7.【解答】解:在这一组数据中10.06是出现次数最多的,故众数是10.06;而将这组数据从小到大的顺序排列为:9.99,10.06,10.06,10.10,10.19,处于中间位置的那个数是10.06,那么由中位数的定义可知,这组数据的中位数是10.06.故选:A.8.【解答】解:∵AD∥BC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC﹣∠ADE=30°.故选:C.9.【解答】解:设⊙O的半径为r,A、∵⊙O是△ABC内切圆,=(a+b+c)•r=ab,∴S△ABC∴r=;B、如图,连接OD,则OD=OC=r,OA=b﹣r,∵AD是⊙O的切线,∴OD⊥AB,即∠AOD=∠C=90°,∴△ADO∽△ACB,∴OA:AB=OD:BC,即(b﹣r):c=r:a,解得:r=;C、连接OE,OD,∵AC与BC是⊙O的切线,∴OE⊥BC,OD⊥AC,∴∠OEB=∠ODC=∠C=90°,∴四边形ODCE是矩形,∵OD=OE,∴矩形ODCE是正方形,∴EC=OD=r,OE∥AC,∴OE:AC=BE:BC,∴r:b=(a﹣r):a,∴r=;D、解:设AC、BA、BC与⊙O的切点分别为D、F、E;连接OD、OE;∵AC、BE是⊙O的切线,∴∠ODC=∠OEC=∠DCE=90°;∴四边形ODCE是矩形;∵OD=OE,∴矩形ODCE是正方形;即OE=OD=CD=r,则AD=AF=b﹣r;连接OB,OF,由勾股定理得:BF2=OB2﹣OF2,BE2=OB2﹣OE2,∵OB=OB,OF=OE,∴BF=BE,则BA+AF=BC+CE,c+b﹣r=a+r,即r=.故选:C.10.【解答】解:解法一:逐项分析A、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,与图象不符,故A选项错误;B、由函数y=mx+m的图象可知m<0,对称轴为x===<0,则对称轴应在y轴左侧,与图象不符,故B选项错误;C、由函数y=mx+m的图象可知m>0,即函数y=﹣mx2+2x+2开口方向朝下,与图象不符,故C选项错误;D、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x===<0,则对称轴应在y轴左侧,与图象相符,故D选项正确;解法二:系统分析当二次函数开口向下时,﹣m<0,m>0,一次函数图象过一、二、三象限.当二次函数开口向上时,﹣m>0,m<0,对称轴x=<0,这时二次函数图象的对称轴在y轴左侧,一次函数图象过二、三、四象限.故选:D.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:67 000 000 000=6.7×1010,故答案为:6.7×1010.12.【解答】解:画树状图得:∵共有6种等可能的结果,任选两个数的积作为k的值,使反比例函数y=的图象在第一、三象限的有2种情况,∴任选两个数的积作为k的值,使反比例函数y=的图象在第一、三象限的概率是:=.故答案为:.13.【解答】解:设装卸工作需x小时完成,则第一人干了x小时,最后一个人干了小时,两人共干活x+小时,平均每人干活小时,由题意知,第二人与倒数第二人,第三人与倒数第三人,…,平均每人干活的时间也是小时,根据题设,得=10,解得x=16(小时);设共有y人参加装卸工作,由于每隔t小时增加一人,因此最后一人比第一人少干(y﹣1)t小时,按题意,得16﹣(y﹣1)t=16×,即(y﹣1)t=12,解此不定方程得,,,,,,即参加的人数y=2或3或4或5或7或13.故答案为:16.14.【解答】解:过点A作AD⊥BC,垂足为D.在Rt△ADC中,有CD=ADtan60°=AD=90,在Rt△ABD中,有BD=ADtan30°=AD=30.故这栋楼高BC为90+30=120≈207.8(m).故答案为:207.8m.15.【解答】解:当AC=AE时,以A为圆心,AC为半径作圆交直线AB于点E,当E在BA的延长线时,∴∠EAC=135°,∴∠BEC=22.5°,∴∠BCE=∠BCA+∠BEC=67.5°当E在AB的延长线时,∴∠EAC=45°,∴∠ACE=67.5°∴∠BCE=∠ACE﹣∠ACB=22.5°当AC=CE时,当以C为圆心AC为半径作圆交直线AB于点E ∴∠EAC=∠CEA=45°,∴∠BCE=45°,故答案为:67.5°或45°或22.5°16.【解答】解:连接BH、BH1,∵∠ACB=90°,∠CAB=30°,BC=2,∴AB=4,∴AC==2,在Rt△BHC中,CH=AC=,BC=2,根据勾股定理可得:BH=;∴S扫=S扇形BHH1﹣S扇形BOO1==π.三.解答题(共9小题,满分59分)17.【解答】解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y ﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z ﹣x+z+x﹣2y)(z﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴x=y=z.∴==1.18.【解答】解:(1)设经过x秒,使△PBQ的面积等于8cm2,依题意有(6﹣x)•2x=8,解得x1=2,x2=4,经检验,x1,x2均符合题意.故经过2秒或4秒,△PBQ的面积等于8cm2;(2)设经过y秒,线段PQ能否将△ABC分成面积相等的两部分,依题意有△ABC的面积=×6×8=24,(6﹣y)•2y=12,y2﹣6y+12=0,∵△=b2﹣4ac=36﹣4×12=﹣12<0,∴此方程无实数根,∴线段PQ不能否将△ABC分成面积相等的两部分;(3)①点P在线段AB上,点Q在线段CB上(0<x<4),设经过m秒,依题意有(6﹣m)(8﹣2m)=1,m2﹣10m+23=0,解得m1=5+,m2=5﹣,经检验,m1=5+不符合题意,舍去,∴m=5﹣;②点P在线段AB上,点Q在射线CB上(4<x<6),设经过n秒,依题意有(6﹣n)(2n﹣8)=1,m2﹣10n+25=0,解得n1=n2=5,经检验,n=5符合题意.③点P在射线AB上,点Q在射线CB上(x>6),设经过k秒,依题意有(k﹣6)(2k﹣8)=1,k2﹣10k+23=0,解得k1=5+,k2=5﹣,经检验,k1=5﹣不符合题意,舍去,∴k=5+;综上所述,经过(5﹣)秒,5秒,(5+)秒后,△PBQ的面积为1.19.【解答】解:(1)过P 作PC ⊥y 轴于C , ∵P (,n ), ∴OC=n ,PC=, ∵tan ∠BOP=, ∴n=4, ∴P (,4),设反比例函数的解析式为y=, ∴a=4,∴反比例函数的解析式为y=, ∴Q (4,),把P (,4),Q (4,)代入y=kx +b 中得,,∴,∴直线的函数表达式为y=﹣x +;(2)过Q 作QD ⊥y 轴于D ,则S △POQ =S 四边形PCDQ =×(+4)×(4﹣)=;(3)由图象知, 当﹣x +>时,或x <020.【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为:抽样调查.(2)所调查的4个班征集到的作品数为:6÷=24件,C班有24﹣(4+6+4)=10件,补全条形图如图所示,扇形统计图中C班作品数量所对应的圆心角度数360°×=150°;故答案为:150°;(3)∵平均每个班=6件,∴估计全校共征集作品6×30=180件.(4)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好选取的两名学生性别相同的概率为=.21.【解答】(1)解:∵四边形ABCD是平行四边形,∴∠D=∠B,∵BF=DE,∠DCE=∠BCF,∴△CDE≌△CBF(AAS),∴CD=CB,∴▱ABCD是菱形,∴AD=AB,∴AD﹣DE=AB﹣BF,即AE=AF,∵∠A=60°,∴△AEF是等边三角形,∵EF=2,=×22=;∴S△AEF(2)证明:如图2,延长DP交BC于N,连结FN,∵四边形ABCD是菱形,∴AD∥BC,∴∠EDP=∠PNC,∠DEP=∠PCN,∵点P是CE的中点,∴CP=EP.∴△CPN≌△EPD,∴DE=CN,PD=PN.又∵AD=BC.∴AD﹣DE=BC﹣CN,即AE=BN.∵△AEF是等边三角形,∴∠AEF=60°,EF=AE.∴∠DEF=120°,EF=BN.∵AD∥BC,∴∠A+∠ABC=180°,又∵∠A=60°,∴∠ABC=120°,∴∠ABC=∠DEF.又∵DE=BF,BN=EF.∴△FBN≌△DEF,∴DF=NF,∵PD=PN,∴PF⊥PD.22.【解答】(1)证明:∵BC=BD,∴∠BCE=∠BDC.∵∠BDC=∠BAC,∴∠BCE=∠BAC.∵∠CBE=∠ABC,∴△ABC∽△CBE.(2)解:∵△ABC∽△CBE,∴=,即=,∴BE=.23.【解答】解:(1)由题意,z与x是一次函数关系,设z=kx+b(k≠0)把(1,50),(2,52)代入,得∴,∴z=2x+48.(2)当1≤x≤6时,设收取的租金为W1百万元,则W1=()•(2x+48)=∵对称轴∴当x=3时,W1最大=243(百万元)当7≤x≤10时,设收取的租金为W2百万元,则W2=()•(2x+48)=∵对称轴∴当x=7时,W2最大=(百万元)∵243>∴第3年收取的租金最多,最多为243百万元.(3)当x=6时,y=百万平方米=400万平方米当x=10时,y=百万平方米=350万平方米∵第6年可解决20万人住房问题,∴人均住房为:400÷20=20平方米.由题意:20×(1﹣1.35a%)×20×(1+a%)=350,设a%=m,化简为:54m2+14m﹣5=0,△=142﹣4×54×(﹣5)=1276,∴∵,∴m1=0.2,(不符题意,舍去),∴a%=0.2,∴a=20答:a的值为20.24.【解答】解:(1)∵AD=CD.∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB,∵∠ECA=∠ECA,∴△CEF∽△CAE,∴,在Rt△CDE中,根据勾股定理得,CE=,∵CA=2,∴,∴CF=;(2)∵∠CFE=∠BFA,∠CEB=∠CAB,∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,∵∠ABF=180°﹣∠CAB﹣∠AFB,∴∠ECA=∠ABF,∵∠CAE=∠ABF=45°,∴△CEA∽△BFA,∴y====(0<x<2),(3)由(2)知,△CEA∽△BFA,∴,∴,∴AB=x+2,∵∠ABE的正切值是,∴tan∠ABE===,∴x=,∴AB=x+2=.25.【解答】解:(1)∵抛物线y=ax2+bx﹣2(a≠0)过点A,B,∴,解得:,∴抛物线的解析式为:y=x2﹣x﹣2;∵y=x2﹣x﹣2=(x﹣)2﹣,∴C(,﹣).(2)如图1,以AB为直径作圆M,则抛物线在圆内的部分,能使∠APB为钝角,∴M(,0),⊙M的半径=.∵P′是抛物线与y轴的交点,∴OP′=2,∴MP′==,∴P′在⊙M上,∴P′的对称点(3,﹣2),∴当﹣1<m<0或3<m<4时,∠APB为钝角.(3)方法一:存在;抛物线向左或向右平移,因为AB、P′C′是定值,所以A、B、P′、C′所构成的多边形的周长最短,只要AC′+BP′最小;第一种情况:抛物线向右平移,AC′+BP′>AC+BP,第二种情况:向左平移,如图2所示,由(2)可知P(3,﹣2),又∵C(,﹣)∴C'(﹣t,﹣),P'(3﹣t,﹣2),∵AB=5,∴P″(﹣2﹣t,﹣2),要使AC′+BP′最短,只要AC′+AP″最短即可,点C′关于x轴的对称点C″(﹣t,),设直线P″C″的解析式为:y=kx+b,,解得∴直线y=x+t+,当P″、A、C″在一条直线上时,周长最小,∴﹣+t+=0∴t=.故将抛物线向左平移个单位连接A、B、P′、C′所构成的多边形的周长最短.方法二:∵AB、P′C′是定值,∴A、B、P′、C′所构成的四边形的周长最短,只需AC′+BP′最小,①若抛物线向左平移,设平移t个单位,∴C′(﹣t,﹣),P″(﹣2﹣t,﹣2),∵四边形P″ABP′为平行四边形,∴AP″=BP′,AC′+BP′最短,即AC′+AP″最短,C′关于x轴的对称点为C″(﹣t,),C″,A,P″三点共线时,AC′+AP″最短,K AC′=K AP″,,∴t=.②若抛物线向右平移,同理可得t=﹣,∴将抛物线向左平移个单位时,A、B、P′、C′所构成的多边形周长最短.。

(某某市县区)初中九年级数学第二次中考模拟考试(二模)试题卷(含答案详解)

(某某市县区)初中九年级数学第二次中考模拟考试(二模)试题卷(含答案详解)

(某某市县区)初中九年级数学第二次中考模拟考试(二模)试题卷(含答案详解)满分150分时间:120分钟一、单选题。

(每小题4分,共40分)1.-12023的绝对值是()A.-12023 B.12023C.﹣2023D.20232.下列立体图形中,俯视图和主视图不同的是()3.“同步卫星在赤道上空大约36 000 000米处,将36 000 000”用科学记数法表示为()A.36×106B.0.36×108C.3.6×106D.3.6×1074.下面四幅图案,其中既是轴对称图形又是中心对称图形的是()5.点O、A、B、C在数轴上的位置如图所示,O为原点,AC=1,OA=OB,若点C所表示的数为a,则点B所表示的数为()A.﹣(a+1)B.﹣(a-1)C.a+1D.a-1(第5题图)(第6题图)6.某射击运动员在训练中射击了10次,成绩如图所示,下列结论不正确的是()A.众数为8B.中位数为8C.平均数是8.2D.方差是1.27.计算xa+1•a 2-12x的结果正确的是( )A.a -12B.a+12C.a -12xD.a+12a+28.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b >kx+6的解集是( )A.x >3B.x >5C.x <3D.无法确定(第8题图) (第9题图)9.如图,在△ABC 中,AC=BC=8,∠C=90°,以点A 为圆心,AC 长为半径做圆弧交AB 于点E ,连接CE ,再分别以C ,E 为圆心,大于12CE 的长度为半径作弧,两弧交于点P ,作射线AP 交BC 于点D ,连接DE ,则下列说法错误的是( )A.DE=DCB.△BDE ∽△BACC.AB=AC+DED.BD=4√210.对于一个函数:当自变量x 取a 时,其函数值y 也等于a ,我们称a 为这个函数的不动点。

若二次函数y=x 2+2x+c 有两个不相等且都小于1的不动点,则c 的取值范围是( ) A.c <﹣3 B.﹣3<x <﹣2C.﹣2<c <14D.c >﹣14二.填空题。

2022年中考第二次模拟考试《数学卷》含答案解析

2022年中考第二次模拟考试《数学卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________ 一.选择题(本题共10个小题,每题3分,满分30分)1.12-的相反数是( )A. B. 2 C.12- D. 122. 下列所给图形是中心对称图形但不是轴对称图形的是( )A. B. C. D.3. 四个选项中四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体其中有三个几何体的某一种视图都是同一种几何图形,则另外一个几何体是( )A. B. C. D.4. 下列计算正确的是()A. 2a2+4a2=6a4B. (a+1)2=a2+1C. (a2)3=a5D. x7÷x5=x25. 一元二次方程x2+2x+2=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根6. 一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球.则下列事件是必然事件的是( )A. 摸出的4个球中至少有一个球是白球B. 摸出的4个球中至少有一个球是黑球C. 摸出的4个球中至少有两个球是黑球D. 摸出的4个球中至少有两个球7. 有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有A. 4个B. 3个C. 2个D. 1个8. 在”大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( )A. 众数是90B. 中位数是90C. 平均数是90D. 极差是159. 若顺次连接四边形ABCD 各边的中点所得四边形是菱形.则四边形ABCD 一定是 ( )A. 菱形B. 对角线互相垂直的四边形C. 矩形D. 对角线相等的四边形10. 如图,矩形ABCD 中,AB=3,BC=5,点P 是BC 边上的一个动点(点P 与点B ,C 都不重合),现将△PCD 沿直线PD 折叠,使点C 落到点F 处;过点P 作∠BPF 的角平分线交AB 于点E ,设BP=x ,BE=y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A. B. C.D.二.填空题(本题共8个小题,每题3分,满分24分)11. 某小区改进了用水设施,在5年内小区的居民累计节水39400吨,将39400用科学计数法表示应为________.12. 一个盒子里有完全相同的三个小球,球上分别标有数字,,,随机摸出一个小球(不放回),其数字为,再随机摸出另一个小球其数字记为,则满足关于的方程20x px q ++=有实数根的概率是___________. 13. 已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 .14. 如图,△ABC 内接于圆,点D 是AC 上一点,将∠A 沿BD 翻折,点A 正好落在圆上点E 处.若∠C=50°,则∠ABE 的度数为_______.15. 关于x 的方程22x m x +-=1的解是正数,则m 的取值范围是________ . 16. 如图,在▱ABCD 中,AD=2,AB=4,∠A=30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE ,则阴影部分的面积是 ▲ (结果保留π).17. 如图,将一张边长为6cm 的正方形纸片按虚线裁剪后,恰好围成底面是正六边形的棱柱,则这个六棱柱的侧面积为______________cm 2.18. 如图在坐标系中放置一菱形OABC ,已知∠ABC=60°,OA=1.先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2016次,点B 的落点依次为B 1,B 2,B 3,…,则B 2016的坐标为_________.三.解答题(本题共2个小题,第19题10分,第20题12分,满分22分)19. 先化简,再求值:21(1)11x x x ÷+--,其中21x =. 20. 在某飞机场东西方向的地面 l 上有一长为 1km 的飞机跑道 MN (如图),在跑道 MN 的正西端 14.5 千米处有一观察站 A .某时刻测得一架匀速直线降落的飞机位于点 A 的北偏西30°,且与点 A 相距 15 千米的 B 处;经过 1 分钟,又测得该飞机位于点 A 的北偏东 60°,且与点 A 相距 3千米的 C 处.(1)该飞机航行速度是多少千米/小时?(结果保留根号)(2)如果该飞机不改变航向继续航行,那么飞机能否降落在跑道 MN 之间?请说明理由.四.(本题共2个小题,每题12分,满分24分)21. 九年七班组织学生参加汉字听写比赛,比赛分为甲乙丙三组进行,下面两幅统计图反映了学生参加比赛报名情况,请你根据图中信息回答下列问题:(1)该班报名参加本次活动的总人数为人.(2)该班报名参加丙组的人数为人,并补全频数分布直方图;(3)比赛后选取男女各2名同学进行培训,若从中选2名参加校赛,试用列表或画树状图的方法,求恰好选中一男一女的概率.22. 如图,△ABC是直角三角形,∠ACB=90°(1)利用尺规作∠ABC 的平分线,交AC 于点O,再以O 为圆心,OC 的长为半径作⊙O(保留作图痕迹,不写作法);(2)在你所作的图中,①判断AB 与⊙O 的位置关系,并证明你的结论;②若AC=12,tan∠OBC=23,求⊙O 的半径.五.(满分12分)23. 如图,△ABC中,BC=AC,∠ACB=90°,将△ABC绕着点C顺时针旋转α(0≤α≤90°),得到△EFC,EF 与AB、AC相交于点D、H,FC与AB相交于点G、AC相交于点D、H,FC与AB相较于点G.(1)求证:△GBC≌△HEC;(2)在旋转过程中,当α是多少度时四边形BCED可以是某种特殊的平行四边形?并说明理由.六.(满分12分)24. 某种商品的进价为40元/件,以获利不低于25%的价格销售时,商品的销售单价y(元/件)与销售数量x(件)(x是正整数)之间的关系如下表:x(件)… 5 10 15 20 …y(元/件)…75 70 65 60 …(1)由题意知商品的最低销售单价是元,当销售单价不低于最低销售单价时,y是x的一次函数.求出y 与x的函数关系式及x的取值范围;(2)在(1)的条件下,当销售单价为多少元时,所获销售利润最大,最大利润是多少元?七.解答题(满分12分)25. 如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD 的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.八.解答题(满分14分)26. 如图,二次函数2(0)y ax bx c a =++≠图象与x 轴交于A (3,0),B (﹣1,0)两点,与y 轴相交于点C (0,﹣4).(1)求该二次函数的解析;(2)若点P 、Q 同时从A 点出发,以每秒1个单位长度速度分别沿AB 、AC 边运动,其中一点到达端点时,另一点也随之停止运动.①当点P 运动到B 点时,在x 轴上是否存在点E ,使得以A 、E 、Q 为顶点三角形为等腰三角形?若存在,请求出E 点的坐标;若不存在,请说明理由.②当P 、Q 运动到t 秒时,△APQ 沿PQ 翻折,点A 恰好落在抛物线上D 点处,请直接写出t 的值及D 点的坐标.答案与解析一.选择题(本题共10个小题,每题3分,满分30分)1.12-的相反数是( )A. B. 2 C.12- D. 12【答案】D 【解析】【详解】因为-12+12=0,所以-12的相反数是12.故选D.2. 下列所给图形是中心对称图形但不是轴对称图形的是( )A. B. C. D.【答案】D【解析】A. 此图形不是中心对称图形,不是轴对称图形,故A选项错误;B. 此图形是中心对称图形,也是轴对称图形,故B选项错误;C. 此图形不是中心对称图形,是轴对称图形,故D选项错误.D. 此图形是中心对称图形,不是轴对称图形,故C选项正确;故选D.3. 四个选项中四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体其中有三个几何体的某一种视图都是同一种几何图形,则另外一个几何体是( )A. B. C. D.【答案】C【解析】【分析】根据三视图的基本知识,分析各个几何体的三视图然后可解答.长方体、圆柱体和三棱柱的主视图都是矩形,而球的视图都是圆形.【详解】长方体、圆柱体、三棱体为柱体,它们的主视图都是矩形;而球的三种视图都是圆形.故选C.【点睛】本题考查简单几何体的三视图.4. 下列计算正确的是()A. 2a2+4a2=6a4B. (a+1)2=a2+1C. (a2)3=a5D. x7÷x5=x2【答案】D【解析】【分析】根据合并同类项的法则、完全平方差公式、同底数幂的乘除法则,分别计算四个选项进行判断即可得到答案.【详解】A. 2a2+4a2=6a2,故A错误;B. (a+1)2=a2+2a+1,故B错误;C. (a2)3=a2×3= a6,故C错误;D. x7÷x5=x2,故D正确;故选D.【点睛】本题考查了合并同类项的法则、完全平方差公式、同底数幂的乘除法则,掌握各部分的运算法则、灵活运用所学知识是解题的关键关键.5. 一元二次方程x2+2x+2=0根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根【答案】D【解析】【分析】求出b2-4ac的值,根据b2-4ac的正负即可得出答案.【详解】x2+2x+2=0,这里a=1,b=2,c=2,∵b2−4ac=22−4×1×2=−4<0,∴方程无实数根,故选D.【点睛】此题考查根的判别式,掌握运算法则是解题关键6. 一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球.则下列事件是必然事件的是( )A. 摸出的4个球中至少有一个球是白球B. 摸出的4个球中至少有一个球是黑球C. 摸出的4个球中至少有两个球是黑球D. 摸出的4个球中至少有两个球【答案】B【解析】试题分析:必然事件就是一定发生的事件,因此,A、是随机事件,故A选项错误;B、是必然事件,故B选项正确;C、是随机事件,故C选项错误;D、是随机事件,故D选项错误.故选B.考点:必然事件.7. 有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有A. 4个B. 3个C. 2个D. 1个【答案】B【解析】分析:根据圆中的有关概念、定理进行分析判断.解答:解:①经过圆心的弦是直径,即直径是弦,弦不一定是直径,故正确;②当三点共线的时候,不能作圆,故错误;③三角形的外心是三角形三边的垂直平分线的交点,所以三角形的外心到三角形各顶点的距离都相等,故正确;④在同圆或等圆中,能够互相重合的弧是等弧,所以半径相等的两个半圆是等弧,故正确.故选B.8. 在”大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( )A. 众数是90B. 中位数是90C. 平均数是90D. 极差是15 【答案】C【解析】【分析】由统计图中提供的数据,根据众数、中位数、平均数、极差的定义分别列出算式,求出答案:【详解】解:∵90出现了5次,出现的次数最多,∴众数是90;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;极差是:95﹣80=15.∴错误的是C.故选C.9. 若顺次连接四边形ABCD各边的中点所得四边形是菱形.则四边形ABCD一定是( )A. 菱形B. 对角线互相垂直的四边形C. 矩形D. 对角线相等的四边形【答案】D【解析】【分析】根据三角形的中位线定理得到EH∥FG,EF=FG,EF=12BD,要是四边形为菱形,得出EF=EH,即可得到答案.【详解】解:∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=12AC,EH∥AC,FG=12AC,FG∥AC,EF=12BD,∴EH∥FG,EF=FG,∴四边形EFGH是平行四边形,假设AC=BD,∵EH=12AC,EF=12BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D.10. 如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B,C都不重合),现将△PCD 沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E,设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )A. B. C.D.【答案】C【解析】分析】先证明△BPE∽△CDP,再根据相似三角形对应边成比例列出式子变形可得.【详解】由已知可知∠EPD=90°,∴∠BPE+∠DPC=90°,∵∠DPC+∠PDC=90°,∴∠CDP=∠BPE,∵∠B=∠C=90°,∴△BPE ∽△CDP ,∴BP :CD =BE :CP ,即x:3=y:(5-x), ∴y=253x x -+(0<x<5); 故选C .考点:1.折叠问题;2.相似三角形的判定和性质;3.二次函数的图象.二.填空题(本题共8个小题,每题3分,满分24分)11. 某小区改进了用水设施,在5年内小区的居民累计节水39400吨,将39400用科学计数法表示应为________.【答案】3.94×104 【解析】【详解】解:39400=3.94×104 故答案为:3.94×104 12. 一个盒子里有完全相同的三个小球,球上分别标有数字,,,随机摸出一个小球(不放回),其数字为,再随机摸出另一个小球其数字记为,则满足关于的方程20x px q ++=有实数根的概率是___________.【答案】23. 【解析】解:画树状图得:∵共有6种等可能的结果,满足关于x 的方程x 2+px +q =0有实数根的有4种情况,∴满足关于x 的方程x 2+px +q =0有实数根的概率是:4263=.故答案为23. 13. 已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 .【答案】12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.14. 如图,△ABC 内接于圆,点D 是AC 上一点,将∠A 沿BD 翻折,点A 正好落在圆上点E 处.若∠C=50°,则∠ABE 的度数为_______.【答案】80°【解析】【分析】首先连接BE ,根据折叠的性质可得:AB=BE ,即可得AB BE =,根据圆周角定理,得到∠BAE 和∠BE A 的度数,继而求得∠ABE 的度数.【详解】解:如图,连接AE ,根据折叠的性质可得:AB=BE ,∴AB BE =∴50BAE BEA C ∠=∠=∠=︒(同弧所对的圆周角相等),∴180505080ABE ∠=︒-︒-︒=︒,故答案为:80°.【点睛】本题主要考查了圆周角定理、折叠的性质以及三角形内角和定理.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用,灵活运用所学知识是解题的关键.15. 关于x 的方程22x m x +-=1的解是正数,则m 的取值范围是________ . 【答案】m <﹣2且m≠﹣4【解析】分析】首先根据2x mx2+-=1,可得x=-m-2;然后根据关于x的方程2x mx2+-=1的解是正数,求出m的取值范围即可.【详解】∵2x mx2+-=1,∴x=-m-2,∵关于x的方程2x mx2+-=1的解是正数,∴-m-2>0,解得m<-2,又∵x=-m-2≠2,∴m≠-4,∴m的取值范围是:m<-2且m≠-4.故答案为m<-2且m≠-4.【点睛】此题主要考查了分式方程的解,要熟练掌握,解答此题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.16. 如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是▲ (结果保留π).【答案】1 33π-【解析】【详解】过D点作DF⊥AB于点F.∵AD=2,AB=4,∠A=30°,∴DF=AD•sin30°=1,EB=AB﹣AE=2.∴阴影部分的面积=平行四边形ABCD的面积-扇形ADE面积-三角形CBE的面积=230211 4121336023ππ⨯⨯⨯--⨯⨯=-.故答案为:133π-. 17. 如图,将一张边长为6cm 的正方形纸片按虚线裁剪后,恰好围成底面是正六边形的棱柱,则这个六棱柱的侧面积为______________cm 2.【答案】36123-.【解析】【详解】解:∵将一张边长为6的正方形纸片按虚线裁剪后,恰好围成一个底面是正六边形的棱柱, ∴这个正六边形的底面边长为1,高为3,∴侧面积为长为6,宽为623-的长方形,∴面积为:6(623)⨯-=36123-.故答案为:36123-.【点睛】本题考查展开图折叠成几何体.18. 如图在坐标系中放置一菱形OABC ,已知∠ABC=60°,OA=1.先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2016次,点B 的落点依次为B 1,B 2,B 3,…,则B 2016的坐标为_________.【答案】(13443【解析】【分析】连接AC ,根据已知条件可以求出AC ,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4.由于2016=336×6,因此点B 4向右平移1344(即336×4)即可到达点B 2016,根据点B 6的坐标就可求出点B 2016的坐标.【详解】解:解:连接AC ,画出第5次、第6次、第7次翻转后的图形,如下图所示,∵四边形OABC 是菱形,∴OA=AB=BC=OC (菱形四边相等),∵∠ABC=60°,∴△ABC 是等边三角形(有一个角是60°的等腰三角形是等边三角形),∴AC=AB ,∴AC=OA ,∵OA=1,∴AC=1,根据画出第5次、第6次、第7次翻转后的图形分析,根据图可知:每翻转6次,图形向右平移4,∵2016=336×6,∴点B 向右平移了1344(即336×4)到点B 2016,∵B 6的坐标为(3,∴B 2016的坐标为(13443;【点睛】本题主要考查了菱形的性质(菱形四边相等)、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力,发现”每翻转6次,图形向右平移4”是解决本题的关键. 三.解答题(本题共2个小题,第19题10分,第20题12分,满分22分)19. 先化简,再求值:21(1)11x x x ÷+--,其中21x =. 【答案】11x +,22【解析】【分析】 先将括号里面的通分后,将除法转换成乘法,约分化简.然后代x 的值,进行二次根式化简.【详解】解:原式=1111()(1)(1)11(1)(1)1(1)(1)1x x x x x x x x x x x x x x x x x --÷+=÷=⋅=-+---+--++.当21x =-时,原式=11222112===-+. 考点:1.分式的化简求值;2.二次根式化简.20. 在某飞机场东西方向的地面 l 上有一长为 1km 的飞机跑道 MN (如图),在跑道 MN 的正西端 14.5 千米处有一观察站 A .某时刻测得一架匀速直线降落的飞机位于点 A 的北偏西30°,且与点 A 相距 15 千米的 B 处;经过 1 分钟,又测得该飞机位于点 A 的北偏东 60°,且与点 A 相距 53千米的 C 处.(1)该飞机航行的速度是多少千米/小时?(结果保留根号)(2)如果该飞机不改变航向继续航行,那么飞机能否降落在跑道 MN 之间?请说明理由.【答案】(1)6003km/h ;(2)能,见解析【解析】【分析】(1)先求出90BAC ∠︒=,然后利用勾股定理列式求解即可得到BC ,再求解即可;(2)作CE l ⊥ 于点,设直线 BC 交于点,然后证明AE EF =,利用三角函数求出AE 即可得解;【详解】解:(1)由题意,得90BAC ∠︒=,15,53AB AC ==22103BC AB AC ∴=+=飞机航行的速度为:1103600360÷=(km/h )(2)能;作CE l ⊥ 于点,设直线 BC 交于点.在Rt ABC 中,103,53BC AC ==,∴30ABC ∠︒=,即60BCA ∠︒=,又∵30CAE ∠︒=,60ACE ∠︒= ,18060FCE ACB ACE ∠=∠-∠=︒∴-,即ACE FCE ∠=∠ACE FCE ∴≅AE EF ∴=又152AE AC cos CAE =⋅∠= 152AE EF ∴==15AF ∴= 14.5,15.5AM AN ==AM AF AN <<∴飞机不改变航向继续航行,可以落在跑道 M N 之间.【点睛】本题主要考查解直角三角形实际应用,准确理解题意,并且画出辅助线是求解本题的关键.四.(本题共2个小题,每题12分,满分24分)21. 九年七班组织学生参加汉字听写比赛,比赛分为甲乙丙三组进行,下面两幅统计图反映了学生参加比赛的报名情况,请你根据图中信息回答下列问题:(1)该班报名参加本次活动的总人数为 人.(2)该班报名参加丙组的人数为 人,并补全频数分布直方图;(3)比赛后选取男女各2名同学进行培训,若从中选2名参加校赛,试用列表或画树状图的方法,求恰好选中一男一女的概率.【答案】(1)50;(2)25,图详见解析;(3)2 3【解析】【分析】(1)根据图表信息,由甲的人数和所占百分率进行解答即可得到答案;(2)用总人数乘以丙所占百分率即可得到答案;(3)根据题意列出树状图即可得到答案.【详解】解:(1)根据图表信息可得:15÷30%=50人;(2)用参加报名的总人数乘以所占百分比得到:50×50%=25人;则乙的人数:50-25-15=10(人),频数分布直方图如下图;(3)设男生为A,B;女生为a,b,则列树状图为:根据树状图得到:P(男女)=812=23,【点睛】本题考查了列表法与树状图,要将两图结合起来,找到所需的量进行解答,掌握扇形图和条形图的相关知识是解题的关键.22. 如图,△ABC是直角三角形,∠ACB=90°(1)利用尺规作∠ABC 的平分线,交AC 于点O,再以O 为圆心,OC 的长为半径作⊙O(保留作图痕迹,不写作法);(2)在你所作的图中,①判断AB 与⊙O 的位置关系,并证明你的结论;②若AC=12,tan∠OBC=23,求⊙O 的半径.【答案】(1)作图见解析;(2)①AB与⊙O相切,理由见解析;②103.【解析】【分析】(1)只需按照题目的要求画图即可;(2)①过点O作OD⊥AB,垂足为D,如图所示,只需证明OD=OC即可;②在Rt△OBC中,运用三角函数可求出23OCBC=,从而得到23OD OCBC BC==,易证Rt△ADO∽Rt△ACB,运用相似三角形的性质可求得AD=8,然后在Rt△ADO中运用勾股定理即可解决问题.【详解】解:(1)如图,⊙O即为所求作;(2)AB与⊙O相切,理由如下:过点O作OD⊥AB,垂足为D,如图所示.∵∠ACB=90°,∴OC⊥BC.∵BO是∠ABC的平分线,OD⊥AB,OC⊥BC,∴OC=OD.∴AB与⊙O相切;(3)在Rt△OBC中,tan∠OBC=23 OCBC=,∴23 OD OCBC BC==.又∵∠ADO=∠ACB=90°,∠A=∠A,∴Rt△ADO∽Rt△ACB,∴23 AD ODAC BC==,∴AD=23AC=23×12=8.设⊙O的半径为r,则OD=OC=r,AO=12-r.在Rt△ADO中,根据勾股定理可得r2+82=(12-r)2,解得r=103,∴⊙O的半径是103.【点睛】本题考查作图—复杂作图;切线的判定;相似三角形的判定与性质.五.(满分12分)23. 如图,△ABC中,BC=AC,∠ACB=90°,将△ABC绕着点C顺时针旋转α(0≤α≤90°),得到△EFC,EF 与AB、AC相交于点D、H,FC与AB相交于点G、AC相交于点D、H,FC与AB相较于点G.(1)求证:△GBC≌△HEC;(2)在旋转过程中,当α是多少度时四边形BCED可以是某种特殊的平行四边形?并说明理由.【答案】(1)详见解析;(2)当α=45°时,四边形BCED为菱形,理由详见解析.【解析】【分析】(1)先判断△ABC为等腰直角三角形得到∠A=∠B=45°,再由旋转的性质得到∠BCF=∠ACE=α,∠E=∠A=45°,CA=CE=CB,最后可根据”ASA”可判断△GBC≌△HEC;(2)当α=45°时,根据旋转的性质得∠BCF=∠ACE=45°,则可计算出∠BCE=∠BCA+∠ACE=135°,再证BD∥CE,BC∥DE,于是可判断四边形BCED为平行四边形,结合CB=CE,则可判断四边形BCED为菱形.【详解】解:(1)证明:∵BC=AC,∠ACB=90°,∴△ABC为等腰直角三角形,∴∠A=∠B=45°,∵△ABC绕着点C顺时针旋转α°(0≤α≤90°),得到△EFC,∴∠BCF=∠ACE=α,∠E=∠A=45°,CA=CE=CB ,在△GBC 和△HEC 中B E CB CEBCG ECH ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△GBC ≌△HEC (ASA );(2)解:当α=45°时,四边形BCED 为菱形.理由如下:如图,∵∠BCF=∠ACE=45°,∴∠BCE=∠BCA+∠ACE=90°+45°=135°,而∠E=∠B=45°,∴∠B+∠BCE=180°,∠E+∠BCE=180°,∴BD ∥CE ,BC ∥DE (同旁内角互补,两直线平行),∴四边形BCED 为平行四边形,∵CB=CE ,∴四边形BCED 为菱形.【点睛】本题考查了菱形的判定、旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决本题的关键是掌握菱形的判定方法.六.(满分12分)24. 某种商品的进价为40元/件,以获利不低于25%的价格销售时,商品的销售单价y (元/件)与销售数量x (件)(x 是正整数)之间的关系如下表: x (件) (5)10 15 20 … y (元/件) (75)70 65 60 …(1)由题意知商品的最低销售单价是元,当销售单价不低于最低销售单价时,y是x的一次函数.求出y 与x的函数关系式及x的取值范围;(2)在(1)的条件下,当销售单价为多少元时,所获销售利润最大,最大利润是多少元?【答案】(1)50,y=﹣x+80(0≤x≤30,且x为正整数);(2)当销售单价为60元时,所获利润最大,最大利润为400元.【解析】【分析】(1)由40(1+25%)即可得出最低销售单价;设y=kx+b,由待定系数法求出y与x的函数关系式,根据x>0,y≥50即可确定x的取值范围;(2)设所获利润为P元,根据”总利润=单件的利润×销售数量”得出P是x的二次函数,再由二次函数的性质即可得结果.【详解】解:(1)40(1+25%)=50(元),设y=kx+b,根据题意得:7557010k bk b=+⎧⎨=+⎩,解得:k=﹣1,b=80,∴y=﹣x+80,根据题意得:8050xx>⎧⎨-+≥⎩,且x为正整数,∴0<x≤30,x为正整数,∴y=﹣x+80(0≤x≤30,且x为正整数)故答案为:50;(2)设所获利润为P元,根据题意得:P=(y﹣40)•x=(﹣x+80﹣40)x=﹣(x﹣20)2+400,即P是x的二次函数,∵a=﹣1<0,∴P有最大值,∴当x=20时,P最大值=400,此时y=60,∴当销售单价为60元时,所获利润最大,最大利润为400元.【点睛】本题考查二次函数的应用.七.解答题(满分12分)25. 如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.【答案】(1)见解析;(2)①30°或150°,②AF'的长最大值为222+,此时0315α=.【解析】【分析】(1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;(2)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;②当旋转到A、O、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=22+2,此时α=315°.【详解】(1)如图1,延长ED交AG于点H, ∵点O是正方形ABCD两对角线的交点,∴OA=OD ,OA ⊥OD ,∵OG=OE ,在△AOG 和△DOE 中,90OA OD AOG DOE OG OE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△AOG ≌△DOE ,∴∠AGO=∠DEO ,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE ⊥AG ;(2)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,∵OA=OD=12OG=12OG′, ∴在Rt △OAG′中,sin ∠AG′O=OA OG '=12, ∴∠AG′O=30°,∵OA ⊥OD,OA ⊥AG′,∴OD ∥AG′,∴∠DOG′=∠AG′O=30°∘,即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°−30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°. ②如图3,当旋转到A. O 、F′在一条直线上时,AF′的长最大,∵正方形ABCD 的边长为1,∴OA=OD=OC=OB=22, ∵OG=2OD ,∴OG′=OG=2,∴OF′=2,∴AF′=AO+OF′=22+2, ∵∠COE′=45°,∴此时α=315°. 【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用. 八.解答题(满分14分)26. 如图,二次函数2(0)y ax bx c a =++≠的图象与x 轴交于A (3,0),B (﹣1,0)两点,与y 轴相交于点C (0,﹣4).(1)求该二次函数的解析;(2)若点P 、Q 同时从A 点出发,以每秒1个单位长度的速度分别沿AB 、AC 边运动,其中一点到达端点时,另一点也随之停止运动.①当点P 运动到B 点时,在x 轴上是否存在点E ,使得以A 、E 、Q 为顶点的三角形为等腰三角形?若存在,请求出E 点的坐标;若不存在,请说明理由.②当P 、Q 运动到t 秒时,△APQ 沿PQ 翻折,点A 恰好落在抛物线上D 点处,请直接写出t 的值及D 点的坐标.【答案】(1)248433y x x -=-;(2)①存在满足条件的点E ,点E 的坐标为1(0)3-,或9(0)5-,或(﹣1,0)或(7,0);②14564t =,529()816D --, 【解析】分析】(1)将A ,B ,C 点坐标代入函数2y ax bx c =++中,求得b 、c ,进而可求解析式; (2)等腰三角形有三种情况,AE=EQ ,AQ=EQ ,AE=AQ .借助垂直平分线,画圆易得E 大致位置,设边长为x ,表示其他边后利用勾股定理易得E 坐标;(3)注意到P ,Q 运动速度相同,则△APQ 运动时都为等腰三角形,又由A 、D 对称,则AP=DP ,AQ=DQ ,易得四边形四边都相等,即菱形.利用菱形对边平行且相等等性质可用t 表示D 点坐标,又D 在E 函数上,所以代入即可求t ,进而D 可表示.【详解】解:(1)∵二次函数2y ax bx c =++的图象与x 轴交于A (3,0),B (﹣1,0),C (0,﹣4). ∴930{04a b c a b c c ++=-+==-,解得438{34a b c ==-=-, 248433y x x ∴=--; ①存在.如图1,过点Q 作QD OA ⊥于D ,此时//QD OC ,∵A (3,0),B (﹣1,0),C (0,﹣4),O (0,0),4,3,4,AB OA OC ∴===5,AC ∴=∵当点P 运动到B 点时,点Q 停止运动,4,AB =4,AQ ∴=//,QD OC ,QD AD AQ OC OA AC ∴==4,435QD AD ∴==1612,.55QD AD ∴==Ⅰ、作AQ 的垂直平分线,交AO 于E ,此时AE=EQ ,即△AEQ 为等腰三角形,设,AE x =则,EQ x =12,5DE AD AE x =-=-在Rt EDQ 中,2221216()()55x x -+= 解得103x = 1013,33OA AE -=-=-1(,0),3E ∴-说明点E 在轴的负半轴上; Ⅱ、以Q 为圆心,AQ 长半径画圆,交轴于E ,此时4,QE QA ==12,5ED AD ==245AE ∴=2493,55OA AE ∴-=-=-9(,0)5E ∴- Ⅲ、当4AE QA ==时,2.当E 在A 点左边时,341,OA AE -=-=-(1,0),E ∴-2.当E 在A 点右边时,347,OA AE +=+=(7,0),E ∴综上所述,存在满足条件的点E ,点E 的坐标为1(,0)3-或9(,0)5-或(﹣1,0)或(7,0).②如图2,D 点关于PQ 与A 点对称,过点Q 作,FQ AP ⊥于F ,,AP AQ t ==,,AP DP AQ DQ == ,AP AQ DQ DP ∴===∴四边形AQDP 为菱形,//,FQ OC ,AF FQ AQ AO OC AC ∴==,345AF FQ t ∴== 34,,55AF FQ ∴==34(3,),55Q t ∴-,DQ AP t ==34(3,),55D t t t ∴--- ∵D 在二次函数 248433y x x -=-上,244888(3)(3)4,53535t t t -=---- 14564t ∴=或0t =(与A 重合,舍去), 529(,).816D ∴--。

中考数学模拟试题(二)

中考数学模拟试题(二)

维普资讯
和 4c 一 条外 公 切 线长 为 1 r, 它们 的 m。 2cr 则 l
( 1 题) 第 3 1 -如 图 所 示 , 方 形 网 格 f ̄ A AB C  ̄ A DE F 相 似 , BAC 一 3 正 "J H 则 度.
( A)1c m2
) .
( C)3c m ( D)4c m2
( B)2c m


( 6 第 题)
( 7 ) 第 题
( 8 ) 第 题
8 .如图 , 把AABC纸 片沿 DE 折叠 , 当点 A 落 在 四边形 BC DE 内部
时 , A 与 1 2之 间 有 一 种 关 系 始 终 保 持 不 变 , 试 着 找 一 找 、 请 这规律 , 发现 的规律 是 ( 你
( B)小 亮 认 为 找 不 到 实 数 , z 一 4 使 。 x十 5的 值 为 0
( C)小梅 发现 . ~4 r z+5的值 随 X的变 化 而变 化 , 因此 认为没 有最
小值
( D)小 花 发 现 当 取 _ 于 2的 实 数 时 , 火
而增 大 , 此 认为没有 最 大值 因

,.


1 ・甲 、 两个农 民都 有两 块地 , 图所 示. 年 这 两个农 民决 定其 同投 4 乙 如 令
资 搞 饲 养 业 . 此 , 们 准 备 将 这 4块 地 换 成 一 块 一 边 长 为 ( + 6 为 他 口 )
米 的长 方 形 地 , 了 使所 换 土 地 的 面 积 与原 来 4块 地 的总 面 积 相 为 等, 交换之 后 的土地 的 另一边 长应 该是 .
) .
J 八 『 \

初三数学中考模拟试题(02)

初三数学中考模拟试题(02)

初三数学中考模拟试题时间:120分钟 分数:120分一、 选择题:(每小题3分,共36分)1. 如果33-=-b a ,那么代数式b a 35+-的值是( ).A .0B .2C .5D .82.“a 是实数, ||0a ≥”这一事件是 ( ).A. 必然事件B. 不确定事件C. 不可能事件D. 随机事件 3. 下列美丽图案,既是轴对称图形又是中心对称图形的个数有( ).A .1个B .2个C .3个D .4个4.据报道,上海世博会上中国馆以其独特的造型吸引了世人的目光.在会展期间,参观中国馆的人次数达到14 900 000,此数用科学记数法表示是( ). A .61049.1⨯ B .810149.0⨯ C .7109.14⨯ D .71049.1⨯5.如图,一个小球由地面沿着坡度i =1∶2的坡面向上前进了10 m , 此时小球距离地面的高度为( ).A .5 mB .25mC .45mD .310m 6.如图,△ABC 内接于⊙O ,∠A =40°,则∠BOC 的度数为( ). A . 20° B . 40° C . 60° D . 80° 7.已知(x 1, y 1),(x 2, y 2),(x 3, y 3)是反比例函数xy 4-=的图象上的三个点,(第5题)(第4题)(第6题)图且x 1<x 2<0,x 3>0,则y 1,y 2,y 3的大小关系是( ). A . y 3<y 1<y 2B . y 2<y 1<y 3C . y 1<y 2<y 3D . y 3<y 2<y 18.函数y ax a =-与a y x=(a ≠0)在同一直角坐标系中的图象可能是( ).A .B .C .D .9.如图,将△ABC 绕点C (0,-1)旋转180°得到△A ′B ′C ,设点A 的坐标为),(b a 则点A ′的坐标为( ).A .),(b a --B .)1.(---b aC .)1,(+--b aD .)2,(---b a(第10题)10.如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC ∆为等腰三角形.....,则点C 的个数是( ). A .6个B .7个C .8个D .9个11.如图,5个圆的圆心在同一条直线上, 且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为( ). A. 48π B. 24π C. 12π D. 6π12.如图,直径AB 为6的半圆,绕A 点逆时针旋转60°,此时点B 到了点B ',则图中阴影部分的面积是 ( ).A .6πB .5πC .4πD .3πx()(第11题)二、填空题: (每小题3分,共15分)13.如图是由大小相同的小正方体组成的简单几何体的主视图和左视图那么组成这个几何体的小正方体的个数最多为______________.14.如图, 已知△ABC ,6==BC AC ,︒=∠90C .O 是AB 的中点,⊙O 与AC ,BC 分别相切于点D 与点E .点F 是⊙O 与AB 的一个交点,连DF 并延长交CB 的延长线于点G . 则CG = 。

2022年中考第二次模拟考试《数学试题》含答案解析

2022年中考第二次模拟考试《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题1. 16的算术平方根是()A. 2B. 4C. 2±D. 4±2. 下列运算正确的是( )A. (ab)2=ab2B. a2·a3= a6C (-2)2=4 D. m5÷m3=m23. 下列图形既是轴对称图形又是中心对称图形是( )A. B. C. D.4. 如图所示的几何体的俯视图是()A. B. C. D.5. 在学校开展的”争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最后成绩如下表所示:那么这五位同学演讲成绩的众数与中位数依次是()参赛者编号 1 2 3 4 5成绩/分96 88 86 93 86A. 96,88,B. 86,88,C. 88,86,D. 86,866. 下列调查中,最合适采用抽样调查的是( )A. 乘坐高铁对旅客的行李的检查B. 了解抚顺市民对春节晚会节目的满意程度C. 调查九年一班全体同学的身高情况D. 对新研发的新型战斗机的零部件进行检查7. 不等式组312840xx->⎧⎨-≤⎩的解集在数轴上表示为( )A. B.C. D.8. 小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A. 25321.6x x-=15 B.3225151.6x x-=C.322511.64x x-= D.253211.64x x-=9. 如图,在△ABC中,∠ACB=90°,过B,C两点⊙O交AC于点D,交AB于点E,连接EO并延长交⊙O 于点F.连接BF,CF.若∠EDC=135°,CF=22,则AE2+BE2的值为( )A. 8B. 12C. 16D. 2010. 如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=23cm, EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是( )A. B. C. D.二、填空题11. 截止北京时间7月5日19时,新冠肺炎累计确诊病例超过11320000例,用科学记数法表示为_____.12. 分解因式:xy2﹣2x2y+x3=_____.13. 底面半径为4,高为3的圆锥的侧面积是____________.14. 已知关于x的一元二次方程kx2﹣23x+1=0有两个不相等的实数根,则k的取值范围是__.15. 如图,已知点A是双曲线y=﹣2x在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第一象限内,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=kx(k>0)上运动,则k的值是______.16. 如图,在△ABC中,AB=13cm,AC=12cm,BC=5cm.D是BC边上的一个动点,连接AD,过点C作C E⊥A D于E,连接B E,在点D变化的过程中,线段B E的最小值是_____c m.17. 如图,直线1:12l y x=-+与坐标轴交于AB两点,点(),0M m是轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线相切时,的值为__________________.18. 如图,已知在Rt△ABC中,AB=AC=32△ABC内作第一个内接正方形DEFG;然后取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,则第2014个内接正方形的边长为_____.三.解答题19. 先化简,再求值:(1﹣x+31x+)÷2441x xx+++,其中x=tan45°+(12)﹣1.20. “食品安全”受到全社会的广泛关注,育才中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有________人,扇形统计图中”基本了解”部分所对应扇形的圆心角为_________;(2)请补全条形统计图;(3)若对食品安全知识达到”了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取人参加食品安全知识竞赛,则恰好抽到个男生和个女生的概率________.21. 某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?22. 如图,某数学活动小组要测量楼AB的高度,楼AB在太阳光的照射下在水平面的影长BC为6米,在斜坡CE的影长CD为13米,身高1.5米的小红在水平面上的影长为1.35米,斜坡CE的坡度为1:2.4,求楼AB的高度.(坡度为铅直高度与水平宽度的比)23. 如图,在△ABC中,∠C=90°,AE平分∠BAC交BC于点E,O是AB上一点,经过A,E两点⊙O交AB 于点D,连接DE,作∠DEA的平分线EF交⊙O于点F,连接AF.(1)求证:BC是⊙O的切线;(2)若sin∠EFA=45,AF=52,求线段AC的长.24. 某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式;(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?25. (1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①ACBD的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M .请判断ACBD的值及∠AMB 的度数,并说明理由; (3)拓展延伸在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M ,若OD=1,OB=7,请直接写出当点C 与点M 重合时AC 的长.26. 如图,抛物线2y a 3x bx =++与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C ,点D 和点C 关于抛物线对称轴对称,直线AD 与y 轴交于点E . (1)求抛物线的解析式;(2)如图1,直线AD 上方的抛物线上有一点F ,过点F 作FG 垂直AD 于点G ,作FH 平行于x 轴的直线AD 与点H ,求△FGH 周长的最大值;(3)点M 是抛物线顶点,点P 是y 轴上一点,点Q 是坐标平面内一点,以A ,M ,P ,Q 为顶点的四边形是矩形,请直接写出P 点坐标.答案与解析一、选择题1. ( )A. 2B. 4C. 2±D. 4±【答案】A 【解析】 【分析】4,=2. 故选A .. 2. 下列运算正确的是( ) A (ab )2=ab 2 B. a 2·a 3= a 6C. ()2=4D. m 5÷m 3=m 2 【答案】D 【解析】 【分析】根据同底数幂的乘除、幂的乘方、积的乘方、二次根式的运算法则进行计算解答.【详解】解:A ,222()ab a b =,故本选项错误;B ,235a a a ⋅=,故本选项错误;C ,2(2=,故本选项错误;D ,532m m m ÷=,故本选项正确; 故选:D .【点睛】本题主要考查了同底数幂的乘除法,幂的乘方、积的乘方、二次根式的运算;熟练掌握其运算法则是解题的关键.3. 下列图形既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A选项:是中心对称图形,但不是轴对称图形,不符合题意;B选项:既是轴对称图形,又是中心对称图形,符合题意;C选项:是轴对称图形,但不是中心对称图形,不符合题意;D选项:是轴对称图形,但不是中心对称图形,不符合题意,故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图形重合.4. 如图所示的几何体的俯视图是()A. B. C. D.【答案】D【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】此几何体的俯视图是一个正方形,右下角是个矩形,如图:故选:D.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5. 在学校开展的”争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最后成绩如下表所示:那么这五位同学演讲成绩的众数与中位数依次是()A. 96,88,B. 86,88,C. 88,86,D. 86,86【答案】B【解析】【分析】中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数据,据此判断即可.【详解】解:∵这组数据中86出现的次数最多,是2次,∴这五位同学演讲成绩的众数是86;这五位同学演讲成绩排序得:86,86,88,93,96,∴这五位同学演讲成绩的中位数是88,∴这五位同学演讲成绩的众数与中位数依次是86,88.故选:B.【点睛】此题主要考查了众数、中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数据.6. 下列调查中,最合适采用抽样调查的是( )A. 乘坐高铁对旅客的行李的检查B. 了解抚顺市民对春节晚会节目的满意程度C. 调查九年一班全体同学的身高情况D. 对新研发的新型战斗机的零部件进行检查【答案】B【解析】试题解析:A、乘坐高铁对旅客的行李的检查,是事关重大的调查,适合普查,故A错误;B、了解抚顺市民对春节晚会节目的满意程度,调查范围广,适合抽样调查,故B正确;C、调查九年一班全体同学的身高情况,调查范围小,适合普查,故C错误;D、对新研发的新型战斗机的零部件进行检查,是事关重大的调查,适合普查,故D错误;故选B.考点:全面调查与抽样调查.7. 不等式组312840xx->⎧⎨-≤⎩的解集在数轴上表示为( )A. B.C. D.【答案】A【解析】【分析】分别求得不等式组中两个不等式的解集,再确定不等式组的解集,表示在数轴上即可.【详解】解:不等式组为:3x1284x0->⎧⎨-≤⎩①②,解不等式①,解得:x>1,解不等式②,解得:x≥2,在数轴上表示为:故选:A.【点睛】本题考查了一元一次不等式组的解法并在数轴上画图表示,正确求得不等式组中每个不等式的解集是解决问题的关键,在坐标上画图时要注意:能取到该点的值的时候,要画实心点,不取到该点值的时候,画空心点.8. 小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A. 25321.6x x-=15 B.3225151.6x x-=C.322511.64x x-= D.253211.64x x-=【答案】D 【解析】解:设走路线A时的平均速度为x千米/小时,根据题意得:25x﹣321.6x=14.故选D.9. 如图,在△ABC中,∠ACB=90°,过B,C两点的⊙O交AC于点D,交AB于点E,连接EO并延长交⊙O于点F.连接BF,CF.若∠EDC=135°,CF=22,则AE 2+BE 2的值为 ( )A. 8B. 12C. 16D. 20【答案】C【解析】【分析】 根据圆内接四边形的性质及邻补角的定义可得∠ADE=∠ABC=45°,再证得∠ADE=∠A=45°即可得AE=AD ;根据直径所对的圆周角是直角可得∠FCE=90°,在Rt △EFC 中求得EF=4;连接BD ,可证得BD 为为⊙O 的直径,在Rt △BDE 中根据勾股定理可得2222416BE DE BD +===,由此即可得结论.【详解】∵∠EDC=135°, ∴∠ADE=45°,∠ABC=180°-∠EDC =180°-135°=45°;∵∠ACB=90°,∴∠A=45°,∴∠ADE=∠A=45°,∴AE=AD ,∠AED=90°;∵EF 为⊙O 的直径,∴∠FCE=90°,∵∠ABC=∠EFC=45°,CF=22,∴EF=4;连接BD ,∵∠AED=90°,∴∠BED=90°,∴BD 为⊙O 的直径,∴BD=4;在Rt △BDE 中,2222416BE DE BD +===,∴AE 2+BE 2=16.故选C.【点睛】本题考查了圆周角定理及其推论、圆内接四边形的性质及勾股定理等知识点,会综合运用所学的知识点解决问题是解题的关键.10. 如图,△ABC 为直角三角形,∠C=90°,BC=2cm ,∠A=30°,四边形DEFG 为矩形,DE=23cm , EF=6cm ,且点C 、B 、E 、F 在同一条直线上,点B 与点E 重合.Rt△ABC 以每秒1cm 的速度沿矩形DEFG 的边EF 向右平移,当点C 与点F 重合时停止.设Rt△ABC 与矩形DEFG 的重叠部分的面积为ycm 2,运动时间xs .能反映ycm 2与xs 之间函数关系的大致图象是( )A. B. C. D. 【答案】A【解析】∵∠C =90°,BC =2cm ,∠A =30°, ∴AB =4,由勾股定理得:AC 3,∵四边形DEFG 为矩形,∠C =90,∴DE =GF 3∠C =∠DEF =90°, ∴AC ∥DE ,此题有三种情况:(1)当0<x <2时,AB 交DE 于H ,如图∵DE ∥AC , ∴EH BE AC BC =, 即223EH x =, 解得:EH =3x ,所以y =12•3x •x =32x 2, ∵x 、y 之间是二次函数,所以所选答案C 错误,答案D 错误,∵a =32>0,开口向上; (2)当2≤x ≤6时,如图,此时y =12×2×23=23, (3)当6<x ≤8时,如图,设△ABC 的面积是s 1,△FNB 的面积是s 2,BF =x ﹣6,与(1)类同,同法可求FN 3﹣3∴y =s 1﹣s 2,=12×2×312×(x ﹣6)×3X ﹣3, =﹣32x 23﹣3∵﹣2<0, ∴开口向下,所以答案A 正确,答案B 错误,故选A .点睛:本题考查函数的图象.在运动的过程中正确区分函数图象是解题的关键.二、填空题11. 截止北京时间7月5日19时,新冠肺炎累计确诊病例超过11320000例,用科学记数法表示为_____.【答案】1.132710⨯【解析】【分析】科学计数法指的是将一个数表示成a 与10的n 次幂相乘的形式(1a 10≤<,a 不为分数形式,n 为整数),即可求出答案.【详解】解:题中:711320000=1.13210⨯,题中a=1.132,n=7,满足科学计数法要求,故答案为:71.13210⨯.【点睛】本题主要考察了科学计数法的表示方法,要清楚地知道科学计数法是将一个数表示成a 与10的n 次幂相乘的形式(1a 10≤<,a 不为分数形式,n 为整数),其中a 、n 必须要满足上述条件.12. 分解因式:xy 2﹣2x 2y +x 3=_____.【答案】x(y ﹣x)2【解析】分析:首先提取公因式x ,然后利用完全平方公式进行因式分解.详解:原式=()()222x 2xy x y x y x -+=-. 点睛:本题主要考查是因式分解的方法,属于基础题型.因式分解的方法有:提取公因式、公式法和十字相乘法.13. 底面半径为4,高为3的圆锥的侧面积是 ____________.【答案】20【解析】【分析】首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥侧面积公式代入求出即可.【详解】解:∵圆锥的底面半径为4,高为3,∴母线长为5,∴圆锥的侧面积为:πrl=π×4×5=20π,故答案为:20π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.14. 已知关于x的一元二次方程kx2﹣23x+1=0有两个不相等的实数根,则k的取值范围是__.【答案】k<3且k0【解析】【分析】根据关于x的一元二次方程kx2−23x+1=0有两个不相等的实数根,可得出判别式大于0,再求得k的取值范围,需注意:二次项系数不等于零.【详解】解:∵关于x的一元二次方程kx2−23x+1=0有两个不相等的实数根,∴△=(−23)2-4×1×k>0,解得k<3,∵k≠0,∴k的取值范围k<3且k≠0,故答案是:k<3且k≠0.【点睛】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.15. 如图,已知点A是双曲线y=﹣2x在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第一象限内,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=kx(k>0)上运动,则k的值是______.【答案】6【解析】【分析】 设点2()A a a,,连接OC ,则AB OC ⊥,表示出OC ,过点C 作CD x ⊥轴于点D ,设出点C 坐标,在Rt △COD 中,利用勾股定理可得出2212x a =,继而求出y 与x 的函数关系. 【详解】解:设2()A a a ,,∵点A 与B 关于原点对称,∴OA =AB∵△ABC 为等边三角形,∴AB OC ⊥,OC =∵OA =∴OC ===过点C 作CD x ⊥轴于点D ,则可得BOD OCD ∠=∠(都是COD ∠的余角), 设点C 的坐标为(x ,y ),则tan tan BOD OCD ∠=∠,即2x a a y=, 解得:22a y x =, 在Rt △COD 中,222CD OD OC +=,即2222123x y a a +=+,将22a y x =代入,可得:2212x a =,故x a=y =, 则6k xy ==,故答案为:6.【点睛】本题考查了反比例函数的综合题,涉及解直角三角形、等边三角形的性质及勾股定理的知识,解答本题的关键是将所学知识融会贯通,注意培养自己解答综合题的能力.16. 如图,在△ABC中,AB=13cm,AC=12cm,BC=5cm.D是BC边上的一个动点,连接AD,过点C作C E⊥A D于E,连接B E,在点D变化的过程中,线段B E的最小值是_____c m.-【答案】616【解析】【分析】如图,连接B、BC. 在点D移动的过程中,点E在AC为直径的圆上运动,当、E、B共线时,BE的值最小,最小值为B-E,利用勾股定理求出B即可解决问题.【详解】解:如图,以AC直径作圆,连接B、E.∵CE⊥AD,∴∠AEC=90°,在△ABC中,AB=13cm,AC=12cm,BC=5cm,AB2=AC2+BC2,∴△ABC为Rt△,在Rt△BC中,2222'+5661BC CO+=∵、E、B、共线时,BE的值最小,最小值为B–E=61–6,故答案为61–6.【点睛】本题考查圆综合题、勾股定理,点与圆的位置关系等知识,解题的关键是确定点E的运动轨迹,是以AC 为直径的圆上运动,属于中考填空中压轴题.17. 如图,直线1:12l y x=-+与坐标轴交于AB两点,点(),0M m是轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线相切时,的值为__________________.【答案】2-25或25+2【解析】试题分析:直线112y x=-+与y轴、x轴的交点坐标为A(0,1),B(2,0),由勾股定理可得AB=5.如图(1)当圆M与直线AB相切于点C时,△AOB∽△MCB,OA ABMC BM=,即152BM=,解得BM=25.所以BM-OB=25-2,即m=2-25.如图(2)△AOB∽△MDB,OA ABMD BM=,即152BM=,解得BM=25.m= BM+OB=25+2.图(1) 图(2)考点:一次函数与圆,三角形相似18. 如图,已知在Rt △ABC 中,AB =AC =32,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形…依次进行下去,则第2014个内接正方形的边长为_____.【答案】201212【解析】 【分析】 首先根据勾股定理得出BC 的长,进而利用等腰直角三角形的性质得出DE 的长,再利用锐角三角函数的关系得出12EI PF KI EF ==,即可得出正方形边长之间的变化规律,得出答案即可. 【详解】∵在Rt △ABC 中,AB=AC=32, ∴∠B=∠C=45°,BC=22AB AC =6,∵在△ABC 内作第一个内接正方形DEFG; ∴EF=EC=DG=BD ,∴DE=13BC ∴DE=2,∵取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形…依次进行下去,∴12EI PF KI EF ==, ∴EI=12KI=12HI , ∵DH=EI , ∴HI=12DE=(12)2−1×2, 则第n 个内接正方形的边长为:2×(12)n−1,∴则第2014个内接正方形的边长为2×(12)2014−1=2×201312=201212. 故答案201212.【点睛】此题主要考查了正方形的性质以及数字变化规律和勾股定理等知识,根据已知得出正方形边长的变化规律是解题关键.三.解答题19. 先化简,再求值:(1﹣x+31x +)÷2441x x x +++,其中x=tan45°+(12)﹣1. 【答案】-15【解析】【分析】先根据分式混合运算顺序和运算法则化简原式,再根据三角函数值、负整数指数幂得出x 的值,最后代入计算可得. 【详解】原式=(21311x x x -+++)÷()221x x ++ =()()()2221·12x x x x x +-+++ =22x x-+, 当x=tan45°+(12)﹣1=1+2=3时,原式=231235-=-+. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序、特殊角的三角函数值、负指数幂的运算是解题的关键.20. “食品安全”受到全社会的广泛关注,育才中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有________人,扇形统计图中”基本了解”部分所对应扇形的圆心角为_________;(2)请补全条形统计图;(3)若对食品安全知识达到”了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取人参加食品安全知识竞赛,则恰好抽到个男生和个女生的概率________.【答案】(1)60,90;(2)图见详解;(3)35 【解析】【分析】(1)根据了解很少的人数和所占的百分比求出抽查的总人数,再用”基本了解”所占的百分比乘以360°,即可求出”基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去”基本了解”“了解很少”和”不了解”的人数,求出了解的人数,从而补全统计图;(3)根据题意先画出树状图,再根据概率公式即可得出答案.【详解】解:(1)接受问卷调查的学生共有30÷50%=60(人), 扇形统计图中”基本了解”部分所对应扇形的圆心角为360°×1560=90°, 故答案为:60,90.(2)了解的人数有:60−15−30−10=5(60−15−30−10=5(人)),补图如下:(3)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为1220=35. 【点睛】此题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,读懂题意,根据题意求出总人数是解题的关键;概率==所求情况数与总情况数之比.21. 某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?【答案】(1)乙图书每本价格为20元,则甲图书每本价格是50元;(2)该图书馆最多可以购买28本乙图书.【解析】【分析】根据两种图书的倍数关系,设乙图书每本的价格为x 元,则甲图书每本的价格为2.5x 元,再根据同样多的钱购买图书数量相差24本,列方程,求出方程的解即可,分式方程一定要验根.设购买甲图书m 本,则购买乙图书(2m +8)本,再根据总经费不超过1060元,列不等式,求出不等式的解集,进而求得最多可买乙图书的本数.【详解】解:(1)设乙图书每本价格为元,则甲图书每本价格是2.5x 元, 根据题意可得:800800242.5x x-=, 解得:20x =,经检验得:20x =是原方程的根,则2.550x =,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为,则购买乙图书的本数为:28x +,故()5020281060x x ++,解得:10x ,故2828x +,答:该图书馆最多可以购买28本乙图书.【点睛】本题考查分式方程的运用,一元一次不等式组的运用,理解题意,抓住题目蕴含的数量关系解决问题.22.如图,某数学活动小组要测量楼AB 的高度,楼AB 在太阳光的照射下在水平面的影长BC 为6米,在斜坡CE的影长CD为13米,身高1.5米的小红在水平面上的影长为1.35米,斜坡CE的坡度为1:2.4,求楼AB的高度.(坡度为铅直高度与水平宽度的比)【答案】楼AB的高度为15米.【解析】试题分析:作DN⊥AB,垂足为N,作CM⊥DN,垂呯为M,设CM=5x,根据坡度的概念求出CM、DM,根据平行线的性质列出比例式,计算即可.试题解析:作DN⊥AB,垂足为N,作CM⊥DN,垂足为M,则CM:MD=1:2.4=5:12,设CM=5x,则MD=12x,由勾股定理得22CM DM∴x=1∴CM=5,MD=12,四边形BCMN为矩形,MN=BC=6,BN=CM=5,太阳光线为平行光线,光线与水平面所成的角度相同,角度的正切值相同,∴AN:DN=1.5:1.35=10:9,∴9AN=10DN=10×(6+12)=180,AN=20,AB=20-5=15,答:楼AB的高度为15米.考点:解直角三角形的应用---坡度坡角问题.23. 如图,在△ABC中,∠C=90°,AE平分∠BAC交BC于点E,O是AB上一点,经过A,E两点的⊙O交AB 于点D,连接DE,作∠DEA的平分线EF交⊙O于点F,连接AF.(1)求证:BC 是⊙O 的切线;(2)若sin ∠EFA=45,AF=52,求线段AC 的长.【答案】(1)证明见解析;(2)6.4.【解析】【分析】(1)连接OE ,根据等腰三角形的性质和角平分线定义可得OEA CAE ∠=∠,根据平行线的判定可得OE ∥AC ,再由平行线的性质可得∠BEO=∠C=90°,即可证得结论;(2)连接DF ,根据已知条件易证52DF AF ==.在Rt ADF ∆中,根据勾股定理求得10AD =.根据同弧所对的圆周角相等及已知条件可得4sin sin 5EDA EFA ∠=∠=.在Rt ADE ∆中求得AE 的长,再证明ΔACE ∽ΔAED ,根据相似三角形的性质即可求得线段AC 的长.【详解】证明:(1)如图1,连接OE ,∵OA OE =,∴OEA OAE ∠=∠.∵AE 平分BAC ∠,∴OAE CAE ∠=∠.∴OE ∥AC ,∴90BEO C ∠=∠=︒.∴OE BC ⊥∵OE 为O 的半径, ∴BC 是O 的切线.(2)如图2,连接DF .由题可知AD 为O 的直径,∴F 90DEA A D ∠=∠=︒.∵EF 平分DEA ∠,∴45DEF AEF ∠=∠=︒.∴45DAF DEF ∠=∠=︒.∴△AFD 为等腰直角三角形, ∴52DF AF ==在Rt ADF ∆中,222AF DF AD +=, ∴((2225252100AD =+=. ∴10AD =.∵EFA EDA ∠=∠,4sin 5EFA ∠=, ∴4sin sin 5EDA EFA ∠=∠=. 在Rt ADE ∆中,sin AE EDA AD∠=. ∴4sin 1085AE AD EDA =⋅∠=⨯= . ∵CAE EAD ∠=∠,90C AED ∠=∠=︒,∴AC AE AE AD=.∴22832105AEACAD===(或6.4)【点睛】本题属于圆的综合题,运用的知识点有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.24. 某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式;(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?【答案】(1)260(5080)4203(80140)y x xy x x-≤≤⎧⎨-⎩==<<;(2)w=-x2+300x-10400(50≤x≤80);w=-3x2+540x-16800(80<x<140);(3)售价定为90元.利润最大为7500元.【解析】【分析】(1)当售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,y=260-x,50≤x≤80,当如果售价超过80元后,若再涨价,则每涨1元每月少卖3件,y=420-3x,80<x<140,(2)由利润=(售价-成本)×销售量列出函数关系式,(3)分别求出两个定义域内函数的最大值,然后作比较.【详解】(1)当50≤x≤80时,y=210-(x-50),即y=260-x,当80<x<140时,y=210-(80-50)-3(x-80),即y=420-3x.则260(5080)4203(80140)y x xy x x-≤≤⎧⎨-⎩==<<,(2)由利润=(售价-成本)×销售量可以列出函数关系式w=-x2+300x-10400(50≤x≤80)w=-3x2+540x-16800(80<x<140),(3)当50≤x≤80时,w=-x2+300x-10400,当x=80有最大值,最大值为7200,当80<x <140时,w=-3x 2+540x-16800,当x=90时,有最大值,最大值为7500,故售价定为90元.利润最大为7500元.【点睛】此题考查二次函数的应用,解题关键在于应用二次函数解决实际问题比较简单.25. (1)问题发现如图1,在△OAB 和△OCD 中,OA=OB ,OC=OD ,∠AOB=∠COD=40°,连接AC ,BD 交于点M .填空: ①AC BD 的值为 ; ②∠AMB 的度数为 .(2)类比探究如图2,在△OAB 和△OCD 中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD 的延长线于点M .请判断AC BD的值及∠AMB 的度数,并说明理由; (3)拓展延伸在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M ,若OD=1,OB=7,请直接写出当点C 与点M 重合时AC 的长.【答案】(1)①1;②40°;(2390°;(3)AC 的长为3或3【解析】【分析】(1)①证明△COA ≌△DOB (SAS ),得AC=BD ,比值为1;②由△COA ≌△DOB ,得∠CAO=∠DBO ,根据三角形的内角和定理得:∠AMB=180°-(∠DBO+∠OAB+∠ABD )=180°-140°=40°;(2)根据两边的比相等且夹角相等可得△AOC ∽△BOD ,则3AC OC BD OD=,由全等三角形的性质得∠AMB 的度数;。

九年级下册中考数学模拟试题 (2)

九年级下册中考数学模拟试题 (2)

中考模拟试题一、选择题(共12小题,每小题3分,共36分)下列各题中均有四个备选答案,其中有且只有一个是正确的,( )1.15-的绝对值是A.15.B.15-. C.5. D.-5. ( )2.函数y =x 的取值范围是A.x ≥14-.B.x ≥14.C. x ≤14-.D. x ≤14.( )3.不等式组241x x -⎧⎨+⎩<0≥0的解集表示在数轴上正确的是( )4.A.-4.B.4或-4.C.4.D.16.( )5.已知x =-1是一元二次方程x 2+mx -5=0的一个解,则m 的值是A.1.B.-5.C.5.D.-4.( )6.2007年,中国月球探测工程的“嫦娥一号”卫星发射升空飞向月球,已知地球距离月球表面约为384000千米,那么这个距离用科学记数法且保留三个有效数字表示为A.3.840×104千米.B.3.84×104千米.C.3.84×106千米.D.3.84×105千米.( )7.如图,在边长为4的等边△ABC 中,AD 是BC 边上的高,点E 、F 是AD 上的两点,则图中阴影部分的面积是( )8.如图所示是由7个小立方块所搭成的几何体,那么这个几何体的主视图是( )9.小敏同学6次数学测验的成绩如图所示,则该同学6次成绩的中位数是A.60.B.70.C.75.D.80.A B C DA .B .C .D . 分数第9题图B 第10题图( )10.如图,已知AB 是⊙O 的直径,弦CD ⊥AB ,AC=BC =1,那么sin ∠ABD的值是A.13.( )11.观察市统计局公布的武汉市农村居民年人均收入每年比上年的增长率的统计图,已知2004年农村居民年人均收入为8000元,根据图中的信息判断:①农村居民年人均收入最多的是2005年;②2003年农村居民年人均收入为%8.618000+;③2006年农村居民年人均收入为8000(1+13.6%)(1+12.1%);④从2002年到2006年武汉市农村居民的年人均收入在逐年增长.其中正确结论的个数是 A.1个. B.2个. C.3个. D.4个.( )12.如图,正方形ABCD 中,对角线AC 、BD 相交于点O ,Q 为CD 上任意一点,AQ 交BD 于点M ,过点M 作MN ⊥AM 交BC 于点N ,连接AN ,QN ,下列结论:①MA =MN ;②∠AQD =∠AQN ;③S △AQN =12S 五边形ABNQD ;④QN 是以点A 为圆心,以AB 为半径的圆的切线,其中正确的结论有A.①②③④.B. ①③④.C. ②③④.D. ①②.二、填空题(共4小题,每小题3分,共12分) 13.某次射击训练中,一小组的成绩如下表所示:若该小组的平均成绩为7.7环,则成绩为8环的人数是 .14.下列各图是由边长为1的正方形按照某种规律排列而组成的,那么第6个图形的周长为 .15.一次函数y =kx +b (k ,b 都是常数)的图象过点P (-2,1),与x 轴相交于A (-3,0),则根据图象可得关于x 的不等式组0≤kx +b <12x -的解集为___________.16.如图,反比例函数4y x=-(x <0)与正比例函数y x =-的图象交于点P ,点A 是x 轴负半轴上的一点,点B 是y 轴正半轴上的一点,且∠BP A =90°,则OA +OB = .第1个 第2个 第3个 (年) AB C D M NO Q 第12题图18.(本题6分)先化简,再求值:23()111x x x x x x -÷-+-,其中12x =-.19.(本题6分)如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,∠ADC =∠BCD ,AD =BC ,求证:AO =BO .20.(本题7分)甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少(如下表).(1)用树形图表示得到一次摸奖机会时摸出彩球的所有情况;(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.A B C DO21.(本题7分)在平面直角坐标系中,A 点的坐标为(1,将线段OA 绕坐标原点O 逆时针旋转90°,得到线段OB . (1)求B 点的坐标;(2)除了可以由线段OA 旋转变换得到OB 以外,还能不能由线段OA 作轴对称变换得到OB ,若能由轴对称变换得到,请求出该对称轴的解析式;若不能,请说明理由.22.(本题8分)如图,E 为矩形ABCD 的边CD 上的一点(CE >DE ),AE ⊥BE .以AE 为直径作⊙O ,交AB 于F .点G 为BE 的中点,连结FG . (1)求证:FG 为⊙O 的切线;(2)若CD =25,AD =12,求FG 的长.23.(本题10分)四川汶川大地震发生后,我市某工厂A 车间接到生产一批帐篷的紧急任务,要求必须在12天(含12天)内完成.已知每顶帐篷的成本价为800元,该车间平时每天能生产帐篷20顶.为了加快进度,车间采取工人分批日夜加班,机器满负荷运转的生产方式,生产效率得到了提高.这样,第一天生产了22顶,以后每天生产的帐篷都比前一天多2顶.由于机器损耗等原因,当每天生产的帐篷数达到30顶后,每增加1顶帐篷,当天生产的所有帐篷,平均每顶的成本就增加20元.设生产这批帐篷的时间为x 天,每天生产的帐篷为y 顶.(1)写出y 与x 之间的函数关系式,并写出自变量x 的取值范围. (2)若这批帐篷的订购价格为每顶1200元,该车间决定把获得最高利润的那一天的全部利润捐献给灾区.设该车间每天的利润为w 元,试求出w 与x 之间的函数关系式,并求出该车间捐款给灾区多少钱?24.(本题10分)如图,在△ABC 中,∠ACB =90°,BC =k ·AC ,CD ⊥AB 于D ,点P 为AB 边上一动点,PE ⊥AC ,PF ⊥BC ,垂足分别为E 、F .(1)若k =2时,则CEBF= ;(2)若k =3时,连接EF 、DF ,求EFDF的值;(3)当k =时,EF DF 直接写出结果,不需证明)25.(本题12分)已知:如图,抛物线y =ax 2-2ax +c (a ≠0)与y 轴交于点C (0,4),与x 轴交于点A 、B ,点A 的坐标为(4,0). (1)求该抛物线的解析式;(2)点Q 是线段AB 上的动点,过点Q 作QE ∥AC ,交BC 于点E ,连接CQ .当△CQE 的面积最大时,求点Q 的坐标; (3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.A B C D E F P A C D E F P参考答案13.4 14.10n +8 15.-3≤x ≤-2 16.4 三、解答题:17.11x =21x =原式=2x+4=3 19.略 20.(1)略 (2)P (甲)4263==,P (乙)2163==,∴ 我选择去甲超市购物.21.(1)B (1) (2)(2y x =-22.(1)略 (2)设DE =x ,则EC =25-x ,易证△ADE ∽△ECB ∴AD DE EC BC =,∴122512xx =-,∴x 1=9,x 2=16(舍去),在Rt △ECB 中,EB 20=由(1)知得,FG =21EB =10 23.(1)y =20+2x (1≤x ≤12) (2)当1≤x ≤5时,w =800x +8000,当x =5时w 最大=12000;当5≤x ≤12时,w =-80(x -2.5)2+12500,当x =6时w 最大=11520.∴车间捐款给灾区11520元.24.(1)12(2)连接CP ,△CPB ∽△DFB ,EF DF =25.(1)2142y x x =-++ (2)设点Q 的坐标为(m ,0),过点E 作EG ⊥x 轴于点G .∵QE ∥AC ,∴△BQE ∽△BAC . ∴EG =243m + ∴S △CQE =13-(m -1)2+3 ∴Q (1,0) (3)P (2)或P (2)或P (3)或P (3)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学模拟试题二一.选择题.(30分)1. 1纳米=0.000000001米,用科学计数法表示1纳米是( ). A. 1×10-8 米 B. 10×10-9 米 C. 1×10-9 米 D. 0.1×10-8 米 2、下列图形是轴对称图形的是:A B C D3. 如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是( )A .①B .②C .③D .④4.某中学2016年秋节运动会九年级男子组共有13名同学参加百米短跑,预赛成绩各不相同,根据运动会规则,要取前6名同学参加决赛.小刚已经知道了自己的成绩,他想知道自己能否进入决赛,还需要知道这13名同学成绩的( ).A. 众数B. 中位数C. 加权平均数D. 平均数 5.下列说法正确的是( ).A.一组数据2,5,3,1,4,3的中位数是3.5.B.五边形的外角和是540度.C.“菱形的对角线互相平分且垂直”的逆命题是真命题. D .三角形三条边的垂直平分线的交点是三角形的内心. 6.线段AB 两个端点的坐标分别为A (8,4),B (6,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,A 、B 的对应点分别为C 、D ,则端点D 的坐标为( ).A. (3,1)B. (4,2)C. (4,1)D. (3,2)7.若二次函数221y x mx =++与22y x x m =-++的图象关于x 轴对称,则m 的值为( ).A. 0B. 1C. -1D. 任意实数 8.随县对城区主干道进行绿化,计划把某一段公路的一侧全部栽上树,要求路的两端各栽一棵, 并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树 苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是 ( ).A .5(211)6(1)x x +-=-B .5(21)6(1)x x +=-C .5(211)6x x +-=D .5(21)6x x +=9.试运用数形结合的思想方法确定方程242x x+=的根的取值范围为( ). A. 01x << B. 10x -<< C. 12x << D. 23x <<10.甲、乙两车从A 地驶向B 地,并以各自的速度匀速行驶,甲车比乙车早行驶2h ,并且甲车途中休息了0.5h ,如图是甲、乙两车行驶的距离y (km )与时间x(h)的函数图象,有以下结论:①1m = ②40a = ③甲车从A 地到B 地共用了7小时 ④当两车相距50km 时,乙车用时为14h .其中正确结论的个数是: A .4 B.3 C.2 D.1 二.填空题.(18分)11._________.12.从0到9这10有意义的概率是___________. 13.如上图,若AB ‖DE ,则∠1=__________.第13题图 第14题图14.如上图,在边长为8的正方形ABCD 中,以AB 为直径的半圆与对角线AC 交于点E ,则图中阴影部分的面积为___________.(结果保留π)15.按照如图所示的方法排列黑色小正方形地砖,则第10个图案中,白色小正方形地砖的块数是_____________.第15题图 第16题图16. 如图,在矩形ABCD 中,AD ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED =∠CED ;②OE =OD ;③BH =HF ;④BC ﹣CF =2HE ;⑤AB =HF , 其中正确的有___________.三、解答题(本题有8小题,共72分)17.(6分)解不等式组2(+2)3+31<34x x x x ≤⎧⎪+⎨⎪⎩并将解集在数轴上表示出来.18.(6分)计算:2017212sin 60(45)(tan30)--︒+︒+-︒19.(6分)如图,在矩形ABCD 中,AB >AD ,AB =a ,AF 平分∠DAB ,DE ⊥AF 于点E ,CF ⊥AF 于点F .求DE +CF 的值.(用含a 的代数式表示)20.(8分)2017年春,市教育局组织九年级600名学生参加“绿色随州,从我做起”植树活动,每名学生植树4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A :4棵;B :5棵;C :6棵;D :7棵.将各类的人数绘制成扇形图和条形图,经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1) 写出条形图中存在的错误,并说明理由;(2) 写出这20名学生每人植树量的众数、中位数;(3) 在求这20名学生每人植树量的平均数时,小明是这样分析的:第一步:求平均数的公式是12...nx x x x n+++=;第二步:在该问题中,12344,4,5,6,7n x x x x =====; 第三步:45675.54x +++==(棵).① 小明的分析是从哪一步开始出现错误的?② 请你帮他计算出正确的平均数,并估计这600名学生共植树多少棵.21.(7分)英语听力考试期间,需要杜绝考点周围的噪音,如图,点A 是随州市某中学考点,在位于A 考点南偏西15°方向距离125米处点C 处有一消防队,在听力考试期间,消防队突然接到报警电话,告知在位于点C 北偏东75°方向的点F 处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力考试造成影响,1.732).22. (7分)如图,在等腰△ABC 中,AB =AC ,角平分线AD 、CE 相交于点E ,经过C 、E 两点的⊙O 交AC 于点G ,交BC 于点F ,GC 恰为⊙O 的直径. (1)求证:AD 与⊙O 相切; (2)当BC =4,1cos 3B =时,求⊙O 的半径.23.(10分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x (x ≥2)个羽毛球,供社区居民免费借用.该社区附近A 、B 两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价均为3元,目前两家超市同时在做促销活动:A 超市:所有商品均打九折(按标价的90%)销售;B 超市:买一副羽毛球拍送2个羽毛球.设在A 超市购买羽毛球拍和羽毛球的费用为A y (元),在B 超市购买羽毛球拍和羽毛球的费用为B y (元).请解答下列问题:(1)分别写出A y 和B y 与x 之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.24. (10分)已知:点P 是平行四边形ABCD 对角线AC 所在直线上的一个动点(点P 不与点A 、C 重合),分别过点A 、C 向直线BP 作垂线,垂足分别为点E 、F ,点O 为AC 的中点.(1)当点P 与点O 重合时如图1,请明证OE=OF ;(2)直线BP 绕点B 逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF 、AE 、OE 之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.25.(12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y 轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B 和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.答案23.24.解:(1)∵AE⊥PB,CF⊥BP,∴∠AEO=∠CFO=90°,在△AEO和△CFO中,,∴△AOE≌△COF,∴OE=OF.(2)图2中的结论为:CF=OE+AE.图3中的结论为:CF=OE﹣AE.选图2中的结论证明如下:延长EO交CF于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠EAO=∠GCO,在△EOA和△GOC中,,∴△EOA≌△GOC,∴EO=GO,AE=CG,在RT△EFG中,∵EO=OG,∴OE=OF=GO,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=GF,∵OE=OF,∴OE=FG,∵CF=FG+CG,∴CF=OE+AE.选图3的结论证明如下:延长EO交FC的延长线于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠AEO=∠G,在△AOE和△COG中,,∴△AOE≌△COG,∴OE=OG,AE=CG,在RT△EFG中,∵OE=OG,∴OE=OF=OG,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=FG,∵OE=OF,∴OE=FG,∵CF=FG﹣CG,∴CF=OE﹣AE.25.解:(1)把B、C两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣2x﹣3;(2)如图1,连接BC,过Py轴的平行线,交BC于点M,交x轴于点H,在y=x2﹣2x﹣3中,令y=0可得0=x2﹣2x﹣3,解得x=﹣1或x=3,∴A点坐标为(﹣1,0),∴AB=3﹣(﹣1)=4,且OC=3,∴S△ABC=AB•OC=×4×3=6,∵B(3,0),C(0,﹣3),∴直线BC解析式为y=x﹣3,设P点坐标为(x,x2﹣2x﹣3),则M点坐标为(x,x﹣3),∵P点在第四限,∴PM=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,∴S△PBC=PM•OH+PM•HB=PM•(OH+HB)=PM•OB=PM,∴当PM有最大值时,△PBC的面积最大,则四边形ABPC的面积最大,∵PM=﹣x2+3x=﹣(x﹣)2+,∴当x=时,PM max=,则S△PBC=×=,此时P点坐标为(,﹣),S四边形ABPC=S△ABC+S△PBC=6+=,即当P点坐标为(,﹣)时,四边形ABPC的面积最大,最大面积为;(3)如图2,设直线m交y轴于点N,交直线l于点G,则∠AGP=∠GNC+∠GCN,当△AGB和△NGC相似时,必有∠AGB=∠CGB,又∠AGB+∠CGB=180°,∴∠AGB=∠CGB=90°,∴∠ACO=∠OBN,在Rt△AON和Rt△NOB中∴Rt△AON≌Rt△NOB(ASA),∴ON=OA=1,∴N点坐标为(0,﹣1),设直线m解析式为y=kx+d,把B、N两点坐标代入可得,解得,∴直线m解析式为y=x﹣1,即存在满足条件的直线m,其解析式为y=x﹣1.当Q点在x轴上方时直线m的解析式为:y=-x+111。

相关文档
最新文档