四川省成都市2014_2015学年高一上学期期末数学试题

合集下载

2014-2015学年第一学期高一期末化学试题(附答案)

2014-2015学年第一学期高一期末化学试题(附答案)

高一化学试题可能用到的相对原子质量:H:1 N:14O:16S:32 Cl:35.5 Cu:64Ba:137第Ⅰ卷(选择题)一.选择题(每小题只有一个选项符合题意。

)1. 空气是人类生存所必需的重要资源。

为改善空气质量而启动的“蓝天工程”得到了全民的支持。

下列措施中,不利于“蓝天工程”建设的是A. 推广使用燃煤脱硫技术,防治SO2污染B. 实施绿化工程,防治扬尘污染C. 研制开发燃料电池汽车,消除机动车尾气污染D. 加大石油、煤炭的开采速度,增加化石燃料的使用量2. 银耳本身为淡黄色,某地生产的一种“雪耳”,颜色洁白如雪。

制作如下:将银耳堆放在密闭状态良好的塑料棚内,棚的一端支口小锅,锅内放有硫磺,加热使硫磺熔化并燃烧,两天左右,“雪耳”就制成了。

“雪耳”炖而不烂,对人体有害。

制作“雪耳”利用的是A. 硫的还原性B. 硫的漂白性C. 二氧化硫的还原性D. 二氧化硫的漂白性3. 在水泥、冶金工厂常用高压电对气溶胶作用,除去大量粉尘,以减少其对空气的污染,这种做法运用的原理是A. 丁达尔效应B. 电泳C. 渗析D. 聚沉4. 下列物质属于纯净物的是A. 盐酸B. 液氯C. 碘酒D. 漂白粉5. 下列变化需加氧化剂才能实现的是A. NH3NH4+B. N2NH3C. NH3NOD. Cl2Cl-6. 下列变化不属于氮的固定的是A. 根瘤菌把氮气转化为氨B. 氮气和氢气在适宜条件下合成氨C. 氮气和氧气在放电条件下合成NOD. 工业上用氨和二氧化碳合成尿素7. 下列物质均有漂白作用,其漂白原理相同的是①过氧化钠②次氯酸③双氧水④活性炭⑤臭氧A. ①②③⑤B.只有①③⑤C. ②③④D. 只有①②⑤8. 实验室不需用棕色试剂瓶保存的试剂是A. 浓硝酸B. 硝酸银C. 氯水D. 浓硫酸9. 自来水常用Cl2消毒,某学生用这种自来水去配制下列物质的溶液,不会产生明显的药品变质问题的是A. AgNO3B. Ca(OH)2C. Na2SO3D.AlCl310. 下列有关反应的离子方程式错误的是A. KOH 溶液与过量的SO 2反应: OH -+SO 2=HSO 3-B. Na 2SO 3溶液与稀硫酸反应: SO 32- +2H +=SO 2↑+H 2OC. NaBr 溶液中通入氯气: 2Br -+Cl 2=Br 2+2Cl -D. 石灰石与盐酸反应: CO 32-+2H +=H 2O+CO 2↑11. 下列叙述正确的为A. 石墨转化为金刚石属于化学变化B. 金刚石和石墨具有相似的物理性质C. C 60是碳元素的一种单质,其摩尔质量为720D. 由碳元素单质组成的物质一定是纯净物12. 下列化合物中不能由单质直接化合而制成的是A.FeSB.Cu 2SC.SO 3D.FeCl 313. 下列离子在溶液中可大量共存的一组是A. K +、Na +、OH -、SO 42- B. Ba 2+、Fe 2+、NO 3-、H + C. H +、Na +、CO 32-、SO 42- D. Fe 3+、Ba 2+、NO 3-、OH -14. 下列叙述正确的是A. 将钠放入硫酸铜溶液中可置换出铜B. 铜丝在氯气中燃烧,产生蓝色的烟C. 向氯化铁溶液中滴入KOH 溶液,可产生红褐色胶体D. 氢气在氯气中燃烧,火焰呈苍白色15. 甲、乙、丙三种溶液各含有一种X -(X -为Cl -、Br -、I -)离子。

2014-2015学年高中数学基础巩固试题第一章《立体几何初步综合测试》A新人教B版必修2

2014-2015学年高中数学基础巩固试题第一章《立体几何初步综合测试》A新人教B版必修2

高中数学第一章立体几何初步综合测试A 新人教B版必修2时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2014·广西南宁高一期末测试)用符号表示“点A在直线l上,l在平面α外”正确的是( )A.A∈l,l⊄αB.A∈l,l∉αC.A⊂l,l∉αD.A⊂l,l⊄α[答案] A[解析] 点在直线上用“∈”表示,直线在平面外用“⊄”表示,故选A.2.(2014·河北邢台一中高一月考)若直线l不平行于平面α,且l⊄α,则( ) A.平面α内所有直线与l异面B.平面α内存在惟一的直线与l平行C.平面α内不存在与l平行的直线D.平面α内的直线都与l相交[答案] C[解析] ∵直线l不平行于平面α,且l⊄α,∴l与平面α相交,故平面α内不存在与l平行的直线.3.一长方体木料,沿图①所示平面EFGH截长方体,若AB⊥CD那么图②四个图形中是截面的是( )[答案] A[解析] 因为AB、MN两条交线所在平面(侧面)互相平行,故AB、MN无公共点,又AB、MN在平面EFGH内,故AB∥MN,同理易知AN∥BM.又AB⊥CD,∴截面必为矩形.4.(2014·湖南永州市东安天成实验中学高一月考)正方体ABCD-A1B1C1D1的体对角线AC1的长为3cm,则它的体积为( )A.4cm3B.8cm3C.11272cm3D.33cm3[答案] D[解析] 设正方体的棱长为a cm ,则3a 2=9,∴a = 3.则正方体的体积V =(3)3=33(cm 3).5.(2014·山东菏泽高一期末测试)某几何体的三视图如图所示,则该几何体的体积是( )A .2πB .4πC .πD .8π[答案] C[解析] 由三视图可知,该几何体是底面半径为1,高为2的圆柱的一半,其体积V =12×π×12×2=π.6.将棱长为1的正方体木块切削成一个体积最大的球,则该球的体积为( ) A.π6B.2π3 C.3π2D.4π3[答案] A[解析] 将棱长为1的正方体木块切削成一个体积最大的球,球的直径应等于正方体的棱长,故球的半径为R =12,∴球的体积为V =43πR 3=43π×(12)3=π6.7.设α表示平面,a 、b 、l 表示直线,给出下列命题,①⎭⎪⎬⎪⎫a ⊥l b ⊥la ⊂αb ⊂α⇒l ⊥α; ②⎭⎪⎬⎪⎫a ∥αa ⊥b⇒b ⊥α; ③⎭⎪⎬⎪⎫a ⊄αb ⊂αa ⊥b ⇒a ⊥α;④直线l 与平面α内无数条直线垂直,则l ⊥α.其中正确结论的个数为( ) A .0 B .1 C .2 D .3[答案] A[解析] ①错,缺a 与b 相交的条件;②错,在a ∥α,a ⊥b 条件下,b ⊂α,b ∥α,b 与 α斜交,b ⊥α都有可能; ③错,只有当b 是平面α内任意一条直线时,才能得出a ⊥α,对于特定直线b ⊂α,错误;④错,l 只要与α内一条直线m 垂直,则平面内与m 平行的所有直线就都与l 垂直,又l 垂直于平面内的一条直线是得不出l ⊥α的.8.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )[答案] B[解析] (可用排除法)由正视图可把A ,C 排除, 而由左视图把D 排除,故选B.9.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比是,这截面把圆锥母线分为两段的比是( )A .B .3-1)C .3[答案] B[解析] 如图由题意可知,⊙O 1与⊙O 2面积之比为,∴半径O 1A 1与OA 之比为3,∴PA 1PA =13,∴PA 1AA 1=13-1. 10.在正方体ABCD -A ′B ′C ′D ′中,过对角线BD ′的一个平面交AA ′于E 、交CC ′于F ,则以下结论中错误的是( )A .四边形BFD ′E 一定是平行四边形B .四边形BFD ′E 有可能是正方形C .四边形BFD ′E 有可能是菱形D .四边形BFD ′E 在底面投影一定是正方形 [答案] B[解析] 平面BFD ′E 与相互平行的平面BCC ′B ′及ADD ′A ′的交线BF ∥D ′E ,同理BE ∥D ′F ,故A 正确.特别当E 、F 分别为棱AA ′、CC ′中点时,BE =ED ′=BF =FD ′,则四边形为菱形,其在底面ABCD 内的投影为正方形ABCD ,∴选B.11.如图所示,在斜三棱柱ABC -A 1B 1C 1的底面△ABC 中,∠A =90°,且BC 1⊥AC ,过C 1作C 1H ⊥底面ABC ,垂足为H ,则点H 在()A .直线AC 上B .直线AB 上C .直线BC 上D .△ABC 内部[答案] B[解析]⎭⎪⎬⎪⎫⎭⎪⎬⎪⎫AC ⊥ABAC ⊥BC 1AB ∩BC 1=B ⇒AC ⊥平面ABC 1 AC ⊂平面ABC⇒平面ABC 1⊥平面ABC ,⎭⎪⎬⎪⎫ 平面ABC 1∩平面ABC =AB C 1H ⊥平面ABC⇒H 在AB 上.12.如图1,在透明密封的长方体ABCD -A 1B 1C 1D 1容器内已灌进一些水,固定容器底面一边BC 于水平的地面上,再将容器倾斜,随着倾斜度的变化,有下列四个命题:①有水的部分始终呈棱柱形; ②水面四边形EFGH 的面积不会改变; ③棱A 1D 1始终与水面EFGH 平行;④当点E 、F 分别在棱BA 、BB 1上移动时(如图2),BE ·BF 是定值. 其中正确命题的序号是( ) A .①②③ B .①③④ C .③④ D .①②[答案] B[解析] 由于BC 固定于水平地面上, ∴由左右两个侧面BEF ∥CGH ,可知①正确; 又∵A 1D 1∥BC ∥FG ∥EH ,∴③正确;水的总量保持不变,总体积V =12BE ·BF ·BC ,∵BC 一定,∴BE ·BF 为定值,故④正确;水面四边形随着倾斜程度不同,面积随时发生变化, ∴②错.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.用斜二测画法,画得正方形的直观图面积为182,则原正方形的面积为________. [答案] 72 [解析] 由S 直=24S 原,得S 原=22S 直=22×182=72. 14.如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径相等,这时圆柱、圆锥、球的体积之比为________.[答案][解析] 设球半径为a ,则圆柱、圆锥、球的体积分别为:πa 2·2a ,13πa 2·2a ,43πa 3.所以体积之比2πa323πa 343πa 3=2343=15.考察下列三个命题,在“________”处都缺少同一个条件,补上这个条件其构成真命题(其中l 、m 为不同直线,α、β为不重合平面),则此条件为________.①⎭⎪⎬⎪⎫m ⊂αl ∥m ⇒l ∥α; ②⎭⎪⎬⎪⎫l ∥mm ∥α ⇒l ∥α; ③⎭⎪⎬⎪⎫l ⊥βα⊥β ⇒l ∥α. [答案] l ⊄α[解析] ①体现的是线面平行的判定定理,缺的条件是“l 为平面α外的直线”,即“l ⊄α”.它同样适合②③,故填l ⊄α.16.一块正方形薄铁片的边长为4cm ,以它的一个顶点为圆心,一边长为半径画弧,沿弧剪下一个扇形(如图),用这块扇形铁片围成一个圆锥筒,则这个圆锥筒的容积等于________cm 3.[答案]153π [解析] 据已知可得圆锥的母线长为4,设底面半径为r , 则2πr =π2·4⇒r =1(cm),故圆锥的高为h =42-1=15(cm), 故其体积V =13π·1215=15π3(cm 3).三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392cm 2,母线与轴的夹角是45°,求这个圆台的高、母线长和两底面半径.[解析] 圆台轴截面如图,设上、下底半径分别为x 和3x ,截得圆台的圆锥顶点为S ,在Rt △SOA 中,∠ASO =45°,∴SO =AO =3x ,∴OO 1=2x ,又轴截面积为S =12(2x +6x )·2x =392,∴x =7,∴高OO 1=14,母线长l =2OO 1=142,∴圆台高为14cm ,母线长为142cm ,两底半径分别为7cm 和21cm.18.(本题满分12分)(2014·陕西汉中市南联中学高一期末测试)在正方体ABCD -A 1B 1C 1D 1中,AA 1=2,E 为棱CC 1的中点.(1)求四棱锥E -ABCD 的体积; (2)求证:B 1D 1⊥AE ; (3)求证:AC ∥平面B 1DE .[解析] (1)V E -ABCD =13×1×2×2=43.(2)∵BD ⊥AC ,BD ⊥CE ,CE ∩AC =C , ∴BD ⊥平面ACE , ∴BD ⊥AE 1,又∵BD ∥B 1D 1,∴B 1D 1⊥AE .(3)如图,取BB 1的中点F ,连接AF 、CF 、EF .则EF 綊AD ,∴四边形ADEF 为平行四边形, ∴AF ∥DE .又CF∥B1E,AF∩CF=F,DE∩B1E=E,∴平面AFC∥平面B1DE,∴AC∥平面B1DE.19.(本题满分12分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC.E是PC的中点,作EF⊥PB交PB于F.(1)证明PA∥平面EDB;(2)证明PB⊥平面EFD.[解析] (1)如图,设AC交BD于O,连接EO.∵底面ABCD是正方形,∴点O是AC的中点.△PAC中,EO是中位线.∴PA∥EO,而EO⊂平面EDB,且PA⊄平面EDB.∴PA∥平面EDB.(2)∵PD⊥底面ABCD,且DC⊂底面ABCD,∴PD⊥DC.由PD=DC知△PDC是等腰直角三角形,而DE是斜边PC的中线,∴DE⊥PC①又由PD⊥底面ABCD,得PD⊥BC∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC,而DE⊂面PDC,∴BC⊥DE②由①和②推得DE⊥平面PBC,而PB⊂平面PBC,∴DE⊥PB又EF⊥PB且DE∩EF=F,所以PB⊥平面EFD.20.(本题满分12分)如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,M、N分别是AA1、AC 的中点.(1)求证:MN ∥平面BCD 1A 1; (2)求证:MN ⊥C 1D ; (3)求VD -MNC 1.[解析] (1)连接A 1C ,在△AA 1C 中,M 、N 分别是AA 1、AC 的中点,∴MN ∥A 1C .又∵MN ⊄平面BCA 1D 1且A 1C ⊂平面BCD 1A 1, ∴MN ∥平面BCD 1A 1.(2)∵BC ⊥平面CDD 1C 1,C 1D ⊂平面CDD 1C 1, ∴BC ⊥C 1D .又在平面CDD 1C 1中,C 1D ⊥CD 1,BC ∩CD 1=C , ∴C 1D ⊥平面BCD 1A 1,又∵A 1C ⊂平面BCD 1A 1,∴C 1D ⊥A 1C , 又∵MN ∥A 1C ,∴MN ⊥C 1D .(3)∵A 1A ⊥平面ABCD ,∴A 1A ⊥DN , 又∵DN ⊥AC ,∴DN ⊥平面ACC 1A 1, ∴DN ⊥平面MNC 1.∵DC =2,∴DN =CN =2,∴NC 21=CC 21+CN 2=6,MN 2=MA 2+AN 2=1+2=3,MC 21=A 1C 21+MA 21=8+1=9,∴MC 21=MN 2+NC 21,∴∠MNC 1=90°, ∴S △MNC 1=12MN ·NC 1=12×3×6=322,∴VD -MNC 1=13·DN ·S △MNC 1=13·2·322=1.21.(本题满分12分)(2014·山东文,18)如图,四棱锥P -ABCD 中,AP ⊥平面PCD ,AD ∥BC ,AB =BC =12AD ,E 、F 分别为线段AD 、PC 的中点.(1)求证:AP ∥平面BEF ; (2)求证:BE ⊥平面PAC .[解析] (1)证明:如图所示,连接AC 交BE 于点O ,连接OF .∵E 为AD 中点,BC =12AD ,AD ∥BC ,∴四边形ABCE 为平行四边形. ∴O 为AC 的中点,又F 为PC 中点, ∴OF ∥AP .又OF ⊂面BEF ,AP ⊄面BEF , ∴AP ∥面BEF .(2)由(1)知四边形ABCE 为平行四边形. 又∵AB =BC ,∴四边形ABCE 为菱形. ∴BE ⊥AC .由题意知BC 綊12AD =ED ,∴四边形BCDE 为平行四边形. ∴BE ∥CD .又∵AP ⊥平面PCD , ∴AP ⊥CD . ∴AP ⊥BE . 又∵AP ∩AC =A , ∴BE ⊥面PAC .22.(本题满分14分)(2014·广东文,18)如图1,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB =1,BC =PC =2,作如图2折叠,折痕EF ∥DC .其中点E 、F 分别在线段PD 、PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF.(1)证明:CF ⊥平面MDF ;(2)求三棱锥M -CDE 的体积.[解析] (1)如图PD ⊥平面ABCD ,PD ⊂平面PCD ,∴平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD ,MD ⊂平面ABCD ,MD ⊥CD ,∴MD ⊥平面PCD ,CF ⊂平面PCD ,∴CF ⊥MD ,又CF ⊥MF ,MD ,MF ⊂平面MDF ,MD ∩MF =M ,∴CF ⊥平面MDF .(2)∵CF ⊥平面MDF ,∴CF ⊥DF ,又易知∠PCD =60°,∴∠CDF =30°,从而CF =12CD =12,∵EF ∥DC ,∴DE DP =CF CP ,即DE 3=122,∴DE =34, ∴PE =334,S △CDE =12CD ·DE =38, MD =ME 2-DE 2=PE 2-DE 2 =3342-342=62, ∴V M -CDE =13S △CDE ·MD =13×38×62=216.。

2014-2015学年高一数学(人教B版必修5)课件2-3-1《等比数列的概念及通项公式》

2014-2015学年高一数学(人教B版必修5)课件2-3-1《等比数列的概念及通项公式》

A.90
B.100
C.145
D.190
[解析] 设公差为d,由题意得a22=a1·a5, ∵a1=1,∴(1+d)2=1+4d, ∴d2-2d=0,∵d≠0,∴d=2, ∴S10=10×1+10×2 9×2=100,故选B.
[答案] B
等差数列{an}中,公差d≠0,且a3是a1和a9的等比中项, 则aa21++aa43++aa190=________.
此,至少应倒4次后才可以使酒精浓度低于10%.
易错疑难辨析
等比数列{an}的前三项的和为168,a2-a5= 42,求a5、a7的等比中项.
[错解] 设该等比数列的公比为q,首项为a1, ∵a2-a5=42,∴q≠1,由已知,得
a1+a1q+a1q2=168 a1q-a1q4=42

∴aa11q1+1-q+q3q=2=42168② ①
[解析] ∵Sn+1=2Sn+n+5(n∈N*), ∴Sn=2Sn-1+n+4(n≥2), 两式相减,得an+1=2an+1, ∴an+1+1=2(an+1), ∴aan+n+1+11=2(n≥2).
∵S2=2S1+6=2a1+6=16, ∴a1+a2=16,∴a2=16-a1=11. ∴a2+1=12=2(a1+1). ∴aan+n+1+11=2(n∈N*). 又a1+1=6, 即数列{an+1}是首项为6,公比为2的等比数列.
4.等比数列{an}中,a1=1,a4=8,则a6=________.
[答案] 32
[解析] 设公比为q,则a4=a1q3, ∴q3=aa14=81=8,∴q=2. ∴a6=a1q5=25=32.
课堂典例讲练
8,求an.
等比数列的通项公式 已知等比数列{an},若a1+a2+a3=7,a1a2a3=

2014-2015学年高一数学上学期必修一复习试题必修四综合试题一(含答案)

2014-2015学年高一数学上学期必修一复习试题必修四综合试题一(含答案)

4.已知 a 2 , b 3 , a b 19 ,则 a b 等于( A. 13 5.已知 cos( B. 15 C. 17
D. 7 )
15.给出下列四个命题:

4
)
10 , (0, ) ,则 cos 2 等于( 10 2
①函数 f x tan x 有无数个零点;②把函数 f x 2sin 2 x 图像上每个点的横坐标伸长到原来的 4
, ,且满足 sin cos sin cos 1 ,则 2 2

2 ;③ a b 与 b 垂直;④ a // b ,其中真命题的序号是( 2
B.③ C.①④ D.②③

sin sin 的取值范围是(
A. 2, 2


B. 1, 2
意 x 都有 f x1 f x f x2 成立, 则 x1 x2 的最小值为 你认为正确的序号都填上)
1 3
1 2
D.
3 4
.其中正确命题的序号为 2
(把

三、解答题: 本大题共 6 个小题,共 75 分.解答时要求写出必要的文字说明、证明过程或推理步骤. 16.(本小题满分 12 分) 已知向量 a (1, 2) ,向量 b (3, 2) . (1)若向量 ka b 与向量 a 3b 垂直,求实数 k 的值; (2)当 k 为何值时,向量 ka b 与向量 a 3b 平行?并说明它们是同向还是反向.
sin(
3 ) 2 cos( ) 2 等于(
sin( ) sin( ) 2
A.


2 的扇形所对的弦长为 2 3 ,则扇形的面积为 3

四川省成都市双流县永安中学2014-2015学年高一10月月考数学试题 Word版含答案

四川省成都市双流县永安中学2014-2015学年高一10月月考数学试题 Word版含答案

双流县永安中学2014-2015学年高一年级上期十月考考试题数学命题人:肖道清 审题人:唐林梅 张云惠 陈强满分:150分 时间:120分钟注意事项:1.请在答题卷上相应的地方写上班级,姓名,学号。

2.答案写在答题卡上相应的地方,只交答题卡。

3.解答题要求写出解答过程,字迹工整。

第I 卷(选择题共50分)一.选择题(每小题5分,每小题只有一个正确答案,共50分) 1、已知全集{}4,3,2,1,0,1-=U ,{}4,2,0,1-=A ,则U C A =( ).A.φB. }4,2,0{C. }3,1{D.}3,1,1{- 2、函数21)(--=x x x f 的定义域为( ). A.[1,2)∪(2,+∞) B.(1,+∞) C.[1,2) D.[1,+∞) 3、已知函数0()(>=a a x f x 且)1≠a ,若2)1(=f ,则函数)(x f 的解析式为( ).A .x x f 4)(=B .x x f 2)(=C .x x f )41()(=D .x x f )21()(=4、下列说法错误的是( ).A.42y x x =+是偶函数B. 偶函数的图象关于y 轴成轴对称C. 奇函数的图象关于原点成中心对称D.32y x x =+是奇函数 5、下列各组函数是同一函数的是( ).①32)(x x f -=与x x x g 2)(-=; ②x x f =)(与2)()(x x g =; ③0)(x x f =与01)(xx g =; ④12)(2--=x x x f 与12)(2--=t t t g A 、①② B 、①③ C 、③④ D 、②④ 6、若集合{}|32,S y y x x R ==+∈,{}2|1,T y y x x R ==-∈,则ST 是( )。

A .SB . TC . φD .有限集 7、已知1)1(+=+x x f ,则函数)(x f 的解析式为( ). A 、2)(x x f = B 、)1(1)(2≥+=x x x f C 、)1(22)(2≥+-=x x x x f D 、)1(2)(2≥-=x x x x f////////////////////////////////////////////////////////////线 封 密 双流中学永安校区_________班 姓名________________ 科目 考号8、下列判断正确的是( )。

四川省成都市新都区2023-2024学年高一下学期期末测试数学试题(含答案)

四川省成都市新都区2023-2024学年高一下学期期末测试数学试题(含答案)

成都市新都区2023-2024学年高一下学期期末测试数学试题本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.注意事项:1.答题前,务必将姓名、考场号、座位号填写在答题卡规定的位置上,并将考生条形码粘贴在规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色墨迹签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,将试题卷带走,仅将答题卡交回.第Ⅰ卷(选择题,满分58分)一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z 满足:(i 为虚数单位),则z 为( )A .B .C.D .2.在直角坐标平面内,的三顶点的坐标分别为,,,则的面积为()A .120B .60C .30D .153.将函数图像上的所有点的横坐标变为原来的倍(纵坐标不变),再将图象向左平移后得函数的图象,则函数的解析式为( )A .B .C .D .4.在正四棱锥的所有棱长均相等,E 为PC 的中点,则异面直线BE 与AC 所成角的余弦值为()()20241i 23i z +=+31i 2-31i 2+15i 22+51i 22+ABC △()1,1A --()7,2B -()3,7C ABC △()sin f x x =12π6()g x ()g x ()1πsin 26g x x ⎛⎫=-⎪⎝⎭()πsin 23g x x ⎛⎫=-⎪⎝⎭()πsin 26g x x ⎛⎫=+⎪⎝⎭()πsin 23g x x ⎛⎫=+⎪⎝⎭P ABCD -ABCD5.在直角坐标平面内,已知,,,,以y 轴为旋转轴,将四边形ABCD 旋转一周,得一个旋转体,则此旋转体的表面积为()A .B .C .D .6.中,角A ,B ,C 所对的边分别为a ,b ,c ,,交AC 于点D ,且,则a 的值为()A .BC .6D .37.八角星纹是大汶口文化中期彩陶纹样中具有鲜明特色的花纹.八角星纹常绘于彩陶盆和豆的上腹,先于器外的上腹施一圈红色底衬,然后在上面绘并列的八角星形的单独纹样.八角星纹以白彩绘成,黑线勾边,中为方形或圆形,且有向四面八方扩张的感觉,八角星纹延续的时间较长,传播范围亦广,在长江以南的时间稍晚的崧泽文化的陶豆座上也屡见刻有八角大汶口文化八角星纹.图2是图1抽象出来的图形,在图2中圆中各个三角形(如)为等腰直角三角形,点O 为圆心,中间部分是正方形且边长为2,定点A ,B 所在位置如图所示,则的值为( )A .14B .12C .10D .88.四面体ABCD 中,若,,,则此四面体的外接球的表面积()0,1A -()4,1B --()4,4C -()0,1D 16π36π76π96πABC △120ABC ∠=︒c =BD BC ⊥1BD =ACD △AB AO ⋅DA DB DC ===3BC =5π6BAC ∠=为( )A .B .C .D .二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.)9.设都是复数,i 是虚数单位,则下列结论中一定成立的是( )A .方程无复数解B .若,则C.D .10.下列命题正确的是( )A .一个三棱锥被过三条侧棱的中点的平面所截,截得的两部分为一个三棱台和一个小三棱锥,则此三棱台与小三棱锥的体积比为7B .圆锥被过其顶点的某平面所截,截面形状为一个三角形,若圆锥的底面半径,高,则截面三角形面积的最大值为48C .圆锥被过其顶点的某平面所截,截面形状为一个三角形,若圆锥的底面半径,高,则截面三角形面积的最大值为48D .若一个平行六面体被某平面所截,所得截面形状为四边形,则此四边形至少有一组对边互相平行11.的内心为P ,外心为O ,重心为G ,若,,下列结论正确的是()A .的内切圆半径为B .C .D .第Ⅱ卷(非选择题,满分92分)三、填空题(本题共3小题,每小题5分,共15分,把答案填在答题卡上)12.若,则的值为______.13.欧拉公式:(i 是虚数单位,)是由瑞士著名数学家欧拉发现的,被誉为“数学中的天桥”.根据欧拉公式,可求出的最大值为______.14.如图,平面四边形ABCD 中,,,,,沿AC 将折起成直二面角(折起后原来平面图形的D 点变为空间图形的P 点),则折起后四面体PABC 的内切球半径为______.四、解答题(本题共5小题,共77分.解答应写文字说明、证明过程或验算步骤.)48π16π12π4π12,,z z z 2350z z -+=368i z z -=+32i z =+1212z z z z =22z z=8r =6h =6r =8h =ABC △5AB AC ==6BC =ABC △32r =6550PA PB PC ++= 6550OA OB OC ++= 1124OG =5sin cos 4αα+=sin 2αi cos isin x e x x =+x ∈R i 1x e -3AD BC ==4AB =AB BC ⊥AD AC ⊥ADC △P AC B --已知函数,其中,且函数的图像的对称中心与对称轴的距离的最小值为.(1)求的解析式;(2)求在区间上的值域.16.(本小题15分)如图,边长为6的正中,点D 在边AC 上,且,点M 在线段BD 上.(1)若,求的值;(2)若,求x 及的值.17.(本小题15分)在中,角A ,B ,C 的对边分别为a ,b ,c ,若.(1)求角C 的大小;(2)设D 是AB 上一点,且,,且,求的面积.18.(本小题17分)如图,四棱锥中,底面ABCD 是边长为4的菱形,,,E 为PA 中点,AC 与BD 交点为O .(1)求证:平面EBD ;(2).求证:平面平面PAC ;(3)若,求点C 到平面ABE 的距离.()21cos cos 2f x x x x ωωω=+-0ω>()f x π4()f x ()f x π0,2⎡⎤⎢⎥⎣⎦ABC △2AD DC =BD m AB nAC =+m n +2AM xAB xAC =+cos AMC ∠ABC △cos 2cos B b aC c c+=2BD DA =1CD =2sin 3sin B A =ABC △P ABCD -4PD PB ==60BAD ∠=︒PC ∥EBD ⊥PA PC =(1)若对恒成立,求的值;(2)求的值域;(3)正五棱锥的所有棱长均为2,求此正五棱锥的表面积.成都市新都区2023-2024学年高一下学期期末测试数学试题参考答案一、单选题:1~8.B C D D C BA A 二、多选题:9.BC 10.ACD 11.ABD三、填空题:12. 13.2 14.四、解答题:15.【详解】(1).函数的图像的对称中心与对称轴的距离的最小值为.周期为,则,∵,∴所以即为所求函数的解析式.(2)∵,∴由正弦型函数的图像可得即为所求值域.16.【详解】(1)∵,而∴,则即为所求.(2)∵,得,∴,又∵,∴()2sin 3sin cos x x p x q =+x ∀∈R p q +()sin 5sin xf x x=91623()211πcos cos 2cos 2sin 2226f x x x x x x x ωωωωωω⎛⎫=+-=+=+ ⎪⎝⎭()f x π44ππ4T ==2ππ2ω=0ω>1ω=()πsin 26f x x ⎛⎫=+⎪⎝⎭()f x π0,2x ⎡⎤∈⎢⎥⎣⎦ππ7π2,666x ⎡⎤+∈⎢⎥⎣⎦()π1sin 2,162f x x ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎝⎭⎣⎦23BD AD AB AB AC =-=-+BD m AB nAC=+ 123m n =-⎧⎪⎨=⎪⎩13m n +=-2AD DC =2AD DC = 32AC AD =2AM xAB xAC =+ 3232AM xAB x AD xAB xAD=+⋅=+∵M 、B 、D 三点共线,∴,则即为所求x 的值.则,∴∴∴,同理可求:∴∴即为所求.【注:也可以利用余弦定理解三角形求解.】17.【详解】(1)∵,由正弦定理知:∴∵,,∴,∵,.(2)由题意得,,,,【法一】在中,,在中,,∵,∴,化简得.31x x +=14x =1142AM AB AC =+ 1142CM AM AC AB AC=-=- ()()()222211111634216444AMAB AC AB ACAB AC ⎛⎫=+=++⋅= ⎪⎝⎭AM = CM =()()2211271644AM CM AB AC ⋅=-=-cos cos ,AM CM AMC AM CM AM CM⋅∠===⋅cos 2cos B b a C c c +=cos sin 2sin cos sin sin B B AC C C+=()sin cos sin sin cos sin 2sin sin cos sin cos sin cos sin B C B C B C A AC C C C C C C++===sin 0A ≠sin 0C ≠1cos 2C =0πC <<π3C =13AD c =23DB c =1CD =ACD △22119cos 23c b ADC c +-∠=BCD △22419cos 43c a CDB c +-∠=πADC BDC ∠+∠=cos cos ADC BDC ∠=-∠2222233a b c +-=在中,,∴,整理得.【注:此法还可以抓住顶点A 或B 在相应的两个三角形分别使用余弦定理可得,只要正确,都应相应给分.】【法二】∵,∴∴∵且得:又∵,则,∴,则∴,即为的面积.18.【详解】(1)设,连结EO ,∵E 为PA 中点,O 为AC 中点,∴,又∵平面EBD ,平面EBD ,∴平面EBD ;(2)连结PO ,∵,O 为BD中点,∴,又∵底面ABCD 为菱形,∴,∵,∴平面PAC ,又∵平面EBD ,∴平面平面PAC ;(3)由(2)得:,由,同理可得:∴面ABCD 可求:,∴而中,,可求:,ABC △222222cos c a b ab C ab ab =+-=+-()22222233a b a b ab +-=+-22429a b ab ++=2BD DA =()123CD CA CB=+ ()()()()22222211124444cos 999CD CA CB CA CBCA CB b a ab C ⎡⎤⎡⎤=+=++⋅=++⎣⎦⎢⎥⎣⎦1CD = π3C =22429a b ab ++=2sin 3sin B A =23b a =2139a =2913a =21sin 2ABC S ab C ===△ABC △AC BD O = EO PC ∥EO ⊂PC ⊄PC ∥PD PB =PO BD ⊥AC BD ⊥PO AC O = BD ⊥BD ⊂EBD ⊥PO BD ⊥PA PC =PO AC ⊥PO ⊥AC =4BD =PO =111243226C ABE E ABC PO V V AC OB --==⨯⨯⨯⨯=⨯=PAB △4AB =PA =4PB =可求:而,则则C 到平面ABE 的距离.19.【详解】(1)∵∴,则.即为所求.【注:还可以代值,构造方程组求解】如:时,;时,,解得,则.即为所求.(2)由,【或】∵,∴,【或】∴即为所求值域.(3)∵,∵,∴,∴(舍)或(舍)或,∴∴12EAB PAB S S ==△△13C ABE EAB C ABE V S d --=△4C ABE -=C ABE d -=()sin 3sin 2sin 2cos cos 2sin x x x x x x x=+=+()()2222sin cos 2cos 1sin sin 4cos 1x x x x x =+-=-41p q =⎧⎨=-⎩3p q +=π2x =10q -=+π6x =13124p q ⎛⎫=+ ⎪⎝⎭41p q =⎧⎨=-⎩3p q +=()()42sin 23sin 516cos 12cos 1sin sin x x x f x x x x x+===⋅⋅⋅⋅⋅⋅=-+()()2sin 44cos 22cos 21sin x x f x x x x+==⋅⋅⋅⋅⋅⋅=+-sin 0x ≠[)2cos 0,1x ∈[)cos 21,1x ∈-()5,54f x ⎡⎫∈-⎪⎢⎣⎭3sin 34sin 3sin θθθ=-+3ππ2π2πsin sin cos 1021010⎛⎫=-= ⎪⎝⎭32πππ4sin 3sin 12sin 101010-+=-πsin110=πsin 10=πsin 10=πcos5=πcot 5=∴,而∴12π52cot 225S ⎡⎤=⋅⋅=⎢⎥⎣⎦底252S ==侧S S S =+=表底侧。

高2015届-七中林荫-高一上期期末复习(解析版)

高2015届-七中林荫-高一上期期末复习(解析版)

2013-2014学年四川省成都七中高一(上)期末数学复习试卷一、选择题:1.(3分)若关于x的方程ax2﹣2x+1=0的解集中有且仅有一个元素,则实数a的值组成的集合中的元素个数为()A.1 B.2 C.3 D.42.(3分)设集合A中含有元素2,3,a2+2a﹣3,集合B中含有元素2,|a+3|,若5∈A且5∉B,则实数a的值为()A.﹣4 B.﹣2 C.2 D.43.(3分)下列每个选项中集合M与N表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={4,5},N={5,4}C.M={1,2},N={(1,2)}D.M={(x,y)x+y=1},N={y|x+y=1}4.(3分)已知a∈Z,A={(x,y)|ax﹣y≤3},且(2,1)∈A,(1,﹣4)∉A,则不满足条件的a的值是()A.0 B.1 C.2 D.35.(3分)满足{a,b}⊊M⊊{a,b,c,d,e}的集合M的个数为()A.6 B.7 C.8 D.96.(3分)已知集合,,P={x|x=,则M,N,P的关系()A.M=N⊊P B.M⊊N=P C.M⊊N⊊P D.N⊊P⊊M7.(3分)已知集合P={x|x2=1},集合Q={x|ax=1},若Q⊆P,那么a的值是()A.1 B.﹣1 C.1或﹣1 D.0,1或﹣18.(3分)设集合S={x|x>1,x<﹣1},T={x|a<x<a+8},若S∪T=R,则a的取值范围是()A.﹣7<a<﹣1 B.﹣7≤a≤﹣1 C.a≤﹣7或a≥﹣1 D.a<﹣7或a>﹣19.(3分)如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪S C.(M∩P)∩∁I S D.(M∩P)∪∁I S10.(3分)设A、B、I均为非空集合,且满足A⊆B⊆I,则下列各式中错误的是()A.(∁I A)∪B=I B.(∁I A)∪(∁I B)=I C.A∩(∁I B)=∅D.(∁I A)∩(∁I B)=∁I B二、填空题:11.(3分)已知三个元素3,x,x2﹣2x构成一个集合,则实数x应满足的条件为.12.(3分)满足{a,b}⊊A⊆{a,b,c,d,e}的集合A有个.13.(3分)设集合A={x|x+m≥0},B={x|﹣2<x<4},全集U=R,且(∁U A)∩B=∅,求实数m的取值范围为.14.(3分)若f(x)=ax2﹣,且f[f()]=﹣,则a=.三、解答题:15.已知集合A={a﹣2,2a2+5a,12}且﹣3∈A,求a.16.实数集A满足条件:若a∈A,则(a≠1).求证:①若2∈A,则A中必还有另外两个元素;②集合A不可能是单元素集.17.若集合M={x|x2+x﹣6=0},N={x|ax﹣1=0},且N⊆M,求实数a的值.18.设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2﹣1=0},其中x∈R,若B⊆A,求实数a 的取值范围.19.设集合A={(x,y)|2x+y=1,x,y∈R},B={(x,y)|a2x+2y=a,x,y∈R},若A∩B=∅,求a的值.20.已知全集U=R,集合A=.求:(1)A∩B;(2)(∁U B)∪P;(3)(A∩B)∩(∁U P).2013-2014学年四川省成都七中高一(上)期末数学复习试卷(理科)(1)参考答案与试题解析一、选择题:1.(3分)(2013秋•武侯区校级期末)若关于x的方程ax2﹣2x+1=0的解集中有且仅有一个元素,则实数a的值组成的集合中的元素个数为()A.1 B.2 C.3 D.4【分析】讨论a=0与a≠0,从而求实数a的值组成的集合中的元素个数.【解答】解:若a=0,则﹣2x+1=0,解集中有且仅有一个元素,成立;若a≠0,△=4﹣4a=0,则a=1.故实数a的值组成的集合中的元素个数为2.故选B.【点评】本题考查了集合中元素的个数问题及方程的解集有且仅有一个元素的判断,属于基础题.2.(3分)(2013秋•武侯区校级期末)设集合A中含有元素2,3,a2+2a﹣3,集合B中含有元素2,|a+3|,若5∈A且5∉B,则实数a的值为()A.﹣4 B.﹣2 C.2 D.4【分析】本题根据题意,进行分类讨论,列出a满足的相等关系和不等关系,得到符合条件的a的值,即得到本题结论.【解答】解:∵集合A中含有元素2,3,a2+2a﹣3,5∈A,∴a2+2a﹣3=5,∴a2+2a﹣8=0,∴x=2或x=﹣4.∵集合B中含有元素2,|a+3|,且5∉B,∴|a+3|≠5,∴a≠2且a≠﹣8.∴x=﹣4.故选A.【点评】本题考查了元素与集合的关系,本题思维量不大,属于基础题.3.(3分)(2013秋•武侯区校级期末)下列每个选项中集合M与N表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={4,5},N={5,4}C.M={1,2},N={(1,2)}D.M={(x,y)x+y=1},N={y|x+y=1}【分析】M={(3,2)},N={(2,3)}表示不同的点;由集合中的元素具有无序性,M={4,5},N={5,4},知集合M与N表示的是同一集合;M={1,2}是两个元素1,2组成的数集,N={(1,2)}是一个点(1,2)组成的点集;M={(x,y)|x+y=1}表示的是点集,N={y|x+y=1}表示的是数集.【解答】解:在A中,∵M={(3,2)},N={(2,3)}表示不同的点,∴集合M与N表示的不是同一集合;在B中,∵集合中的元素具有无序性,M={4,5},N={5,4},∴集合M与N表示的是同一集合;在C中,∵M={1,2}是两个元素1,2组成的数集,N={(1,2)}是一个点(1,2)组成的点集,∴集合M与N表示的不是同一集合;在D中,∵M={(x,y)|x+y=1}表示的是点集,N={y|x+y=1}表示的是数集,∴集合M与N表示的不是同一集合.故选B.【点评】本题考查集合的概念和应用,是基础题.解题时要认真审题,仔细解答,注意集合相等的概念的灵活运用.4.(3分)(2013秋•武侯区校级期末)已知a∈Z,A={(x,y)|ax﹣y≤3},且(2,1)∈A,(1,﹣4)∉A,则不满足条件的a的值是()A.0 B.1 C.2 D.3【分析】本题可将选项的逐一代入集合A中,然后验证是否符合题意,可得本题结论.【解答】解:(1)当a=0时,不等式ax﹣y≤3即为﹣y≤3,将x=2,y=1代入上式,得到﹣1≤3,恒成立,故(2,1)∈A成立;将x=1,y=﹣4代入上式,得到﹣(﹣4)≤3 不成立,故(2,1)∉A成立.∴a=0满足条件.(2)当a=1时,不等式ax﹣y≤3即为x﹣y≤3,将x=2,y=1代入上式,得到2﹣1≤3,恒成立,故(2,1)∈A成立;将x=1,y=﹣4代入上式,得到1﹣(﹣4)≤3,不成立,故(2,1)∉A成立.∴a=1满足条件.(3)当a=2时,不等式ax﹣y≤3即为2x﹣y≤3,将x=2,y=1代入上式,得到2×2﹣1≤3,恒成立,故(2,1)∈A成立;将x=1,y=﹣4代入上式,得到2×1﹣(﹣4)≤3,不成立,故(2,1)∉A成立;∴a=2满足条件.(4)当a=3时,不等式ax﹣y≤3即为3x﹣y≤3,将x=2,y=1代入上式,得到3×2﹣1≤3,不成立,故(2,1)∉A成立;将x=1,y=﹣4代入上式,得到3×1﹣(﹣4)≤3,原不等式成立,故(2,1)∉A成立;∴a=3不满足条件.故选D.【点评】本题考查的是集合与元素的关系和线性规划的知识,本题难度不大,属于基础题.5.(3分)(2015秋•晋城期末)满足{a,b}⊊M⊊{a,b,c,d,e}的集合M的个数为()A.6 B.7 C.8 D.9【分析】根据题意,列举满足{a,b}⊆M⊊{a,b,c,d,e}的集合M,即可得答案.【解答】解:根据题意,满足{a,b}⊊M⊊{a,b,c,d,e}的集合M有{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e},共6个;故选A.【点评】本题考查集合的子集的判断,解题时要注意符号“⊆”与“⊊”的不同含义.6.(3分)(2013•西湖区校级模拟)已知集合,,P={x|x=,则M,N,P的关系()A.M=N⊊P B.M⊊N=P C.M⊊N⊊P D.N⊊P⊊M【分析】N={x|x=,n∈Z},x==,n∈Z;P={x|x=,P∈Z},x==;N===p,M={x|x=m+,m∈Z},x=m+=,M,N,P三者分母相同,所以只需要比较他们的分子.M:6的倍数+1,N=P:3的倍数+1,所以M⊊N=P.【解答】解:N={x|x=,n∈Z},x==,n∈Z.P={x|x=,P∈Z},x==,N===P,M={x|x=m+,m∈Z},x=m+=,M,N,P三者分母相同,所以只需要比较他们的分子.M:6的倍数+1,N=P:3的倍数+1,所以M⊊N=P,故选B.【点评】本题考查集合的包含关系的判断及其应用,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.7.(3分)(2013秋•武侯区校级期末)已知集合P={x|x2=1},集合Q={x|ax=1},若Q⊆P,那么a的值是()A.1 B.﹣1 C.1或﹣1 D.0,1或﹣1【分析】先化简P,再根据Q⊆P分情况对参数的取值进行讨论,即可求出参数a的取值集合.【解答】解:∵P={x|x2=1}={1,﹣1},Q={x|ax=1},Q⊆P,∴当Q是空集时,有a=0显然成立;当Q={1}时,有a=1,符合题意;当Q={﹣1}时,有a=﹣1,符合题意;故满足条件的a的值为1,﹣1,0.故选D.【点评】本题考查集合关系中的参数取值问题,解题的关键是根据包含关系的定义对集合Q 的情况进行正确分类,本题求解中有一易错点,就是忘记讨论Q是空集的情况,分类讨论时一定注意不要漏掉情况.8.(3分)(2013秋•武侯区校级期末)设集合S={x|x>1,x<﹣1},T={x|a<x<a+8},若S∪T=R,则a的取值范围是()A.﹣7<a<﹣1 B.﹣7≤a≤﹣1 C.a≤﹣7或a≥﹣1 D.a<﹣7或a>﹣1【分析】由S与T,根据两集合的并集为R列出关于a的不等式,求出不等式的解集即可得到a的范围.【解答】解:∵S={x|x>1或x<﹣1},T={x|a<x<a+8},且S∪T=R,∴a<﹣1,a+8>1,解得:﹣7<a<﹣1,故选A【点评】此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.9.(3分)(1999•广东)如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪S C.(M∩P)∩∁I S D.(M∩P)∪∁I S【分析】观察阴影部分所表示的集合中元素的特点,它具有在集合P和M中,不在集合S 中,利用集合元素的含义即可解决.【解答】解:依题意,由图知,阴影部分对应的元素a具有性质a∈M,a∈P,a∈C I S,所以阴影部分所表示的集合是(M∩P)∩C I S,故选:C.【点评】本题主要考查了Venn图表达集合的关系及运算,属于基础题.10.(3分)(2004•山东)设A、B、I均为非空集合,且满足A⊆B⊆I,则下列各式中错误的是()A.(∁I A)∪B=I B.(∁I A)∪(∁I B)=I C.A∩(∁I B)=∅D.(∁I A)∩(∁I B)=∁I B【分析】先画出文氏图,据图判断各答案的正确性,或者利用特殊元素法.【解答】解一:∵A、B、I满足A⊆B⊆I,先画出文氏图,根据文氏图可判断出A、C、D都是正确的,故选B.解二:设非空集合A、B、I分别为A={1},B={1,2},I={1,2,3}且满足A⊆B⊆I.根据设出的三个特殊的集合A、B、I可判断出A、C、D都是正确的,故选B.【点评】本题体现数形结合的数学思想和特殊值的方法.二、填空题:11.(3分)(2013秋•武侯区校级期末)已知三个元素3,x,x2﹣2x构成一个集合,则实数x应满足的条件为x≠3且x≠0且x≠﹣1.【分析】本题根据集合中元素的互异性,得到相应的不等式关系式,解不等式,可得到本题的结论.【解答】解:∵根据集合中元素的互异性,∴,∴x≠3且x≠0且x≠﹣1.故答案:x≠3且x≠0且x≠﹣1.【点评】本题考查了集合中元素的互异性,本题思维量小,属于基础题.12.(3分)(2013秋•武侯区校级期末)满足{a,b}⊊A⊆{a,b,c,d,e}的集合A有7个.【分析】集合A一定要含有a、b两个元素,且至少要多一个,多的元素只能从c、d、e中选,推出集合A可以是下面7个集合.【解答】解:A可以为{c,a,b},{a,b,d},{a,b,e},{c,a,b,d},{c,a,b,e},{a,b,d,e},{c,a,b,d,e}个数为7.故答案为:7.【点评】子集包括真子集和它本身,集合的子集个数问题,对于集合M的子集问题一般来说,若M中有n个元素,则集合M的子集共有2n个,真子集2n﹣1个.13.(3分)(2013秋•武侯区校级期末)设集合A={x|x+m≥0},B={x|﹣2<x<4},全集U=R,且(∁U A)∩B=∅,求实数m的取值范围为m≥2.【分析】把集合A化简后,求其补集,然后根据(∁U A)∩B=∅选取m的取值范围.【解答】解:集合A={x|x+m≥0}={x|x≥﹣m},全集U=R,所以C U A={x|x<﹣m},又B={x|﹣2<x<4},且(∁U A)∩B=∅,所以有﹣m≤﹣2,所以m≥2.故答案为m≥2.【点评】本题考查了交、并、补集的混合运算,解答的关键是熟练交、并、补集的概念,同时注意端点值得选取,属易错题.14.(3分)(2013秋•武侯区校级期末)若f(x)=ax2﹣,且f[f()]=﹣,则a= 0或.【分析】直接利用函数的解析式,由里及外推出方程,求解即可.【解答】解:∵f(x)=ax2﹣,∴f()=2a﹣,∴f[f()]=a(2a﹣)2﹣=﹣.∴a=0或.故答案为:0或.【点评】本题考查函数的零点,方程的根的求法,函数值的求解,考查计算能力.三、解答题:15.(2013秋•武侯区校级期末)已知集合A={a﹣2,2a2+5a,12}且﹣3∈A,求a.【分析】由于﹣3∈A则a﹣2=﹣3或2a2+5a=﹣3,求出a的值然后再代入再根据集合中元素的互异性对a进行取舍.【解答】解:∵﹣3∈A∴﹣3=a﹣2或﹣3=2a2+5a∴a=﹣1或a=﹣∴当a=﹣1时,a﹣2=﹣3,2a2+5a=﹣3,不符合集合中元素的互异性,故a=﹣1应舍去当a=﹣时,a﹣2=﹣,2a2+5a=﹣3,满足∴a=﹣【点评】本题主要考察了集合中元素的互异性,属常考题型,较难.解题的关键是求出a 的值后要回代到集合中利用集合中元素的互异性进行检验!16.(2013秋•武侯区校级期末)实数集A满足条件:若a∈A,则(a≠1).求证:①若2∈A,则A中必还有另外两个元素;②集合A不可能是单元素集.【分析】①根据集合的互异性进行求解,注意条件2∈A,把2代入进行验证;②可以假设A为单元素集合,求出其等价条件,从而进行判断;【解答】证明:①若a∈A,则.又∵2∈A,∴∵﹣1∈A,∴.∵,∴.∴A中另外两个元素为﹣1,②若A为单元素集,则,即a2﹣a+1=0,方程无解.∴,∴A不可能为单元素集.【点评】此题主要考查集合与元素之间的关系,注意集合内元素的互异性,是一道基础题.17.(2013秋•武侯区校级期末)若集合M={x|x2+x﹣6=0},N={x|ax﹣1=0},且N⊆M,求实数a的值.【分析】先求出集合M的元素,然后根据N⊆M,讨论集合N的可能性,最后分别求出每一种情形下a的取值即可.【解答】解:∵M={x|x2+x﹣6=0},N={x|ax﹣1=0}且N⊆M∴M={﹣3,2}N=∅或{﹣3}或{2}N=∅时,a=0N={﹣3}时,a=N={2}时,a=【点评】本题主要考查了集合的包含关系判断及应用,本题体现了分类讨论的思想方法,属于基础题.18.(2013秋•武侯区校级期末)设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2﹣1=0},其中x ∈R,若B⊆A,求实数a的取值范围.【分析】先求集合A,利用B⊆A,建立不等关系,进行求解即可.【解答】解:A={x|x2+4x=0}={0,﹣4},∵B⊆A.①若B=∅时,△=4(a+1)2﹣4(a2﹣1)<0,得a<﹣1;②若B={0},则,解得a=﹣1;③B={﹣4}时,则,此时方程组无解.④B={0,﹣4},,解得a=1.综上所述实数a=1 或a≤﹣1.【点评】本题主要考查利用集合关系求参数的应用,注意分类讨论,利用一元二次方程根的个数和判别式之间的关系是解决本题的关键.19.(2013秋•武侯区校级期末)设集合A={(x,y)|2x+y=1,x,y∈R},B={(x,y)|a2x+2y=a,x,y∈R},若A∩B=∅,求a的值.【分析】由A∩B=∅,可得两直线无交点,即方程组无解.而由方程组可得(4﹣a2)x=2﹣a.再由(4﹣a2)x=2﹣a无解,可得,由此解得a的值.【解答】解:由于集合A、B的元素都是点,A∩B的元素是两直线的公共点.由A∩B=∅,可得两直线无交点,即方程组无解.而由方程组可得(4﹣a2)x=2﹣a.由题意可得(4﹣a2)x=2﹣a无解,∴,解得a=﹣2.【点评】本题主要考查集合关系中参数的取值范围问题,求两条直线的交点个数问题,体现了等价转化的思想,属于基础题.20.(2013秋•武侯区校级期末)已知全集U=R,集合A=.求:(1)A∩B;(2)(∁U B)∪P;(3)(A∩B)∩(∁U P).【分析】(1)根据交集概念直接求解;(2)先求集合B在实数集中的补集,再与P取并;(3)求出集合P在实数集中的补集,然后与(1)中求出的A∩B取交集.【解答】解:(1)因为A={x|﹣4≤x<2},B={x|﹣1<x≤3},所以,A∩B={x|﹣1<x<2};(2)因为U=R,所以C U B={x|x≤﹣1,或x>3},又P={x|x≤0或x},所以(C U B)∪P={x|x≤0或x},(3)因为P={x|x≤0或x},所以C U P={x|0<x<},又A∩B={x|﹣1<x<2},所以(A∩B)∩(C U P)={x|0<x<2}.【点评】本题考查了交、并、补集的混合运算,解答的关键是熟练交、并、补集的概念,属基础题.参与本试卷答题和审题的老师有:炫晨;王老师;zlzhan;qiss;ywg2058;sllwyn;yhx01248;caoqz;sxs123;蔡华侨;小张老师;minqi5;maths(排名不分先后)菁优网2016年11月14日第11页(共11页)。

2023-2024学年四川省成都市成都高一上册期末数学试题(含解析)

2023-2024学年四川省成都市成都高一上册期末数学试题(含解析)

2023-2024学年四川省成都市成都高一上册期末数学试题第I 卷(选择题,共60分)一.单选题:(本题共8小题,每小题5分,共40分.)1.已知{M xx A =∈∣且}x B ∉,若集合{}{}1,2,3,4,5,2,4,6,8A B ==,则M =()A.{}2,4 B.{}6,8 C.{}1,3,5 D.{}1,3,6,8【正确答案】C【分析】根据集合M 的定义求解即可【详解】因为集合{}{}1,2,3,4,5,2,4,6,8A B ==,{M xx A =∈∣且}x B ∉,所以{}1,3,5M =,故选:C2.已知α为第三象限角,且25sin 5α=-,则cos α=()A.5B.55-C.5D.【正确答案】B【分析】利用同角三角函数的平方关系22sin cos 1αα+=,计算可得结果【详解】αQ为第三象限角,cos 0α∴<,22sin cos 1αα+= ,cos 5α∴===,故选:B.本题主要考查同角三角函数的基本关系,属于基础题.3.已知a 为实数,使“[]3,4,0x x a ∀∈-≤”为真命题的一个充分不必要条件是()A.4a ≥B.5a ≥ C.3a ≥ D.5a ≤【正确答案】B【分析】根据全称量词命题的真假性求得a 的取值范围,然后确定其充分不必要条件.【详解】依题意,全称量词命题:[]3,4,0x x a ∀∈-≤为真命题,a x ≥在区间[]3,4上恒成立,所以4a ≥,所以使“[]3,4,0x x a ∀∈-≤”为真命题的一个充分不必要条件是“5a ≥”.故选:B4.当a >1时,在同一坐标系中,函数y =a -x 与y =log a x 的图像为()A. B.C. D.【正确答案】C【分析】根据指数函数和对数函数的图像,即可容易判断.【详解】∵a >1,∴0<1a<1,∴y =a -x 是减函数,y =log a x 是增函数,故选:C.本题考查指数函数和对数函数的单调性,属基础题.5.下列函数中,定义域是R 且为增函数的是A.x y e -= B.3y x = C.ln y x= D.y x=【正确答案】B【分析】分别求出选项中各函数的定义域,并判断其单调性,从而可得结论.【详解】对于A ,1xxy e e -⎛⎫== ⎪⎝⎭,是R 上的减函数,不合题意;对于B ,3y x =是定义域是R 且为增函数,符合题意;对于C ,ln y x =,定义域是()0,∞+,不合题意;对于D ,y x =,定义域是R ,但在R 上不是单调函数,不合题,故选B.本题主要考查函数的定义域与单调性,意在考查对基础知识的掌握与灵活运用,属于基础题.6.已知函数()21log f x x x=-在下列区间中,包含()f x 零点的区间是()A.()01,B.()12,C.()23, D.()34,【正确答案】B【分析】确定函数单调递增,计算()10f <,()20f >,得到答案.【详解】()21log f x x x =-在()0,∞+上单调递增,()110f =-<,()1121022f =-=>,故函数的零点在区间()12,上.故选:B 7.设0.343log 5,lg 0.1,a b c -===,则()A.c<a<bB.b<c<aC.a b c<< D.c b a<<【正确答案】A【分析】利用指数函数与对数函数的单调性即可判断.【详解】因为3x y =在R 上单调递增,且30x y =>恒成立,所以0.300331-<<=,即01a <<,因为4log y x =在()0,∞+上单调递增,所以44log 541log b =>=,因为lg y x =在()0,∞+上单调递增,所以lg 0.1lg10c =<=,综上.c<a<b 故选:A8.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次命题正确的是使用“<”和“>”符号,并逐渐被数学届接受,不等号的引入对不等式的发展影响深远.若a ,b ,c ∈R ,则下列命题正确的是()A.若a <b ,则11a b> B.若a >b >0,则11b ba a+<+C.若a >b ,则22ac bc > D.若22ac bc >,则a >b【正确答案】D【分析】举反例说明选项AC 错误;作差法说明选项B 错误;不等式性质说明选项D 正确.【详解】当0a b <<时,11a b<,选项A 错误;()1011b b a ba a a a +--=>++,所以11b b a a +>+,所以选项B 错误;0c =时,22ac bc =,所以选项C 错误;22ac bc >时,a b >,所以选项D 正确.故选:D二.多选题:(本题共4小题,每小题5分,共20分.全部选对得5分,部分选对得2分,有错选得0分)9.已知幂函数()f x 的图像经过点(9,3),则()A.函数()f x 为增函数B.函数()f x 为偶函数C.当4x ≥时,()2f x ≥D.当120x x >>时,1212()()f x f x x x -<-【正确答案】AC【分析】设幂函数()f x 的解析式,代入点(9,3),求得函数()f x 的解析式,根据幂函数的单调性可判断A 、C 项,根据函数()f x 的定义域可判断B 项,结合函数()f x 的解析式,利用单调递增可判断D 项.【详解】设幂函数()f x x α=,则()993f α==,解得12α=,所以()12f x x =,所以()f x 的定义域为[)0,∞+,()f x 在[)0,∞+上单调递增,故A 正确,因为()f x 的定义域不关于原点对称,所以函数()f x 不是偶函数,故B 错误,当4x ≥时,()()12442f x f ≥==,故C 正确,当120x x >>时,因为()f x 在[)0,∞+上单调递增,所以()()12f x f x >,即()()12120f x f x x x ->-,故D 错误.故选:AC.10.已知下列等式的左、右两边都有意义,则能够恒成立的是()A.5tan tan 66ππαα⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭B.sin cos 36ππαα⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭C.2222tan sin tan sin αααα=- D.442sin cos 2sin 1ααα-=-【正确答案】BCD【分析】利用诱导公式分析运算即可判断AB ,根据平方关系和商数关系分析计算即可判断CD.【详解】解:对于A ,55tan tan tan 666πππαπαα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-+⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故A 错误;对于B ,sin sin cos 3266ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=+-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故B 正确;对于C ,22222222sin 1cos tan sin sin sin cos cos αααααααα-==⋅22222221sin 1sin sin tan sin cos cos ααααααα⎛⎫=-=-=- ⎪⎝⎭,故C 正确;对于D ,()()44222222sincos sin cos sin cos sin cos αααααααα-=+-=-()222sin 1sin 2sin 1ααα=--=-,故D 正确.故选:BCD.11.已知函数()22f x x x a =-+有两个零点1x ,2x ,以下结论正确的是()A .1a < B.若120x x ≠,则12112x x a+=C.()()13f f -= D.函数有()y fx =四个零点【正确答案】ABC【分析】根据零点和二次函数的相关知识对选项逐一判断即可.【详解】二次函数对应二次方程根的判别式2(2)4440,1a a a ∆=--=-><,故A 正确;韦达定理122x x +=,12x x a =,121212112x x x x x x a++==,故B 正确;对于C 选项,()1123f a a -=++=+,()3963f a a =-+=+,所以()()13f f -=,故C 选项正确;对于D 选项,当0a =时,由()0y f x ==得220x x -=,所以1230,2,2xx x ==-=故有三个零点,则D 选项错误.故选::ABC12.设,a b 为正实数,4ab =,则下列不等式中对一切满足条件的,a b 恒成立的是()A.4a b +≥ B.228a b +≤ C.111a b+≥D.+≤【正确答案】AC【分析】根据特殊值以及基本不等式对选项进行分析,从而确定正确选项.【详解】A选项,由基本不等式得4a b +≥=,当且仅当2a b ==时等号成立,A 选项正确.B 选项,1,4a b ==时,4ab =,但22178a b +=>,B 选项错误.C 选项,由基本不等式得111a b +≥=,,当且仅当11,2a b a b ===时等号成立,C 选项正确.D 选项,1,4a b ==时,4ab =,但3=>D 选项错误.故选:AC第II 卷(选择题,共60分)三.填空题:(本题共4小题,每小题5分,共20分.)13.已知函数log (3)1a y x =-+(0,1a a >≠)的图像恒过定点P ,则点P 的坐标为____.【正确答案】()4,1【分析】由log 10a =,令真数为1,即4x =代入求值,可得定点坐标.【详解】∵log 10a =,∴当4x =时,log 111a y =+=,∴函数的图像恒过定点()4,1故()4,114.已知角θ的终边经过点(),1(0)P x x >,且tan x θ=.则sin θ的值为_________【正确答案】2【分析】根据三角函数定义即可求解.【详解】由于角θ的终边经过点(),1(0)P x x >,所以1tan x xθ==,得1x =所以sin 2θ==故215.函数y =的定义域为_________.【正确答案】3{|1}4x x <≤【分析】根据根式、对数的性质有0.5430log (43)0x x ->⎧⎨-≥⎩求解集,即为函数的定义域.【详解】由函数解析式知:0.5430log (43)0x x ->⎧⎨-≥⎩,解得314x <≤,故答案为.3{|1}4x x <≤16.对于函数()xf x e =(e 是自然对数的底数),a ,b ∈R ,有同学经过一些思考后提出如下命题:①()()()f a f b f a b =⋅+;②()()()()af a bf b af b bf a +≥+;③3()12f a a ≥+;④()()22a b f a f b f ++⎛⎫≤⎪⎝⎭.则上述命题中,正确的有______.【正确答案】①②④【分析】根据指数函数的单调性,结合基本不等式,特殊值代入,即可得到答案;【详解】对①,()()()a b a b f a f b e e e f a b +⋅=⋅==+,故①正确;对②,()()()()af a bf b af b bf a +≥+()()()()f a a b f b a b ⇔--,当a b =时,显然成立;当a b >时,()()f a f b >;当a b <时,()()f a f b <,综上可得:()()()()f a a b f b a b --成立,故②正确;对③,取12a =,1724f ⎛⎫= ⎪⎝⎭不成立,故③错误;对④,2()()222a b a be e a bf a f b ef ++++⎛⎫=⇒≤⎪⎝⎭,故④正确;故答案为:①②④本题考查指数函数的性质及基本不等式的应用,求解时还要注意特殊值法的运用.四.解答题:(本题共6小题,共70分17题10分,18-22题每小题12分.)17.(1)求值:()()()5242lg50.250.5lg5lg2lg20-+⨯+⨯+;(2)若tan 2α=,求22sin sin cos 1cos αααα++的值.【正确答案】(1)2.5;(2)1【分析】(1)应用指对数运算律计算即可;(2)根据正切值,弦化切计算可得.【详解】(1)()()()()()()524245lg50.250.5lg5lg2lg200.50.5lg5lg5lg2lg210.5lg5lg210.5112.5--+⨯+⨯+=⨯⨯+++=+++=++=+(2)因为tan 2α=,所以2222222sin sin cos sin sin cos tan tan 611cos sin 2cos tan 26αααααααααααα+++====+++18.已知集合{}2230A x x x =-->,{}40B x x a =-≤.(1)当1a =时,求A B ⋂;(2)若A B = R ,求实数a 的取值范围.【正确答案】(1)()(]134∞--⋃,,(2)34⎡⎫+∞⎪⎢⎣⎭【分析】(1)代入1a =,求解集合A ,B ,按照交集的定义直接求解即可;(2)求解集合B ,由并集为全集得出集合B 的范围,从而求出a 的范围.【小问1详解】解:由2230x x -->得1x <-或3x >.所以()()13A ∞∞=--⋃+,,.当1a =时,(]4B ∞=-,.所以()(]134A B ∞⋂=--⋃,,.【小问2详解】由题意知(4B a ∞=-,].又()()13A ∞∞=--⋃+,,,因为A B = R ,所以43a ≥.所以34a ≥.所以实数a 的取值范围是34⎡⎫+∞⎪⎢⎣⎭,.19.已知函数()332x xf x --=.(1)判断函数()f x 的奇偶性,并说明理由;(2)判断函数()f x 在()0,∞+上的单调性,并用单调性定义证明;(3)若()()120f ax f x -+->对任意(],2a ∈-∞恒成立,求x 的取值范围.【正确答案】(1)奇函数,理由见解析;(2)单调递增,证明见解析;(3)(]1,0-.【分析】(1)根据证明函数的奇偶性步骤解决即可;(2)根据单调性定义法证明即可;(3)根据奇偶性,单调性转化解不等式即可.【小问1详解】()332x xf x --=为奇函数,理由如下易知函数的定义域为(),-∞+∞,关于原点对称,因为33()()2---==-x xf x f x ,所以()f x 为奇函数.【小问2详解】()f x 在()0,∞+上的单调递增,证明如下因为()332x xf x --=,()0,x ∈+∞,设任意的12,(0,)x x ∈+∞,且12x x <,所以()()()()121211221233333333222----------==-x x x x x x x x f x f x ()()121212121233133331333322⎛⎫-⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭==x x x x x x x x x x 因为12,(0,)x x ∈+∞,12x x <,所以1212330,330-<>x x x x ,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在()0,∞+上的单调递增.【小问3详解】由(1)知()f x 为奇函数,由(2)知()f x 在()0,∞+上的单调递增,所以()f x 在(),-∞+∞单调递增,因为()()120f ax f x -+->对任意(],2a ∈-∞恒成立,所以(1)(2)(2)->--=-f ax f x f x ,所以12ax x ->-对任意(],2a ∈-∞恒成立,令()()10g a xa x =+->,(],2a ∈-∞则只需0(2)2(1)0x g x x ≤⎧⎨=+->⎩,解得10-<≤x ,所以x 的取值范围为(]1,0-.20.有一种放射性元素,最初的质量为500g ,按每年10%衰减(1)求两年后,这种放射性元素的质量;(2)求t 年后,这种放射性元素的质量w (单位为:g )与时间t 的函数表达式;(3)由(2)中的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需的时间叫做半衰期).(精确到0.1年,已知:lg20.3010≈,lg30.4771≈)【正确答案】(1)405g(2)5000.9tw =⨯(3)6.6年.【分析】(1)根据衰减率直接求解即可;(2)根据衰减规律归纳出函数表达式;(3)半衰期即为质量衰减为原来的一半,建立等式,利用换底公式求解.【小问1详解】经过一年后,这种放射性元素的质量为500(10.1)5000.9⨯-=⨯,经过两年后,这种放射性元素的质量为2500(10.1)(10.1)5000.9⨯-⨯-=⨯,即两年后,这种放射性元素的质量为405g【小问2详解】由于经过一年后,这种放射性元素的质量为1500(10.1)5000.9⨯-=⨯,经过两年后,这种放射性元素的质量为2500(10.1)(10.1)5000.9⨯-⨯-=⨯,……所以经过t 年后,这种放射性元素的质量5000.9t w =⨯.【小问3详解】由题可知5000.9250t ⨯=,即0.9lg 0.5lg 2log 0.5 6.6lg 0.92lg 31t -===≈-年.21.已知函数()()3312log ,log x x f x g x =-=.(1)求函数()()263y f x g x ⎡⎤=-+⎣⎦的零点;(2)讨论函数()()()2h x g x f x k ⎡⎤=---⎣⎦在[]1,27上的零点个数.【正确答案】(1)9(2)答案见解析.【分析】(1)由题知()2332log 5log 20x x -+=,进而解方程即可得答案;(2)根据题意,将问题转化为函数()2 21F t t t =-+-在[]0,3上的图像与直线y k =的交点个数,进而数形结合求解即可.【小问1详解】解:由()()2 630f x g x ⎡⎤-+=⎣⎦,得()233 12log 6log 30x x --+=,化简为()2332log 5log 20x x -+=,解得3 log 2x =或31 log 2x =,所以,9x =或x =所以,()()2 63y f x g x ⎡⎤=-+⎣⎦的零点为9.【小问2详解】解:由题意得()()233 log 2log 1h x x x k =-+--,令()0h x =,得()233 log 2log 1x x k -+-=,令3log t x =,[]1,27x ∈,则[]2 0,3,21t t t k ∈-+-=,所以()h x 在[]1,27上的零点个数等于函数()221F t t t =-+-在[]0,3上的图像与直线y k =的交点个数.()2 21F t t t =-+-在[]0,3上的图像如图所示.所以,当0k >或4k <-时,()F t 在[]0,3上的图像与直线y k =无交点,所以,()h x 在[]1,27上的零点个数为0;当0k =或41k -≤<-时()F t 在[]0,3上的图像与直线y k =有1个交点,所以,()h x 在[]1,27上的零点个数为1;当10k -≤<时,()F t 在[]0,3上的图像与直线y k =有2个交点,所以,()h x 在[]1,27上的零点个数为2.综上,当0k >或4k <-时,()h x 在[]1,27上的零点个数为0;当0k =或41k -≤<-时,()h x 在[]1,27上的零点个数为1;当10k -≤<时,()h x 在[]1,27上的零点个数为2.22.已知函数()ln()()f x x a a R =+∈的图象过点()1,0,2()()2f x g x x e =-.(1)求函数()f x 的解析式;(2)若函数()ln(2)y f x x k =+-在区间()1,2上有零点,求整数k 的值;(3)设0m >,若对于任意1,x m m ⎡⎤∈⎢⎥⎣⎦,都有()ln(1)g x m <--,求m 的取值范围.【正确答案】(1)()ln f x x =;(2)k 的取值为2或3;(3)()1,2.【分析】(1)根据题意,得到ln(1)0a +=,求得a 的值,即可求解;(2)由(1)可得()2ln 2y x kx =-,得到2210x kx --=,设2()21h x x kx =--,根据题意转化为函数()y h x =在()1,2上有零点,列出不等式组,即可求解;(3)求得()g x 的最大值()g m ,得出max ()ln(1)g x m <--,得到22ln(1)m m m -<--,设2()2ln(1)(1)h m m m m m =-+->,结合()h m 单调性和最值,即可求解.【详解】(1)函数()ln()()f x x a a R =+∈的图像过点()1,0,所以ln(1)0a +=,解得0a =,所以函数()f x 的解析式为()ln f x x =.(2)由(1)可知()2ln ln(2)ln 2y x x k x kx =+-=-,(1,2)x ∈,令()2ln 20x kx -=,得2210x kx --=,设2()21h x x kx =--,则函数()ln(2)y f x x k =+-在区间()1,2上有零点,等价于函数()y h x =在()1,2上有零点,所以(1)10(2)720h k h k =-<⎧⎨=->⎩,解得712k <<,因为Z k ∈,所以k 的取值为2或3.(3)因为0m >且1m m >,所以1m >且101m<<,因为2()22()22(1)1f x g x x e x x x =-=-=--,所以()g x 的最大值可能是()g m 或1g m ⎛⎫ ⎪⎝⎭,因为22112()2g m g m m m m m ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭22122m m m m ⎛⎫=--- ⎪⎝⎭112m m m m ⎛⎫⎛⎫=-+- ⎪⎪⎝⎭⎝⎭21(1)0m m m m -⎛⎫=-⋅> ⎪⎝⎭所以2max ()()2g x g m m m ==-,只需max ()ln(1)g x m <--,即22ln(1)m m m -<--,设2()2ln(1)(1)h m m m m m =-+->,()h m 在(1,)+∞上单调递增,又(2)0h =,∴22ln(1)0m m m -+-<,即()(2)h m h <,所以12m <<,所以m 的取值范围是()1,2.已知函数的零点个数求解参数的取值范围问题的常用方法:1、分离参数法:一般命题的情境为给出区间,求满足函数零点个数的参数范围,通常解法为从()f x中分离出参数,构造新的函数,求得新函数的最值,根据题设条件构建关于参数的不等式,从而确定参数的取值范围;2、分类讨论法:一般命题的情境为没有固定的区间,求满足函数零点个数的参数范围,通常解法为结合函数的单调性,先确定参数分类的标准,在每个小区间内研究函数零点的个数是否符合题意,将满足题意的参数的各校范围并在一起,即为所求的范围.。

2014—2015学年度高一数学竞赛试题(含答案)

2014—2015学年度高一数学竞赛试题(含答案)

2014—2015学年度高一数学竞赛试题(含答案)2014-2015学年度高一数学竞赛试题一.选择题:本大题共5小题,每小题6分,共30分。

在每个小题给出的四个选项中,只有一个正确的答案。

1.已知集合$M=\{x|x+3<0\}$,$N=\{x|x\leq -3\}$,则集合$M\cap N$=()A。

$\{x|x0\}$ D。

$\{x|x\leq -3\}$2.已知$\alpha+\beta=\frac{\pi}{4}$,则$(1-\tan\alpha)(1-\tan\beta)$等于()A。

2 B。

$-\frac{2}{3}$ C。

1 D。

$-\frac{1}{3}$3.设奇函数$f(x)$在$(0,+\infty)$上为增函数,且$f(1)=0$,则不等式$f(x)-f(-x)<0$的解集为()A。

$(-\infty,-1)\cup (0,1)$ B。

$(-1,0)\cup (1,+\infty)$ C。

$(-\infty,-1)\cup (1,+\infty)$ D。

$(0,1)$4.函数$f(x)=\ln|x-1|-x+3$的零点个数为()A。

3 B。

2 C。

1 D。

05.已知函数$f(x)=\begin{cases}1/x。

& x\geq 4 \\ 2.&x<4\end{cases}$,则$f(\log_2 5)$=()A。

$-\frac{11}{23}$ B。

$\frac{1}{23}$ C。

$\frac{11}{23}$ D。

$\frac{19}{23}$二.填空题:本大题共5小题,每小题6分,共30分。

将正确的答案写在题中横线上。

6.已知$0\leq x\leq \frac{\pi}{2}$,则函数$f(x)=4\sqrt{2}\sin x\cos x+\cos^2 x$的值域是\line(5,0){80}。

7.已知:$a,b,c$都不等于0,且$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}$,则$\max\{m,n\}=$\line(5,0){80},$\min\{m,n\}=$\line(5,0){80}。

XXX2014-2015学年下学期高一年级期中数学试卷。后有答案

XXX2014-2015学年下学期高一年级期中数学试卷。后有答案

XXX2014-2015学年下学期高一年级期中数学试卷。

后有答案XXX2014-2015学年下学期高一年级期中数学试卷试卷分为两卷,卷(I)100分,卷(II)50分,共计150分。

考试时间:120分钟。

卷(I)一、选择题:(本大题共10小题,每小题5分,共50分)1.若实数a,b满足a>b,则下列不等式一定成立的是()A。

a^2<b^2B。

1/a<1/bC。

a^2>b^2D。

a^3>b^32.等差数列{an}中,若a2=1,a4=5,则{an}的前5项和S5=()A。

7B。

15C。

20D。

253.不等式(1/x-1)>1的解集为()A。

{x>1}B。

{x<1}C。

{x>2}D。

{x<2}4.△ABC中,三边a,b,c的对角为A,B,C,若B=45°,b=23,c=32,则C=()A。

60°或120°B。

30°或150°C。

60°D。

30°5.已知数列{an}的前n项和为Sn,且Sn=2an-1(n∈N*),则a5=()A。

32B。

31C。

16D。

156.等差数列{an}中,an=6-2n,等比数列{bn}中,b5=a5,b7=a7,则b6=()A。

42B。

-42C。

±42D。

无法确定7.△ABC中,若∠ABC=π/2,AB=2,BC=3,则sin∠BAC=()A。

4/5B。

3/10C。

5/10D。

1/108.计算机是将信息转换成二进制进行处理的,所谓二进制即“逢二进一”,如(1101)2表示二进制的数,将它转换成十进制数的形式是1×23+1×22+0×21+1×2=13,那么将二进制数(11.1)2转换成十进制数是(){共9位}A。

512B。

511C。

256D。

2559.不等式①x2+3>3x;②a2+b2≥2(a-b-1);③ba+≥2,其中恒成立的是()A。

2014-2015学年上学期高一期中测试数学试题(含答案)

2014-2015学年上学期高一期中测试数学试题(含答案)

2014-2015学年上学期高一期中测试数学试题(含答案) 第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合要求的)1.下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( )A .3y x =B . 1y x =+C .21y x =-+D . 2x y -=2.在同一坐标系中,表示函数log a y x =与y x a =+的图象正确的是( )A B C D3.若1log 12a<,则a 的取值范围是( ) A .1(0,)(1,)2+∞ B .1(,1)2 C .(1,)+∞ D .1(,1)(1,)2+∞4.已知函数f(x)为定义在R 上的奇函数,当x≥0时, ()22xf x x m =++ (m 为常数),则(1)f -的值为( )A .-3B .-1C .1D .35.设全集U =R ,{}|0P x f x x ==∈R (),,{}|0Q x g x x ==∈R (),,{}|0S x x x ϕ==∈R (),,则方程22f x x x ϕ=()+g ()()的解集为( )A . P Q SB .P QC .P Q S ()D . P Q S u (C )5.设9.0log 5.0=a ,9.0log 1.1=b ,9.01.1=c ,则c b a , ,的大小关系为( )A .c b a <<B .c a b <<C .a c b <<D .b c a <<6.设}3 2, ,21 ,31 ,1{-∈α,若函数αx y =是定义域为R 的奇函数,则α的值为( )A .3 ,31B .3 ,31 ,1- C .3 ,1- D .31,1- 7.已知函数)(x f 是奇函数,当0>x 时,)1 ,0( )(≠>=a a a x f x,且3)4(log 5.0-=f ,则a的值为( )A .3B .3C .9D .238.已知函数⎪⎩⎪⎨⎧>-≤=-)1( )23(log )1( 2)(2x x x x f x ,若4)(=a f ,则实数=a ( ) A .2-或6 B .2-或310 C .2-或2 D .2或3109.方程21231=⎪⎭⎫ ⎝⎛--x x 的解所在的区间为( )A .) 1 ,0 (B .) 2 ,1 (C .) 3 ,2 (D .) 4 ,3 (10.已知函数bx ax y +=2和xb a y =|)| || ,0(b a ab ≠≠在同一直角坐标系中的图象不可能 是( )11.已知函数)3(log 221a ax x y +-=在区间) ,2[∞+上是减函数,则a 的取值范围是( )A .)4 ,(-∞B .]4 ,4[-C .]4 ,4(-D .]4 ,(-∞12.若在直角坐标平面内B A ,两点满足条件:①点B A ,都在函数)(x f y =的图象上;②点B A ,关于原点对称,则称B A ,为函数)(x f y =的一个“黄金点对”.那么函数=)(x f ⎪⎩⎪⎨⎧>≤-+)0( 1)0( 222x x x x x 的“黄金点对”的个数是( )A .0个B .1个C .2个D .3个 第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,共20分.13.已知集合}06|{2=--=x x x M ,}01|{=+=ax x N ,且M N ⊆,则由a 的取值组成的集合是 .14.若x x f =)(log 5,则=-)9log 2(log 255f .15.已知定义在R 上的偶函数)(x f 满足0)1(=-f ,并且)(x f 在)0 ,(-∞上为增函数.若0)( <a f a ,则实数a 的取值范围是 .16.已知函数()x f 的定义域是}0|{≠∈=x R x D ,对任意D x x ∈21 ,都有:=⋅)(21x x f)()(21x f x f +,且当1>x 时,()0>x f .给出结论:①()x f 是偶函数;②()x f 在()∞+ ,0上是减函数.则正确结论的序号是 .三、解答题:本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤。

2014—2015学年第一学期初三年级数学期末考试试卷含答案

2014—2015学年第一学期初三年级数学期末考试试卷含答案

2014—2015学年第一学期初三年级期末质量抽测数学试卷2014.12学校姓名考试编号考生须知1.本试卷共6页,共五道大题,25个小题,满分120分.考试时间120分钟.2.在试卷和答题卡上认真填写学校名称、姓名和考试编号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将答题卡交回.一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.1.已知⊙O 1和⊙O 2的半径分别为3和5,如果O 1O 2= 8,那么⊙O 1和⊙O 2的位置关系是A .外切B.相交C.内切D.内含2.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是A .15B.13C.25D.233.如图,⊙O 的直径AB=4,点C 在⊙O 上,如果∠ABC =30°,那么AC 的长是A .1B .2C .3D .24. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是A .①B .②C .③D .④5.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE ∥BC ,若:3:4AD AB,6AE,则AC 等于A. 3B. 4C . 6D. 86.当二次函数249y xx 取最小值时,x 的值为A .2B .1C .2D .9来源学|科|网ABC30°④③②①ABCODC BAO7.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24米,那么旗杆AB 的高度约是A .12米B .83米C .24米D .243米[来源:]8.已知:如图,在半径为4的⊙O 中,AB 为直径,以弦AC (非直径)为对称轴将AC折叠后与AB 相交于点D ,如果3ADDB ,那么AC 的长为A .214B .27C .42D .6二、填空题(共4道小题,每小题4分,共16分)9.如果3cos 2A,那么锐角A 的度数为.10.如果一个圆锥的母线长为4,底面半径为1,那么这个圆锥的侧面积为.11.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.12.在平面直角坐标系xoy 中,直线2x 和抛物线2yax 在第一象限交于点A,过A 作ABx 轴于点B .如果a 取1,2,3,,,n 时对应的△AOB 的面积为123S S S ,,,,n S ,那么1S _____;123nS S S S _____.三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.如图1,正方形ABCD 是一个 6 × 6网格的示意图,其中每个小正方形的边长为1,位于AD 中点处的点P 按图2的程序移动.(1)请在图中画出点P 经过的路径;(2)求点P 经过的路径总长.绕点A 顺时针旋转90°绕点B 顺时针旋转90°绕点C 顺时针旋转90°输入点P输出点ADPxOy[来源:.Com]14.计算:3tan302cos452sin 60.15.现有三个自愿献血者,两人血型为O 型,一人血型为A 型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O 型的概率(要求:用列表或画树状图的方法解答).[来源:]16. 如图,从热气球C 处测得地面A 、B 两处的俯角分别为30°、45°,如果此时热气球C处的高度CD 为100米,点A 、D 、B 在同一直线上,求AB 两处的距离.17. 已知抛物线与x 轴相交于两点A(1,0),B(-3,0),与y 轴相交于点C (0,3).(1)求此抛物线的函数表达式;(2)如果点3,2Dm 是抛物线上的一点,求△ABD 的面积.18.如图,在△ABC 中,∠AB C =2∠C ,BD 平分∠ABC ,且2AD ,22BD ,求AB 的值.BCDADCBA四、解答题(共4道小题,每小题5分,共20分)19.如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求点N 的坐标.20.(1)已知二次函数223y xx ,请你化成2()y x h k的形式,并在直角坐标系中画出223y xx 的图象;(2)如果11()A x y ,,22()B x y ,是(1)中图象上的两点,且121x x ,请直接写出1y 、2y 的大小关系;(3)利用(1)中的图象表示出方程2210xx 的根来,要求保留画图痕迹,说明结果.21.已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.yxO AB MNyOxEOA22.阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G. 如果3AF EF,求CD CG的值.他的做法是:过点E 作EH ∥AB 交BG 于点H ,则可以得到△BAF ∽△HEF .请你回答:(1)AB 和EH 的数量关系为,CG 和EH 的数量关系为,CD CG的值为.(2)如图(2),在原题的其他条件不变的情况下,如果(0)AF a a EF,那么CD CG的值为(用含a 的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD 中,DC ∥AB ,点E是BC 延长线上一点,AE 和BD 相交于点 F. 如果(00)AB BC m n mnCDBE,,,那么AF EF的值为(用含m ,n 的代数式表示).H(1)ABCDE FG G FE DCBA(2)(3)AB CDEF五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分)23.由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A 市位于台风中心M 北偏东15°的方向上,距离612千米,B 市位于台风中心M 正东方向603千米处. 台风中心以每小时30千米的速度沿MF 向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响.(1)A 市、B 市是否会受到此次台风的影响?说明理由.(2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?备用图24.已知二次函数y = x 2–kx + k – 1(k >2).(1)求证:抛物线y = x 2–kx + k- 1(k >2)与x 轴必有两个交点;(2)抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,若tan 3OAC,求抛物线的表达式;(3)以(2)中的抛物线上一点P (m,n )为圆心,1为半径作圆,直接写出:当m 取何值时,x 轴与P 相离、相切、相交.25.已知:四边形ABCD 中,AD ∥BC ,AD=AB=CD ,∠BAD =120°,点E 是射线CD 上的一个动点(与C 、D 不重合),将△ADE 绕点A 顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE 绕点A 顺时针旋转30°后交直线BC 于点F ,过点E 作EM∥AD 交直线AF 于点M ,写出线段DE 、BF 、ME 之间的数量关系;(3)如图3,在(2)的条件下,如果CE =2,AE=27,求ME 的长.xyO–1–21234–1–21234E'MFEDC BAE'EDCBA图1图2E'MFEDC BA图32014—2015学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准2014.12一、选择题(共8个小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8 答案 ACDBDABA二、填空题(共4个小题,每小题4分,共16分)题号9 10 1112答案304344 ,2n(n+1)(各2分)三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.解:(1)如图所示:PAB CD,,,,,,,,,,,,,,,,,,,,2分(2)由题意得,点P 经过的路径总长为:270318091802n r .,,,,,,,,,,,4分14.解:原式=323322322,,,,,,,,,,,,,,,,,,,,,,3分=113,,,,,,,,,,,,,,,,,,,,,,4分=23.,,,,,,,,,,,,,,,,,,,,,,,,,,,,5分15.解:列表如下:O 1O 2 A O 1(O 1,O 1)(O 1,O 2)(O 1,A)O 2(O 2,O 1) (O 2,O 2) (O 2,A) A(A ,O 1)(A ,O 2) (A ,A),,,,,,,,,,,,,,,,,,,,,,,4分所以,两次所献血型均为O 型的概率为49.,,,,,,,,,,,,,,,,,,,,,,5分16.解:依题意,可知:30,45,,100,CABCBACD AB D CD 于点,,,,,,,,,,,,,,,1分,CD AB 90.CDACDB ,,,,,,,,,,,,,,,,,,,,,,,,,2分Rt 100BDC BDCD 在中,,,,,,,,,,,,,,,,,,,,,,,,3分Rt tan CDADC AAD在中,.∴31003AD CD .,,,,,,,,,,,,,,,,,,,,,,,,,4分1003100ABADBD.,,,,,,,,,,,,,,,,,,,,,,,5分∴AB 两处的距离为(1003100)米.17.解:(1)∵抛物线与y 轴相交于点C (0,3),∴设抛物线的解析式为23y axbx .,,,,,,,,,,,,,,,,,1分∵抛物线与x 轴相交于两点(1,0),(3,0)A B ,∴30,9330.a b a b ,,,,,,,,,,,,,,,,,,,,,,,,,,,2分解得:1,2.a b∴抛物线的函数表达式为:232yxx .,,,,,,,,,,,,,,,,3分(2)∵点3(,)2D m 是抛物线上一点,∴2(23339)224m . ,,,,,,,,,,,,,,,,,,,,,,4分∴119942242ABDDSAB y . ,,,,,,,,,,,,,,,,,,5分18.解:∵BD 平分∠ABC ,∴∠ABC =2∠1=2∠2.∵∠ABC =2∠C ,∴∠C =∠1=∠2.,,,,,,,,,,,1分∴22CD BD . ,,,,,,,,,,,,2分∴32AC.又∵∠A=∠A,∴△ABD ∽△ACB .,,,,,,,,,,,,,,,,,,,,,,,,,,,3分∴AD AB ABAC.,,,,,,,,,,,,,,,,,,,,,,,,,,,4分∴22326AB AD AC .∴6AB(舍负).,,,,,,,,,,,,,,,,,,,,,,,,,,5分四、解答题(共4道小题,每小题5分,共20分)19.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B(0,32),∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴,∴四边形BOCA 为矩形.∴AC =OB=32,OC =BA .∵AC ⊥MN ,∴∠ACM=90°,MC=CN .,,,,,,,,,,,,,,,,,,,,2分∵M(12,0),∴OM =12.在Rt △AMC 中,设AM=r.O A B MNCyx21DCBA。

成都市20142015学年度上期期末学业质量监测模拟一高二数学

成都市20142015学年度上期期末学业质量监测模拟一高二数学

成都市2014-2015学年度上期期末学业质量检测模拟一高二数学一.选择题(本题共10小题,每题5分,共计50分) 1.点在空间直角坐标系的位置是(▲)A. y 轴上B. 平面上C.平面上 D.平面上2.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测 试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数 据的平均数为16.8,则x ,y 的值分别为(▲) A .2,5 B .5,5 C .5,8 D .8,83.已知βα,是两个不同的平面,n m ,是两条不同的直线,则下列命题不.正确..的是(▲) A .若α⊥m n m ,//,则α⊥n B .若n m =⋂βαα,//,则n m // C .若αβ⊥⊥m m ,,则βα// D .若βα⊂⊥m m ,,则βα⊥ 4.已知x ,y 之间的数据如表所示,则回归直线过点(▲)A.(2,1.8) B .(4,3.2) C .(3,2.5)D .(5,3.8)5.已知程序框图如右图所示,则输出的i =(▲)A .5B .7C .9D .11 6.如图,直三棱柱111ABC A B C -,AC BC ⊥,且12C A C C C B ==,则直线1BC 与直线1AB所成角的余弦值为(▲) A .55 B .53C .255D .357.右图的平行六面体ABCD-A 1B 1C 1D 1中,点M 在BB 1上,点N 在 DD 1上,且BM =12BB 1,D 1N=13D 1D ,若1MN AB AD AA x y z =++, 则=++z y x (▲)甲组乙组9 0 9x 2 1 5 y 8 7 4 2 4x 1 2 3 4 5 y1.21.82.53.23.8C 1B 1A 1CABA .17 B .16 C .23 D .328.已知()0,12,1--=t t a ,()t t b ,,2=,则a b -的最小值为(▲) A.2 B. 6 C. 5 D. 39.已知点),(y x P 满足2284160x x y y -+-+≤,则xy的取值范围(▲) A.40,3⎡⎤⎢⎥⎣⎦ B. ⎥⎦⎤⎢⎣⎡43,0 C. ⎥⎦⎤⎢⎣⎡1,43 D.⎥⎦⎤⎢⎣⎡34,110.三棱锥P-ABC 中,PA 、PB 、PC 两两垂直,且PA=3,PB=2,PC=1,设M 是底面△ABC 内一点,定义()()p n m M f ,,=,其中p n m ,,分别是三棱锥M-PAB ,三棱锥M-PBC ,三棱锥M-PCA 的体积;若()⎪⎭⎫⎝⎛=y x M f ,,21,且81≥+y a x 恒成立,则正实数a 的最小值为(▲)A.1B. 3413-C. 249-D. 2二.填空题(本题共5小题,每题5分,共25分)11.一个容量为100的样本,其数据的分组与各组的频数如下: 组别(]10,0 (]20,10 (]30,20 (]40,30 (]50,40 (]60,50 (]70,60频数 12 13241516137则样本落在(]40,10上的频率是 ▲ .12.直线013=+-y x 的倾斜角为______▲_______.13.从点)5,4(P 向圆C :4)2(22=+-y x 引切线,则该切线方程是_______▲___________. 14.四棱锥P-ABCD 的底面ABCD 是正方形,且顶点P 在底面ABCD 的射影为底面的中心,若AB a =,棱锥体积为366a ,则侧棱AP 与底面ABCD 所成的角是_____▲___________. 15.如图,将∠B =π3,边长为1的菱形ABCD 沿对角线AC 折成大小等于θ的二面角B -AC -D ,若DABC MNθ∈[π3,2π3 ],M 、N 分别为AC 、BD 的中点,则下面的四种说法:①AC ⊥MN ; ②DM 与平面ABC 所成的角是θ; ③线段MN 的最大值是34,最小值是34; ④当θ=π2时,BC 与AD 所成的角等于π2.其中正确的说法有 ▲_ (填上所有正确说法的序号).三.解答题(本题共6小题,共计75分)16.(本题满分12分)已知点P (2,-1)(1)求过P 点且与直线012:1=+-y x l 垂直的直线l 的方程; (2)求过P 点且与原点距离为2的直线l 的方程;17.(本题满分12分)某中学高一女生共有450人,为了了解高一女生的身高情况,随机抽取 部分高一女生测量身高,所得数据整理后列出频率分布表如下: (1)求出表中字母m 、n 、M 、N 所对应的数值; (2)在给出的直角坐标系中画出频率分布直方图; (3)估计该校高一女生身高在149.5~165.5 cm 范围内有多少人?18.(本题满分12分)如图所示,已知空间四边形ABCD 的每条边和对角线AC 、BD 长都等于1,点E ,F ,G 分别是AB 、AD 、CD 的中点,计算: (1)EF →·BA →; (2)EG 的长;(3)异面直线AG 与CE 所成角的余弦值.组别 频数 频率 145.5~149.5 8 0.16 149.5~153.5 6 0.12 153.5~157.5 14 0.28 157.5~161.5 10 0.20 161.5~165.5 8 0.16 165.5~169.5m n 合计MN19.(本题满分12分)已知圆C: 2220x x y -+=,直线l :40x y +-=。

四川省成都市2017-2018学年高一上学期期末调研考试数学试题

四川省成都市2017-2018学年高一上学期期末调研考试数学试题

四川省成都市2017-2018学年高一上学期期末调研考试数学试题2017-2018学年度上期期末高一年级调研考试数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合$P=\{x|<x<2\}$,$Q=\{x|-1<x<1\}$,则$P\capQ=$()A。

$\{x|x<1\}$ B。

$\{x|<x<1\}$ C。

$\{x|-1<x<1\}$ D。

$\{\}$2.已知平面向量$a=(m+1,-2)$,$b=(-3,3)$,若$a//b$,则实数$m$的值为()A。

0 B。

-3 C。

1 D。

-13.函数$y=ax+1-3(a>且a≠1)$的图像一定经过的点是()A。

$(。

-2)$ B。

$(-1.-3)$ C。

$(。

-3)$ D。

$(-1.-2)$4.已知$\frac{\sin\theta+\cos\theta}{1}=\frac{1}{1+2\cos\theta}$,则$\tan\theta$的值为()A。

-4 B。

$-\frac{1}{11}$ C。

$\frac{1}{11}$ D。

45.函数$f(x)=\log_3|x-2|$的大致图像是()A。

B。

C。

D。

6.函数$f(x)=\frac{1}{\pi}\tan(x+\frac{\pi}{4})$的单调递增区间为()A。

$(2k-\frac{3\pi}{4},2k+\frac{\pi}{4}),k∈Z$ B。

$(2k-\frac{3\pi}{4},2k+\frac{\pi}{4}),k∈Z$C。

$(4k-\frac{3\pi}{4},4k+\frac{\pi}{4}),k∈Z$ D。

$(4k-\frac{3\pi}{4},4k+\frac{\pi}{4}),k∈Z$7.函数$f(x)=\ln(-x)-x-2$的零点所在区间为()A。

四川省成都市2015届高中毕业班第一次诊断性检测数学(理)试题含答案

四川省成都市2015届高中毕业班第一次诊断性检测数学(理)试题含答案

成都市2015届高中毕业班第一次诊断性检测数学试题(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{|0}=≥U x x,集合{1}=P,则UP=ð(A)[0,1)(1,)+∞(B)(,1)-∞(C)(,1)(1,)-∞+∞(D)(1,)+∞2.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是(A)(B)(C)(D)3.已知复数z43i=--(i是虚数单位),则下列说法正确的是(A)复数z的虚部为3i-(B)复数z的虚部为3(C)复数z的共轭复数为z43i=+(D)复数z的模为54.函数31,0()1(),03xx xf xx⎧+<⎪=⎨≥⎪⎩的图象大致为(A)(B)(C)(D)5.已知命题p:“若22≥+x a b,则2≥x ab”,则下列说法正确的是(A)命题p的逆命题是“若22<+x a b,则2<x ab”(B)命题p的逆命题是“若2<x ab,则22<+x a b”G FEHPACBDA 1B 1C 1D 1(C )命题p 的否命题是“若22<+x a b ,则2<x ab ” (D )命题p 的否命题是“若22x a b ≥+,则2<x ab ”6.若关于x 的方程240+-=x ax 在区间[2,4]上有实数根,则实数a 的取值范围是 (A )(3,)-+∞ (B )[3,0]- (C )(0,)+∞ (D )[0,3]7.已知F 是椭圆22221+=x y a b(0>>a b )的左焦点,A 为右顶点,P 是椭圆上一点,⊥PF x 轴.若14=PF AF ,则该椭圆的离心率是 (A )14(B )34 (C )12(D )28.已知m ,n 是两条不同直线,α,β是两个不同的平面,且//m α,n ⊂β,则下列叙述正确的是(A )若//αβ,则//m n (B )若//m n ,则//αβ (C )若n α⊥,则m β⊥ (D )若m β⊥,则αβ⊥9.若552sin =α,1010)sin(=-αβ,且],4[ππα∈,]23,[ππβ∈,则αβ+的值是 (A )74π (B )94π (C )54π或74π (D )54π或94π 10.如图,已知正方体1111ABCD A B C D -棱长为4,点H 在棱1AA 上,且11HA =.在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长.则当点P 运动时, 2HP 的最小值是 (A )21(B )22 (C )23 (D )25二、填空题:本大题共5小题,每小题5分,共25分.11.若非零向量a ,b 满足a b a b +=-,则a ,b 的夹角的大小为__________. 12.二项式261()x x-的展开式中含3x 的项的系数是__________.(用数字作答) 13.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若2=c a ,4=b ,1cos 4=B ,则∆ABC 的面积=S __________.14.已知定义在R 上的奇函数()f x ,当0x ≥时,3()log (1)=+f x x .若关于x 的不等式2[(2)](22)f x a a f ax x ++≤+的解集为A ,函数()f x 在[8,8]-上的值域为B ,若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是__________.15.已知曲线C :22y x a =+在点n P (n (0,a n >∈N )处的切线n l 的斜率为n k ,直线n l 交x 轴,y 轴分别于点(,0)n n A x ,(0,)n n B y ,且00=x y .给出以下结论: ①1a =;②当*n ∈N 时,n y 的最小值为54; ③当*n ∈N 时,n k <; ④当*n ∈N 时,记数列{}n k 的前n 项和为n S ,则1)n S .其中,正确的结论有 (写出所有正确结论的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球.现从中同时取出3个球. (Ⅰ)求恰有一个黑球的概率;(Ⅱ)记取出红球的个数为随机变量X ,求X 的分布列和数学期望()E X .17.(本小题满分12分)如图,ABC ∆为正三角形,EC ⊥平面ABC ,//DB EC ,F 为EA 的中点,2EC AC ==,1BD =.(Ⅰ)求证:DF //平面ABC ;(Ⅱ)求平面DEA 与平面ABC 所成的锐二面角的余弦值. 18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且22n n S a =-;数列{}n b 满足11b =,12n n b b +=+.*n ∈N .(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)记n n n c a b =,*n ∈N .求数列{}n c 的前n 项和n T . 19.(本小题满分12分)某大型企业一天中不同时刻的用电量y (单位:万千瓦时)关于时间t (024t ≤≤,单位:小时)的函数()y f t =近似地满足()sin()(0,0,0)f t A t B A ωϕωϕπ=++>><<,下图是该企业一天中在0点至12点时间段用电量y 与时间t 的大致图象. (Ⅰ)根据图象,求A ,ω,ϕ,B 的值; (Ⅱ)若某日的供电量()g t (万千瓦时)与时间t (小时)近似满足函数关系式205.1)(+-=t t g (012t ≤≤).当该日内供电量小于该企业的用电量时,企业就必须停产.请用二分法计算该企业当日停产的大致时刻(精确度0.1). 参考数据:20.(本小题满分13分)已知椭圆Γ:12222=+by a x (0>>b a )的右焦点为)0,22(,且椭圆Γ上一点M 到其两焦点12,F F 的距离之和为(Ⅰ)求椭圆Γ的标准方程; (Ⅱ)设直线:(l y x m m =+∈R)与椭圆Γ交于不同两点A ,B ,且AB =若点0(,2)P x 满足=PA PB ,求0x 的值. 21.(本小题满分14分)已知函数2()ln mx f x x =-,2()emx mx g x m =-,其中m ∈R 且0m ≠.e 2.71828=为自然对数的底数.(Ⅰ)当0m <时,求函数()f x 的单调区间和极小值;(Ⅱ)当0m >时,若函数()g x 存在,,a b c 三个零点,且a b c <<,试证明:10e a b c -<<<<<;(Ⅲ)是否存在负数m ,对1(1,)x ∀∈+∞,2(,0)x ∀∈-∞,都有12()()f x g x >成立?若存在,求出m 的取值范围;若不存在,请说明理由.数学(理科)参考答案及评分意见第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分)1.A ; 2.C ; 3.D ;4.A ;5.C ;6.B ;7.B ;8.D ;9.A ;10.B .第Ⅱ卷(非选择题,共100分)二、填空题:(本大题共5个小题,每小题5分,共25分)11.90︒ 12.20- 1314.[2,0]- 15.①③④ 三、解答题:(本大题共6个小题,共75分) 16.(本小题满分12分) 解:(Ⅰ)记“恰有一个黑球”为事件A ,则21243641()205⋅===C C P A C .……………………………………………………………4分 (Ⅱ)X 的可能取值为0,1,2,则343641(0)205====C P X C ……………………………………………………………2分122436123(1)205⋅====C C P X C ………………………………………………………2分 1(2)()5===P X P A ………………………………………………………………2分 ∴X 的分布列为∴X 的数学期望1310121555=⨯+⨯+⨯=EX .…………………………………2分 17.(本小题满分12分)(Ⅰ)证明:作AC 的中点O ,连结BO .在∆AEC 中,//=FO 12EC ,又据题意知,//=BD 12EC .∴//=FO BD ,∴四边形FOBD 为平行四边形. ∴//DF OB ,又⊄DF 平面ABC ,⊂OB 平面ABC .∴//DF 平面ABC .……………………………………4分(Ⅱ)∵//FO EC ,∴⊥FO 平面ABC .在正∆ABC 中,⊥BO AC ,∴,,OA OB OF 三线两两垂直. 分别以,,OA OB OF 为,,z x y 轴,建系如图. 则(1,0,0)A ,(1,0,2)-E,D . ∴(2,0,2)=-AE,(1=-AD . 设平面ADE 的一个法向量为1(,,z)=x y n ,则110⎧⋅=⎪⎨⋅=⎪⎩AE AD n n,即2200-+=⎧⎪⎨-++=⎪⎩x z x z ,令1=x ,则1,0==z y .∴平面ADE 的一个法向量为1(1,0,1)=n . 又平面ABC 的一个法向量为2(0,0,1)=n .∴121212,2⋅>===cos <n n n n n n . ∴平面DEA 与平面ABC8分 18.(本小题满分12分) 解:(Ⅰ)∵22n n S a =- ①当2≥n 时,1122--=-n n S a ②①-②得,122-=-n n n a a a ,即12-=n n a a (2≥n ). 又当1≥n 时,1122=-S a ,得12=a .∴数列{}n a 是以2为首项,公比为2的等比数列,∴数列{}n a 的通项公式为1222-=⋅=n n n a .………………………………………4分 又由题意知,11b =,12n n b b +=+,即12+-=n n b b ∴数列{}n b 是首项为1,公差为2的等差数列,∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .……………………………2分(Ⅱ)(Ⅱ)由(Ⅰ)知,(21)2=-n n c n ………………………………………………1分 ∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅n n n T n n ③231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅n n n n T n n n ④由③-④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅n n n n T n …………………1分23112(12222)(21)2-+-=++++--⋅n n n n T n∴12222(21)212+-⋅-=⨯--⋅-n n n T n …………………………………………………1分 ∴111224222+++-=⋅--⋅+n n n n T n 即1(32)24+-=-⋅-n n T n ∴1(23)24+=-+n n T n∴数列{}n c 的前n 项和1(23)24+=-+n n T n ………………………………………3分 19.(本小题满分12分) 解:(Ⅰ)由图知12T =,6πω=.………………………………………………………1分2125.15.22m i n m a x =-=-=y y A ,225.15.22min max =+=+=y y B .……………2分 ∴0.5sin()26y x πϕ=++.又函数0.5sin()26y x πϕ=++过点(0,2.5).代入,得22k πϕπ=+,又0ϕπ<<,∴2πϕ=.…………………………………2分综上,21=A ,6πω=,2πϕ=,21=B . ………………………………………1分即2)26sin(21)(++=ππt t f . (Ⅱ)令)()()(t g t f t h -=,设0)(0=t h ,则0t 为该企业的停产时间. 由0)11()11()11(<-=g f h ,0)12()12()12(>-=g f h ,则)12,11(0∈t . 又0)5.11()5.11()5.11(<-=g f h ,则)12,5.11(0∈t .又0)75.11()75.11()75.11(>-=g f h ,则)75.11,5.11(0∈t . 又0)625.11()625.11()625.11(<-=g f h ,则)75.11,625.11(0∈t .又0)6875.11()6875.11()6875.11(>-=g f h ,则)6875.11,625.11(0∈t .…4分……………………………………………1分 ∴应该在11.625时停产.……………………………………………………………1分 (也可直接由)625.11()625.11()625.11(<-=g f h ,0)6875.11()6875.11()6875.11(>-=g f h ,得出)6875.11,625.11(0∈t ;答案在11.625—11.6875之间都是正确的;若换算成时间应为11点37分到11点41分停产) 20.(本小题满分13分)(Ⅰ)由已知2=a=a,又=c ∴2224=-=b a c .∴椭圆Γ的方程为141222=+y x .…………………………………………………4分 (Ⅱ)由⎪⎩⎪⎨⎧=++=,1412,22y x m x y 得01236422=-++m mx x ① ………………………1分∵直线l 与椭圆Γ交于不同两点A 、B ,∴△0)123(163622>--=m m , 得216<m .设),(11y x A ,),(22y x B ,则1x ,2x 是方程①的两根,则2321mx x -=+, 2123124-⋅=m x x .∴12=-=AB x又由AB =231294-+=m ,解之2m =±.……………………………3分 据题意知,点P 为线段AB 的中垂线与直线2=y 的交点.设AB 的中点为),(00y x E ,则432210m x x x -=+=,400mm x y =+=, ①当2m =时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x -=-+,即1y x =--. 令2=y ,得03x =-.…………………………………………………………………2分 ②当2m =-时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x +=--,即1y x =-+. 令2=y ,得01x =-.………………………………………………………………2分 综上所述,0x 的值为3-或1-. 21.(本小题满分14分)解:(Ⅰ)2222)(ln )ln 21()(ln ln 2)(ln 1ln 2)(x x mx x x x x m x x x x x mx f -⋅=-=⋅--='(0>x 且1≠x ).∴由0)(>'x f ,得21e x >;由0)(<'xf ,得210e x <<,且1≠x .……………………1分 ∴函数)(x f的单调递减区间是(0,1),(1,单调递增区间是),(+∞e .………………2分 ∴me e f x f 2)()(-==极小值.………………………………………………………………1分(Ⅱ)222(2)(),(0)mx mx mx mxmxe mx e m mx mx g x m e e--'=-=>. ∴()g x 在(,0)-∞上单调递增,2(0,)m上单调递减,2(,)m +∞上单调递增.∵函数()g x 存在三个零点.∴20(0)02402()00>⎧>⎧⎪⎪⎪⇒⇒<<⎨⎨<⎪⎪-<⎩⎪⎩m g m e g m m m e . ∴02<<me …………………………………………………………………………………3分 由(1)(1)0-=-=-<mmg m me m e .∴22()(1)0=-=-<em em me e g e m m e e.……………………………………………………1分综上可知,()0,(0)0,(1)0<>-<g e g g ,结合函数()g x 单调性及a b c <<可得:(1,0),(0,),(,)a b e c e ∈-∈∈+∞.即10a b e c -<<<<<,得证.…………………………………………………………1分 (III )由题意,只需min max ()()>f x g x ∵2(12ln )()(ln )-'=mx x f x x 由0<m ,∴函数()f x 在12(1,)e 上单调递减,在12(,)e +∞上单调递增.∴12min ()()2==-f x f e me .………………………………………………………………2分 ∵(2)()-'=mxmx mx g x e由0<m ,∴函数()g x 在2(,)m -∞上单调递增,2(,0)m上单调递减. ∴max 224()()==-g x g m m e m .……………………………………………………………2分 ∴242->-me m e m ,不等式两边同乘以负数m ,得22242-<-m e m e.∴224(21)e m e+>,即224(21)m e e >+.由0<m ,解得m <.综上所述,存在这样的负数(,)(21)∈-∞-+m e e 满足题意.……………………………1分。

2014-2015学年度上学期期末考试高一数学试题

2014-2015学年度上学期期末考试高一数学试题

2014-2015学年度上学期期末考试高一数学试题时间:120分钟 总分:150分一、选择题(请把正确选项填到答题卡对应题号下面。

共12题,每题5分,共60分)1、下列大小关系正确的是A .30.440.43log 0.3<< B.30.440.4log 0.33<<C. 30.44log 0.30.43<<D.0.434log 0.330.4<<2、设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为,( ) A.0 B.1 C.2 D.33、函数34x y =的图象是A B C D4、若三点(2,3),(5,0),(0,)(0)A B C b b ≠共线,则b =( )A .2B .3C .5D .1 5对角线长为( )A. B. C .6 D6、已知菱形ABCD 的两个顶点坐标:(2,1),(0,5)A C -,则对角线BD 所在直线方程为( )A .250x y +-=B .250x y +-=C .250x y -+=D .250x y -+=7、圆心为(11),且与直线4x y +=相切的圆的方程是( )A .22(1)(1)2x y -+-=B .22(1)(1)4x y -+-=C .22(1)(1)2x y +++=D .22(1)(1)4x y +++=8、下列函数中,在上为增函数的是( )A 、B 、C 、D 、 9、几何体的三视图如图,则几何体的体积为( )A .3πB .23πC .πD .43π 10、已知α、β是平面,m 、n 是直线,则下命题不正确的是( ).A .若m ∥n , m ⊥α, 则n ⊥α B. 若,m ⊥α, m ⊥β, 则α∥βC.若m ⊥α, m ∥n , n ⊂β, 则α⊥βD. .若m ∥α, α ∩β=n 则m ∥n11、由直线1y x =+上的一点向圆22(3)1x y -+=引切线,则切线长的最小值为( )A .1B .CD .312、下列四个正方体图形中,A B 、为正方体的两个顶点,M N P 、、分别为其所在棱的中点,能得出 //AB 平面MNP 的图形的序号是( )A. ①、③B. ①、④C. ②、③D. ②、④二、填空题(把答案填在题中横线上。

2014—2015学年度第一学期期末学业质量评估九年级数学试题(含答案)

2014—2015学年度第一学期期末学业质量评估九年级数学试题(含答案)

九年级数学试题注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页,为选择题,共36分.第Ⅱ卷2页,为非选择题,共84分.全卷满分120分,考试时间120分钟.2.答卷前,务必将答题卡上面的项目填涂清楚.所有答案都必须涂、写在答题卡相应的位置,答在本试卷上一律无效.第Ⅰ卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,多选、不选、错选均记零分.)1. 下列说法中正确的是()A. 平分弦的直径垂直于弦,并且平分弦所对的两条弧;B. 圆是轴对称图形,每一条直径都是它的对称轴;C. 弦的垂直平分线过圆心;D. 相等的圆心角所对的弧也相等.2. 如图,A、B、P是⊙O上的三点,∠APB=40°,则弧AB的度数为()A.50°B.80°C.280°D.80°或280°3. 如图,在直径为AB的半圆O上有一动点P从O点出发,以相同的速度沿O-A-B-O的路线运动,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()4. 下列命题中的假命题是()A. 正方形的半径等于正方形的边心距的2倍;B. 三角形任意两边的垂直平分线的交点是三角形的外心;C. 用反证法证明命题“三角形中至少有一个内角不小于60°”时,第一步应该“假设每一个内角都小于60°”;D. 过三点能且只能作一个圆.5. 如图,⊙O的半径是4,点P是弦AB延长线上的一点,连接OP,若OP=6,∠APO=30°,则弦AB的长为()A .27B .7C .5D .526. 如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,BC =3,AC =6,则CD 的长为( ) A .1 B .2 C .23 D .25 7. 下列方程中:①x 2-2x -1=0, ②2x 2-7x +2=0, ③x 2-x +1=0 两根互为倒数有( ) A. 0个 B. 1个 C. 2个 D. 3个 8. 一次函数y 1=3x +3与y 2=-2x +8在同一直角坐标系内的交点坐标 为(1,6).则当y 1>y 2时,x 的取值范围是( )A. x ≥1B. x =1C. x <1D. x >1 9. 在△ABC 中,若()21cosA 1tanB 02-+-=,则∠C 的度数是( ) A. 45° B. 60° C. 75° D. 105°10. 如图,热气球的探测器显示,从热气球A 看一栋高楼顶部B 的仰角为30°,看这栋高楼底部C 的俯角为60°,热气球A 与高楼的水平距离为120m ,这栋高楼BC 的高度为( ) A .1603m B .803 m C .()12031- m D .()12031+m11. 已知反比例函数y =xk的图像经过点P (-1,2),则这个函数图像位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 12. 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc <0;②b >a +c ;③2a -b =0;④b 2-4ac <0.其中正确的结论个数是( ) A.1个 B.2个 C.3个 D.4个第Ⅱ卷二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题3分,满分18分) 13. 已知一元二次方程ax 2+bx +c =0的两根为x 1=2,x 2=-3,则二次三项式ax 2+bx +c 可分解因式为 .14. ⊙O 的半径为10cm ,AB ,CD 是⊙O 的两条弦,且AB ∥CD ,AB =16cm ,CD =12cm .则AB 与CD 之间的距离是 cm .15. 如图所示,△ABC 中,E 、F 、D 分别是边AB 、AC 、BC 上的点,且满足12AE AF EB FC ==,则△EFD 与△ABC 的面积比为 .16. 如图,M 是Rt △ABC 的斜边BC 上异于B 、C 的一定点,过M 点作直线MN 截△ABC交AC 于点N ,使截得的△CMN 与△ABC 相似. 已知AB =6,AC =8,CM =4,则CN = .17. 一个足球从地面上被踢出,它距地面高度y (米)可以用二次函数x x y 6.199.42+-=刻画,其中x (秒)表示足球被踢出后经过的时间. 则足球被踢出后到离开地面达到最高点所用的时间是 秒. 18. 在△ABC 中,AB =AC =5,tanB =34.若⊙O 的半径为10,且⊙O 经过点B 、C ,那么线段OA 的长等于 .三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤. 共66分) 19. (本题满分10分)市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?如图,晚上小明站在路灯P的底下观察自己的影子时发现,当他站在F点的位置时,在地面上的影子为BF,小明向前走2米到D点时,在地面上的影子为AD,若AB=4米,∠PBF=60°,∠PAB=30°,通过计算,求出小明的身高.(结果保留根号).21. (本题满分11分)如图,四边形ABCD内接于⊙O,BC是直径,∠BAD=120°,AB=AD.(1)求证:四边形ABCD是等腰梯形;(2)已知AC=6,求阴影部分的面积.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求sinB 的值.23. (本题满分12分)已知关于x 的一元二次方程()2kx 4k 1x 3k 30-+++=. (1)试说明:无论k 取何值,方程总有两个实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5. 当△ABC 是等腰三角形时,求k 的值.AB是⊙O的直径,AD与⊙O相交,点C是⊙O上一点,经过点C的直线交AD于点E.⑴如图1 ,若AC平分∠BAD,CE⊥AD于点E,求证:CE是⊙O的切线;⑵如图2,若CE是⊙O的切线,CE⊥AD于点E,AC是∠BAD的平分线吗?说明理由;⑶如图3,若CE是⊙O的切线,AC平分∠BAD,AB=8,AC=6,求AE的长度.试题答案及评分标准一、选择题(每小题选对得3分,满分36分. 多选、不选、错选均记零分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBBDACBDCADB二、填空题(每小题3分,满分18分)13. a (x -2)(x +3) 14. 214或 15. 2:9 16. 1655或17.2 18. 3或5 三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤.共66分) 19. (本题满分10分)解:解:(1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………6分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………10分20. (本题满分10分)解:设小明的身高为x 米,则CD =EF =x 米. 在Rt △ACD 中,∠ADC =90°,tan ∠CAD =ADCD,即tan 30°=x /AD ,AD =3x --2分 在Rt △BEF 中,∠BFE =90°,tan ∠EBF =EF /BF ,即tan 60°=x /BF ,BF =x 33---4分 由题意得DF =2,∴BD =DF -BF =2-x 33,∵AB =AD +BD =4,∴3x +2-x 33=4 --8分即x =3.答:小明的身高为3米.------------------------------------------------------------------------10分 21. (本题满分11分)⑴证明:∵∠BAD =120°,AB =AD ∴∠ABD =∠ADB =30° ∴弧AB 和弧AD 的度数都等于60°又 ∵BC 是直径 ∴弧CD 的度数也是60° ------------------ --------------2分 ∴AB =CD 且∠CAD =∠ACB =30° ∴BC ∥AD∴四边形ABCD 是等腰梯形. --------------------------------------------------5分⑵∵BC 是直径 ∴∠BAC =90°∵∠ACB =30°,AC =6∴0cos 30AC BC ===R =∵弧AB 和弧AD 的度数都等于60° ∴∠BOD =120° ---------------------------6分 连接OA 交BD 于点E ,则OA ⊥BD 在Rt △BOE中:0sin30OE OB =⋅=0cos 330BE OB =⋅=,BD =2BE =6----------------------------------------------------8分∴(21201-63602BOD BODS S S⨯⨯=-=⨯阴影扇形ππ ----------------------------------------------------11分 22. (本题满分11分)⑴证明:∵∠AFE =∠B ,∠AFE 与∠AFD 互补,∠B 与∠C 互补∴∠AFD =∠C --------------------------------------------------2分 ∵AD ∥BC ∴∠ADF =∠DEC -------------------------------------------4分 ∴△ADF ∽△DEC ----------------------------------------------------5分 ⑵解:∵△ADF ∽△DEC ∴AD AFDE CD== 解得:DE =12 ----------------------------------------------------7分 ∵AE ⊥BC , AD ∥BC ∴AE ⊥AD∴6AE ==----9分在Rt △ABE 中,63sin 84AE B AB === -------------------------------------------------11分 23. (本题满分12分)解:⑴△=()()243341k k k -++ =2216181212k k k k ++--=2441k k -+ =()221k -≥0 --------------------------------------------------4分∴无论k 取何值,方程总有两个实数根. -------------------------------------------------5分 ⑵若AB =AC 则方程()2kx 4k 1x 3k 30-+++=有两个相等的实数根此时△=0,即:()221k -=0 解得:12k =当12k =时,AB =AC =3,此时AB 、AC 、BC 满足三边关系. -------------------------8分 若BC =5为△ABC 的一腰,则方程()2kx 4k 1x 3k 30-+++=有一根是5,将5x =代入方程()2kx 4k 1x 3k 30-+++=解得:14k = 当14k =时,解得方程两根为5和3,此时AB 、AC 、BC 满足三边关系. ----------11分 综上:当△ABC 是等腰三角形时,k 的值为1124或. -----------------------------12分24. (本题满分12分) ⑴证明:连接OC∵OA =OC ∴∠OAC =∠OCA ∵AC 平分∠BAD ∴∠OCA =∠CAD ∴OC ∥AD∵CE ⊥AD ∴CE ⊥OC -----------------------------------------------3分 又OC 是半径 ∴CE 是⊙O 的切线。

2014-2015-1工科高数(2-1)期末考试A卷参考答案

2014-2015-1工科高数(2-1)期末考试A卷参考答案

2014—2015学年第一学期《高等数学(2-1)》期末考试A卷( 工科类 )参考答案及评分标准各章所占分值如下:第一章函数与极限16 %;第二章一元函数的导数与微分16 %;第三章微分中值定理与导数的应用14 %;第四章不定积分15 %;第五章定积分及其应用26 % . 第六章常微分方程13 % .一.(共3小题,每小题4分,共计12 分)判断下列命题是否正确在 题后的括号内打“√”或“⨯” ,如果正确,请给出证明,如果不正确请举一个反例进行说明 .1.极限xx 1sinlim 0→不存在. ( √ )--------------------------------------------------(2分)证 设x x f 1sin )(= ,取πn x n 21=,221ππ+=n y n ,),2,1( =n0lim =∞→n n x ,0lim =∞→n n y ,但)(lim n n x f ∞→n n x 1sin lim ∞→=02sin lim ==∞→πn n ,)(lim n n y f ∞→n n y 1sinlim ∞→=1)22sin(lim =+=∞→ππn n , 由海涅定理,xx 1sin lim 0→不存在. ---------------------------------------------------------------(2分)2.若曲线)(x f y =在))(,(00x f x 点处存在切线,则)(x f 在0x 点必可导. ( ⨯ )--------------------------------------------------------(2分) 例:3x y =在)0,0(点处有切线0=x ,但3x y =在0=x 处不可导.---------------------------------------------------------(2分)3.设函数)(x f 在],[b a 上连续且下凸,在),(b a 内二阶可导,则),(b a x ∈∀有0)(>''x f . (⨯ )----------------------------------------------------------(2分)例:4)(x x f =在]3,2[-上连续且下凸,但 0)0(=''f .. ---------------------------------------------------------(2分)二.(共3小题,每小题6分,共计18分) 1. 求极限)!sin()11(lim n nnn ⋅-∞→ .解 ,0)11(lim =-∞→nn n,1)!s i n (≤n ------------------------------------------------------(3分).0)!sin()11(lim =⋅-∴∞→n nn n ----------------------------------------------------------------(3分)2.求极限44)1(limxdte t x x t x ⎰-+∞→+.解 44)1(l i mx dtet x xt x ⎰-+∞→+⎪⎭⎫⎝⎛∞∞+=⎰+∞→xx t x e x dt e t 404)1(lim----------------------------(2分)xxx e x x e x )4()1(lim434++=+∞→---------------------------------------------------------------------(2分).141lim 434=++=+∞→x x x x --------------------------------------------------------------------(2分)3.求极限)21(lim 222222nn nn n n n n ++++++∞→ . 解 )21(lim 222222n n nn n n n n ++++++∞→ ∑=∞→⋅⎪⎭⎫⎝⎛+=ni n n n i 12111lim ------------------------------------------------------------------(2分) ⎰+=1021x dx ---------------------------------------------------------------------(2分) 4arctan 10π==x. ----------------------------------------------------------------(2分)1.求函数()xx eex f 11211++=的间断点并判断其类型.解 0=x 是)(x f 的间断点,---------------------------------------------------------------------(3分)又 )(lim 0x f x +→21211lim 11=++=+→xx x ee,)(lim 0x f x -→1211lim 110=++=-→xxx e e , 0=∴x 是)(x f 的跳跃间断点. ---------------------------------------------------------------(3分)2.设⎪⎩⎪⎨⎧=≠-=0,00,1)(2x x x e x f x ,求 .)(x f '解 当0≠x 时,2)1(2)(22x e x x e x f x x --⋅='21222x e e x x --=----------------- (3分 ) 当0=x 时,0)0()(lim )0(0--='→x f x f f x xx e x x 1lim 20-=→201lim2x e x x -=→122lim 20==→x xe xx ,⎪⎩⎪⎨⎧=≠--='∴.0,1,0,12)(222x x x e e x f x x ------------------------------------------------ ( 3分 )3.设方程ln(sin )cos sin x t y t t t =⎧⎨=+⎩确定y 为x 的函数,求dy dx 与22d ydx . 解()sin ()dy y t t t dx x t '==' , --------------------------------------------------------------------(3分)22d y d dy dx dx dx ⎛⎫= ⎪⎝⎭()sin dt t dx =()sin d dt t t dt dx =⋅sin cos ()t t t x t +='sin tan sin t t t t =+. -----------------------------------------------------------------------(3分)1.求不定积分⎰+dx e xx ln 2.解 ⎰+dx e xxln 2⎰⋅=dx e e x x ln 2⎰=dx x e x 2-----------------------------------------------(3分))(2122⎰=x d e x -------------------------------------------------------------------------(2分) .212C e x += ----------------------------------------------------------------------(1分)2.求不定积分⎰dx x x 2cos .解⎰dx x x 2cos ⎰+=dx xx 22cos 1 -------------------------------------------------------(2分) ⎰+=)2(sin 41412x xd x ---------------------------------------------------(2分) ⎰-+=dx x x x x 2sin 412sin 41412 C x x x x +++=2cos 812sin 41412.------------------------------------(2分)3.设)(x f 在]1,1[-上连续,求定积分dx x x x f x f }1sin )]()([{211-+-+⎰-.解1dx x x x f x f }1sin )]()([{211-+-+⎰- dx x x f x f sin )]()([11-+=⎰-dx x 2111-+⎰-------------------------------(2分)dx x 210120-+=⎰(上半单位圆的面积)-----------------------------------(3分)242ππ=⋅=.------------------------------------------------------------------------------(1分)解2dx x x x f x f }1sin )]()([{211-+-+⎰- dx x x f x f sin )]()([11-+=⎰-dx x 2111-+⎰-----------------------------(2分)+=0dx x 2111-+⎰-(上半单位圆的面积)-------------------------------(3分)2π=.-------------------------------------------------------------------------------------(1分)五.(本题8分)设由曲线 x y ln = 与直线 0=-ey x 及 x 轴 所围平面图形为 D (1) 求D 的面积S ;(4分)(2) 求D 绕直线e x =旋转所得旋转体的体积 V .(4分)解 曲线x y ln =与直线 0=-ey x 的交点为)1,(e ----------------------(1分).12-=e------------------------------------------(3分) (2) ⎰⎰---=-=1210221)()(dy e e dy ey e V V V y ππ------------------------------(2分)⎰⎰+---=1221022)2()1(dy e ee e dy y e y y ππ.)3125(6)2212(3222+-=---=e e e e e πππ----------------------(2分)xx ⎰-=1)()1(dyy e e S y 12]2[e ye y -=六.(共2小题,每小题6分,共计12分)1.设有半径为R 的半球形蓄水池中已盛满水 (水的密度为ρ), 求将池中水全部抽出所做的功.解 过球心的纵截面建立坐标系如图,则半圆方程为222x y R +=. --------------------------------------------------(1分).44gR ρπ=---------------------------------------------------------------------------(2分)2.设有质量为m 的降落伞以初速度0v 开始降落,若空气的阻力与速度成正比(比例系数为0>k ),求降落伞下降的速度与时间的函数关系.解 设降落伞下降的速度为)(t v ,则根据牛顿第二运动定律,有 kv mg dtdvm-=,其中g 为重力加速度,-------------------------------------------(2分) 分离变量,得m dtkv mg dv =- , 两端积分 ⎰⎰=-m dtkv mg dv , 1ln 1C m t kv mg k +=-- , 1ln kC t mkkv mg --=-, t mk Cekv mg -=- (其中1kC eC -=,0>-kv mg )---------------------------------(2分)由已知0)0(v v =,代入上式,得0kv mg C -=,故 .)(0tm ke kmg v k mg v --+=------------------------------------------------------------(2分)y,],0[R x ∈∀所做功的微元:取],[dx x x +(其中g x dx x R g dW ⋅-=)(22πρ分)(3)(32dx x x R g -=πρ23()RW g R x x dxρπ=-⎰故七.(本题6分)求微分方程2106652+-=+'-''x x y y y 的通解.解 特征方程为:,0652=+-r r 特征根:.3,221==r r对应齐次方程的通解为:.3221x x e C e C y +=----------------------------------------(3分) 而0不是特征根,可设非齐次方程的特解为C Bx Ax y ++=21,----------------(1分)B Ax y +='21,A y 21='',代入原方程得, 2106)(6)2(5222+-=++++-x x C Bx Ax B Ax A , 2106652)106(622+-=+-+-+x x C B A x A B Ax ,比较同次幂的系数,得⎪⎩⎪⎨⎧=+--=-=.2652,10106,66C B A A B A解之得,.0,0,1===C B A .21x y =∴故所要求的通解为.23221x e C e C y x x ++=---------------------------------------------(2分)八.(本题8分)设L 是一条平面曲线,其上任意一点)0(),(>x y x 到坐标原点的距离恒等于该点处的切线在y 轴上的截距且L 经过点)0,21(. (1)试求曲线L 的方程;(2)求L 位于第一象限的一条切线,使该切线与L 以及两坐标轴所围图形的面积最小. 解(1)过曲线L 上点),(y x 处的切线方程为:)(x X y y Y -'=-, 令0=X ,得切线在y 轴上的截距:y x y Y '-=,由题意,得y x y y x '-=+22,即dx dy x y x y -=⎪⎭⎫⎝⎛+21,)0(>x ------------(2分)令u x y =,则,12x dx u du -=+)0(>x ,12⎰⎰-=+⇒x dxudu )0(>xC x u u ln ln )1ln(2+-=++⇒,C u u x =++⇒)1(2,将xyu =代入并化简,得 C y x y =++22,由L 经过点)0,21(,令21=x ,0=y ,得21=C ,故曲线L 的方程为:,2122=++y x y 即 241x y -=.----------------------------------(2分)(2)曲线L :241x y -=在点),(y x 处的切线方程为:)(x X y y Y -'=-,即)(2)41(2x X x x Y --=--,亦即 )210(4122≤<++-=x x X x Y , 切线与x 轴及y 轴的交点分别为:)0,241(2xx +,).41,0(2+x -----------------------(2分)所求面积⎰--+⋅=210222)41(2)41(21)(dx x xx x S ,)0(>x)413)(41(41)41(2)41(441)(22222222-+=+-+⋅='x x x x x x x x S ,)0(>x 令0)(='x S ,得)(x S 符合实际意义唯一驻点:63=x , 即63=x 为)(x S 在)21,0(内的最小值点, 故所求切线方程为: 41363632++⋅-=X Y ,即.3133+-=X Y ---------------------------------------------(2分)。

四川省成都市2014-2015学年高一上学期期末考试数学试题 Word版含答案

四川省成都市2014-2015学年高一上学期期末考试数学试题 Word版含答案

成都市2014-2015年度高一上期末考试-数学一、选择题(每空5分,共50分)1、已知集合A={x|x2-2x>0},B={x|-<x<},则( )A.A∩B=∅ B.A∪B=RC.B⊆A D.A⊆B2、函数y=的图像与函数(-2≤x≤4)的图像所有交点的横坐标之和等于A. 2B. 4C. 6D. 83、已知函数的最小正周期为,则该函数的图象()A.关于点对称 B.关于直线对称C.关于点对称 D.关于直线对称4、当时,函数的最小值是()A. B. C.2 D.15、已知是定义在R上的周期为2的偶函数,当时,,设,,则a、b、c的大小关系为()A. B. C. D.6、已知点是重心,,若,则的最小值是( )A. B. C. D.7、如图,在中,,是上的一点,若,则实数的值为()8、设Q为有理数集,函数f (x) =g(x)=,则函数h(x)=f (x)·g (x)A.是奇函数但不是偶函数 B.是偶函数但不是奇函数C .既是奇函数也是偶函数D .既不是偶函数也不是奇函数9、已知函数在区间上均有意义,且、是其图象上横坐标分别为、的两点.对应于区间内的实数,取函数的图象上横坐标为的点,和坐标平面上满足的点,得.对于实数,如果不等式对恒成立,那么就称函数在上“k 阶线性近似”.若函数在上“k 阶线性近似”,则实数k 的取值范围为A .B .C .D .10、函数的定义域为,若存在闭区间,使得函数满足:①在内是单调函数;②在上的值域为,则称区间为的“倍值区间”.下列函数中存在“倍值区间”的有 ( )①; ②;③; ④(A )①②③④ (B )①②④ (C )①③④ (D )①③二、填空题(每空5分,共25分)11、设集合A (p ,q )=,当实数取遍的所有值时,所有集合A (p ,q )的并集为 .12、设为坐标平面内一点,O 为坐标原点,记f (x )=|OM|,当x 变化时,函数 f (x )的最小正周期是13、函数为上的奇函数,该函数的部分图像如下图所表示,、分别为最高点与最低点,并且两点间的距离为,现有下面的3个命题:(1)函数的最小正周期是;(2)函数在区间上单调递减;(3)直线是函数的图象的一条对称轴。

2014-2015学年上学期期末考试高一数学试题

2014-2015学年上学期期末考试高一数学试题

2014-2015学年上学期期末考试一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={2,3},B={2,3,4},C={2,4,5}则()A B C ⋂⋃=( ) A .{2,3,4} B .{2,3,5} C .{3,4,5}D .{2,3,4,5} 2.下列函数是奇函数的是( )A .B .C .D .3.已知f(x)= ,则在下列区间中,y=f (x )一定有零点的是( ) A .(-3,-2) B .(-1,0) C .(2, 3) D .(4,5)4.圆C 1:x 2+y 2+4x -4y +4=0与圆C 2:x 2+y 2-4x -10y +13=0的公切线有 ( ).A .1条B .2条C .3条D .4条5.三个数231.0=a ,31.0log 2=b ,31.02=c 之间的大小关系为( )A .a <c <bB .a <b <cC .b <a <cD .b <c <a6.函数y =lg(x +1)的图象大致是( ).7.一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的表面积为( ). A .12π B .18πC .24π D .36π8. 已知函数2log (0)()3(0)x x x f x x >⎧=⎨≤⎩,那么)]41([f f 的值为 ( A ) A .91 B . 9 C .91- D .9-x y =322-=x y 21x y =]1,0[,2∈=x x y 22x x-二、填空题:本大题共7小题,每小题解5分,共3 5分,把答案填在答题卡中对应题号后的横线上.9.已知1()2x >1,则x 的取值范围为________.10.函数lg y x =+的定义域为 .11.直线l 的方程为y -a =(a -1)(x +2),若直线l 在y 轴上的截距为6,则a =________.12.在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 、H 分别为AA 1、AB 、BB 1、B 1C 1的中点,则异面直线EF 与GH 所成的角等于________.13.已知过A (-2,m )和B (m,4)的直线与斜率为-2的直线平行,则m 的值是 14、棱长为1的正方体的外接球的表面积为 ;15设点P (x ,y )是圆x 2+(y +4)2=4上任意一点,则(x -1)2+(y -1)2的最大值为________.三、解答题 (本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分12分)计算:(1⨯; (2)3991log log 4log 32+-. 17.(本小题满分12分)已知两直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,当m 为何值时,直线l 1与l 2:(1)平行;(2)垂直.18. (本小题满分12分) 如图,在棱长为1的正方体ABCD-A 1B 1C 1D 1中.(1)求证:11C A ∥平面C AB 1.(2)求证:AC ⊥平面B 1 BDD 1 .19、(本小题满分13分) 有一批某家用电器原销售价为每台800元,在甲、乙两家家电商场均有销售。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

市2014~2015学年度上期期末学业质量检测
高一数学
本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

第I 卷第1页至2页,第II 卷第3页至8页。

满分150分,考试时间120分钟。

第I 卷(选择题,共50分)
一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 已知集合{}1,0A =-,{}1,1B =-,则A
B =( )
A.{}0,1
B.{}1,1-
C. {}1,0,1-
D.{}1- 2. 计算:2lg 2lg 25+=( )
A .1 B.2 C.3 D.4
3. 下列函数图象与x 轴都有公共点,其中不能用二分法求图中函数零点近似值的是( )
4. 已知角α的顶点与平面直角坐标系的原点重合,始边与x 轴的非负半轴重合吗,终边经过点
(3,4)P -,则sin α等于( )
A.
35 B.45 C. 35- D. 45
- 5. 下列函数中,在R 上单调递增的是( )
A. cos y x =
B. 2
y x = C. 3
y x = D. 2x
y -=
6、为了得到函数sin(2)3
y x π
=-的图象,只要把函数sin 2y x =的图象上所有的点( )
A. 向左平行移动
3π个单位长度 B. 向右平行移动3π
个单位长度 C. 向左平行移动6π个单位长度 D. 向右平行移动6
π
个单位长度
7. 已知函数()()()f x x a x b =--(其中)a b >,若()f x 的大致图象如图所示,则()x
h x a b =+的图象可能是( )
8. 设m n 、是两个不共线的向量,若5AB m n =+,28BC m n =-+,42CD m n =+,则 A 、A B C 、、三点共线 B 、A B 、、D 三点共线 C 、A 、 C 、D 三点共线 D 、B C D 、、三点共线
9. 某小型贸易公司为了实现年终10万元利润的目标,特制订了一个销售人员年终绩效奖励方案:当销售利润为x (单位:万元,410x ≤≤)时,奖金y (单位万元)随销售利润x 的增加而增加,但奖金总数不差过2万元,同时奖金不超过销售利润的
1
2
,则下列符合该公司奖励方案的函数模型是(参考数据:lg 20.3≈,lg30.48≈、lg50.7≈)
A. 0.4y x =
B. 12
y x = C. lg 1y x =+ D. 1.125x
y =
10、已知函数[]sin ,0,2()1(2),(2,)2
x x f x f x x π⎧∈⎪
=⎨-∈+∞⎪⎩,有下列说法:
①函数()f x 对任意[)12,0,x x ∈+∞,都有12()()2f x f x -≤成立; ②函数()f x 在11(43),
(41)()22n n n N *⎡⎤
--∈⎢⎥⎣⎦
上单调递减; ③函数2()log 1y f x x =-+在(0,)+∞上有3个零点; ④当8,7k ⎡⎫∈+∞⎪⎢⎣⎭
时,对任意0x >,不等式()k
f x x
≤都成立; 期中正确说法的个数是( )
A 、4
B 、 3
C 、2
D 、1
二、填空题:本大题共5小题,每小题5分,共25分. 11、函数2()log (1)f x x =-的定义域为________; 12、0
sin 240的值是_________;
13、已知道幂函数()f x x α
=的图象经过点(9,3),则α=_______;
14、已知等边三角形ABC 的边长为2,设BC a =,CA b =,AB c =,则a b b c c a ⋅+⋅+⋅ =_________;
15、有下列说法:
①已知非零a 与b 的夹角为30°,且1a =,3b =,7a b +=;
②如图,在四边形ABCD 中,1
3
DC AB =,
E 为BC 的中点,且AE x AB y AD =+,则320x y -=;
③设函数(21)4,1()log ,1a
a x a x f x x x -+<⎧=⎨
≥⎩,若对任意的12x x ≠,都有
2121()()
0f x f x x x -<-,则实数a 的取值围是11,73⎡⎫
⎪⎢⎣⎭

④已知函数2
()2+3f x x ax =-,其中a R ∈,若函数()f x 在(],2-∞上单调递减,且对任意的
[]12,1,1x x a ∈+,总有12()()4f x f x -≤,则实数a 的取值围为[]2,3;
其中,正确的说法有________________(写出所有正确说法的序号);
三、解答题:本大题共6小题,满分75分,解答题写出文字说明,证明过程或演算步骤; 16.(每小题满分12分)已知函数2
()1
x f x x +=-;
(I )计算1)f 的值; (II )若(tan )2f α=,求sin 2cos sin 3cos αα
αα
+-的值;
17、(每小题满分12分)已知点(2,4)A -,(3,1)B -,(,4)C m -,其中m R ∈; (I )当3m =-时,求向量AB 与BC 夹角的余弦值;
(II )若A B C 、、三点构成以A 为直角顶点的直角三角形,求m 的值;
18、(本小题满分12分)
声强是指声音在传播途径中每1平方米面积上声能流密度,用I (单位:2
/m W )表示,一般正常人
能听到的最低声强记为12010-=I 2
/m W ,声强级是把所听到的声强I 与最低声强0I 的比值取常用
对数后乘以10得到的数值,用I L (单位dB )表示,声强级I L (单位dB )与声强I (单位:2
/m W )的函数关系式为:
1210lg()10
I I
L -=
(1)若平时常人交谈时的声强I 约为6
10-2
/m W ,求其声强级I L ; (2)若一般正常人听觉能忍受的最高声强级I L 为120dB ,求其声强I 。

19、(本小题满分12分)
已知函数()x f y =在1-=x 取得最小值-3,且满足()4
15
2=f (Ⅰ)求函数()x f y =的解析式
(Ⅱ)当函数()x f y =在[]()12,32>+-+-m m m 上的最小值是4
9
-时,求m 的值
20、(本小题满分13分)
已知函数()())2
,0,0(sin π
ϕωϕω<>>+=A x A x f 的部分图像如图所示。

(Ⅰ)求函数()x f 的解析式; (Ⅱ)当⎥⎦⎤
⎢⎣
⎡-
∈65,6ππx 时,求函数的单调递增区间; (III )若关于x 的方程()0log 2=+k x f (k 为常实数)在⎥⎦

⎢⎣⎡∈2419,3ππx 上恒有实数解,k 的取值围求。

21、(本小题满分14分)
已知定义在R 上的函数12()22
x x a f x +-+=+(a 为实常数)是奇函数,2
()2()g x x x =-;
(I )求a 的值,判断并证明函数()f x 的单调性;
(II )若对任意的[]1,4t ∈-,不等式(()1)(8)0f g t f t m -++<(m 为实常数)都成立,求m 的取值围;
(III )记2
111()()212x
F x f x x =+-
++,2()()F x g x =,31()sin 23F x x π=,100
i i
b =, 0,12i =⋅⋅⋅,,,100,若1021()()()()k k k M F b F b F b F b =-+-+⋅⋅⋅+10099()()k k F b F b -, 1,2,3k =,试比较123,,M M M 的大小并说明理由;。

相关文档
最新文档