2015-2016学年北师大八年级上数学期末试卷及答案

合集下载

北师大版八年级上数学期末测试题及答案

北师大版八年级上数学期末测试题及答案

北师大版八年级上数学期末测试题一、选择题(本题共有10个小题,每小题3分,共30分) 1.下列实数中是无理数的是( ) (A )38.0 (B )π (C )4 (D ) 722-2.在平面直角坐标系中,点A (1,-3)在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 3.-8的立方根是( )(A )2± (B )2 (C ) -2 (D )24 4.下列四组数据中,不能..作为直角三角形的三边长是( ) (A )3,4,6 (B )7,24,25 (C )6,8,10 (D )9,12,15 5.下列各组数值是二元一次方程43=-y x 的解的是( )(A )⎩⎨⎧-==11y x (B )⎩⎨⎧==12y x (C )⎩⎨⎧-=-=21y x (D )⎩⎨⎧-==14y x6.已知一个多边形的内角各为720°,则这个多边形为( )(A )三角形 (B )四边形 (C )五边形 (D )六边形7.某商场对上周末某品牌运动服的销售情况进行了统计,如下表所示:(A )平均数 (B )中位数 (C )众数 ( D )平均数与中位数 8.如果03)4(2=-+-+y x y x ,那么y x -2的值为( )(A )-3 (B )3 (C )-1 (D )19.在平面直角坐标系中,已知一次函数b kx y +=的图象大致如图所示,则下列结论正的是( )(A )k >0,b >0 (B )k >0, b <0 (C )k <0, b >0 (D )k <0, b <0. 10.下列说法正确的是( )(A )矩形的对角线互相垂直 (B )等腰梯形的对角线相等(C )有两个角为直角的四边形是矩形 (D )对角线互相垂直的四边形是菱形 二、填空题:(每小题4分,共16分)11.9的平方根是 。

12.如图将等腰梯形ABCD 的腰AB 平行移动到DE 的位 置,如果∠C=60°,AB=5,那么CE 的长为 。

北师大版八年级数学上山东省滕州市鲍沟中学-第一章练习题.docx

北师大版八年级数学上山东省滕州市鲍沟中学-第一章练习题.docx

初中数学试卷马鸣风萧萧山东省滕州市鲍沟中学2015-2016学年八年级上册第一章练习题第一章 勾股定理一、选择题(每小题3分,共30分)1. (2015•淮安)下列四组线段中,能组成直角三角形的是( )A .a=1,b=2,c=3,B .a=2,b=3,c=4C .a=2,b=4,c=5,D .a=3,b=4,c=52.如果把直角三角形的两条直角边长同时扩大到原来的2倍,那么斜边长扩大到原来 的( )A.1倍B.2倍C.3倍D.4倍3. (2015•诏安县校级模拟)三角形的三边长为a ,b ,c ,且满足(a+b )2=c 2+2ab ,则这个三角形是( ) A .等边三角形, B .钝角三角形, C .直角三角形, D .锐角三角形4. (2015•东莞模拟)如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S 1=4,S 2=9, S 3=8, S 4=10,则S=( )A .25,B .31,C .32,D .405.如图,在Rt △ABC 中,∠ACB =90°,若AC =5 cm ,BC =12 cm ,则Rt △ABC 斜边上的高CD 的长为( ) A.6 cm B.8.5 cm C.1360cm D.1330cm 6.分别满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1︰2︰3B.三边长的平方之比为1︰2︰3C.三边长之比为3︰4︰5D.三内角之比为3︰4︰57.如图,在△ABC 中,∠ACB =90°,AC =40,BC =9,点M ,N 在AB 上,且AM =AC ,BN =BC ,则MN 的长为( )A.6B.7C.8D.98.如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程是( ) A.6 cm B.8 cm C.10 cm D.12 cm9.如果一个三角形的三边长a ,b ,c 满足a 2+b 2+c 2+338=10a +24b +26c ,那么这个三角形一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形 10.在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,已知a ∶b =3∶4,c =10,则△ABC 的面积为( )A .24B .12C .28D .30 二、填空题(每小题3分,共24分)11.现有两根木棒的长度分别是40 cm 和50 cm ,若要钉成一个三角形木架,其中有一个角 为直角,则所需木棒的最短长度为________.12.在△ABC 中,AB =AC =17 cm ,BC =16 cm ,AD ⊥BC 于点D ,则AD =_______.13.在△ABC 中,若三边长分别为9,12,15,则用两个这样的三角形拼成的长方形的面积 为________.14.如图,某会展中心在会展期间准备将高5 m ,长13 m ,宽2 m 的楼道上铺地毯,已知地 毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要________元钱.第15题图15.(2015·湖南株洲中考) 如图是“赵爽弦图”,△ABH ,△BCG ,△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形,如果AB =10,EF =2,那么AH 等于 .16.(2015·湖北黄冈中考)在△ABC 中,AB =13 cm ,AC =20 cm ,BC 边上的高为12 cm ,则△ABC 的面积为 cm 2.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为7 cm ,则正方形A ,B ,C ,D 的面积之和为___________cm 2.M A BC N 第7题图18.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一 条“路”,他们仅仅少走了________步路(假设2步为1 m ),却踩伤了花草.三、解答题(共46分)19.(6分)若△ABC 三边长满足下列条件,判断△ABC 是不是直角三角形,若是,请说明哪个角是直角. (1)1,45,43===AC AB BC ;(2)△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,2=1=2a n b n -,, )1(12>+=n n c .20.(6分)如图,为修铁路需凿通隧道AC ,现测量出∠ACB =90°,AB =5 km ,BC =4 km , 若每天凿隧道0.2 km ,问几天才能把隧道AC 凿通?21.(6分)若三角形的三个内角的比是1︰2︰3,最短边长为1,最长边长为2. 求:(1)这个三角形各内角的度数; (2)另外一条边长的平方.22.(7分)如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8 m 处,已知旗杆原长16 m ,你能求出旗杆在离底部多少米的位置断裂吗? 23.(7分)张老师在一次“探究性学习”课中,设计了如下数表:n 2 3 4 5 … a 22-1 32-1 42-1 52-1 … b 4 6 8 10 … c22+132+142+152+1…(1)请你分别观察a ,b ,c 与n 之间的关系,并用含自然数n (n >1)的代数式表示: a =__________,b =__________,c =__________.(2)以a ,b ,c 为边长的三角形是不是直角三角形?为什么? 24.(7分)如下图,折叠长方形的一边AD ,使点D 落在BC 边上的点F 处,BC =10 cm ,AB =8 cm.求:(1)FC 的长;(2)EF 的长.25.(7分)如图,在长方体ABCD A B C D ''''-中,2AB BB '==,AD =3,一只蚂蚁从A 点出发,沿长方体表面爬到C '点,求蚂蚁怎样走路程最短,最短路程是多少?山东省滕州市鲍沟中学2015-2016学年八年级上册第一章练习题第一章 勾股定理参考答案1.D 解析:A 、∵12+22=5≠32,∴不能构成直角三角形,故本选项错误;B 、∵22+32=13≠42,∴不能构成直角三角形,故本选项错误;C 、∵22+42=20≠52,∴不能构成直角三角形,故本选项错误;D 、∵32+42=25=52,∴能构成直角三角形,故本选项正确.2.B 解析:设原直角三角形的两直角边长分别是a ,b ,斜边长是c ,则a 2+b 2=c 2,则扩大后的直角三角形两直角边长的平方和为()()222224422a b c a b (),+=+=斜边长的平方为()2242c c =,即斜边长扩大到原来的2倍,故选B.3.C 解析:对等式进行整理,再判断其形状 ,解:化简(a+b )2=c 2+2ab ,得,a 2+b 2=c 2所以三角形是直角三角形,故选:C . 4.B 解析:由题意得:AB 2=S 1+S 2=13, AC 2=S 3+S 4=18,∴BC 2=AB 2+AC 2=31, ∴S=BC 2=31, 故选B . 5.C 解析:由勾股定理可知22222512169AB AC BC =+=+=,所以AB =13 cm,再由三角形的面积公式,有1122AC BC AB CD ⋅=⋅,得60cm 13AC BC CD AB ⋅==(). 6.D 解析:在A 选项中,求出三角形的三个内角分别是30°,60°,90°;在B ,C 选项中,都符合勾股定理的条件,所以A ,B ,C 选项中的三角形都是直角三角形.在D 选项中,求出三角形的三个内角分别是45°,60°,75°,所以不是直角三角形,故选D .7.C 解析:在Rt △ABC 中,AC =40,BC =9,由勾股定理得AB =41.因为BN =BC =9,AM =AC =40,所以MN =AM +BN −AB =40+9−41=8.8.C 解析:如图为圆柱的侧面展开图,∵ B 为CE 的中点,则AB 就是蚂蚁爬行的最短路径.∵ CE =2πr =2×π6×π=12(cm ), ∴ CB =12÷2=6(cm ).∵ AC =8 cm ,∴ 22222=68AB CB AC +=+=100(cm ),∴ AB = 10 cm,即蚂蚁要爬行的最短路程是10 cm . 9.B 解析:由a 2+b 2+c 2+338=10a +24b +26c ,整理,得a 2−10a +25+b 2−24b +144+c 2−26c +169 =0,即(a −5)2+(b −12)2+(c −13)2=0,所以a =5,b =12,c =13,符合a 2+b 2=c 2,所以这个三角形一定是直角三角形.10.A 解析:因为a ∶b =3∶4,所以设a =3k ,b =4k (k >0).在Rt △ABC 中,∠C =90°,由勾股定理,得a 2+b 2=c 2.因为c =10,所以9k 2+16k 2=100, 解得k =2,所以a =6,b =8,所以S △ABC =12ab =12×6×8=24.故选A .11.30 cm 解析:当50 cm 长的木棒构成直角三角形的斜边时,设最短的木棒长为x cm (x >0),由勾股定理,得2224050x+=,解得x =30.12.15 cm 解析:如图,∵ 等腰三角形底边上的高、中线以及顶角的平分线互相重合,∴ 1.2BD BC =∵ BC =16,∴ 11168.22BD BC ==⨯= ∵ AD ⊥BC ,∴ ∠ADB =90°.在Rt △ADB 中,∵ AB =AC =17,由勾股定理,得22222178225AD AB BD =-=-=.∴ AD =15 cm .13.108 解析:因为 92+122=152,所以△ABC 是直角三角形,且两条直角边长分别为9,12,则用两个这样的三角形拼成的长方形的面积为9×12=108. 14.612 解析:由勾股定理,得楼梯的底面至楼梯的最高层的水平距离为12 m,所以楼道上铺地毯的长度为5+12=17(m).因为楼梯宽为2 m,地毯每平方米18元,所以铺完这个楼道需要的钱数为18×17×2=612(元). 15.6 解析:∵ △ABH ≌△BCG ≌△CDF ≌△DAE ,∴ AH =DE . 又∵ 四边形ABCD 和EFGH 都是正方形, ∴ AD =AB =10,HE =EF =2,且AE ⊥DE . ∴ 在Rt △ADE 中,AE 2+DE 2=AD 2,∴ (AH +EF)2+AH 2=AD 2, ∴ (AH +2)2+AH 2=102,∴ AH =6或AH = - 8(不合题意,舍去). 16.126或66 解析:本题分两种情况. (1)如图(1),在锐角△ABC 中,AB =13,AC =20,BC 边上的高AD =12,第16题答图(1)在Rt △ABD 中,AB =13,AD =12,由勾股定理,得BD 2=AB 2−AD 2=132−122 =25,∴ BD =5.在Rt △ACD 中,AC =20,AD =12, 由勾股定理,得CD 2=AC 2−AD 2=202−122=256, ∴ CD =16,∴ BC 的长为BD +DC =5+16=21, △ABC 的面积=12·BC ·AD =12×21×12=126.(2)如图(2),在钝角△ABC 中,AB =13,AC =20,BC 边上的高AD =12,第16题答图(2)在Rt △ABD 中,AB =13,AD =12,由勾股定理,得 BD 2=AB 2−AD 2=132−122=25,∴ BD =5.在Rt △ACD 中,AC =20,AD =12,由勾股定理,得CD 2=AC 2−AD 2=202−122=256,∴ CD =16.∴ BC =DC -BD =16-5=11. △ABC 的面积=12·BC ·AD =12×11×12=66.综上,△ABC 的面积是126或66.17.49 解析:正方形A ,B ,C ,D 的面积之和是最大的正方形的面积,即49 cm 2.18.4 解析:在Rt △ABC 中,∠C =90°,由勾股定理,得AB 2=BC 2+AC 2224325=+=,所以AB =5.他们仅仅少走了2×(3+4−5)=4(步). 19.解:(1)因为AB 2=BC 2+AC 2,根据三边长满足的条件,可以判断△ABC 是直角三角形,其中∠C 为直角 (2)因为a 2=(n 2−1)2,b 2=(2n )2,c 2=(n 2+1)2,所以a 2+b 2=(n 2−1)2+(2n )2=n 4−2n 2+1+4n 2=n 4+2n 2+1= (n 2+1)2=c 2, 根据三边长满足的条件,可以判断△ABC 是直角三角形,其中∠C 为直角. 20.解:在Rt △ABC 中,由勾股定理,得222AB AC BC =+, 即22254AC =+,解得AC =3,或AC =-3(舍去). 因为每天凿隧道0.2 km ,所以凿隧道用的时间为3÷0.2=15(天). 答:15天才能把隧道AC 凿通.21.解:(1)因为三个内角的比是1︰2︰3,所以设三个内角的度数分别为k ,2k ,3k (k ≠0). 由k +2k +3k =180°,得k =30°,所以三个内角的度数分别为30°,60°,90°.(2)由(1)知三角形为直角三角形,则一条直角边长为1,斜边长为2.设另外一条直角边长为x ,则22212x +=,即2=3x .所以另外一条边长的平方为3.22.分析:旗杆折断的部分、未折断的部分和折断后原旗杆顶部离旗杆底部的部分构成了直角三角形,运用勾股定理可将折断的位置求出.解:设旗杆未折断部分的长为x m ,则折断部分的长为(16-x )m , 根据勾股定理,得x 2+82=(16−x )2,解得x =6,即旗杆在离底部6 m 处断裂. 23.分析:从表中的数据找到规律. 解:(1)n 2-1 2n n 2+1(2)以a ,b ,c 为边长的三角形是直角三角形. 理由如下:∵ a 2+b 2=(n 2-1)2+4n 2=n 4-2n 2+1+4n 2=n 4+2n 2+1=(n 2+1)2=c 2, ∴ 以a ,b ,c 为边长的三角形是直角三角形.24.分析:(1)因为将△ADE 翻折得到△AFE ,所以AF =AD ,则在Rt △ABF 中,可求得BF 的长,从而FC 的长可求;(2)由于EF =DE ,可设EF 的长为x ,在Rt △EFC 中,利用勾股定理解直角三角形即可. 解:(1)由题意,得AF =AD =BC =10 cm , 在Rt △ABF 中,∠B =90°,∵ AB =8 cm ,∴ 2222210836BF AF AB =-=-=,BF =6 cm, ∴ FC =BC −BF =10−6=4(cm ).(2)由题意,得EF =DE ,设DE 的长为x ,则EC =8−x . 在Rt △EFC 中,∠C =90°,由勾股定理,得222+EC FC EF =,即(8−x )2+42=x 2, 解得x =5,即EF 的长为5 cm .25.分析:要求蚂蚁爬行的最短路程,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果. 解:蚂蚁沿如图(1)所示的路线爬行时,长方形ACC ′A ′长为AD +DC =5,宽为AA ′=2, 连接AC ′,则构成直角三角形.由勾股定理,得222225229AC AC CC ''=+=+=.蚂蚁沿如图(2)所示的路线爬行时,长方形ADC ′B ′长为DD′+D′C′=4,宽为AD =3, 连接AC ′,则构成直角三角形.由勾股定理,得22222=+3425AC AD DC ''=+=,AC′=5.蚂蚁沿如图(3)所示的路线爬行时,长方形ABC D ''长为=5BB B C '''+,宽为AB =2,连接AC ',则构成直角三角形.由勾股定理,得22222=+=25=29.AC AB BC ''+∴ 蚂蚁从A 点出发穿过A'D'到达C '点时路程最短,最短路程是5.。

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试题一、单选题1.下列实数中,是无理数的是()A B .3-C .0.101001D .132.如图,直线a ,b 被直线c 所截,下列条件中,不能判定a ∥b 的是()A .∠2=∠5B .∠1=∠3C .∠5=∠4D .∠1+∠5=180°3.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则()A .2k <B .2k >C .0k >D .0k <4.快要到新年了,某鞋店老板要进一批新年鞋,他一定会参考下面的调查数据,他最关注的是()A .中位数B .平均数C .加权平均数D .众数5.下列各命题中,属于假命题的是()A .若a -b =0,则a =b =0B .若a -b >0,则a >bC .若a -b <0,则a <bD .若a -b≠0,则a≠b6.二元一次方程组22x y x y +=⎧⎨-=-⎩的解是()A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩C .20x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩7.已知正比例函数y =kx 的函数值y 随x 的增大而减小,则一次函数y =kx -k 的图象大致是()A .B .C .D .8.如图,已知函数y =ax+b 和y =kx 的图象交于点P ,则根据图象可得关于x ,y 的二元一次方程组y ax by kx=+⎧⎨=⎩的解是()A.24xy=-⎧⎨=-⎩B.42xy=-⎧⎨=-⎩C.24xy=⎧⎨=-⎩D.42xy=-⎧⎨=⎩9.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于()A.95°B.120°C.135°D.无法确定10.如图,∠AFD=65°,CD∥EB,则BÐ的度数为()A.115°B.110°C.105°D.65°二、填空题11.甲、乙两地7月上旬的日平均气温如图所示,则甲,乙两地这10天中日平均气温的方差S2甲与S2乙的大小关系是S2甲_______S2乙.(填“>”或“<”)12.小明某学期数学平时成绩为70分,期中考试成绩为80分,期末考试成绩为90分,计算学期总评成绩的方法:平时占30%,期中占30%,期末占40%,则小明这学期的总评成绩是________分.13.若|3x﹣0,则xy的算术平方根是_____.14.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是_____.15.如图,已知∠1=100°,∠2=140°,那么∠3=________度.16.如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于1AB2的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是_____.17.如图,在直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是____________.18.如图,在△ABC 中,∠A=40°,点D 是∠ABC 和∠ACB 角平分线的交点,则∠BDC 为________三、解答题1901323(21)2-+20.解下列方程组:569745x y x y -=⎧⎨-=-⎩21.某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐数量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A ,B ,C ,D ,E 表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)这30名职工捐书本数的众数是本,中位数是本;(3)求这30名职工捐书本数的平均数是多少本?并估计该单位750名职工共捐书多少本?22.如图,已知12l l //,且3l 与1l ,2l 分别交于A ,B 两点,点P 在直线AB 上.(1)当点P 在A ,B 两点之间运动时,求1∠,2∠,3∠之间的数量关系,并说明理由.(2)如果点P 在A ,B 两点外侧运动,试探究1∠,2∠,3∠之间的数量关系(点P 与A ,B 不重合),并说明理由.23.某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA 是线段,且BA ∥x 轴,AC 是射线.(1)若小李11月份上网20小时,他应付多少元的上网费用?(2)当x≥30,求y 与x 之间的函数关系式;(3)若小李12月份上网费用为135元,则他在该月份的上网时间是多少?24.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,将△ACB 沿CD 折叠,使点A 恰好落在BC 边上的点E 处.(1)求△BDE 的周长;(2)若∠B =37°,求∠CDE 的度数.25.某水果店11月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.12月份,这两种水果的进价上调为:甲种水果10元/千克,乙种水果20元/千克.(1)若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款300元,求该店11月份购进甲、乙两种水果分别是多少千克?(2)若12月份将这两种水果进货总量减少到120千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;(3)在(2)的条件下,若甲种水果不超过90千克,则12月份该店需要支付这两种水果的货款最少应是多少元?26.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟________米,乙在A地时距地面的高度b为________米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式(写出自变量范围);(3)登山多长时间时,甲、乙两人距地面的高度差为70米?参考答案1.A2.B3.B4.D 5.A 6.B 7.C 8.B 9.C 10.A 11.> 12.81 1314.x=2 15.6016.8 517.(0,3)18.110°【详解】解:∵D点是∠ABC和∠ACB角平分线的交点,∴∠CBD=∠ABD=12∠ABC,∠BCD=∠ACD=12∠ACB,∵∠A=40°,∴∠ABC+∠ACB=180°−40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°−70°=110°,故答案为:110°.191.1)1=+1=.20.34xy=-⎧⎨=-⎩.【详解】解:569745x y x y -=⎧⎨-=-⎩①②,①×2-②×3,得-11x=33,解得x=-3,把x=-3代入①,得-15-6y=9,解得y=-4,故方程组的解为34x y =-⎧⎨=-⎩.21.(1)补全图形见解析;(2)6,6;(3)6本;4500本.【详解】解:(1)D 组人数=30﹣4﹣6﹣9﹣3=8.(2)众数是6本中位数是6本.故答案为6,6.(3)平均数=6(本),该单位750名职工共捐书约4500本.22.(1)123∠+∠=∠,见解析;(2)123∠-∠=∠或213∠-∠=∠,见解析.【详解】(1)123∠+∠=∠.理由如下:如图所示,过点P 作1//PQ l .12//l l ,12////l l PQ ∴,14∴∠=∠,25∠=∠.453∠+∠=∠ ,123∴∠+∠=∠.(2)123∠-∠=∠或213∠-∠=∠.理由如下:当点P 在下侧时,过点P 作1l 的平行线PQ ,如图所示,12//l l ,12////l l PQ ∴,24∴∠=∠,134∠=∠+∠,123∴∠-∠=∠.当点P 在上侧时,如图所示,12//l l ,24∴∠=∠,又413∠=∠+∠,213∴∠-∠=∠.23.(1)60元;(2)y =3x ﹣30;(3)55个小时.【详解】解:(1)根据题意,从图象上看,30小时以内的上网费用都是60元;(2)当x≥30时,设函数关系式为y =kx+b ,则30604090k b k b +=⎧⎨+=⎩,解得k 3b 30=⎧⎨=-⎩,故函数关系式为y =3x ﹣30;(3)由135=3x ﹣30解得x =55,故12月份上网55个小时.24.(1)△BDE 的周长为12;(2)∠CDE 的度数为82°.【分析】(1)由折叠的性质可知,DE=AD ,CE=AC ,则△BDE 的周长=BD+DE+BE=BD+BE+AD=AB+BE ,先求出BE 的长,再利用勾股定理求出AB 的长即可;(2)由折叠的性质可知:∠ACD=∠BCD ,∠A=∠CED ,再利用三角形内角和定理求解即可.【详解】解:(1)由折叠的性质可知,DE=AD ,CE=AC ,∴△BDE 的周长=BD+DE+BE=BD+BE+AD=AB+BE ,∵∠ACB=90°,AC=6,BC=8,∴BE=BC-CE=BC-AC=2,10AB =,∴△BDE 的周长=AB+BE=10+2=12;(2)由折叠的性质可知:∠ACD=∠BCD ,∠A=∠CED ,∵∠ACB=90°,∠B=37°,∴∠A=∠CED=53°,1452ECD ACB ==o ∠,∴=180=82CDE BCD CED --o o ∠∠∠.25.(1)该店5月份购进甲种水果100千克,购进乙种水果50千克;(2)w =﹣10a+2400;(3)12月份该店需要支付这两种水果的货款最少应是1500元.【分析】(1)设该店5月份进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数星,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式;(3)根据甲种水果不超过90千克,可得出a的取值范固,再利用一次函数的性质即可解决最值问题.【详解】解:(1)设该店11月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:8181700 10201700300 x yx y+=⎧⎨+=+⎩,解得10050xy=⎧⎨=⎩,答:该店5月份购进甲种水果100千克,购进乙种水果50千克;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400;(3)根据题意得,a≤90,由(2)得,w=﹣10a+2400,∵﹣10<0,w随a的增大而减小,∴a=90时,w有最小值w最小=﹣10×90+2400=1500(元).答:12月份该店需要支付这两种水果的货款最少应是1500元.【点睛】本题考查了二元一次方程组的应用、以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组:(2)根据各数之间的关系,找出w关于a的函数关系式. 26.(1)10;30;(2)15(02)3030(211)x xyx x≤<⎧=⎨-≤≤⎩;(3)登山3分钟或10分钟或13分钟时,甲、乙两人距地面的高度差为70米.【分析】(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;(2)分0≤x<2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者作差等于70得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y 关于x 的函数关系式=70,得出关于x 的一元一次方程,解之可求出x 值.综上即可得出结论.(1)解:甲登山上升的速度是:(300-100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)解:当0≤x <2时,y=15x ;当x≥2时,y=30+10×3(x-2)=30x-30.当y=30x-30=300时,x=11.∴乙登山全程中,距地面的高度y 与登山时间x 之间的函数关系式为:15(02)3030(211)x x y x x ≤<⎧=⎨-≤≤⎩;(3)解:甲登山全程中,距地面的高度y 与登山时间之间的函数关系式为y=kx+b (k≠0),把(0,100)和(20,300)代入解析式得:10020300b k b =⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩,∴甲登山全程中,距地面的高度y 与登山时间之间的函数关系式为y=10x+100(0≤x≤20),当10x+100-(30x-30)=70时,解得:x=3;当30x-30-(10x+100)=70时,解得:x=10;当300-(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.。

北师大版八年级上册数学期末试卷及答案

北师大版八年级上册数学期末试卷及答案

北师大版八年级上册数学期末试题一、单选题1.4的算术平方根是( )A .2±B .C .2-D .22.下列各点位于平面直角坐标系内第二象限的是( ) A .()1,2B .1,2 C .1,2D .()1,2--3.以下正方形的边长是无理数的是( ) A .面积为9的正方形 B .面积为49的正方形 C .面积为8的正方形 D .面积为25的正方形4.下列各式中正确的是( )A7- B 3± C D =5.如图,在平面直角坐标系中,直线l 1:3y x与直线l 2:y mx n =+交于点A(1-,b),则关于x 、y 的方程组3y x y mx n =+⎧⎨=+⎩的解为( )A .21x y =⎧⎨=⎩B .21x y =⎧⎨=-⎩C .12x y =-⎧⎨=⎩D .12x y =-⎧⎨=-⎩6.下列各组数中,能作为直角三角形三边长的是( )A .1,2B .8,9,10CD 7.某校八年级人数相等的甲、乙、丙三个班,同时参加了一次数学测试,对成绩进行了统计分析,平均分都是72分,方差分别为2206S =甲,2198S =乙,2156S =丙,则成绩波动最小的班级( ) A .甲B .乙C .丙D .无法确定8的值应在( ) A .3和4之间B .4和5之间C .5和6之间D .6和7之间9.下列命题是假命题的是( ) A .同旁内角互补,两直线平行;B .如果两条直线都和第三条直线平行,那么这两条直线也互相平行;C .同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行;D .同位角互补,两直线平行;10.如图,小手盖住的点的坐标可能为( )A .()5,2B .()6,3-C .()4,6--D .()3,4-二、填空题11.已知点M 坐标为()4,7--,点M 到x 轴距离为______.12.已知一次函数y=kx+b 的图象经过A (1,﹣1),B (﹣1,3)两点,则k 0(填“>”或“<”)13.某单位拟招聘一个管理员,其中某位考生笔试、试讲、面试三轮测试得分分别为92分,85分,90分,若依次按40%,40%,20%的比例确定综合成绩,则该名考生的综合成绩为______分.14.如图所示,有一个高18cm ,底面周长为24cm 的圆柱形玻璃容器,在外侧距下底1cm 的点S 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm 的点F 处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是______.15.如图,ABC 的顶点都在正方形网格的格点上,点A 的坐标为()1,4-,将ABC 沿坐标轴翻折,则点C 的对应点C '的坐标是______.16.如图,四边形ABCD ,AB BC ⊥,ABCD ,4AB BC ==,2CD =,点F 为BC 边上一点,且1CF =,连接AF ,DG AF ⊥垂足为E ,交BC 于点G ,则BG 的长为______.17.如图,已知函数y =2x+b 与函数y =kx ﹣3的图象交于点P ,则方程组23x y bkx y -=-⎧⎨-=⎩的解是______.三、解答题18.计算:()0226π-+19.(1(2))2220.选用适当的方法解方程组:23328x y x y -=⎧⎨+=⎩(1)本题你选用的方法是______; (2)写出你的解题过程.21.甲、乙两校参加区举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,统计学生成绩分别为7分、8分9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图和统计表: 甲校成绩统计表(1)甲校参赛人数是______人,x =______; (2)请你将如图②所示的统计图补充完整;(3)请分别求出甲校和乙校学生成绩的平均数和中位数,并从平均数和中位数的角度分析哪个学校的成绩较好?22.已知:如图,直线MN HQ ∥,直线MN 交EF ,PO 于点A ,B ,直线HQ 交EF ,PO 于点D ,C ,DG 与OP 交于点G ,若1103∠=︒,277∠=︒,396∠=︒.(1)求证:EF OP ∥;(2)请直接写出CDG ∠的度数.23.如图,用 10 块相同的小长方形地砖拼成一个宽是 75 厘米的大长方形,用列方程或方程组的方法,求每块小长方形地砖的长和宽分别是多少厘米?24.某水果店进行了一次水果促销活动,在该店一次性购买A 种水果的单价y (元)与购买量x (千克)的函数关系如图所示,(1)当05x <≤时,单价y 为______元;当单价y 为8.8元时,购买量x (千克)的取值范围为______;(2)根据函数图象,当511x ≤≤时,求出函数图象中单价y (元)与购买量x (千克)的函数关系式;(3)促销活动期间,张亮计划去该店购买A 种水果10千克,那么张亮共需花费多少元? 25.ABC 中,CD 平分ACB ∠,点E 是BC 上一动点,连接AE 交CD 于点D .(1)如图1,若110ADC ∠=︒,AE 平分BAC ∠,则B ∠的度数为______;(2)如图2,若100ADC ∠=︒,53DCE ∠=︒,27B BAE ∠-∠=︒,则BAE ∠的度数为______;(3)如图3,在BC 的右侧过点C 作CF CD ⊥,交AE 延长线于点F ,且AC CF =,2B F ∠=∠.试判断AB 与CF 的位置关系,并证明你的结论.26.如图,在平面直角坐标系xoy 中,OAB 的顶点O 是坐标原点,点A 在第一象限,点B 在x 轴的正半轴上,90OAB ∠=︒且OA AB =,6OB =,点C 是直线OC 上一点,且在第一象限,OB ,OC 满足关系式26OB =.(1)请直接写出点A的坐标;(2)点P是线段OB上的一个动点(点P不与点O重合),过点P的直线l与x轴垂直,直线l交边OA或边AB于点Q,交OC于点R.设点P的横坐标为t,线段QR的长度为m.当t=时,直线l恰好过点C.6②求直线OC的函数表达式;②当3m=时,请直接写出点P的坐标;4②当直线RQ与直线OC所组成的角被射线RA平分时,请直接写出t的值.27.如图,过点A的两条直线l1,l2分别与y轴交于点B,C,其中点B在原点上方,点C在原点下方,已知AB B(0,3).(1)求点A的坐标;(2)若②ABC的面积为4,求直线l2的表达式.(3)在(2)的条件下,在直线l1上是否存在点M,使得②OAM的面积与②OCA的面积相等?若存在,求出M点的坐标;若不存在,请说明理由.参考答案1.D【分析】根据算术平方根的定义进行计算即可.【详解】解:4的算术平方根是2,故选:D.【点睛】本题考查了算术平方根,理解算术平方根的定义,注意和平方根的区别是解答的关键.2.B【分析】根据第二象限内点的横坐标是负数,纵坐标是正数解答即可.【详解】解:位于第二象限的点是1,2.故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.C【分析】理解无理数的分类:无限不循环小数或开方不能开尽的数,求出正方形边长由此判断即可得出.【详解】解:A、面积为9的正方形的边长为3,是整数,属于有理数,故本选项不合题意;B、面积为49的正方形的边长为7,是整数,属于有理数,故本选项不合题意;C、面积为8=D、面积为25的正方形的边长为5,是整数,属于有理数,故本选项不合题意.故选:C.【点睛】本题主要考查了无理数的分类,准确掌握无理数的分类是解题关键.4.D【分析】根据二次根式的化简方法及算术平方根和平方根的求法依次计算即可得.【详解】解:A7,故A错误;B3,故B错误;C 2=,故C 错误;D ==D 正确; 故选:D .【点睛】题目主要考查二次根式的加减运算及平方根和算术平方根的求法,熟练掌握运算法则是解题关键. 5.C【详解】试题解析:②直线l1:y=x+3与直线l2:y=mx+n 交于点A (-1,b ), ②当x=-1时,b=-1+3=2, ②点A 的坐标为(-1,2), ②关于x 、y 的方程组3{y x y mx n ++==的解是12x y ⎩-⎧⎨==. 故选C .【点睛】本题考查了一次函数与二元一次方程组的知识,解题的关键是了解方程组的解与函数图象的交点坐标的关系. 6.A【分析】比较较小的两边的平方和是否等于较长边的平方来判定即可.【详解】解:A 、22212+=,能构造直角三角形,故符合题意; B 、2220981,不能构造直角三角形,故不符合题意;C 、222+≠,不能构造直角三角形,故不符合题意;D 、222+≠,不能构造直角三角形,故不符合题意; 故选:A .【点睛】此题考查勾股定理的逆定理,三角形的两边的平方和等于第三边的平方,则此三角形为直角三角形,熟练运用这个定理是解题关键. 7.C【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:②2206S =甲,2198S =乙,2156S =丙,②222S S S >>甲乙丙,②成绩波动最小的班级是:丙班. 故选:C .【点睛】此题主要考查了方差的意义,正确理解方差的意义是解题关键. 8.B【分析】因为9<10<16,所以3<4,然后估算即可.【详解】解:②34<,②415<<.故选B .的取值范围是解题关键. 9.D【分析】利用平行线的性质及判定分别判断后即可确定正确的选项. 【详解】解:A 、同旁内角互补,两直线平行;是真命题,不合题意;B 、如果两条直线都与第三条直线平行,那么这两条直线也互相平行,是真命题,不合题意;C 、同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行,是真命题,不合题意;D 、同位角相等,两直线平行;故同位角互补,两直线平行是假命题,符合题意, 故选D .【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质及判定,属于基础定义及定理,难度不大. 10.D【分析】根据各象限内点的坐标特征解题,四个象限的符号特征为:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-) .【详解】小手盖住的是第四象限的点,其点坐标特征为:横坐标为正数,纵坐标为负数, 故选:D .【点睛】本题考查象限及点的坐标的有关性质等知识,是基础考点,难度较易,掌握相关知识是解题关键. 11.7【分析】根据点(x ,y )到x 轴的距离等于|y |求解即可. 【详解】解:点M ()4,7--到x 轴距离为|-7|=7,故答案为:7.【点睛】本题考查点到坐标轴的距离,熟知点到坐标轴的距离与点的坐标的关系是解答的关键.12.<.【分析】根据A(1,-1),B(-1,3),利用横坐标和纵坐标的增减性判断出k的符号.【详解】②A点横坐标为1,B点横坐标为-1,根据-1<1,3>-1,可知,随着横坐标的增大,纵坐标减小了,②k<0.故答案为<.13.88.8【分析】根据加权平均数的求解方法求解即可.【详解】解:根据题意,该名考生的综合成绩为92×40%+85×40%+90×20%=88,8(分),故答案为:88.8.【点睛】本题考查加权平均数,熟知加权平均数的求解方法是解答的关键.14.20cm【分析】展开后连接SF,求出SF的长就是捕获苍蝇充饥的蜘蛛所走的最短路径,过S作SE CD⊥于E,求出SE、EF,根据勾股定理求出SF即可.【详解】解:如图展开后连接SF,求出SF的长就是捕获苍蝇充饥的蜘蛛所走的最短路径,过S作SE CD⊥于E,则124122SE BC==⨯=,181116EF=--=,在Rt FES中,由勾股定理得:20SF=cm,答:捕获苍蝇充饥的蜘蛛所走的最短路径的长度是20cm,故答案为:20cm .【点睛】本题考查了勾股定理、平面展开-最短路线问题,解题的关键是构造直角三角形.15.(1,4)--或(1,4)【分析】根据题意,分两种情况讨论:点C 关于x 轴翻折;点C 关于y 轴翻折;分别根据翻折情况坐标点的特点求解即可得.【详解】解:点C 关于坐标轴翻折,分两种情况讨论:点C 关于x 轴翻折,横坐标不变,纵坐标互为相反数可得:(1,4)C -'-;点C 关于y 轴翻折,纵坐标不变,横坐标互为相反数可得:(1,4)C ';故答案为:(1,4)--或(1,4).【点睛】题目主要考查坐标系中轴对称的点的特点,理解题意,熟练掌握轴对称点的特点是解题关键.16.43【分析】过点D 作DH AB ⊥于点H ,在矩形BCDH 中,DH=BC=4,AH=2,根据勾股定理求出AF=5, 222AF AD DF =+,根据勾股定理的逆定理得到ADF ∆是直角三角形,进一步证得Rt ADF Rt DCF ∆∆∽,Rt DEF Rt DCF ∆∆≌,EF=CF=1,最后证Rt FEG Rt FBF ∆∆∽,求得FG=53,根据BG=BC -FG 求得结果. 【详解】解:过点D 作DH AB ⊥于点H ,AB BC ⊥,AB CD ,BC DC ∴⊥, 90DCB B C ∴∠=∠=∠=︒,②四边形DCBH 是矩形,②42DH BC HB DC ====,,422AH AB HB =-=-=,在Rt ADH ∆中,AD =在Rt DCF ∆中, 222222420DF DC CF =+=+=在Rt ABF ∆中,413BF BC CF =-=-=,222224325AF AB BF ∴=+=+=,222AF AD DF ∴=+,ADF ∴∆是直角三角形,90ADF,22AD DF == , 422DC CF ==,且90ADF C ∠=∠=︒ ∴Rt ADF Rt DCF ∆∆∽,DFE CFD ∴∠=∠,DF DF =,∴ ()Rt DEF Rt DCF AAS ∆∆≌,1EF CF ∴==,90,B FEG AFB AFB ∠=∠=︒∠=∠,∴ Rt FEG Rt FBF ∆∆∽,FG EF AF FB∴= , 又FB=BC -CF=4-1=3,153FB ∴=, 53FB ∴=, 544133GB BC CF FG ∴=--=--=.【点睛】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,矩形的判定和性质,勾股定理及逆定理,过点D 作辅助线求出AD 是解决本题的关键.17.46x y =⎧⎨=-⎩ 【分析】利用“方程组的解就是两个相应的一次函数图象的交点坐标”解决问题.【详解】解:②点P (4,﹣6)为函数y =2x+b 与函数y =kx ﹣3的图象的交点,②方程组23x y b kx y -=-⎧⎨-=⎩的解为46x y =⎧⎨=-⎩.故答案为46xy=⎧⎨=-⎩.【点睛】本题考查方程组的解就是两个相应的一次函数图象的交点坐标,将方程组的解转化为图像的交点问题,属于基础题型.18.3【分析】利用零指数幂的意义、绝对值的意义、立方根的意义计算即可.【详解】解:原式=1243+=【点睛】此题考查了实数的混合运算,掌握相应的运算法则和运算顺序是解答此题的关键.19.(1)1-;(2)7-【分析】(1)先算乘除,再把二次根式化为最简二次根式,然后合并即可;(2)先用完全平方公式展开,同时计算除法,再合并即可.【详解】(1)原式=67=-,1=-;(2)原式34=-7=-,7=-20.(1)代入消元法;(2)21 xy=⎧⎨=⎩.【分析】(1)由题意依据条件可以选择代入消元法进行求解;(2)根据题意直接利用代入消元法进行求解即可得出答案.【详解】解:(1)本题选用代入消元法;故答案为:代入消元法;(2)23 328x yx y-=⎧⎨+=⎩①②由②变形得,23y x =-②,将②代入②得,32(23)8x x +-=,解得:2x =,将2x =代入②得,1y =,经检验21x y =⎧⎨=⎩是方程组的解. 21.(1)20;1;(2)作图见详解;(3)两学校的分数从平均数角度分析,成绩一样好;从中位数角度分析,乙校成绩好.【分析】(1)由乙校打10分的学生人数和扇形统计图中的角度可得总人数,然后用总人数减去甲校各组人数即可得;(2)先求出乙校打8分的人数,然后补全统计图即可得;(3)根据平均数及中位数的计算方法得出结果即可知哪个学校成绩好.【详解】解:(1)由乙校打10分的学生人数和扇形统计图中的角度可得: 总人数为:90520360︒÷=︒人, ②两校参赛人数相等,②甲校参赛人数为20人,②2011081x =---=人,故答案为:20;1;(2)乙校打8分的人数为:208453---=人,作图如下:(3)甲校得分平均数为:11708198108.320⨯+⨯+⨯+⨯=, 甲校得分中位数为排序后第10、11位的平均数:7772+=分;乙校得分平均数为:8738495108.320⨯+⨯+⨯+⨯=, 甲校得分中位数为排序后第10、11位的平均数:787.52+=分; 两校得分的平均分数一样,中位数分数乙校大于甲校,②两学校的分数从平均数角度分析,成绩一样好;从中位数角度分析,乙校成绩好.【点睛】题目主要考查条形统计图和扇形统计图,计算平均数、中位数,从两个统计图获取相关信息是解题关键.22.(1)见解析;(2)19︒【分析】(1)根据1103∠=︒可得77∠=︒ABC ,,再根据内错角相等两直线平行即可得证; (2)根据两直线平行的性质可得103∠=︒FDC ,从而可得84∠=︒FDG ,再由∠=∠-∠CDG FDC FDG 即可求解.【详解】解:(1)②1103∠=︒,②77∠=︒ABC ,②277∠=︒,②2ABC ∠=∠,②EF OP ∥;(2)②MN HQ ∥,EF OP ∥,②1103∠=∠=∠=︒FDC FAB ,3180∠+∠=︒FDG ,②396∠=︒,②180********∠=︒-∠=︒-︒=︒FDG ,②1038419∠=∠-∠=︒-︒=︒CDG FDC FDG .【点睛】本题考查了平行线的判定及性质,解题的关键是掌握平行线的判定及性质,利用数形结合的思想进行求解.23.小长方形地砖的长为 45 厘米,宽为 15 厘米.【分析】设小长方形地砖的长为x 厘米,宽为y 厘米,由大长方形的宽为75厘米,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.【详解】设小长方形地砖的长为x 厘米,宽为y 厘米,根据题意得:275575x y y +=⎧⎨=⎩ 解得:4515x y =⎧⎨=⎩. 答:小长方形地砖的长为45厘米,宽为15厘米.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程是解题的关键.24.(1)10;11x ≥;(2)函数图象的解析式:()0.211511y x x =-+≤≤;(3)促销活动期间,去该店购买A 种水果10千克,那么共需花费9元.【分析】(1)根据观察函数图象的横坐标,纵坐标,可得结果;(2)根据待定系数法,设函数图象的解析式y kx b =+ (k 是常数,b 是常数,0k ≠),将()5,10,()11,8.8两个点代入求解即可得函数的解析式;(3)将10x =代入(2)函数解析式即可.【详解】解:(1)观察函数图象的横坐标,纵坐标,不超过5千克时,单价是10元,数量不少于11千克时,单价为8.8元.故答案为:10;11x ≥;(2)设函数图象的解析式y kx b =+ (k 是常数,b 是常数,0k ≠),图象过点()5,10,()11,8.8,可得:510118.8k b k b +=⎧⎨+=⎩, 解得0.211=-⎧⎨=⎩k b , 函数图象的解析式:()0.211511y x x =-+≤≤;(3)当10x =时,0.210119y =-⨯+=,答:促销活动期间,去该店购买A 种水果10千克,那么共需花费9元.【点睛】本题考查了一次函数的应用,待定系数法确定函数解析式等,理解题意,根据函数图象得出信息是解题关键.25.(1)40°;(2)10°;(3)AB②CF,理由见解析【分析】(1)根据三角形的角和定理和角平分线的定义可求得②BAC+②ACB=140°即可求解;(2)根据三角形的外角性质求得②B+②BAE=47°即可求解;(3)延长AC到G,根据等腰三角形的性质和三角形的外角性质得到②FCG=2②F,再根据角平分线的定义和等角的余角相等得到②BCF=2②F,则有②B=②BCF,根据平行线在判定即可得出结论.【详解】解:(1)②②ADC=110°,②②DAC+②DCA=180°-110°=70°,②AE平分②BAC,CD平分②ACB,②②BAC=2②DAC,②ACB=2②DCA,②②BAC+②ACB=2(②DAC+②DCA)=140°,②②B=180°-(②BAC+②ACB)=180°-140°=40°,故答案为:40°;(2)②②ADC=②DCE+②DEC=100°,②DCE=53°,②②DEC=100°-53°=47°,②②B+②BAE=②DEC=47°,②②B-②BAE=27°,②②BAE=10°,故答案为:10°;(3)AB②CF,理由为:如图,延长AC到G,②AC=CF,②②F=②FAC,②②FCG=②F+②FAC=2②F,②CF②CD,②②BCF+②BCD=90°,②FCG+②ACD=90°,②CD平分②ACB,②②BCD=②ACD,②②BCF=②FCG=2②F,②②B=2②F,②②B=②BCF ,②AB②CF .【点睛】本题考查角平分线的定义、三角形的内角和定理、三角形的外角性质、等腰三角形的性质、等角的余角相等、平行线的判定,熟练掌握相关知识的联系与运用是解答的关键. 26.(1)(3,3);(2)②直线OC 的函数表达式为13y x =;②点P 坐标为(8116,0)或(6316,0);②t 的值为33【分析】(1)过A 作AD②x 轴于点D ,根据等腰直角三角形的性质得出OD=OA=3,即可得到A 坐标为(3,3),;(2)②由6OB =,且26OB =,可得OC=,在Rt BOC 中,利用勾股定理求得BC 的值,即可得到点C 坐标,设出直线OC 的函数表达式为y=kx ,把(6,2)代入 求出k 的值,即可得到直线OC 的函数表达式;②先求出直线AB 的解析式,由题意点得P (t ,0),Q (t ,t )或(t ,6t -+),R (t ,13t ),列出方程,即可求得点P 坐标;②先求出点H的坐标为(92,32),再根据面积法求出AN =. 【详解】(1)过A 作AD②x 轴于点D ,②OB=6,OA=AB ,②OAB=90°,②AD 平分②OAB ,且OD=BD=3,②②OAD=②AOD=45°,②OD=DA=3,②A 坐标为(3,3),故答案为:(3,3);(2)②②6OB =,且26OB +=,②OC=当6t =时,点P 坐标为(6,0),②直线l 恰好过点C ,222OB BC OC ∴+=,2226BC ∴+=,2BC ∴=,∴点C 坐标为(6,2),设直线OC 的函数表达式为y=kx ,把(6,2)代入,得:6k=2, 解得13k =,故直线OC 的函数表达式为13y x =;②设直线OC 与直线AB 交于点H ,直线AB 的解析式为11y k x b =+,②11113360k b k b +=⎧⎨+=⎩,②1116k b =-⎧⎨=⎩,②直线AB 的解析式为6y x =-+,②点P 的横坐标为t ,点R 在直线13y x =上,②点P (t ,0),Q (t ,t )或(t ,6t -+),R (t ,13t ),②线段QR 的长度为m , ②13-=t t m 或163t t m -+-=当34m =时,1334-=t t 或13634t t -+-= 解得:98t =或8116或6316故点P 坐标为(98,0)或(8116,0)或(6316,0); ②②直线AB 的解析式为6y x =-+, 联立613y x y x =-+⎧⎪⎨=⎪⎩,解得9232x y ⎧=⎪⎪⎨⎪=⎪⎩, ②点H 的坐标为(92,32),②AH ==OH ==OA ②11=22AOH S OA AH AN OH ⋅=⋅△,②OA AH AN OH ⋅== 过点A 作AM②直线l ,AN②直线OC ,如图:或则:AM=3t -,②直线RQ 与直线OC 所组成的角被射线RA 平分,AM=AN , 即3t -解得3t =3t = 故t的值为33 【点睛】此题考查等腰直角三角形的性质、求一次函数函数解析式、角平分线的性质、点到直线的距离、勾股定理的应用.作出相应的图形,分类讨论是解答此题的关键.27.(1)A (2,0)(2)y =112x - (3)存在,M 的坐标为(43,1)或(83,﹣1)【分析】(1)先根据勾股定理求得AO 的长,再写出点A 的坐标;(2)先根据②ABC 的面积为4,求得CO 的长,再根据点A 、C 的坐标,运用待定系数法求得直线l 2的解析式;(3)求出直线l 1的表达式为y=−32x+3,设M (m ,-32m+3),根据②OAM 的面积与②OCA 的面积相等且②OAM 与②OCA 同底,即可得到结论.(1)解:②B (0,3),②OB=3,在Rt②AOB 中,2,②A (2,0);(2)解:②S ②ABC=12BC•OA , ②4=12•BC×2,解得BC=4, ②OC=BC -OB=4-3=1,②C (0,-1),设直线l 2的表达式为y=kx+b ,将A (2,0),C (0,-1)代入y=kx+b ,得:021k b b =+⎧⎨-=⎩,解得121k b ⎧=⎪⎨⎪=-⎩, ②直线l 2的表达式为y=12x−1; (3) (3)设直线l 1的表达式为y=k 1x+b 1将A (2,0),B (0,3)代入y=k 1x+b 1,得111023k b b =+⎧⎨=⎩,解得11323k b ⎧=-⎪⎨⎪=⎩, ②直线l 1的表达式为y=−32x+3, ②②OAM 的面积与②OCA 的面积相等且②OAM 与②OCA 同底,②两个三角形的高都为OC=1,②点M 的纵坐标为±1且点M 在直线l 1上,令y=1,则1=−32x+3,解得x=43, 令y=-1,则−1=−32x+3,解得x=83, ②M 的坐标为(43,1)或(83,-1). 【点睛】本题是一次函数综合题,主要考查了两条直线的交点问题,三角形的面积公式,解题的关键是掌握勾股定理以及待定系数法.。

北师大版八年级上册数学期末考试试题及答案

北师大版八年级上册数学期末考试试题及答案

北师大版数学八年级上册期末考试试卷亲爱的同学,时间过得真快啊!转眼又一个学期了,相信你在原有的基础上又掌握了许多新的数学知识与能力,变得更加聪明了,更加懂得应用数学来解决实际问题了。

现在让我们一起走进考场,仔细思考,认真作答,成功将属于你——数学学习的主人!本试题分第I 卷(选择题)和第II 卷(非选择题)两大部分,全卷满分100分,考试时间90分钟。

第I 卷(选择题 共30分)一、 精心选一选:(只有一个答案正确,每题3分,共30分)1、 1、如右图,如果半圆的直径恰为直角三角形的一条直角边,那么半圆的面积为( )A.24cm πB.26cm πC.212cm πD.24π2、下列说法正确的个数( )①②③的倒数是()3316251625451273333-=---=--=--ππ④⑤的平方根是23544+=--2()A. 0个B. 1个C. 2个D. 3个3、已知点P 关于y 轴的对称点P 1的坐标是(2,3),则点P 关于原点的对称点P 2的坐标为( )A. ()2,3-B. ()3,2--C. ()2,3-D. ()2,3-- 4、下列图案既是中心对称图形,又是轴对称图形的是( )A. B. C. D.5、已知点(-4,y 1),(2,y 2)都在直线y=- 12 x+2上,则y 1 与y 2的大小关系是( )A.y 1 <y 2B.y 1 =y 2C. y 1 >y 2D.不能比较bc<0, 则一次函数bc b a--)CD7、若方程组⎩⎨⎧=--=+8)1(534y k kx y x 的解中的x 值比y 值的相反数大1,则k 为( )A.3B.-3C.2D.-28、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据是8时,输出的数据是( )A 、618B 、638C 、658D 、6789、在梯形ABCD 中,若AD//BC ,则∠A:∠B:∠C:∠D 的值只能等于 ( ) A. 6:5:4:3 B.3:5:6:4 C.4:5:6:3 D.3:4:5:610、如右图,在矩形ABCD 中,AB=8,BC=6,E 、F 是AC 的三等分点.则△BEF 的面积为( )A. 12B.8C.6D.无法计算BC第II 卷(非选择题 共70二:耐心填一填(每小题题3分,共24分)11、写出两个无理数,使这两个无理数的积为有理数,那么这两个无理数可以是 和 。

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试题一、单选题1.下列各数中,是无理数的是()AB C .227D .3.14152.在﹣3,0,2,这组数中,最小的数是()A .B .﹣3C .0D .23.甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是90分,方差分别是S 甲2=5,S 乙2=20,S 丙2=23,S 丁2=32,则这四名学生的数学成绩最稳定的是()A .甲B .乙C .丙D .丁4.下列各组数据中,能构成直角三角形的三边的长的一组是()A .1,2,3B .4,5,6C .5,12,13D .13,14,155.下列运算正确的是()A 2=±B 2=-C .224-=D .22--=6.已知23x y =-⎧⎨=⎩是方程22kx y +=-的解,则k 的值为()A .﹣2B .2C .4D .﹣47.如图,在△ABC 中,∠C =90°,AC =3,BC =2.以AB 为一条边向三角形外部作正方形,则正方形的面积是()A .5B .6C .12D .138.在平面直角坐标系中,点A 的坐标是(3a ﹣5,a+1).若点A 到x 轴的距离与到y 轴的距离相等,且点A 在y 轴的右侧,则a 的值为()A .1B .2C .3D .1或39.若直线y =kx+b 经过第一、二、三象限,则函数y =bx ﹣k 的大致图象是()A .B .C .D .10.如图,直线a ∥b ,将含有45°的三角板ABC 的直角顶点C 放在直线b 上,若∠1=27°,则∠2的度数是()A .10°B .15°C .18°D .20°二、填空题11.9的算术平方根是.12.方程组43139x y x y -=-⎧⎨+=⎩的解是:________.13.一组数据:2,5,7,3,5的众数是________.14.请写出“两直线平行,同位角相等”的结论:_____.15.如图,把一张三角形纸片(△ABC )进行折叠,使点A 落在BC 上的点F 处,折痕为DE ,点D ,点E 分别在AB 和AC 上,DE ∥BC ,若∠B =70°,则∠BDF 的度数为____.17.如图,在ABC 中,40A ∠=︒,120CBD ∠=︒,则C ∠=__________.16.如图,直角坐标平面xoy 内,动点P 按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),…按这样的运动规律,动点P 第2022次运动到点的坐标是_____.三、解答题1802182620213π-(-)19.如图,AB ∥DG ,∠1+∠2=180°.(1)试说明:AD ∥EF ;(2)若DG 是∠ADC 的平分线,∠2=142°,求∠B 的度数.20.如图所示,在平面直角坐标系中,已知A (0,1),B (3,0),C (3,4).(1)在图中画出△ABC ,△ABC 的面积是;(2)在(1)的条件下,延长线段CA ,与x 轴交于点M ,则M 点的坐标是.(作图后直接写答案)21.若实数b 的立方根为2,且实数a,b ,c 2(4)8b a c ++-+=.(1)求23a b c -+的值;(2)若a ,b ,c 是△ABC 的三边,试判断三角形的形状.22.为了解某校八年级体育科目训练情况,从八年级学生中随机抽取了部分学生进行了一次体育科目测试(把测试结果分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)图1中α∠的度数是__________,并把图2条形统计图补充完整.(2)抽取的这部分的学生的体育科目测试结果的中位数是在__________级;(3)依次将优秀、良好、及格、不及格记为90分、80分、70分、50分,请计算抽取的这部分学生体育的平均成绩.23.某小区为了绿化环境,计划分两次购进A ,B 两种树苗,第一次购进A 种树苗40棵,B 种树苗15棵,共花费1750元;第二次购进A 种树苗20棵,B 种树苗6棵,共花费860元.(两次购进的A ,B 两种树苗各自的单价均不变)(1)A ,B 两种树苗每棵的价格分别是多少元?(2)因受季节影响,A 种树苗价格下降10%,B 种树苗价格上升20%,计划购进A 种树苗25棵,B 种树苗20棵,问总费用是多少元?24.如图,在平面直角坐标系中,过点C (0,6)的直线AC 与直线OA 相交于点A (4,2).(1)求直线AC 的表达式;(2)求△OAC 的面积;(3)动点M 在线段OA 和射线AC 上运动,是否存在点M ,使△OMC 的面积是△OAC 的面积的12?若存在,求出此时点M 的坐标;若不存在,请说明理由.25.已知:如图,//,DE BC ADE EFC ∠=∠,试说明:12∠=∠.26.如图,在平面直角坐标系中,一次函数y =kx +b 的图象与x 轴交点为A (-3,0),与y 轴交点为B ,且与正比例函数43y x =的图象交于点C (m,4).(1)求点C 的坐标;(2)求一次函数y =kx +b 的表达式;(3)若点P 是y 轴上一点,且∆BPC 的面积为6,请直接写出点P 的坐标.参考答案1.A2.B3.A4.C5.B6.C7.D8.C9.D 10.C 11.312.23 xy=⎧⎨=⎩13.514.同位角相等15.40°16.(2021,0)17.80°18.219.【详解】(1)∵AB∥DG,∴∠BAD=∠1,∵∠1+∠2=180°,∴∠BAD+∠2=180°.∵AD∥EF.(2)∵∠1+∠2=180°且∠2=142°,∴∠1=38°,∵DG是∠ADC的平分线,∴∠CDG =∠1=38°,∵AB ∥DG ,∴∠B =∠CDG =38°.20.【详解】(1)如图,△ABC 的面积=14362⨯⨯=,故答案为:6;(2)如图,设经过点A ,C 的直线为y kx b =+,代入A (0,1),C (3,4)得,134b k b =⎧⎨+=⎩11k b =⎧∴⎨=⎩1y x ∴=+令0y =,则1x =-点M 的坐标(-1,0),故答案为:(-1,0).21.(1)232a b c -+=-;(2)△ABC 是直角三角形.【分析】(1)先根据立方根的定义求出b 的值,然后根据非负数的性质求出a 、c 的值,最后代值计算即可;(2)根据(1)所求,利用勾股定理的逆定理求解即可.【详解】解:(1)∵实数b 的立方根是2,∴b =8,2(4)8b a c +-+=,28(4)8a c ++-+=,2(4)0a c +-+=,0≥,2(4)0a c -+≥,∴6040a a c -=⎧⎨-+=⎩,∴a =6,c =10,∴232638102a b c -+=⨯-⨯+=-;(2)∵a 2+b 2=36+64=100,c 2=100,∴a 2+b 2=c 2.∴△ABC 是直角三角形.【点睛】本题主要考查了立方根,非负数的性质,代数式求值,勾股定理的逆定理,熟知相关知识是解题的关键.22.(1)54°,图形见解析;(2)C ;(3)72.【分析】(Ⅰ)根据B 级的人数除以B 级所占的百分比,可以计算出本次抽查的学生数,根据圆周角乘以A及所占的比例,可得扇形的圆心角;根据抽测人数乘以C级所占的比例,从而可以将条形统计图补充完整;(Ⅱ)根据(Ⅰ)中补充完整的条形统计图和中位数的定义可以解答本题;(Ⅲ)根据统计图中的数据,再利用加权平均数的定义计算出抽取的这部分学生体育的平均成绩即可.【详解】解:(Ⅰ)本次抽查的学生有:12÷30%=40(人),∠α的度数是:360°×640=54°,故答案为54;C级学生有:40-6-12-8=14(人),补全的条形统计图如图所示,(Ⅱ)由统计图可得,抽取的这部分的学生的体育科目测试结果的中位数是在C级,故答案为C;(Ⅲ)∵90680127014508x7240⨯+⨯+⨯+⨯==,∴抽取的这部分学生体育的平均成绩为72分.【点睛】本题考查了条形统计图、扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1)A种树苗每棵的价格40元,B种树苗每棵的价格10元;(2)总费用需1140元.【分析】(1)设A、B两种树苗每棵的价格分别是x元、y元,根据题意列二元一次方程组,解方程组求出x、y的值即可得答案;(2)根据(1)所求得结果进行求解即可.【详解】解:(1)设A种树苗每棵的价格x元,B种树苗每棵的价格y元,根据题意得:40151750 206860x yx y+=⎧⎨+=⎩,解得:4010x y =⎧⎨=⎩,答:A 种树苗每棵的价格40元,B 种树苗每棵的价格10元;(2)40(110%)2510(120%)20⨯-⨯+⨯+⨯=1140元。

初二数学北师大版试卷

初二数学北师大版试卷

初二数学北师大版试卷考试范围:xxx;考试时间:xxx分钟;出题人:xxx姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,矩形ABCD中,AB=12cm,BC=24cm,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积()cm2.A.72 B.90 C.108 D.1442.如图1,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积是A.18 B.16 C.10 D.203.在△ABC和△A/B/C/中,AB=A/B/,∠A=∠A/,若证△ABC≌△A/B/C/还要从下列条件中补选一个,错误的选法是()A.AC=A/C/ B.∠C=∠C/ C.BC=B/C/ D.∠B=∠B/4.设,则的值是()A. B.0 C.1 D.5.下列写法错误的是()A.B.C.D.=-46.在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A∶∠B∶∠C=1∶2∶3,能确定△ABC为直角三角形的条件有()A.1个 B.2个 C.3个 D.0个7.分式,的最简公分母是()A.(a﹣x)(ay﹣xy) B.a(a﹣x) C.y(a﹣x) D.a﹣x8.(2015秋•罗平县期末)下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2﹣4=(x+2)(x﹣2)C.x﹣2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4=(x+2)29.如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=0B:OD,则下列结论中一定正确的是()A.①与②相似 B.②与④相似 C.①与④相似 D.①与③相似10.方程 x(x+2)=(x+2)的解是()A.x=1 B.x1=0 x2="-2" C.x1=1 x2="-2" D.x1=1 x2=2二、判断题11.全等的两图形必关于某一直线对称.12.(p-q)2÷(q-p)2=1()13.星辰书店老板去图书批发市场购买某种图书.第一次用600元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的进价已比第一次提高了20%,老板用750元所购该书数量比第一次多5本.(1)求第一次购书的进价;(2)当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?14.如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,且AC=BD ,E 、F 分别相交是AB 、CD 的中点,EF 分别交BD 、AC 于点G 、H 。

北师大版八年级数学上册期末测试题及答案3

北师大版八年级数学上册期末测试题及答案3

2012-2013学年度上学期期末教学质量监控检测八 年 级 数 学 试 卷命题: 郎绍波一、选择能手——看谁的命中率高(每小题只有一个正确的选项,每小题3分,共30分)1.4的平方根是( )A .2B .±2C .2D .±2 2.下列图形既是轴对称又是中心对称图形的是( )A .平行四边形B .正三角形C .矩形D .等腰梯形3.在平行四边形、矩形、菱形、正方形、等腰梯形中,对角线相等的有( )A .1个B .2个C .3个D .4个 4.一次函数b kx y +=的图象如右图所示,则k 、b 的值为(A .k >0, b >0BC .k <0, b >0 D5.若532+y x b a 与x y b a2425-是同类项,则( )A .12x y =⎧⎨=⎩B .21x y =⎧⎨=-⎩C .02x y =⎧⎨=⎩D .31x y =⎧⎨=⎩6.计算28-的结果是( )A .6B .2C .2D .1.4 7.某青年排球队12名队员年龄情况如下:则这12名队员年龄的众数、中位数分别是( )A .19,20B .19,19C .19,20.5D .20,198.如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处, 那么A D ′为( ) A .10 B .22C .7D .329.一次函数(0)y ax a a =-≠的大致图像是(A .B .C .D .10.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( )A .1、2、3B .2、3、4C .3、4、5D .4、5、6二、填空能手——看谁填得既快又准确(每小题3分,共30分)11.= .12.3(2)--的立方根是 . 13.比较大小:14.一个多边形的外角都等于60°,这个多边形是 边形. 15.菱形ABCD 的边长为5cm ,其中一条对角线长为6cm 则菱形ABCD 的面积为 cm 2. 16.如图,△ABC 向右平移5cm 之后得到△DEF ,BE如果EC =3cm ,则EF = cm .17.点P (4,-3)关于y 轴对称的点的坐标是 .18.从双柏到楚雄的距离为60千米,一辆摩托车以平均每小时35千米的速度从双柏出发到楚雄,则摩托车距双柏的距离y (千米)与行驶时间t (时)的函数表达式为 .19.如图,是由16个边长为1的正方形拼成的,任意连接这些小格点的若干个顶点可得到一 些线段,则线段AB 、CD 中,长度是有理 数的线段是 . 20.如图所示,阴影部分表示的四边形是 .三、解答能手——看谁写得既全面又整洁(共60分)21.计算:(本小题10分,每小题5分)(1)5 (222.(本小题6分)解方程组:257231x y x y -=⎧⎨+=-⎩23.(本小题8分)已知:一次函数42-=x y .(1)在直角坐标系内画出一次函数42-=x y 的图象. (2)求函数42-=x y 的图象与坐标轴围成的三角形面积. (3)当x 取何值时,y>0.24.(本题共8, 求BD 与AD 的长.ADBOCx25.(本小题8分)如图,按要求画出图形.(1)将△ABC向下平移五格后的△111A B C.(2)再画出△ABC绕点O旋转180º的△222A B C.26.(本小题8分)在平形四边形ABCD中,E、F为对角线BD上两点,并且BE=DF,则四边形AECF为平行四边形,请说明理由.27.(本小题12分)我边防局接到情报,近海处有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶(如图1),图2中l1,l2分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.根据图像回答下列问题:(1)那条线表示B到海岸的距离与追赶时间之间的关系?(2)A、B哪个速度快?(3)15分钟内B能否追上A?(4)如果一直追下去,那么B能否追上A?(5)当A逃到离海岸12海里的公海时,B将无法对其进行检查,照此速度,B能否在A逃入公海前将其拦截?图1图2A D海岸公海2010-2011学年度上学期期末质量监控检测八年级数学试卷参考答案一、选择能手——看谁的命中率高(每小题只有一个正确的选项,每小题3分,共30分)1.B 2.C 3.C 4.A 5.B6.C 7.A 8.D 9.A 10.C二、填空能手——看谁填得既快又准确(每小题3分,共30分)11.-0.9 12.2 13.>14.六15.24 16.817.(-4,-3)18.y=60-35t 19.CD 20.正方形三、解答能手——看谁写得既全面又整洁(共60分)21.(本小题10分)22.(本小题6分)解方程组:5565110==-====解:原式解:原式25712312128811111x yx yyyy xxy-=⎧⎨+=-⎩--==-=-==⎧⎨=-⎩()()解:()()得得将代入(1)得所以23.(本小题8分)解:(1)略(2)4 (3)x>224.(本题共8分)解:因为矩形ABCD的对角线AC与BD互相平分且相等,所以BD=AC=2AB=8cm在Rt△BAD中,==25.(本小题8分)略26.(本小题8分)解:连接AC交BD于点O,因为ABCD是平行四边形,所以OA=OC,OB=OD,又知BE=DF,所以,OE=OF,因此,根据对角线互相平分的四边形是平行四边形可知AECF是平行四边形。

北师大版数学八年级上册期末考试试卷及答案

北师大版数学八年级上册期末考试试卷及答案

北师大版数学八年级上册期末考试试题一、选择题(共12小题,每小题3分,共36分)1.在平面直角坐标系中,下列各点属于第四象限的是()A.(1,2)B.(﹣3,8)C.(﹣3,﹣5)D.(6,﹣7)2.下列交通标志是轴对称图形的是()A.B.C.D.3.一次函数y=﹣3x+2的图象经过()A.第一、二、三象限B.第一、三、四象限C.第二、三、四象限D.第一、二、四象限4.三角形的重心是三角形三条()的交点.A.中线B.高C.角平分线D.垂直平分线5.在△ABC和△ABD中,已知AC=AD,BC=BD,则能说明△ABC≌△ABD的依据是A.SAS B.ASA C.SSS D.HL6.点A(﹣1,2)到x轴的距离是()A.﹣1B.1C.﹣2D.27.如果将一副三角板按如图方式叠放,那么∠1的度数是()A.90°B.100°C.105°D.135°8.已知函数y=,当x=2时,函数值y为()A.5B.6C.7D.89.下列命题中,是假命题的是()A.能够完全重合的两个图形全等B.两边和一角对应相等的两个三角形全等C.三个角都相等的三角形是等边三角形D.等腰三角形的两底角相等10.如图所示是函数y=kx+b与y=mx+n的图象,则方程组的解是()A.x=4,y=3B.x=﹣4,y=﹣3C.x=3,y=4D.x=﹣3,y=﹣4 11.如图,在Rt△ABC中,∠B=90°,AD平分∠BAC,DE垂直平分AC,若△ADC的面积等于2,则△ABC的面积为()A.2B.3C.4D.612.如图,在△ABC中,AB=AC=8厘米,BC=6厘米,点D为AB的中点.如果点P 在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上,由C 点向A点运动,为了使△BPD≌△CPQ,点Q的运动速度应为()A.1厘米/秒B.2厘米/秒C.3厘米/秒D.4厘米/秒二、填空题(本大题共6小题,每小题3分,共18分.)13.函数y=的自变量x的取值范围是.14.已知点M(m+1,m+3)在x轴上,则m等于.15.小芳有两根长度为5cm和10cm的木条,她想钉一个三角形木框,她应该再选择一根长度为cm的木条.(只需写出其中一种)16.已知一次函数y=﹣x+6的图象上有两点A(﹣1,y1),A(2,y2),则y1与y2的大小关系是.17.如图1所示的是一张直角△ABC纸片(∠C=90°),其中∠BAC=30°,如果用两张完全相同的这种纸片恰好能拼成如图2所示的△ABD,若BC=2,则△ABD的周长为.18.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3…和点C1,C2,C3…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),按此规律,则B4的坐标是.三、解答题(本大题共66分)19.已知在平面直角坐标系中,△ABC三个顶点的坐标分别为:A(﹣3,﹣1),B(﹣2,﹣4),C(1,﹣3).(1)作出△ABC;(2)若将△ABC向上平移3个单位后再向右平移2个单位得到△A1B1C1,请作出△A1B1C1.20.已知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求一次函数的解析式,并画出此一次函数的图象;(2)求当x取何值时,函数值y>0.21.如图,AB=AC,DB=DC,E是AD上的一点,求证:BE=CE.22.尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).23.如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,且AD =CD.(1)求证:△ABD≌△CFD;(2)已知BC=7,AD=5,求AF的长.24.已知△ABC中,∠BAC=90°,∠C=30°,点D为BC边上一点,连接AD,作DE ⊥AB于点E,DF⊥AC于点F.(1)若AD为△ABC的角平分线(如图1),图中∠1、∠2有何数量关系?为什么?(2)若AD为△ABC的高(如图2),求图中∠1、∠2的度数.25.D县举办运动会需购买A,B两种奖品,若购买A种奖品5件和B种奖品2件,共需80元;若购买A种奖品3件和B种奖品3件,共需75元.(1)求A、B两种奖品的单价各是多少元?(2)大会组委会计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.26.已知正比例函数y=x与一次函数y=3x﹣5的图象交于点A,且OA=OB.(1)求A点坐标;(2)求△AOB的面积;(3)已知在x轴上存在一点P,能使△AOP是等腰三角形,请直接写出所有符合要求的点P的坐标.参考答案一、选择题1.在平面直角坐标系中,下列各点属于第四象限的是()A.(1,2)B.(﹣3,8)C.(﹣3,﹣5)D.(6,﹣7)解:A、点(1,2)在第一象限,故本选项不合题意;B、点(﹣3,8)在第二象限,故本选项不合题意;C、点(﹣3,﹣5)在第三象限,故本选项不合题意;D、点(6,﹣7)在第四象限,故本选项符合题意;故选:D.2.下列交通标志是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选:C.3.一次函数y=﹣3x+2的图象经过()A.第一、二、三象限B.第一、三、四象限C.第二、三、四象限D.第一、二、四象限解:∵一次函数y=﹣3x+2,k=﹣3<0,b=2>0,∴一次函数y=3x+2的图象经过第一、二、四象限,故选:D.4.三角形的重心是三角形三条()的交点.A.中线B.高C.角平分线D.垂直平分线解:三角形的重心是三角形三条中线的交点.故选:A.5.如图,在△ABC和△ABD中,已知AC=AD,BC=BD,则能说明△ABC≌△ABD的依据是()A.SAS B.ASA C.SSS D.HL解:在△ABC和△ABD中,,∴△ABC≌△ABD(SSS).故选:C.6.点A(﹣1,2)到x轴的距离是()A.﹣1B.1C.﹣2D.2解:点P(﹣1,2)到x轴的距离是2.故选:D.7.如果将一副三角板按如图方式叠放,那么∠1的度数是()A.90°B.100°C.105°D.135°解:如图所示:由题意可得,∠2=90°﹣45°=45°,则∠1=∠2+60°=45°+60°=105°.故选:C.8.已知函数y=,当x=2时,函数值y为()A.5B.6C.7D.8解:∵x≥0时,y=2x+1,∴当x=2时,y=2×2+1=5.故选:A.9.下列命题中,是假命题的是()A.能够完全重合的两个图形全等B.两边和一角对应相等的两个三角形全等C.三个角都相等的三角形是等边三角形D.等腰三角形的两底角相等解:A、能够完全重合的两个图形全等,是真命题;B、两边和其夹角对应相等的两个三角形全等,原命题是假命题;C、三个角都相等的三角形是等边三角形,是真命题;D、等腰三角形的两底角相等,是真命题;故选:B.10.如图所示是函数y=kx+b与y=mx+n的图象,则方程组的解是()A.x=4,y=3B.x=﹣4,y=﹣3C.x=3,y=4D.x=﹣3,y=﹣4解:∵函数y=kx+b与y=mx+n的图象交于点(3,4),∴方程组的解是.故选:C.11.如图,在Rt△ABC中,∠B=90°,AD平分∠BAC,DE垂直平分AC,若△ADC的面积等于2,则△ABC的面积为()A.2B.3C.4D.6解:∵DE垂直平分AC,∴DE⊥AC,AE=CE,∵∠B=90°,∴DB⊥AB,∵AD平分∠BAC,∴DB=DE,在Rt△ABD和Rt△AED中,,∴Rt△ABD≌Rt△AED(HL),∴AB=AE=CE,∴S△ACD=AC•DE=×2AB•BD=2S△ABD=2,∴S△ABD=1,∴S△ABC=S△ACD+S△ABD=3,故选:B.12.如图,在△ABC中,AB=AC=8厘米,BC=6厘米,点D为AB的中点.如果点P 在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上,由C 点向A点运动,为了使△BPD≌△CPQ,点Q的运动速度应为()A.1厘米/秒B.2厘米/秒C.3厘米/秒D.4厘米/秒解:当△BPD≌△CPQ时,BD=CQ=4厘米,BP=CP=3厘米,∴点P运动的时间为3÷3=1(秒),∴点Q的运动速度为4÷1=4(厘米/秒).故选:D.二、填空题(本大题共6小题,每小题3分,共18分.)13.函数y=的自变量x的取值范围是x≠3的一切实数.解:x﹣3≠0,解得:x≠3.14.已知点M(m+1,m+3)在x轴上,则m等于﹣3.解:由题意得:m+3=0,解得m=﹣3,故答案为:﹣3..15.小芳有两根长度为5cm和10cm的木条,她想钉一个三角形木框,她应该再选择一根长度为8cm的木条.(只需写出其中一种)解:设木条的长度为xcm,则10﹣5<x<10+5,即5<x<15.故答案为8(答案不唯一).16.已知一次函数y=﹣x+6的图象上有两点A(﹣1,y1),A(2,y2),则y1与y2的大小关系是y1>y2.解:∵k=﹣1<0,y将随x的增大而减小,又∵﹣1<2,∴y1>y2.故答案为y1>y2.17.如图1所示的是一张直角△ABC纸片(∠C=90°),其中∠BAC=30°,如果用两张完全相同的这种纸片恰好能拼成如图2所示的△ABD,若BC=2,则△ABD的周长为12.解:在Rt△ABC中,∵∠BAC=30°,∠ACB=90°,∴∠B=90°﹣∠BAC=60°,AB=2BC=4,∵△ABD是用两张Rt△ABC拼成的图形,∴∠D=∠B=60°,∠DAC=∠BAC=30°,∠ACD=∠ACB=90°,∴∠BAD=60°,∠BCD=180°,∴B、C、D在一条直线上,∴△ABD是等边三角形,∴AB=BC=AD,∴AB+BC+AD=12,∴△ABD的周长为12,故答案为12.18.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3…和点C1,C2,C3…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),按此规律,则B4的坐标是(15,8).解:∵B1的坐标为(1,1),点B2的坐标为(3,2),∴正方形A1B1C1O边长为1,正方形A2B2C2C1边长为2,∴A1的坐标是(0,1),A2的坐标是:(1,2),代入y=kx+b得,解得:.则直线的解析式是:y=x+1.∵A1B1=1,点B2的坐标为(3,2),∴A1的纵坐标是:1=20,A1的横坐标是:0=20﹣1,∴A2的纵坐标是:1+1=21,A2的横坐标是:1=21﹣1,∴A3的纵坐标是:2+2=4=22,A3的横坐标是:1+2=3=22﹣1,∴A4的纵坐标是:4+4=8=23,A4的横坐标是:1+2+4=7=23﹣1,据此可以得到A n的纵坐标是:2n﹣1,横坐标是:2n﹣1﹣1.∵点B1的坐标为(1,1),点B2的坐标为(3,2),∴点B3的坐标为(7,4),∴Bn的横坐标是:2n﹣1,纵坐标是:2n﹣1,即B n的坐标是(2n﹣1,2n﹣1).∴B4的坐标是(15,8).故答案是:(15,8).三、解答题(本大题共8小题,共66分.解答题应写出必要的文字说明、证明过程或演算步骤)19.已知在平面直角坐标系中,△ABC三个顶点的坐标分别为:A(﹣3,﹣1),B(﹣2,﹣4),C(1,﹣3).(1)作出△ABC;(2)若将△ABC向上平移3个单位后再向右平移2个单位得到△A1B1C1,请作出△A1B1C1.解:(1)如图,△ABC即为所求作.(2)如图,△A1B1C1即为所求作.20.已知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求一次函数的解析式,并画出此一次函数的图象;(2)求当x取何值时,函数值y>0.解:(1)由题意得:,解得,∴一次函数的解析式为y=x+2;画出函数图象如图:(2)由图象可知,当x>﹣2时,y>0.21.如图,AB=AC,DB=DC,E是AD上的一点,求证:BE=CE.【解答】证明:在△ABD与△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,在△ABE与△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE22.尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).解:如图所示:点P即为所求.23.如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,且AD =CD.(1)求证:△ABD≌△CFD;(2)已知BC=7,AD=5,求AF的长.【解答】(1)证明:∵AD⊥BC,CE⊥AB,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠FCD,在△ABD和CFD中,,∴△ABD≌△CFD(ASA),(2)解:∵△ABD≌△CFD,∴BD=DF,∵BC=7,AD=DC=5,∴BD=BC﹣CD=2,∴AF=AD﹣DF=5﹣2=3.24.已知△ABC中,∠BAC=90°,∠C=30°,点D为BC边上一点,连接AD,作DE ⊥AB于点E,DF⊥AC于点F.(1)若AD为△ABC的角平分线(如图1),图中∠1、∠2有何数量关系?为什么?(2)若AD为△ABC的高(如图2),求图中∠1、∠2的度数.解:(1)∠1=∠2,理由如下:∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=∠BAC=90°,∴DE∥AC,DF∥AB,∴∠1=∠DAC,∠2=∠DAB,∵AD平分∠BAC,∴∠DAC=∠DAB,∴∠1=∠2;(2)∵DE⊥AB,DF⊥AC,AD⊥BC,∴∠ADB=∠ADC=∠DEB=∠DFC=∠BAC=90°,∴DE∥AC,∴∠BDE=∠C=30°,∴∠1=∠ADB﹣∠BDE=60°,∵∠FDC=180°﹣∠DFC﹣∠C=60°,∴∠2=∠ADC﹣∠FDC=30°.25.D县举办运动会需购买A,B两种奖品,若购买A种奖品5件和B种奖品2件,共需80元;若购买A种奖品3件和B种奖品3件,共需75元.(1)求A、B两种奖品的单价各是多少元?(2)大会组委会计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.解:(1)设A、B两种奖品的单价分别为x、y元,则,解得:;(2)设购买A种奖品m件,则B为(100﹣m)件,由题意得:,解得:70≤m≤75,W=10m+15(100﹣m)=1500﹣5m,当m=75时,W有最小值为:1125,答:最少费用为1125.26.已知正比例函数y=x与一次函数y=3x﹣5的图象交于点A,且OA=OB.(1)求A点坐标;(2)求△AOB的面积;(3)已知在x轴上存在一点P,能使△AOP是等腰三角形,请直接写出所有符合要求的点P的坐标.解:(1)由题意得:,解得:,∴A(3,4);(2)在y=3x﹣5中,令x=0,得y=﹣5,∴B(0,﹣5),∴OB=5,∴S△AOB=×5×3=;(3)设P(m,0),∵OA=OB,∴OA=5,∵△AOP是等腰三角形,∴分三种情况:OA=OP或OA=AP或OP=AP,①当OA=OP时,∴|m|=5,解得:m=﹣5或5,∴P1(5,0),P2(﹣5,0);②当OA=AP时,点O与点P关于直线x=3对称,∴P(6,0);③当OP=AP时,点P为线段OA的垂直平分线与x轴的交点,OA的中点坐标为(,2),设过OA中点且与OA垂直的直线解析式为y=﹣x+b,将(,2)代入,得:2=﹣×+b,解得:b=,∴y=﹣x+,令y=0,得0=﹣x+,解得:x=,∴P(,0),综上所述,点P的坐标为(5,0)或(﹣5,0)或(6,0)或(,0).。

北师大版八年级数学上册期末试卷及参考答案

北师大版八年级数学上册期末试卷及参考答案

北师大版八年级数学上册期末试卷及参考答案第一部分:选择题(共30小题,每小题2分,共60分)1. 某数加上4再除以3的结果是8,求这个数。

答案:122. 若分子是a,分母是2a的一个真分数,且这个真分数比3/8 大3/5 ,求a的值。

答案:1/23. 若在数轴上,点A坐标是2.1 ,点B坐标是-4.9 ,求AB的长度。

答案:7……(依次回答4-30题)……第二部分:解答题(共6题,每小题10分,共60分)31. 某数的5倍与这个数的和是180,求这个数。

答案:3032. 小红买了一本数学书,书的原价是30元,后来有优惠活动,全部图书7折销售,小红要付多少钱?答案:21元33. 一辆汽车从A地到B地,全程240千米,第一个多小时速度为v千米/小时,下一个多小时速度为2v千米/小时,第三个多小时速度为3v千米/小时,求这辆车平均速度。

答案:2.4v千米/小时34. 用10个1元纸币点餐,有超过10种选择,菜品每份价格为a元,求a的最小整数值。

答案:335. 矩形ABC D 的AB边垂直于BC边,将矩形从A点对折后,使A点和C点重合,该点为E ,连接AE ,求∠BAE的大小。

答案:45°36. 某校为学生布置了一道数学题,如果x/3<2 ,则x的结果为()A. 4B. 6C. 8D. 10答案:B第三部分:填空题(共5题,每题6分,共30分)37. 如果一个正整数x满足(x+4)/(x-4)=7/3 ,那么x的值为___ 。

答案: 1438. 小明家有36毫升洗洁精,他用一个容量为m毫升的瓶子装了一部分洗洁精,还剩下1/3给了邻居,这时,瓶子里的洗洁精为原来的1/10,问m等于____。

39. 若正整数x的个位数字比十位数字大3,将x的两位数字颠倒,所得正整数y 是x的3倍,那么x的值为____。

答案: 4340. 某数除以11的余数为0,如果这个数的各位数字之和为14 ,那么这个数的值为____。

北师大版八年级数学(上)期末考试试题(含答案) (33)

北师大版八年级数学(上)期末考试试题(含答案) (33)

期末数学试卷一、填空题(每空1分,共20分)1.82=64,则8叫做64的__________.2.一个负数的平方等于121,这个负数是__________.3.当k<0时,随着k的增大,它的立方根随着__________.4.(a≥0,b__________).5.一个两位数的十位数字和个位数字之和为7,如果把这个两位数加上45,那么恰好成为十位数字和个位数字对调后的两位数,则这个两位数为__________.6.在平面直角坐标系中,每个象限内的点,不包括__________上的点.7.命题“任意两个直角都相等”的条件是__________,结论是__________,它是__________(真或假)命题.8.函数y=4x﹣3,y随x的增大而__________,它的图象与y轴的交点坐标是__________.9.如果x2=64,那么=__________.10.若是方程2x+3y=0的一个解,则8a+12b+15的值是__________.11.如图,在△ABC中,∠1=∠2,∠3=∠4,∠A=65°,则∠F=__________.12.林书豪是我国优秀篮球运动员,现在在NBA打球,在某次常规赛中,每场个人得分分别是17,8,33,14,25,32,9,27,25,10,这组数据的平均数是__________,众数是__________,中位数是__________.13.如图,在Rt△ABC中,∠ACB=90°,AC=9,BC=12,则点C到AB的距离CD=__________.14.如图,在四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,则△ACD是__________三角形.15.坐标平面内的点与__________是一一对应的.二、选择题把每题唯一正确的答案的序号填在括号内16.下列运算不正确的是( )A.当a≥0时,=a B.=aC.当a<0时,=﹣a D.=﹣917.下列说法不正确的是( )A.﹣2是负数B.﹣2是负数,也是有理数C.﹣2是负数,是有理数,但不是实数D.﹣2是负数,是有理数,也是实数18.下列二次根式是最简二次根式的是( )A.B.C.D.19.若|3x+2y+7|+|5x﹣2y+1|=0,则x,y的值是( )A.B.C.D.20.为了考察甲、乙两种小麦,分别从中抽取5株苗测得苗高(单位:cm)甲:2,4,6,8,10;乙:1,3,5,7,9.用S甲2和S乙2分别表示两个样本的方差,则( )A.S甲2>S乙2B.S甲2<S乙2C.S甲2=S乙2D.无法确定三、解答题(每小题4分,共20分)21..22.计算:﹣﹣(﹣1)0﹣.23.对于任意数a,一定等于a吗?请举例说明.24.a+3和2a﹣15是某数的两个平方根,求a.25.设△ABC三边长为a=5,b=6,c=7,p=(a+b+c).求S△ABC=.四、解答题(每小题7分,共14分)26.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.(1)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式:①用水量小于等于3000吨__________;②用水量大于3000吨__________.(2)某月该单位用水3200吨,水费是__________元;若用水2800吨,水费__________元.(3)若某月该单位缴纳水费1540元,则该单位用水多少吨?27.某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y(元)是行李质量x(千克)的一次函数,现已知李明带了60千克的行李费,交了行李费5元;张华带了90千克的行李,交了行李费10元.(1)写出y与x之间的函数表达式.(2)旅客最多可免费携带多少千克的行李?五、方程应用题28.甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后,两种商品的单价和比原来的单价和提高了20%.问甲、乙两种商品原来的单价各是多少元?六、证明题(16分)29.在下列推理过程中的括号里填上推理的依据.已知:如图,CDE是直线,∠1=105°,∠A=75°.求证:AB∥C D.证明:∵CDE为一条直线(__________)∴∠1+∠2=180°∵∠1=105°(已知)∴∠2=75°又∵∠A=75°(已知)∴∠2=∠A(__________)∴AB∥CD(__________)30.已知:如图,在△ABC中,∠B=∠C,AD平分外角∠EAC,说明AD∥B C.31.如图,∠C=∠1,∠2与∠D互余,BE⊥DF,垂足为G.求证:AB∥C D.七、解答题32.如图,平面直角坐标系中,点A的坐标是(﹣4,4),点B的坐标是(2,5).(1)写出点A关于x轴对称的对称点A′的坐标;(2)求出过A′,B两点直线的一次函数的解析式;(3)在x轴上有一动点P,要使P A+PB最小,求点P的坐标.2015-2016学年辽宁省辽阳市灯塔市八年级(上)期末数学试卷一、填空题(每空1分,共20分)1.82=64,则8叫做64的算术平方根.【考点】有理数的乘方.【分析】根据有理数的乘方,算术平方根,即可解答.【解答】解:∵82=64,∴8叫做64的算术平方根.故答案为:算术平方根.【点评】本题考查了有理数的乘方、算术平方根,解决本题的关键是熟记有理数的乘方、算术平方根.2.一个负数的平方等于121,这个负数是﹣11.【考点】有理数的乘方.【分析】根据有理数的乘方,即可解答.【解答】解:∵(﹣11)2=121,∴这个负数是﹣11,故答案为:﹣11.【点评】本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方.3.当k<0时,随着k的增大,它的立方根随着增大.【考点】立方根.【分析】根据立方根,即可解答.【解答】解:例如:当k=﹣8时,﹣8的立方根为﹣2,当k=﹣1时,﹣1的立方根为﹣1,﹣1>﹣2,所以当k<0时,随着k的增大,它的立方根随着增大.故答案为:增大.【点评】本题考查了立方根,解决本题的关键是熟记立方根的定义.4.(a≥0,b>0).【考点】二次根式的乘除法.【分析】根据二次根式的除法法则得出=中a≥0,b>0,填上即可.【解答】解:=中a≥0,b>0.故答案为:>0.【点评】本题考查了二次根式性质和二次根式的除法法则的应用,注意:=中a≥0,b >0.5.一个两位数的十位数字和个位数字之和为7,如果把这个两位数加上45,那么恰好成为十位数字和个位数字对调后的两位数,则这个两位数为16.【考点】一元一次方程的应用.【分析】先设这个两位数的十位数字和个位数字分别为x,7﹣x,根据题意列出方程,求出这个两位数.【解答】解:设这个两位数的十位数字为x,则个位数字为7﹣x,由题意列方程得,10x+7﹣x+45=10(7﹣x)+x,解得x=1,∴7﹣x=7﹣1=6,∴这个两位数为16.故答案是:16.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.6.在平面直角坐标系中,每个象限内的点,不包括坐标轴上的点.【考点】点的坐标.【分析】根据坐标轴上的点不属于任何一个象限即可作答.【解答】解:在平面直角坐标系中,每个象限内的点,不包括坐标轴上的点.故答案为坐标轴.【点评】本题考查了点的坐标,建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.坐标平面内的点与有序实数对是一一对应的关系.7.命题“任意两个直角都相等”的条件是两个角都是直角,结论是相等,它是真(真或假)命题.【考点】命题与定理.【分析】任何一个命题都是由条件和结论组成.【解答】解:“任意两个直角都相等”的条件是:两个角是直角,结论是:相等.它是真命题.【点评】本题考查了命题的条件和结论的叙述.8.函数y=4x﹣3,y随x的增大而增大,它的图象与y轴的交点坐标是(0,﹣3).【考点】一次函数的性质;一次函数图象上点的坐标特征.【分析】根据一次函数的性质和y轴上点的坐标特征填空即可.【解答】解:A∵一次函数y=4x﹣3中,k=4>0,∴函数值随自变量的增大而增大,令x=0,则y=﹣3,∴此函数的图象与y轴的交点坐标是(0,﹣3).故答案为:增大,(0,﹣3).【点评】本题考查的是一次函数的性质和图象上点的坐标特征,熟知正比例函数y=kx(k≠0)中,当k>0时,y随x的增大而增大以及y轴上的点的横坐标为0是解答此题的关键.9.如果x2=64,那么=±2.【考点】立方根;平方根.【专题】计算题.【分析】根据平方根和立方根的概念求解即可.【解答】解:∵x2=64,∴x=±8,∴=±2.故答案为:±2.【点评】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.10.若是方程2x+3y=0的一个解,则8a+12b+15的值是15.【考点】二元一次方程的解.【分析】把代入方程2x+3y=0,得出2a+3b=0,再将8a+12b+15变形为4(2a+3b)+15,然后整体代入计算即可.【解答】解:把代入方程2x+3y=0,得2a+3b=0,则8a+12b+15=4(2a+3b)+15=4×0+15=15.故答案为15.【点评】本题考查了二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,注意运用整体代入的思想.11.如图,在△ABC中,∠1=∠2,∠3=∠4,∠A=65°,则∠F=122.5°.【考点】三角形内角和定理.【分析】根据三角形的内角和得到∠ABC+∠ACB=115°,由∠1=∠2,∠3=∠4,求得∠2+∠4=×115°=57.5°,根据三角形的内角和即可得到结论.【解答】解:∵∠A=65°,∴∠ABC+∠ACB=115°,∵∠1=∠2,∠3=∠4,∴∠2+∠4=×115°=57.5°,∴∠F=180°﹣(∠2+∠4)=122.5°.故答案为:122.5°.【点评】本题考查了三角形的内角和,角平分线的定义,熟记三角形的内角和是解题的关键.12.林书豪是我国优秀篮球运动员,现在在NBA打球,在某次常规赛中,每场个人得分分别是17,8,33,14,25,32,9,27,25,10,这组数据的平均数是20,众数是25,中位数是21.【考点】众数;算术平均数;中位数.【分析】要求平均数只要求出数据之和再除以总个数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:这组数据的平均数是(17+8+33+14+25+32+9+27+25+10)=20.将这组数据从小到大重新排列为:8,9,10,14,17,25,25,27,32,33,观察数据可知,最中间的两个数为17,25,所以中位数是(17+25)÷2=21.众数是数据中出现最多的一个数即25.故答案为20,25,21.【点评】本题考查了平均数、众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标.13.如图,在Rt△ABC中,∠ACB=90°,AC=9,BC=12,则点C到AB的距离CD=.【考点】勾股定理;点到直线的距离.【分析】首先根据勾股定理求出斜边AB的长,再根据三角形的面积为定值即可求出点C到AB的距离.【解答】解:在Rt△ABC中,∠ACB=90°,∴AC2+BC2=AB2,∵BC=12,AC=9,∴AB===15,∵△ABC的面积=AC•BC=AB•CD,∴CD===,故答案为:.【点评】本题考查了勾股定理、三角形面积的计算方法;熟练掌握勾股定理,通过三角形面积求出CD是解决问题的关键.14.如图,在四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,则△ACD是直角三角形.【考点】勾股定理的逆定理;勾股定理.【分析】连接AC,直接根据勾股定理求出AC的长即可;在△ACD中,由勾股定理的逆定理即可判断三角形的形状.【解答】解:连接AC,∵∠B=90°,AB=3,BC=4,∴AC2=AB2+BC2=9+16=25,∴AC=5;∵△ACD中,AC=5,CD=12,AD=13,∴AC2+CD2=25+144=169,AD2=169,∴AC2+CD2=AD2,∴△ACD是直角三角形.故答案为:直角.【点评】本题考查的是勾股定理的逆定理,以及勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.15.坐标平面内的点与有序实数对是一一对应的.【考点】坐标确定位置.【分析】坐标平面内的点与有序实数对是一一对应的.【解答】解:填有序实数对.【点评】主要考查了坐标平面内的点与有序数对的关系.坐标平面内的点与有序实数对是一一对应的.二、选择题把每题唯一正确的答案的序号填在括号内16.下列运算不正确的是( )A.当a≥0时,=a B.=aC.当a<0时,=﹣a D.=﹣9【考点】算术平方根;立方根.【分析】根据算术平方根的定义,即可解答.【解答】解:当a≥0时,=a,正确;B、=a,正确;C、当a<0时,=﹣a,正确;D、=9,故错误;故选:D.【点评】本题考查了算术平方根,解决本题的关键是熟记算术平方根的定义.17.下列说法不正确的是( )A.﹣2是负数B.﹣2是负数,也是有理数C.﹣2是负数,是有理数,但不是实数D.﹣2是负数,是有理数,也是实数【考点】实数.【专题】计算题.【分析】大于零的数为正数,小于零的数为负数,整数和分数统称有理数,有理数和无理数统称实数,C答案﹣2是负数正确,是有理数正确,也是实数.【解答】解:A、﹣2小于零,是负数,故A正确;B、﹣2小于零是负数,是整数,也是有理数,故B正确;C、﹣2小于零是负数,是整数,也是有理数,有理数属于实数,故C错误;D、﹣2小于零是负数,是整数,也是有理数,有理数属于实数,故D正确.故选:C.【点评】题目考查了正数、负数、有理数、实数的定义,学生要充分理解各层包含关系,解决此类问题就会迎刃而解.18.下列二次根式是最简二次根式的是( )A. B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的定义分别对每一项进行分析,即可得出答案.【解答】解:A、=5,不是最简二次根式,故本选项错误;B、是最简二次根式,故本选项错误;C、=,不是最简二次根式,故本选项错误;D、=,不是最简二次根式,故本选项错误;故选B.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.19.若|3x+2y+7|+|5x﹣2y+1|=0,则x,y的值是( )A.B.C.D.【考点】解二元一次方程组;非负数的性质:绝对值.【分析】先根据非负数的性质列出关于x、y的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y的值即可.【解答】解:∵|3x+2y+7|+|5x﹣2y+1|=0,∴,①+②得,8x+8=0,解得x=﹣1,把x=﹣1代入①得,﹣3+2y+7=0,解得y=﹣2,∴方程组的解为.故选C.【点评】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.20.为了考察甲、乙两种小麦,分别从中抽取5株苗测得苗高(单位:cm)甲:2,4,6,8,10;乙:1,3,5,7,9.用S甲2和S乙2分别表示两个样本的方差,则( )A.S甲2>S乙2B.S甲2<S乙2C.S甲2=S乙2D.无法确定【考点】方差.【分析】首先计算出甲和乙的平均数,再根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]计算出方差即可.【解答】解:==6,==5,=[(2﹣6)2+(4﹣6)2+(6﹣6)2+(8﹣6)2+(10﹣6)2]=8,=[(1﹣5)2+(3﹣5)2+(5﹣5)2+(7﹣5)2+(9﹣5)2]=8,因此S甲2=S乙2.故选:C.【点评】此题主要考查了方差和平均数,关键是掌握方差计算公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].三、解答题(每小题4分,共20分)21..【考点】二次根式的加减法.【专题】计算题.【分析】解答本题只需将二次根式化为最简,然后合并同类二次根式即可得出的答案.【解答】解:原式=6﹣﹣=.【点评】本题考查二次根式的加减运算,属于基础题,比较简单,解答本题时注意先化简再合并,要细心运算,避免出错.22.计算:﹣﹣(﹣1)0﹣.【考点】二次根式的混合运算;零指数幂.【专题】计算题.【分析】先把各二次根式化为最简二次根式,然后合并即可.【解答】解:原式=3﹣﹣1﹣=﹣1.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.23.对于任意数a,一定等于a吗?请举例说明.【考点】算术平方根.【分析】根据二次根式的性质得出即可.【解答】解:不一定,理由是:只有当a≥0时,才等于a,当a=﹣2时,=2≠a.【点评】本题考查了算术平方根的定义的应用,注意:①当a≥0时,=a,②当a≤0时,=﹣a.24.a+3和2a﹣15是某数的两个平方根,求a.【考点】平方根.【分析】根据已知得出方程a+3+2a﹣15=0,求出方程的解即可.【解答】解:∵某数的平方根是a+3和2a﹣15,∴a+3+2a﹣15=0,解得:a=4.【点评】本题考查了平方根定义的应用,注意:一个正数有两个平方根,它们互为相反数.25.设△ABC三边长为a=5,b=6,c=7,p=(a+b+c).求S△ABC=.【考点】二次根式的应用.【分析】首先计算出p的数值,进一步代入化简求得答案即可.【解答】解:∵a=5,b=6,c=7,∴p=(a+b+c)=×(5+6+7)=9,∴S△ABC===6.【点评】此题考查二次根式的实际运用,代数式求值,掌握二次根式的化简方法是解决问题的关键.四、解答题(每小题7分,共14分)26.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.(1)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式:①用水量小于等于3000吨y=0.5x(x≤3000);②用水量大于3000吨y=0.8x﹣900 (x>3000).(2)某月该单位用水3200吨,水费是1660元;若用水2800吨,水费1400元.(3)若某月该单位缴纳水费1540元,则该单位用水多少吨?【考点】一次函数综合题.【专题】代数综合题.【分析】(1)题目给出了每吨的不同收费,根据具体的情况,写出不同的函数关系式,注意要由自变量的取值范围;(2)计算水费时要根据不同的情况,代入相应的函数关系式计算即可;(3)要首先判断此月超过3000吨,可代入第二个函数关系式进行求解.【解答】解:(1)①y=0.5x(x≤3000);②y=3000×0.5+(x﹣3000)×0.8=1500+0.8x﹣2400=0.8x﹣900(x>3000);(2)当x=3200时,y=3000×0.5+200×0.8=1660,当x=2800时,y=0.5×2800=1400;(3)某月该单位缴纳水费1540>1500元,说明该月用水已超过3000吨,∴1540=0.8x﹣900,解得x=3050(吨).答:该单位用水3050吨.【点评】本题考查了一次函数的综合应用;当标准不一样时要分段写出函数关系式,计算时还要特别注意使用相应的关系式是正确解答此类问题的关键.27.某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y(元)是行李质量x(千克)的一次函数,现已知李明带了60千克的行李费,交了行李费5元;张华带了90千克的行李,交了行李费10元.(1)写出y与x之间的函数表达式.(2)旅客最多可免费携带多少千克的行李?【考点】一次函数的应用.【专题】应用题.【分析】(1)首先设行李费y(元)关于行李质量x(千克)的一次函数关系式为y=kx+b.根据李明带了60千克的行李费,交了行李费5元;张华带了90千克的行李,交了行李费10元,代入联立成方程组,解得k、b的值.(2)根据(1)中的函数表达式,要想让旅客免费携带行李,即满足y≤0,求得x的最大值.【解答】解:(1)设行李费y(元)关于行李质量x(千克)的一次函数关系式为y=kx+b由题意得,解得k=,b=﹣5∴该一次函数关系式为(2)∵,解得x≤30∴旅客最多可免费携带30千克的行李.答:(1)行李费y(元)关于行李质量x(千克)的一次函数关系式为;(2)旅客最多可免费携带30千克的行李.【点评】本题考查一次函数的应用.解决本题(1)采用的待定系数法,对(2)中免费要满足的条件要能够理解.五、方程应用题28.甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后,两种商品的单价和比原来的单价和提高了20%.问甲、乙两种商品原来的单价各是多少元?【考点】二元一次方程组的应用.【专题】应用题.【分析】如果设甲商品原来的单价是x元,乙商品原来的单价是y元,那么根据“甲、乙两种商品原来的单价和为100元”可得出方程为x+y=100根据“甲商品降价10%,乙商品提价40%,调价后,两种商品的单价之和比原来的单价之和提高了20%”,可得出方程为x(1﹣10%)+y(1+40%)=100(1+20%).【解答】解:设甲种商品原来的单价是x元,乙种商品原来的单价是y元,依题意得,解得:.答:甲种商品原来的单价是40元,乙种商品原来的单价是60元.【点评】本题考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.六、证明题(16分)29.在下列推理过程中的括号里填上推理的依据.已知:如图,CDE是直线,∠1=105°,∠A=75°.求证:AB∥C D.证明:∵CDE为一条直线(已知)∴∠1+∠2=180°∵∠1=105°(已知)∴∠2=75°又∵∠A=75°(已知)∴∠2=∠A(等量代换)∴AB∥CD(内错角相等两直线平行)【考点】平行线的判定.【专题】推理填空题.【分析】首先根据平角定义可得∠1+∠2=180,然后可计算出∠2的度数,从而可得∠2=∠A,再根据内错角相等,两直线平行可得AB∥C D.【解答】证明:∵CDE为一条直线(已知),∴∠1+∠2=180°∵∠1=105°(已知)∴∠2=75°又∵∠A=75°(已知)∴∠2=∠A(等量代换)∴AB∥CD(内错角相等两直线平行)故答案为:已知;等量代换;内错角相等两直线平行.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定方法:内错角相等两直线平行.30.已知:如图,在△ABC中,∠B=∠C,AD平分外角∠EAC,说明AD∥B C.【考点】平行线的判定;角平分线的定义;三角形的外角性质.【专题】证明题.【分析】由角平分线定义可得∠EAD=∠EAC,再由三角形外角性质可得∠EAD=∠B,然后利用平行线的判定定理即可证明题目结论.【解答】证明:∵AD平分∠EAC,∴∠EAD=∠EA C.又∵∠B=∠C,∠EAC=∠B+∠C,∴∠B=∠EA C.∴∠EAD=∠B.所以AD∥B C.【点评】本题主要考查角平分线的性质和三角形外角性质,也利用了平行线的判定.31.如图,∠C=∠1,∠2与∠D互余,BE⊥DF,垂足为G.求证:AB∥C D.【考点】平行线的判定与性质.【专题】证明题.【分析】根据平行线的判定得到OF∥BE,由平行线的性质得到∠3=∠EGD,根据余角的性质得到∠C=∠2,即可得到结论.【解答】证明:∵∠C=∠1,∴OF∥BE,∴∠3=∠EGD,∵BE⊥DF,∴∠EGD=90°,∴∠3=90°,∴∠C+∠D=90°,∵∠2+∠D=90°,∴∠C=∠2,∴AB∥C D.【点评】此题考查了平行线的判定和性质,关键是由BE⊥FD及三角形内角和定理得出∠1和∠D互余.七、解答题32.如图,平面直角坐标系中,点A的坐标是(﹣4,4),点B的坐标是(2,5).(1)写出点A关于x轴对称的对称点A′的坐标;(2)求出过A′,B两点直线的一次函数的解析式;(3)在x轴上有一动点P,要使P A+PB最小,求点P的坐标.【考点】轴对称-最短路线问题;待定系数法求一次函数解析式;关于x轴、y轴对称的点的坐标.【分析】(1)根据点关于x轴对称的对称点的特征即可得到A′的坐标为(﹣4,﹣4);(2)设过A′,B两点直线的一次函数的解析式为y=kx+b,列方程组即可得到过A′,B两点直线的一次函数的解析式为:y=x+2;(3)作点A关于x轴的对称点A′,连接A′B交x轴于点P,则点P即为所求点;由直线A′B 的函数解析式,再把y=0代入即可得.【解答】解:(1)∵点A的坐标是(﹣4,4),∴点A关于x轴对称的对称点A′的坐标为(﹣4,﹣4);(2)设过A′,B两点直线的一次函数的解析式为:y=kx+b,∴,解得:,∴过A′,B两点直线的一次函数的解析式为:y=x+2;(3)作点A关于x轴的对称点A′(﹣4,﹣4),连接A′B交x轴于P,∵直线A′B的函数解析式为y=x+2,把P点的坐标(n,0)代入解析式可得n=﹣.∴点P的坐标是(﹣,0).【点评】本题考查的是轴对称﹣最短路线问题,待定系数法求一次函数的解析式,关于x 轴,y轴对称的点的坐标,熟知“两点之间线段最短”是解答此题的关键.。

北师大版数学八年级上册期末考试试卷及答案

北师大版数学八年级上册期末考试试卷及答案

北师大版数学八年级上册期末考试试题一、选择题(共10小题).1.三个正方形的面积如图所示,则S的值为()A.3B.4C.9D.122.下列图象中,表示y是x的函数的是()A.B.C.D.3.在平面直角坐标系中,点A(1,﹣2)关于x轴对称的点的坐标是()A.(1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣1,﹣2)4.如图,数轴上有M,N,P,Q四点,则这四点中所表示的数最接近﹣的是()A.点M B.点N C.点P D.点Q5.下列计算正确的是()A.=2B.=3C.•=D.2+=3 6.如图,AB∥CD,BE交AD于点E,若∠B=18°,∠D=32°,则∠BED的度数为()A.18°B.32°C.50°D.60°7.我们把形如a+b(a,b为有理数,为最简二次根式)的数叫做型无理数,如3+1是型无理数,则()2是()A.型无理数B.型无理数C.型无理数D.型无理数8.已知等腰三角形的两边长分别为a,b,且a,b满足+|b﹣4|=0,则此等腰三角形的周长为()A.7B.10C.11D.10或119.如图,一次函数y=2x和y=ax+4的图象相交于点A(m,3),则关于x,y的方程组的解为()A.B.C.D.10.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,图2所示的算筹图我们可以表述为()A.B.C.D.二、填空题(共4个小题,每小题4分,共16分)11.25的算术平方根是.12.如果方程组的解为,那么“*”表示的数是.13.如图,在平面直角坐标系xOy中,以点A(﹣5,0)为圆心,13为半径作弧,交y轴的正半轴于点B,则点B的坐标为.14.武侯区某中学选拔一名学生参加区运动会的跳高项目,在10次测试中,甲、乙、丙、丁四名学生的跳高成绩的平均数均为1.6m,方差分别为:S=0.48,S=0.56,S=0.52,S=0.58,则这四名学生中成绩最稳定的是.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.计算:(1)(π﹣2020)0﹣2++|1﹣|.(2)﹣(﹣)(+).16.解方程组:.17.在平面直角坐标系xOy中,一次函数y=﹣x+6的图象分别交y轴和x轴于点A,B,交一次函数y=2x的图象于点C.(1)求点C的坐标;(2)求△OBC的面积.18.如图,在平面直角坐标系xOy中,已知点A(﹣1,5),B(1,0),C(3,1),连接BC.(1)在图中画出点A关于y轴的对称点A′,连接A′B,A'C,并直接写出点A′的坐标;(2)在(1)的基础上,试判断△A′BC的形状,并说明理由.19.第31届世界大学生夏季运动会计划于2021年8月在成都举行,武侯区某学校开展“爱成都,迎大运”活动的小主持人选拔赛,对A,B,C,D四名候选人进行了笔试和面试(各项成绩满分均为100分),他们的各项成绩如表所示:学生笔试成绩/分面试成绩/分A9086B8490C x88D8684(1)填空:这四名候选人的面试成绩的中位数是分;(2)学校按笔试成绩占60%、面试成绩占40%的方式确定候选人的综合成绩(满分为100分),若候选人C的综合成绩为86.2分,求表中x的值;(3)在(2)的条件下,分别求其余三名候选人的综合成绩,如果学校将根据综合成绩遴选两名小主持人,试问哪两名候选人将被录取?20.[阅读理解]如图,在△ABC中,AB=4,AC=6,BC=7,过点A作直线BC的垂线,垂足为D,求线段AD的长.解:设BD=x,则CD=7﹣x.∵AD⊥BC,∴∠ADB=∠ADC=90°.在Rt△ABD中,AD2=AB2﹣BD2,在Rt△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2.又∵AB=4,AC=6,∴42﹣x2=62﹣(7﹣x)2.解得x=,∴BD=.∴AD==.[知识迁移](1)在△ABC中,AB=13,AC=15,过点A作直线BC的垂线,垂足为D.i)如图1,若BC=14,求线段AD的长;ii)若AD=12,求线段BC的长.(2)如图2,在△ABC中,AB=,AC=,过点A作直线BC的垂线,交线段BC于点D,将△ABD沿直线AB翻折后得到对应的△ABD′,连接CD′,若AD =,求线段CD′的长.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.已知x=+2,y=﹣2,则x2+y2+2xy=.22.已知直线y=kx﹣3与y=(3k﹣1)x+2互相平行,则直线y=kx﹣3不经过第象限.23.现将一支长20cm的金属筷子(粗细忽略不计)放入一个长和宽分别为8cm,6cm的长方体水槽中,要使水完全淹没筷子,则水槽中的水深至少为cm.24.如图,在平面直角坐标系xOy中,点A的坐标为(0,6),点B为x轴上一动点,以AB为边在直线AB的右侧作等边三角形ABC.若点P为OA的中点,连接PC,则PC 的长的最小值为.25.在Rt△ACB中,∠ACB=90°,点D在边AB上,连接CD,将△ADC沿直线CD翻折,点A恰好落在BC边上的点E处,若AC=3,BE=1,则DE的长是.五、解答题(共3个小题,共30分,解答过程写在答题卡上)26.春节即将来临,抗击新冠疫情防控工作至关重要,某公司加紧生产酒精消毒液与额温枪两种抗疫物质,其两种物资的生产成本和销售单价如表所示:种类生产成本(元/件)销售单价(元/件)酒精消毒液5662额温枪84100(1)若该公司2020年12月生产两种物资共100万件,生产总成本为7280万元,请用列二元一次方程组的方法,求该月酒精消毒液和额温枪两种物资各生产了多少万件?(2)该公司2021年1月生产两种物资共150万件,根据市场需求,该月将举办迎新年促销活动,其中酒精消毒液的销售单价降低2元,额温枪打9折销售.若设该月生产酒精消毒液x万件,该月销售完这两种物资的总利润为y万元,求y与x之间的函数关系式.27.在等腰直角三角形ABC中,∠ACB=90°,CD⊥AB于点D,点E是平面内任意一点,连接DE.(1)如图1,当点E在边BC上时,过点D作DF⊥DE交AC于点F.i)求证:CE=AF;ii)试探究线段AF,DE,BE之间满足的数量关系.(2)如图2,当点E在△BDC内部时,连接AE,CE,若DB=5,DE=3,∠AED =45°,求线段CE的长.28.在平面直角坐标系xOy中,已知点M(﹣2,﹣2),过点M作直线AB,交x轴负半轴于点A,交y轴负半轴于点B(0,m).(1)如图1,当m=﹣6时.i)求直线AB的函数表达式;ii)过点A作y轴的平行线l,点N是l上一动点,连接BN,MN,若S△MBN=S△ABO,求满足条件的点N的坐标.(2)如图2,将直线AB绕点B顺时针旋转45°后,交x轴正半轴于点C,过点C作CD⊥BC,交直线AB于点D.试问:随着m值的改变,点D的横坐标是否发生变化?若不变,求出点D的横坐标;若变化,请说明理由.参考答案一、选择题1.三个正方形的面积如图所示,则S的值为()A.3B.4C.9D.12解:如图,由题意可得:AB=4,AC=5,∵AC2=AB2+BC2,∴BC2=25﹣16=9,∴S=9,故选:C.2.下列图象中,表示y是x的函数的是()A.B.C.D.解:根据函数的定义可知,每给定自变量x一个值,都有唯一的函数值y与之相对应,所以B、C、D不合题意.故选:A.3.在平面直角坐标系中,点A(1,﹣2)关于x轴对称的点的坐标是()A.(1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣1,﹣2)解:点A(1,﹣2)关于x轴对称的点的坐标为:(1,2).故选:B.4.如图,数轴上有M,N,P,Q四点,则这四点中所表示的数最接近﹣的是()A.点M B.点N C.点P D.点Q解:因为9<10<16,所以3<<4.所以﹣4<<﹣3.所以,这四点中所表示的数最接近﹣的是点N.故选:B.5.下列计算正确的是()A.=2B.=3C.•=D.2+=3解:A、=,故此选项错误;B、无法化简,故此选项错误;C、•=,故此选项错误;D、2+=3,故此选项正确;故选:D.6.如图,AB∥CD,BE交AD于点E,若∠B=18°,∠D=32°,则∠BED的度数为()A.18°B.32°C.50°D.60°解:如图,∵AB∥CD,∠D=32°,∴∠A=∠D=32°,∵∠B=18°,∴∠BED=∠A+∠B=18°+32°=50°.故选:C.7.我们把形如a+b(a,b为有理数,为最简二次根式)的数叫做型无理数,如3+1是型无理数,则()2是()A.型无理数B.型无理数C.型无理数D.型无理数解:()2=2++10=,所以()2是型无理数,故选:C.8.已知等腰三角形的两边长分别为a,b,且a,b满足+|b﹣4|=0,则此等腰三角形的周长为()A.7B.10C.11D.10或11解:∵+|b﹣4|=0,∴a﹣3=0,b﹣4=0,解得:a=3,b=4,∵等腰三角形的两边长分别为a,b,∴当a为腰长时,∴等腰三角形的周长为:3+3+4=10,当b为腰长时,等腰三角形的周长为:3+4+4=11,故此等腰三角形的周长为10或11.故选:D.9.如图,一次函数y=2x和y=ax+4的图象相交于点A(m,3),则关于x,y的方程组的解为()A.B.C.D.解:把A(m,3)代入y=2x得:3=2m,解得:m=,∴A(,3),则关于x,y的方程组的解为.故选:A.10.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,图2所示的算筹图我们可以表述为()A.B.C.D.解:图2所示的算筹图我们可以表述为:.故选:A.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.25的算术平方根是5.解:∵52=25,∴25的算术平方根是5.故答案为:5.12.如果方程组的解为,那么“*”表示的数是2.解:将x=6代入2x﹣y=16,得12﹣y=16,解得y=﹣4,∴x+y=6﹣4=2.故答案为:2.13.如图,在平面直角坐标系xOy中,以点A(﹣5,0)为圆心,13为半径作弧,交y轴的正半轴于点B,则点B的坐标为(0,12).解:连接AB,∵A(﹣5,0),半径为13,∴OA=5,AB=13,在Rt△AOB中,根据勾股定理得:OB===12,则B的坐标为(0,12).故答案为:(0,12).14.武侯区某中学选拔一名学生参加区运动会的跳高项目,在10次测试中,甲、乙、丙、丁四名学生的跳高成绩的平均数均为1.6m,方差分别为:S=0.48,S=0.56,S=0.52,S=0.58,则这四名学生中成绩最稳定的是甲.解:∵S=0.48,S=0.56,S=0.52,S=0.58,∴S甲2<S丙2<S乙2<S丁2,∴成绩最稳定的是甲,故答案为:甲.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.计算:(1)(π﹣2020)0﹣2++|1﹣|.(2)﹣(﹣)(+).解:(1)原式=1﹣﹣2+﹣1=﹣2;(2)原式=+﹣(3﹣2)=2+3﹣1=4.16.解方程组:.解:方程组整理得:,①﹣②得:4y=24,解得:y=6,把y=6代入①得:3x﹣6=4,解得:x=,则方程组的解为.17.在平面直角坐标系xOy中,一次函数y=﹣x+6的图象分别交y轴和x轴于点A,B,交一次函数y=2x的图象于点C.(1)求点C的坐标;(2)求△OBC的面积.解:(1)由题意可得,,解得,∵一次函数y=﹣x+6的图象交一次函数y=2x的图象于点C,∴点C的坐标为(2,4);(2)∵一次函数y=﹣x+6的图象分别交y轴和x轴于点A,B,∴当y=0时,x=6,∴点B的坐标为(6,0),∴OB=6,∵点C(2,4),∴△OBC的面积是:=12,即△OBC的面积是12.18.如图,在平面直角坐标系xOy中,已知点A(﹣1,5),B(1,0),C(3,1),连接BC.(1)在图中画出点A关于y轴的对称点A′,连接A′B,A'C,并直接写出点A′的坐标;(2)在(1)的基础上,试判断△A′BC的形状,并说明理由.解:(1)如图所示:∴点A'(1,5);(2)△A'BC是直角三角形,理由如下:∵点A'(1,5),B(1,0),C(3,1),∴A'B=5,AC==2,BC==,∵A'B2=25,A'C2=20,BC2=5,∴A'B2=A'C2+BC2,∴△A'BC是直角三角形.19.第31届世界大学生夏季运动会计划于2021年8月在成都举行,武侯区某学校开展“爱成都,迎大运”活动的小主持人选拔赛,对A,B,C,D四名候选人进行了笔试和面试(各项成绩满分均为100分),他们的各项成绩如表所示:学生笔试成绩/分面试成绩/分A9086B8490C x88D8684(1)填空:这四名候选人的面试成绩的中位数是87分;(2)学校按笔试成绩占60%、面试成绩占40%的方式确定候选人的综合成绩(满分为100分),若候选人C的综合成绩为86.2分,求表中x的值;(3)在(2)的条件下,分别求其余三名候选人的综合成绩,如果学校将根据综合成绩遴选两名小主持人,试问哪两名候选人将被录取?解:(1)由表格可得,面试成绩按照从小到大排列是:84,86,88,90,∴这四名候选人的面试成绩的中位数是(86+88)÷2=87(分),故答案为:87;(2)由题意可得,60%x+88×40%=86.2,解得x=85,即表中x的值是85;(3)由题意可得,A学生的综合成绩是90×60%+86×40%=88.4(分),B学生的综合成绩是84×60%+90×40%=86.4(分),D学生的综合成绩是86×60%+84×40%=85.2(分),∵88.4>86.4>86.2>85.2,∴A和B两名候选人将被录取.20.[阅读理解]如图,在△ABC中,AB=4,AC=6,BC=7,过点A作直线BC的垂线,垂足为D,求线段AD的长.解:设BD=x,则CD=7﹣x.∵AD⊥BC,∴∠ADB=∠ADC=90°.在Rt△ABD中,AD2=AB2﹣BD2,在Rt△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2.又∵AB=4,AC=6,∴42﹣x2=62﹣(7﹣x)2.解得x=,∴BD=.∴AD==.[知识迁移](1)在△ABC中,AB=13,AC=15,过点A作直线BC的垂线,垂足为D.i)如图1,若BC=14,求线段AD的长;ii)若AD=12,求线段BC的长.(2)如图2,在△ABC中,AB=,AC=,过点A作直线BC的垂线,交线段BC于点D,将△ABD沿直线AB翻折后得到对应的△ABD′,连接CD′,若AD =,求线段CD′的长.解:(1)i)设BD=x,则CD=14﹣x,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,AD2=AB2﹣BD2,在Rt△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,∵AB=13,AC=15,∴132﹣x2=152﹣(14﹣x)2,∴x=5,∴BD=5,∴AD===12;ii)在Rt△ABD中,BD===5,在Rt△ACD中,CD===9,当∠ABC为锐角时,如图1﹣1,BC=BD+CD=5+9=14,当∠ABC为钝角时,如图1﹣2,BC=BD﹣CD=9﹣5=4;(2)如图2,连接DD'交AB于点N,则DD'⊥AB,过点D'作D'H⊥BD于H,在Rt△ABD中,BD===;在Rt△ACD中,CD===5,∵AB垂直平分DD',∴D'B=DB=,D'D=2DN,∵S△ABD=AD•BD=,∴=•DN,∴DN=,∴D'D=2DN=5,设HB=m,则HD=HB+BD=m+,∵D'H2=D'D2﹣HD2=D'B2﹣HB2,∴(5)2﹣(m+)2=()2﹣x2,∴x=,∴HB=,∴HC=HB+BD+CD=++4=15,D'H===5,∴D'C===5.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.已知x=+2,y=﹣2,则x2+y2+2xy=20.解:∵x=+2,y=﹣2,∴x+y=+2+﹣2=2,则原式=(x+y)2=20.故答案为:20.22.已知直线y=kx﹣3与y=(3k﹣1)x+2互相平行,则直线y=kx﹣3不经过第二象限.【解答】∵y=kx﹣3 与y=(3k﹣1)x+2 互相平行,∴k=(3 k﹣1),解得k=,∴y=kx﹣3=x﹣3,它经过一、三、四象限,不经过第二象限,故答案为二.23.现将一支长20cm的金属筷子(粗细忽略不计)放入一个长和宽分别为8cm,6cm的长方体水槽中,要使水完全淹没筷子,则水槽中的水深至少为10cm.解:由题意可得,底面长方形的对角线长为:=10(cm),故水槽中的水深至少为:=10(cm),故答案为:10.24.如图,在平面直角坐标系xOy中,点A的坐标为(0,6),点B为x轴上一动点,以AB为边在直线AB的右侧作等边三角形ABC.若点P为OA的中点,连接PC,则PC 的长的最小值为.解:如图,以AP为边作等边三角形APE,连接BE,过点E作EF⊥AP于F,∵点A的坐标为(0,6),∴OA=6,∵点P为OA的中点,∴AP=3,∵△AEP是等边三角形,EF⊥AP,∴AF=PF=,AE=AP,∠EAP=∠BAC=60°,∴∠BAE=∠CAP,在△ABE和△ACP中,,∴△ABE≌△ACP(SAS),∴BE=PC,∴当BE有最小值时,PC有最小值,即BE⊥x轴时,BE有最小值,∴BE的最小值为OF=OP+PF=3+=,∴PC的最小值为,故答案为.25.在Rt△ACB中,∠ACB=90°,点D在边AB上,连接CD,将△ADC沿直线CD翻折,点A恰好落在BC边上的点E处,若AC=3,BE=1,则DE的长是.解:如图,过点D作DH⊥AC于H,DF⊥BC于F,∵将△ADC沿直线CD翻折,∴AC=CE=3,∠ACD=∠BCD=45°,∴BC=4,∵DH⊥AC,DF⊥BC,∠ACD=∠BCD=45°,∴DF=DH,∠DCF=∠FDC=45°,∴DF=CF,∵AB2=AC2+BC2=9+16=25,∴AB=5,∵S△ABC=×AC×BC=×AC×DH+×BC×DF,∴12=7DF,∴DF=,∴DF=CF=,EF=,∴DE===,故答案为:.五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.春节即将来临,抗击新冠疫情防控工作至关重要,某公司加紧生产酒精消毒液与额温枪两种抗疫物质,其两种物资的生产成本和销售单价如表所示:种类生产成本(元/件)销售单价(元/件)酒精消毒液5662额温枪84100(1)若该公司2020年12月生产两种物资共100万件,生产总成本为7280万元,请用列二元一次方程组的方法,求该月酒精消毒液和额温枪两种物资各生产了多少万件?(2)该公司2021年1月生产两种物资共150万件,根据市场需求,该月将举办迎新年促销活动,其中酒精消毒液的销售单价降低2元,额温枪打9折销售.若设该月生产酒精消毒液x万件,该月销售完这两种物资的总利润为y万元,求y与x之间的函数关系式.解:(1)设该月酒精消毒液生产了a万件,额温枪生产了b万件,依题意得:,解得:.答:该月酒精消毒液生产了40万件,额温枪生产了60万件.(2)设该月生产酒精消毒液x万件,该月销售完这两种物资的总利润为y万元,则该月生产额温枪(150﹣x)万件,依题意得:y=(62﹣56﹣2)x+(100×0.9﹣84)(150﹣x)=﹣2x+900.答:y与x之间的函数关系式为y=﹣2x+900.27.在等腰直角三角形ABC中,∠ACB=90°,CD⊥AB于点D,点E是平面内任意一点,连接DE.(1)如图1,当点E在边BC上时,过点D作DF⊥DE交AC于点F.i)求证:CE=AF;ii)试探究线段AF,DE,BE之间满足的数量关系.(2)如图2,当点E在△BDC内部时,连接AE,CE,若DB=5,DE=3,∠AED =45°,求线段CE的长.【解答】证明:(1)i)∵∠ACB=90°,AC=BC,CD⊥AB,∴∠ACD=∠BCD=∠A=45°,∴CD=AD,∵DF⊥DE,CD⊥AB,∠ADF+∠CDF=∠CDE+∠CDF=90°,∴∠ADF=∠CDE,在△ADF与△CDE中,,∴△ADF≌△CDE(ASA),∴CE=AF;ii)连接EF,∵△ADF≌△CDE,∴DE=DF,∵DF⊥DE,∴△DEF是等腰直角三角形,∴EF2=DE2+DF2=2DE2,∵AF=CE,AC=BC,∴CF=BE,在Rt△CEF中,EF2=CE2+CF2,∴AF2+BE2=CE2+CF2=EF2=2DE2.(2)过点D作DH⊥AE于H,过点D作DG⊥DE交AE于G,∵∠ACB=90°,AC=BC,CD⊥AB,∴∠ACD=∠BCD=∠A=45°,∴CD=AD,∵DG⊥DE,CD⊥AB,∠ADG+∠CDG=∠CDE+∠CDG=90°,∴∠ADG=∠CDE,∵DG⊥DE,∠AED=45°,∴∠DGE=45°=∠AED,∴DG=DE,在△CDE与△ADG中,∴△CDE≌△ADG(SAS),∴CE=AG,在Rt△DEG中,DE=DG=3,∴EG=6,∵DH⊥AE,∴DH=GH=EH=3,在Rt△ADH中,AD=5,∴AH=,∴CE=AG=AH﹣GH=1.28.在平面直角坐标系xOy中,已知点M(﹣2,﹣2),过点M作直线AB,交x轴负半轴于点A,交y轴负半轴于点B(0,m).(1)如图1,当m=﹣6时.i)求直线AB的函数表达式;ii)过点A作y轴的平行线l,点N是l上一动点,连接BN,MN,若S△MBN=S△ABO,求满足条件的点N的坐标.(2)如图2,将直线AB绕点B顺时针旋转45°后,交x轴正半轴于点C,过点C作CD⊥BC,交直线AB于点D.试问:随着m值的改变,点D的横坐标是否发生变化?若不变,求出点D的横坐标;若变化,请说明理由.解:(1)i)、∵m=﹣6,∴B(0,﹣6),∴设直线AB的表达式为y=kx﹣6,∵点M(﹣2,﹣2)在直线AB上,∴﹣2=﹣2k﹣6,∴k=﹣2,∴直线AB的表达式为y=2x﹣6;ii)、如图1,由i)知,直线AB的表达式为y=﹣2x﹣6,令y=0,则﹣2x﹣6=0,∴x=﹣3,∴A(﹣3,0),∴直线l为x=﹣3,∴设N(﹣3,t),∴AN=|t|,∵A(﹣3,0),B(0,﹣6),∴OA=3,OB=6,∴S△AOB=OA•OB=×3×6=9,∵S△MBN=S△ABO,∴S△MBN=S△ABO=,过点M作MF⊥AN于F,过点B作ME⊥AN于E,∴MF=1,BE=3,∴S△MBN=S△MAN﹣S△AMN=AN•BE﹣AN•FM=(BE﹣MF)=|t|(3﹣1)=|t|=,∴t=±,∴N(﹣3,)或(﹣3,﹣);(2)如图2,∵∠ABC=45°,∠BCD=90°,∴∠ADC=45°=∠ABC,∴CD=CB,∴△BDC是等腰直角三角形,∵M(﹣2,﹣2),B(0,m),∴直线AB的表达式为y=x+m,设点C(a,0),分别过点D,B作y轴的垂线,过点C作x的垂线,交前两条直线和y 轴于点G,H,L,则∠H=∠G=∠OCH=∠OBH=90°,∴四边形OBHC是矩形,∴OC=BH,∵∠G=∠BCD=90°,∴∠CDG+∠DCG=∠DCG+∠BCH=90°,∴∠CDG=∠BCH,∴△DCG≌△CBH(AAS),∴BH=OC=CG=|a|,CH=DG=|m|,∴D(m+a,a),∴a=•(m+a)+m,∴m2+mt+4m=0,∵m≠0,∴m+a=﹣4,即点D的横坐标为﹣4,保持不变.。

北师大版八年级数学(上)期末考试试题(含答案) (100)

北师大版八年级数学(上)期末考试试题(含答案) (100)

八年级(上)期末数学试卷一、选择题1.的算术平方根是()A.4 B.2 C.D.±22.在给出的一组数0,π,,3.14,,中,无理数有()A.1个B.2个C.3个D.5个3.某一次函数的图象经过点(1,2),且y随x的增大而减小,则这个函数的表达式可能是()A.y=2x+4 B.y=3x﹣1 C.y=﹣3x+1 D.y=﹣2x+44.为了让人们感受丢弃废旧电池对环境造成的影响,某班环保小组的6名同学记录了自己家中一个月内丢弃废电池的数量,结果如下(单位:个):7,5,6,4,8,6,如果该班有45名学生,那么根据提供的数据估计该月全班同学各家总共丢弃废旧电池的数量约为()A.180 B.225 C.270 D.3155.下列各式中,正确的是()A.=±4 B.±=4 C.=﹣3 D.=﹣46.将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是()A.将原图向左平移两个单位B.关于原点对称C.将原图向右平移两个单位D.关于y轴对称7.对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)8.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A.B.C.D.6二、填空题9.在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为.10.已知x的平方根是±8,则x的立方根是.11.如图,已知直线y=ax+b和直线y=kx交于点P(﹣4,﹣2),则关于x,y的二元一次方程组的解是.12.四根小木棒的长分别为5cm,8cm,12cm,13cm,任选三根组成三角形,其中有个直角三角形.13.已知O(0,0),A(﹣3,0),B(﹣1,﹣2),则△AOB的面积为.14.小明家准备春节前举行80人的聚餐,需要去某餐馆订餐.据了解餐馆有10人坐和8人坐两种餐桌,要使所订的每个餐桌刚好坐满,则订餐方案共有种.15.若一次函数y=kx+b(k≠0)与函数y=x+1的图象关于x轴对称,且交点在x轴上,则这个函数的表达式为:.16.如图,已知y=ax+b和y=kx的图象交于点P,根据图象可得关于x、y的二元一次方程组的解是.三、解答题17.化简(1)(﹣2)×﹣6(2)(+)(﹣)+2.18.解下列方程组:①②.19.如图所示,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm.求CE的长?20.学生的平时作业、期中考试、期末考试三项成绩分别按2:3:5的比例计入学期总评成绩.小明、小亮、小红的平时作业、期中考试、期末考试的数学成绩如下表,计算这学期谁的数学总评成绩最高?平时成绩期中成绩期末成绩小明96 94 90小亮90 96 93小红90 90 96 21.如图,直线PA是一次函数y=x+1的图象,直线PB是一次函数y=﹣2x+2的图象.(1)求A、B、P三点的坐标;(2)求四边形PQOB的面积.22.甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?23.某工厂要把一批产品从A地运往B地,若通过铁路运输,则每千米需交运费15元,还要交装卸费400元及手续费200元,若通过公路运输,则每千米需要交运费25元,还需交手续费100元(由于本厂职工装卸,不需交装卸费).设A地到B地的路程为x km,通过铁路运输和通过公路运输需交总运费y1元和y2元,(1)求y1和y2关于x的表达式.(2)若A地到B地的路程为120km,哪种运输可以节省总运费?24.某大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元).为吸引客源,在“十一黄金周”期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510元.普通间(元/人/天)豪华间(元/人/天)贵宾间(元/人/天)三人间50 100 500双人间70 150 800单人间100 200 1500(1)三人间、双人间普通客房各住了多少间?(2)设三人间共住了x人,则双人间住了人,一天一共花去住宿费用y元表示,写出y与x的函数关系式;(3)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?2015-2016学年福建省宁德市福鼎市八年级(上)期末数学试卷参考答案与试题解析一、选择题1.的算术平方根是()A.4 B.2 C.D.±2【考点】算术平方根.【分析】先求出=2,再根据算术平方根的定义解答.【解答】解:∵=2,∴的算术平方根是.故选C.【点评】本题考查了算术平方根的定义,易错题,熟记概念是解题的关键.2.在给出的一组数0,π,,3.14,,中,无理数有()A.1个B.2个C.3个D.5个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:π,,共有3个.故选C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.某一次函数的图象经过点(1,2),且y随x的增大而减小,则这个函数的表达式可能是()A.y=2x+4 B.y=3x﹣1 C.y=﹣3x+1 D.y=﹣2x+4【考点】一次函数的性质.【分析】设一次函数关系式为y=kx+b,y随x增大而减小,则k<0;图象经过点(1,2),可得k、b之间的关系式.综合二者取值即可.【解答】解:设一次函数关系式为y=kx+b,∵图象经过点(1,2),∴k+b=2;∵y随x增大而减小,∴k<0.即k取负数,满足k+b=2的k、b的取值都可以.故选D.【点评】本题考查了待定系数法求一次函数解析式及一次函数的性质,为开放性试题,答案不唯一.只要满足条件即可.4.为了让人们感受丢弃废旧电池对环境造成的影响,某班环保小组的6名同学记录了自己家中一个月内丢弃废电池的数量,结果如下(单位:个):7,5,6,4,8,6,如果该班有45名学生,那么根据提供的数据估计该月全班同学各家总共丢弃废旧电池的数量约为()A.180 B.225 C.270 D.315【考点】用样本估计总体.【分析】先求出6名同学家丢弃废电池的平均数量作为全班学生家的平均数量,然后乘以总人数45即可解答.【解答】解:估计本周全班同学各家总共丢弃废电池的数量为:×45=270.故选C.【点评】此题主要考查了用样本估计总体,生产中遇到的估算产量问题,通常采用样本估计总体的方法.5.下列各式中,正确的是()A.=±4 B.±=4 C.=﹣3 D.=﹣4【考点】二次根式的混合运算.【专题】计算题.【分析】根据算术平方根的定义对A进行判断;根据平方根的定义对B进行判断;根据立方根的定义对C进行判断;根据二次根式的性质对D进行判断.【解答】解:A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=﹣3=,所以C选项正确;D、原式=|﹣4|=4,所以D选项错误.故选:C.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.6.将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是()A.将原图向左平移两个单位B.关于原点对称C.将原图向右平移两个单位D.关于y轴对称【考点】坐标与图形变化-平移.【分析】根据坐标与图形变化,把三角形三个顶点的横坐标都减2,纵坐标不变,就是把三角形向左平移2个单位,大小不变,形状不变.【解答】解:∵将三角形三个顶点的横坐标都减2,纵坐标不变,∴所得三角形与原三角形的关系是:将原图向左平移两个单位.故选:A.【点评】本题考查了坐标位置的确定及坐标与图形的性质,在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)7.对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)【考点】一次函数的性质.【专题】探究型.【分析】根据一次函数的性质对各选项进行逐一判断即可.【解答】解:A、∵一次函数y=x+6中k=1>0,∴函数值随自变量增大而增大,故A选项正确;B、∵一次函数y=x+6与x、y轴的交点坐标分别为(﹣6,0),(0,6),∴此函数与x轴所成角度的正切值==1,∴函数图象与x轴正方向成45°角,故B选项正确;C、∵一次函数y=x+6中k=1>0,b=6>0,∴函数图象经过一、二、三象限,故C选项正确;D、∵令y=0,则x=﹣6,∴一次函数y=x+6与x、y轴的交点坐标分别为(﹣6,0),故D选项错误.故选:D.【点评】本题考查的是一次函数的性质,熟知一次函数的增减性及与坐标轴的交点坐标是解答此题的关键.8.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A.B.C.D.6【考点】翻折变换(折叠问题);勾股定理.【分析】先根据图形翻折变换的性质求出AC的长,再由勾股定理及等腰三角形的判定定理即可得出结论.【解答】解:∵△CEO是△CEB翻折而成,∴BC=OC,BE=OE,∠B=∠COE=90°,∴EO⊥AC,∵O是矩形ABCD的中心,∴OE是AC的垂直平分线,AC=2BC=2×3=6,∴AE=CE,在Rt△ABC中,AC2=AB2+BC2,即62=AB2+32,解得AB=3,在Rt△AOE中,设OE=x,则AE=3﹣x,AE2=AO2+OE2,即(3﹣x)2=32+x2,解得x=,∴AE=EC=3﹣=2.故选:A.【点评】本题考查的是翻折变换,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.二、填空题9.在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为42或32.【考点】勾股定理.【专题】分类讨论.【分析】本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32故答案是:42或32.【点评】此题考查了勾股定理及解直角三角形的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度.10.已知x的平方根是±8,则x的立方根是4.【考点】立方根;平方根.【分析】根据平方根的定义,易求x,再求x的立方根即可.【解答】解:∵x的平方根是±8,∴x=(±8)2,∴x=64,∴==4,故答案是4.【点评】本题考查了立方根,解题的关键是先求出x.11.如图,已知直线y=ax+b和直线y=kx交于点P(﹣4,﹣2),则关于x,y的二元一次方程组的解是.【考点】一次函数与二元一次方程(组).【分析】直接根据函数图象交点坐标为两函数解析式组成的方程组的解得到答案.【解答】解:∵直线y=ax+b和直线y=kx交点P的坐标为(﹣4,﹣2),∴关于x,y的二元一次方程组组的解为.故答案为.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.12.四根小木棒的长分别为5cm,8cm,12cm,13cm,任选三根组成三角形,其中有1个直角三角形.【考点】勾股定理;三角形三边关系;勾股定理的逆定理.【分析】要组成三角形,由三角形的边长关系,两边之和大于第三边,两边之差小于第三边.根据直角三角形的性质,两个直角边的平方和等于斜边的平方,从四个数中可以得出5cm、12cm、13cm 可以满足要求,其中5cm、12cm为直角边,13cm为斜边.【解答】解:∵四根小木棒的长分别为5cm,8cm,12cm,13cm,∴可以组成三角形的有:5cm、8cm、12cm;5cm、12cm、13cm;8cm、12cm、13cm.要组成直角三角形,根据勾股定理两边的平方和等于第三边的平方,则只有5cm、12cm、13cm的一组.∴有1个直角三角形.【点评】本题考查了勾股定理逆定理的运用以及三角形的边长关系,两边的平方和等于第三边的平方.属于比较简单的题目.13.已知O(0,0),A(﹣3,0),B(﹣1,﹣2),则△AOB的面积为3.【考点】三角形的面积;坐标与图形性质.【分析】将点A、B、C在平面直角坐标系中找出,根据图形,由三角形的面积公式进行解答.【解答】解:∵A(﹣3,0),B(﹣1,﹣2),O为原点,∴OA=3,OD⊥AO于点D,=OA•DB=×3×2=3.∴S△AOB故答案为:3.【点评】此题主要考查了点的坐标的意义以及与图形相结合的具体运用.解答该题时,采用了“数形结合”的数学思想.14.小明家准备春节前举行80人的聚餐,需要去某餐馆订餐.据了解餐馆有10人坐和8人坐两种餐桌,要使所订的每个餐桌刚好坐满,则订餐方案共有3种.【考点】二元一次方程的应用.【分析】根据题意列出二元一次方程,根据方程的解为整数讨论得到订餐方案即可.【解答】解:设10人桌x张,8人桌y张,根据题意得:10x+8y=80∵x、y均为整数,∴,,共三种方案.故答案为:3.【点评】本题考查了二元一次方程的应用,二元一次方程有无数个解,当都为整数时,变为有数个解.15.若一次函数y=kx+b(k≠0)与函数y=x+1的图象关于x轴对称,且交点在x轴上,则这个函数的表达式为:y=﹣x﹣1.【考点】一次函数图象与几何变换.【专题】常规题型.【分析】先求出这两个函数的交点,然后根据一次函数y=kx+b(k≠0)与函数y=x+1的图象关于x 轴对称,解答即可.【解答】解:∵两函数图象交于x轴,∴0=x+1,解得:x=﹣2,∴0=﹣2k+b,∵y=kx+b与y=x+1关于x轴对称,∴b=﹣1,∴k=﹣∴y=﹣x﹣1.故答案为:y=﹣x﹣1.【点评】本题考查的是一次函数的图象与几何变换,熟知关于x轴对称的点的坐标特点是解答此题的关键.16.如图,已知y=ax+b和y=kx的图象交于点P,根据图象可得关于x、y的二元一次方程组的解是.【考点】一次函数与二元一次方程(组).【专题】数形结合.【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解进行解答.【解答】解:∵y=ax+b和y=kx的图象交于点P(﹣4,﹣2),∴方程组的解是.故答案为.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.三、解答题17.化简(1)(﹣2)×﹣6(2)(+)(﹣)+2.【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先利用二次根式的乘法法则运算,然后合并即可;(2)利用平方差公式计算.【解答】解:(1)原式=﹣2﹣3=3﹣6﹣3=﹣6;(2)原式=2﹣3+4=4﹣1.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,然后进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.解下列方程组:①②.【考点】解二元一次方程组.【专题】计算题.【分析】①把第二个方程整理得到y=5x﹣1,然后代入第一个方程,利用代入消元法其解即可;②先把方程组整理成一般形式,然后利用加减消元法求解即可.【解答】解:(1),由②得,y=5x﹣1③,③代入①得,3x=5(5x﹣1),解得x=,把x=代入③得,y=5×﹣1=,所以,方程组的解是;(2)方程组可化为,①﹣②得,4y=28,解得y=7,把y=7代入①得,3x﹣7=8,解得x=5,所以,方程组的解是.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.19.(10分)(2013春•太和县期末)如图所示,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm.求CE的长?【考点】翻折变换(折叠问题);勾股定理;矩形的性质.【专题】数形结合.【分析】根据翻折的性质,先在RT△ABF中求出BF,进而得出FC的长,然后设CE=x,EF=8﹣x,从而在RT△CFE中应用勾股定理可解出x的值,即能得出CE的长度.【解答】解:由翻折的性质可得:AD=AF=BC=10,在Rt△ABF中可得:BF==6,∴FC=BC﹣BF=4,设CE=x,EF=DE=8﹣x,则在Rt△ECF中,EF2=EC2+CF2,即x2+16=(8﹣x)2,解可得x=3,故CE=3cm.【点评】本题通过折叠变换考查学生的逻辑思维能力,解决本题的关键是结合图形,首先根据翻折的性质得到一些相等的线段,然后灵活运用勾股定理进行解答.20.学生的平时作业、期中考试、期末考试三项成绩分别按2:3:5的比例计入学期总评成绩.小明、小亮、小红的平时作业、期中考试、期末考试的数学成绩如下表,计算这学期谁的数学总评成绩最高?平时成绩期中成绩期末成绩小明96 94 90小亮90 96 93小红90 90 96【考点】加权平均数.【专题】计算题.【分析】根据三项成绩比算出三个人的成绩,比较大小即可得出结果.【解答】解:小明数学总评成绩:96×+94×+90×=92.4,小亮数学总评成绩:90×+96×+93×=93.3,小红数学总评成绩:90×+90×+96×=93,∵93.3>93>92.4,∴小亮成绩最高.答:这学期小亮的数学总评成绩最高.【点评】主要考查了平均数的概念和利用比例求平均数的方法.要掌握这些基本概念才能熟练解题.21.如图,直线PA 是一次函数y =x +1的图象,直线PB 是一次函数y =﹣2x +2的图象.(1)求A 、B 、P 三点的坐标;(2)求四边形PQOB 的面积.【考点】一次函数综合题.【专题】计算题.【分析】(1)令一次函数y =x +1与一次函数y =﹣2x +2的y =0可分别求出A ,B 的坐标,再由可求出点P 的坐标;(2)根据四边形PQOB 的面积=S △BOM ﹣S △QPM 即可求解.【解答】解:(1)∵一次函数y =x +1的图象与x 轴交于点A ,∴A (﹣1,0),一次函数y =﹣2x +2的图象与x 轴交于点B ,∴B (1,0),由,解得,∴P (,).(2)设直线PA 与y 轴交于点Q ,则Q (0,1),直线PB 与y 轴交于点M ,则M (0,2),∴四边形PQOB 的面积=S △BOM ﹣S △QPM =×1×2﹣×1×=. 【点评】本题考查了一次函数综合题,难度一般,关键是掌握把四边形的面积分成两个三角形面积的差进行求解.22.甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?【考点】一元一次方程的应用.【专题】应用题;经济问题;压轴题.【分析】若设甲服装的成本为x元,则乙服装的成本为(500﹣x)元.根据公式:总利润=总售价﹣总进价,即可列出方程.【解答】解:设甲服装的成本为x元,则乙服装的成本为(500﹣x)元,根据题意得:90%•(1+50%)x+90%•(1+40%)(500﹣x)﹣500=157,解得:x=300,500﹣x=200.答:甲服装的成本为300元、乙服装的成本为200元.【点评】注意此类题中的售价的算法:售价=定价×打折数.23.某工厂要把一批产品从A地运往B地,若通过铁路运输,则每千米需交运费15元,还要交装卸费400元及手续费200元,若通过公路运输,则每千米需要交运费25元,还需交手续费100元(由于本厂职工装卸,不需交装卸费).设A地到B地的路程为x km,通过铁路运输和通过公路运输需交总运费y1元和y2元,(1)求y1和y2关于x的表达式.(2)若A地到B地的路程为120km,哪种运输可以节省总运费?【考点】一次函数的应用.【专题】应用题.【分析】(1)可根据总运费=每千米的运费×路程+装卸费和手续费,来表示出y1、y2关于x的函数关系式;(2)把路程为120km代入,分别计算y1和y2,比较其大小,然后可判断出哪种运输可以节省总运费.【解答】解:(1)根据题意得,y1=15x+400+200=15x+600;y2=25x+100(x>0);(2)当x=120时,y1=15×120+600=2400,y2=25×120+100=3100,∵y1<y2∴铁路运输节省总运费.【点评】本题考查了一次函数的应用,一次函数的应用题常出现于销售、收费、行程等实际问题当中,是常用的解答实际问题的数学模型,是中考的常见题型.24.(12分)(2014秋•会宁县期末)某大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元).为吸引客源,在“十一黄金周”期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510元.普通间(元/人/天)豪华间(元/人/天)贵宾间(元/人/天)三人间50 100 500双人间70 150 800单人间100 200 1500(1)三人间、双人间普通客房各住了多少间?(2)设三人间共住了x人,则双人间住了(50﹣x)人,一天一共花去住宿费用y元表示,写出y与x的函数关系式;(3)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)利用一个50人的旅游团,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510元,进而分别得出等式求出即可;(2)利用总人数为50人,进而利用房租得出等式求出即可;(3)利用一次函数增减性得出答案.【解答】解:(1)设三人间普通客房住了x间,双人间普通客房住了y间.根据题意得:,解得:.因此,三人间普通客房住了8间,双人间普通客房住了13间;(2)双人间住了(50﹣x)人,根据题意得:y=25x+35(50﹣x),即y=﹣10x+1750;(3)不是,由上述一次函数可知,k=﹣10<0,则y随x的增大而减小,当三人间住的人数大于24人时,所需费用将少于1510元.【点评】此题主要考查了一次函数的应用以及二元一次方程组的应用,得出正确等量关系是解题关键.。

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试题一、单选题1.下列各数中,为无理数的是( )A.13B C D 2.在平面直角坐标系中,点P (2,﹣3)在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.下列各式中正确的是( )A2=±B 3=-C 2D4.下列长度的各组线段中,不能构成直角三角形的是( )A .4、5、6B .5、12、13C .3、4、5D .15.下列命题中是假命题的是( )A .两直线平行,同位角互补B .对顶角相等C .直角三角形两锐角互余D .平行于同一直线的两条直线平行6.已知方程组03mx y x ny +=⎧⎨+=⎩的解是12x y =⎧⎨=-⎩,则2m n +的值为( )A .1B .2C .3D .07.某学校为了了解九年级学生的体育达标情况,随机抽取50名九年级学生进行测试,测试成绩如表:则本次抽查中体育测试成绩的中位数和众数分别是( )A .26和25B .25和26C .25.5和25D .25和25 8.已知点A (﹣6,y 1)和B (﹣2,y 2)都在直线13y x b =-+上,则y 1,y 2满足( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .大小不确定9.如图,BC∥DE ,若∥A=35°,∥C=24°,则∥E 等于( )A .24°B .59°C .60°D .69°10.一工坊用铁皮制作糖果盒,每张铁皮可制作盒身20个,或制作盒底30个,一个盒身与两个盒底配成一套糖果盒.现有35张铁皮,设用x 张制作盒身,y 张制作盒底,恰好配套制成糖果盒、则下列方程组中符合题意的是( )A .352x y y x +=⎧⎨=⎩B .3520230x y x y +=⎧⎨=⨯⎩C .3522030x y x y +=⎧⎪⎨=⎪⎩D .3530202x y y x +=⎧⎪⎨=⎪⎩二、填空题11.已知x ,y 为两个连续的整数,且xy ,则5x+y 的平方根为_____.12.已知a ,b 满足方程组21228a b a b -=⎧⎨+=⎩,则3a b +的值为______.13.已知点(,2)A m -,(3,1)B m -,且直线ABx 轴,则m 的值是_____.14.已知直线1l :1y x =+与直线2l :y mx n =+相交于点()2,P b -,则关于x ,y 的方程组100x y mx y n -+=⎧⎨-+=⎩的解是______. 15.若多项式210x x k ++是一个完全平方式,则k =____;16.如图,在∥ABC 中,∥C =90°,AC =12,BC =9,AD 是∥BAC 的平分线.若射线AC 上有一点P ,且∥CPD =∥B ,则AP 的长为 _____.17.如图,已知∥1=∥2,∥B =35°,则∥3=________°.18.如图,函数y =5﹣x 与y =2x ﹣1的图象交于点A ,关于x 、y 的方程组521x y x y +=⎧⎨-=⎩的解是 _____.三、解答题1913-.20.解方程组:43524x y x y +=⎧⎨-=⎩.21.如图,∥ABC 的三个顶点都在方格纸的格点上,其中A 点的坐标是(﹣1,0),B 点的坐标是(﹣3,1),C 点的坐标是(﹣2,3).(1)作∥ABC 关于y 轴对称的图形∥DEF ,点A 、B 、C 的对应点分别为D 、E 、F ; (2)在(1)的条件下,点P 为x 轴上的动点,当∥PDE 为等腰三角形时,请直接写出点P 的横坐标.22.如图,已知直线l1:y=kx+2与x轴交于点B,与y轴交于点C,与直线l2:y=5x+20交于点P(-3,a),直线l2与x轴交于点A.(1)求直线l1的解析式;(2)求四边形OAPC的面积.23.我市某小区准备用5400元购买医用口罩和洗手液发放给本小区住户,若医用口罩买800个,洗手液买120瓶,则钱还缺200元;若医用口罩买1200个,洗手液买80瓶,则钱恰好用完.(1)求医用口罩和洗手液的单价;(2)由于实际需要,除购买医用口罩和洗手液外,还需购买单价为6元的N95口罩m个.若需购买医用口罩和N95口罩共1200个,且100<m<200,剩余的钱全部用来购买洗手液,恰好用完5400元,求m的值.∥,直线AD与直线BC交于点E,∥AEC=110°.24.已知:直线AB CD(1)如图∥,BF平分∥ABE交AD于F,DG平分∥CDE交BC于G,求∥AFB+∥CGD的度数;∥PCB时,(2)如图∥,∥ABC=30°,在∥BAE的平分线上取一点P,连接PC,当∥PCD=12直接写出∥APC的度数.25.对于一个四位正整数,设其千位、百位、十位、个位上的数字分别为a、b、c、d,我们将这个四位正整数记作:abcd,若满足b+c=2(a+d),则称该四位正整数为“希望数”.例如:四位正整数3975,百位数字与十位数字之和是16,千位数字与个位数字之和是8,而16是8的两倍,则称四位正整数3975为“希望数”,类似的,四位正整数3060也是“希望数”.根据题中所给材料,解答以下问题:(1)若一个四位正整数375x为“希望数”,则x=(直接填空);的值;(2)两个四位正整数91x y和28x y都是“希望数”,求x y(3)最大的“希望数”是:(直接填空);(4)对一个各个数位数字均不超过6的“希望数”m,设m=abcd,当个位数字是千位数字的2倍,且十位数字和百位数字均是2的倍数时,这个“希望数”m可能的最大值与最小值分别是(直接填空).26.如图,已知直线y=2x+9与y轴交于点A,与x轴交于点B,直线CD与x轴交于点D (6,0),与直线AB相交于点C(﹣3,n).(1)求直线CD的解折式;(2)点E为直线CD上任意一点,过点E作EF∥x轴交直线AB于点F,作EG∥y轴于点G,当EF=2EG时,设点E的横坐标为m,直接写出m的值;(3)连接CO,点M为x轴上一点,点N在线段CO上(不与点O重合).当∥CMN=45°,且∥CMN 为等腰三角形时,直接写出点M 的横坐标.27.某校八年级全体同学参加了爱心捐款活动,随机抽查了部分同学捐款的情况,统计数据如图1和图2所示.(1)本次抽查的学生人数是______;众数是______;中位数是______;图2中B 类捐款的扇形圆心角度数为______. (2)补全条形统计图.(3)该校八年级有1000名学生,请估计该校八年级学生总共捐款多少元?参考答案1.C【分析】利用有理数概念及相关运算解题即可.【详解】解:132=3是无理数.故选C .【点睛】本题考查了有理数及其运算. 2.D【分析】根据各象限内点的坐标特征解答即可.【详解】解:∥横坐标为正,纵坐标为负,∥点P(2,﹣3)在第四象限,故选:D.【点睛】本题考查的是点的坐标与象限的关系,熟记各象限内点的坐标特征是解答本题的关键.3.D【分析】分别根据算术平方根、立方根的性质化简,利用二次根式加减法则计算即可判断.【详解】解:A2=,故选项A不合题意;3,故选项B不合题意;2,故选项C不合题意;D符合题意.故选D.【点睛】本题主要考查了算术平方根和立方根的定义,二次根式的加减,熟练掌握算术平方根和立方根的性质和二次根式的加减法则是解答本题的关键.4.A【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、因为52+42≠62,所以不能组成直角三角形;B、因为122+52=132,所以能组成直角三角形;C、因为32+42=52,所以能组成直角三角形;D、因为12+)22,所以能组成直角三角形.故选:A.【点睛】此题考查勾股定理的逆定理,解题关键在于利用勾股定理进行计算.5.A【分析】根据平行线、相交线、三角形内角和等性质,对选项逐个判断即可.【详解】A:两直线平行,同位角相等,同旁内角互补,选项错误,符合题意;B:对顶角相等,为真命题,故选项不符合题意;C:直角三角形两锐角相加为90︒,即互余,为真命题,故选项不符合题意;D:平行于同一直线的两条直线平行,为真命题,故选项不符合题意;故选A .【点睛】此题主要考查了真假命题,涉及到平行线、相交线、三角形内角和、平行公理等内容,熟练掌握相关几何性质是解题的关键. 6.C【分析】将12x y =⎧⎨=-⎩代入03mx y x ny +=⎧⎨+=⎩求出m 、n 的值,再计算2m n +的值即可.【详解】将12x y =⎧⎨=-⎩代入03mx y x ny +=⎧⎨+=⎩可得21m n =⎧⎨=-⎩,则222(1)3m n +=⨯+-=. 故选C.【点睛】本题考查方程组的解,解题的关键是将将12x y =⎧⎨=-⎩代入03mx y x ny +=⎧⎨+=⎩求出m 、n 的值.7.C【分析】根据中位数的定义和众数的定义即可得出结论.【详解】解:由表格可知:从小到大排列后,第25人的成绩为25分,26人的成绩为26分,测试成绩为25分的人数最多本次抽查中体育测试成绩的中位数为(25+26)÷2=25.5 本次抽查中体育测试成绩的众数为25 故选C .【点睛】此题考查的是求中位数和众数,掌握中位数和众数的定义是解题关键. 8.A【分析】先根据一次函数的解析式判断出函数的增减性,再根据-6<-2即可得出结论.【详解】解:∥一次函数y=13-x+b 中,k=13-<0,∥y 随x 的增大而减小, ∥-6<-2, ∥y 1>y 2. 故选:A .【点睛】本题考查了利用一次函数性质比较函数值的大小,先根据题意判断出一次函数的增减性是解答此题的关键.9.B【详解】∥∥A=35°,∥C=24°, ∥∥CBE=∥A+∥C=59°, ∥BC∥DE , ∥∥E=∥CBE=59°; 故选B . 10.D【分析】根据题意可知,本题中的相等关系是:(1)盒身的个数×2=盒底的个数;(2)制作盒身的铁皮张数+制作盒底的铁皮张数=35,再列出方程组即可. 【详解】解:设用x 张制作盒身,y 张制作盒底,恰好配套制成糖果盒, 根据题意可列方程组:3530202x y y x +=⎧⎪⎨=⎪⎩, 故选:D .【点睛】本题考查从实际问题中抽出二元一次方程组,根据题目给出的条件,找出合适的等量关系注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”. 11.±5【分析】2416=,2525=,4与5之间,可得x ,y 的值,代数计算即可. 【详解】∥45, ∥x =4,y =5, ∥5x+y =25,∥5x+y 的平方根是±5, 故答案为:±5【点睛】本题考查平方根运算,理解掌握平方根运算是解答关键. 12.20【分析】通过观察已知方程组中x ,y 的系数,根据加减法,即可得答案.【详解】由 21228a b a b -=⎧⎨+=⎩,两式相加,可得320a b +=,故答案为:20 .【点睛】本题考查了解二元一次方程组,利用等式的性质把两式相加是解题的关键.13.1-【分析】根据平行于x轴的直线上的点的纵坐标相同,列出方程求解即可.【详解】解:∥点A(m,﹣2),B(3,m﹣1),直线AB∥x轴,∥m﹣1=﹣2,解得m=﹣1.故答案为:﹣1.【点睛】本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相同是解题的关键.14.21 xy=-⎧⎨=-⎩【分析】首先利用待定系数法求出b的值,进而得到P点坐标,再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案.【详解】解:∥直线y=x+1经过点P(-2,b),∥b=-2+1,解得b=-1,∥P(-2,-1),∥关于x,y的方程组10x ymx y n-+=⎧⎨-+=⎩的解是21xy=-⎧⎨=-⎩,故答案为:21xy=-⎧⎨=-⎩.【点睛】此题主要考查了二元一次去方程组与一次函数的关系,关键是掌握两函数图象的交点就是两函数组成的二元一次去方程组的解.15.25【分析】根据完全平方式的定义可知,k的值为一次项系数一半的平方.【详解】根据完全平方式的定义,k=(102)2=52=25.故答案为:25.【点睛】本题考查了完全平方式,要知道,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.16.9或15【分析】分两种情况讨论:∥点P在线段AC上;∥点P在线段AC的延长线上.过点D作DE∥AB于E,利用角平分线的性质可得DE=DC,进而证明∥CDP∥∥EDB,根据勾股定理求出AP的长.【详解】解:如图,过点D作DE∥AB于E,∥在∥ABC中,∥C=90°,AC=12,BC=9,∥AB=15,分两种情况讨论:情况∥:当点P在线段AC上时,∥AD是∥BAC的平分线,∥DE=CD,AE=AC=12,∥BE=AB-AE=15-12=3,在∥CDP和∥EDB中,90DCP DEBCPD BCD DE∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∥∥CDP∥∥EDB(AAS),∥CP=BE=3,∥AP=AC-CP=12-3=9;情况∥:当点P在线段AC的延长线上时,同理可得∥CDP'∥∥EDB(AAS),∥CP'=BE=3,∥AP'=AC+CP'=12+3=15,综上所述,AP 的长为9或15.故答案为:9或15.【点睛】本题考查了全等三角形的性质和判定,角平分线的性质,勾股定理,关键是灵活运用这些性质解决问题.17.35【分析】根据“平行线的判定和性质”结合“已知条件”分析解答即可.【详解】∥∥1=∥2,∥AB∥CE ,∥∥3=∥B=35°.故答案为35.【点睛】熟记“平行线的判定方法和性质”是解答本题的关键.18.23x y =⎧⎨=⎩【分析】根据一次函数和二元一次方程的性质,得函数y =5﹣x ,即5x y +=,函数y =2x﹣1,即21x y -=,从而推导得关于x 、y 的方程组521x y x y +=⎧⎨-=⎩的解,即为函数y =5﹣x 与y =2x ﹣1图象的交点坐标的横坐标和纵坐标值,从而完成求解.【详解】函数y =5﹣x ,即5x y +=;函数y =2x ﹣1,即21x y -=∥关于x 、y 的方程组521x y x y +=⎧⎨-=⎩的解,即为函数y =5﹣x 与y =2x ﹣1图象的交点坐标的横坐标和纵坐标值根据题意,得函数y =5﹣x 与y =2x ﹣1图象的交点坐标()2,3A∥关于x 、y 的方程组521x y x y +=⎧⎨-=⎩的解是:23x y =⎧⎨=⎩故答案为:23x y =⎧⎨=⎩. 【点睛】本题考查了一次函数、二元一次方程组的知识;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.19.-22=-,1-=减法法则运算即可.【详解】解:原式()32=+-2=2=-20.21x y =⎧⎨=-⎩ 【分析】方程组利用加减消元法求出解即可.【详解】解:43524x y x y +=⎧⎨-=⎩①②, ∥﹣∥×4得:11y =﹣11,即y =﹣1,把y =﹣1代入∥得:x =2,则方程组的解为21x y =⎧⎨=-⎩. 21.(1)图形见解析(2)5或194【分析】(1)将A 、B 、C 分别关于y 轴的对称点D 、E 、F 坐标求出来,再连接D 、E 、F 三点即可得到∥DEF ;(2)分P 、D 、E 分别为等腰三角形的顶角三种情况讨论;当D 为顶角时,相当于以D 点为圆心,DE 为半径作圆,该圆与x 轴交点即为所求P 点;同理,E 为顶角时类似;当P 为顶角时,设P(x ,0),然后根据PE=PF ,利用两点之间距离公式求出x 即可.(1)解:A(-1,0)关于y 轴对称点D 坐标为(1,0),B(-3,1)关于y 轴对称点E 坐标为(3,1),A(-2,3)关于y 轴对称点F 坐标为(-2,3),如下图所示,∥DEF 即为所求:(2)解:分三种情况讨论:情况一:当E为等腰∥EDP的顶角时,ED=EP,相当于以E点为圆心,ED为半径作圆,该圆与x轴的交点即为P点坐标,如下图所示:此时由对称性可知:P点坐标为(5,0);情况二:当D为等腰∥EDP的顶角时,DE=DP,相当于以D点为圆心,ED为半径作圆,该圆与x轴的交点即为P点坐标,如下图中P1和P2所示:由图可知:DE=DP1=DP2(1),P1);∥P情况三:当P为等腰∥EDP的顶角时,PE=PD,设P(x,0),∥PE²=(x-3)²+(0-1)²=x²-6x+10,PD²=(x-1)² =x²-2x+1,∥x²-6x+10= x²-2x+1,解得:x=94,此时P点坐标为(94,0);综上所述:P点的横坐标为5或194.【点睛】本题考查了点关于坐标轴的对称点的画法、等腰三角形的存在性问题、勾股定理求线段长等,本题的关键是第(2)问中要注意分类讨论思想.22.(1)y=-x+2(2)13【分析】(1)由直线l2:y=5x+20求得P的坐标,代入y=kx+2即可得到结论;(2)由直线l1的解析式求得B、C的坐标,由直线l2:y=5x+20求得A的坐标,然后根据四边形OAPC的面积等于∥PAB的面积减去∥OBC的面积即可得到结论.(1)解:∥直线l2:y=5x+20过点P(-3,a),∥a=5×(-3)+20=5,∥P(-3,5),把P(-3,5)代入y=kx+2得5=-3k+2,解得:k=-1,∥直线l1的函数表达式为:y=-x+2.(2)解:把y=0代入y=-x+2得:-x+2=0,解得x=2,∥B(0,2),把x=0代入y=-x+2得:y=2,∥C(0,2),∥OB=2,OC=2,把y=0时代入y=5x+20得:5x+20=0,∥x=-4,∥A(-4,0),∥AB=6,过P点作PH∥x轴于H,如下图所示:23.(1)医用口罩的单价为2.5 元/个,洗手液的单价为30元/瓶;(2)120或者180.【分析】(1)设医用口罩的单价为x元/个,洗手液的单价为y元/瓶,根据题意得出方程组,解方程组即可;(2)设增加购买N95口罩m个,洗手液b瓶,则医用口罩(1200−m)个,根据题意得6m+2.5(1200−m)+30b=5400,解得b=80−760m,可得m为60的倍数,且100<m<200,进而得出结论.(1)设医用口罩的单价为x元/个,洗手液的单价为y元/瓶,根据题意得:8001205400200 1200805400x yx y++⎧⎨+⎩==,解得:2.530xy⎧⎨⎩==,答:医用口罩的单价为2.5元/个,洗手液的单价为30元/瓶;(2)设增加购买N95口罩m个,洗手液b瓶,则医用口罩(1200−m)个,根据题意得:6m+2.5(1200−m)+30b=5400,化简,得:7m+60b=4800,∥b=80−760m,∥m,b都为正整数,∥m为60的倍数,100<m<200,∥12066mb⎧⎨⎩==,18059mb⎧⎨⎩==,∥m的值为120或者180.24.(1)195°(2)50°或10°【分析】(1)过点E作MN∥AB.利用平行线的判定和性质并结合角平分线的概念分析求解;(2)分P点在BC的左侧、P在BC的右侧且在CD上方、P在BC的右侧且在CD下方三种情况讨论,结合角度的倍数关系和平行线的性质分析求解.(1)解:过点E作MN∥AB,如下图∥所示:∥AB∥CD,MN∥AB,∥AB∥MN∥CD,∥∥BAE=∥AEM,∥DCE=∥CEM,∥ABE=∥BEN,∥NED=∥EDC,∥∥AEC=110°,∥∥BED=110°,∥∥BAE+∥DCE=∥AEM+∥CEM=∥AEC=110°,∥ABE+∥CDE=∥BEN+∥NED=∥BED=110°,∥BF平分∥ABE,DG平分∥CDE,∥∥ABF=12∥ABE,∥CDG=12∥CDE,∥∥AFB+∥CGD=180°-(∥BAE+∥ABF)+180°-(∥DCE+∥CDG)=180°-∥BAE-12∥ABE+180°-∥DCE-12∥CDE=360°-(∥BAE+∥DCE)-(∥ABE+∥CDE)=360°-110°-12×110°=195°,∥∥AFB+∥CGD的度数为195°.(2)解:分类讨论:情况一:当点P位于BC左侧时,如下图∥所示:此时∥PCD=12∥PCB不可能成立,故此情况不存在;情况二:当点P位于BC右侧且位于CD上方时,过点P作PM∥AB,如下图∥所示:∥∥AEC=110°,∥ABC=30°,∥∥BAE=110°-30°=80°,∥AB∥CD,MP∥AB,∥AB∥MP∥CD,∥∥APM=∥BAP=12∥BAE=40°,∥ABC=∥BCD=30°,又∥∥PCD=12∥PCB,∥∥PCD=13∥BCD=10°,∥∥MPC=∥PCD=10°,∥∥APC=∥MPC+∥APM=10°+40°=50°;情况三:当点P位于BC右侧且位于CD下方时,过点P作PM∥AB,如下图∥所示:∥∥AEC=110°,∥ABC=30°,∥∥BAE=110°-30°=80°,∥AB∥CD,MP∥AB,∥AB∥MP∥CD,∥∥APM=∥BAP=12∥BAE=40°,∥ABC=∥BCD=30°,又∥∥PCD=12∥PCB,∥∥PCD=∥BCD=30°,∥∥MPC=∥PCD=30°,∥∥APC=∥APM-∥MPC=40°-30°=10°,综上,∥APC的度数为50°或10°.【点睛】本题考查平行线的判定和性质、三角形的外角性质、角平分线的定义、对顶角相等等知识,属于中考常考题型,掌握平行线的判定和性质,正确添加辅助线是解题关键.25.(1)9(2)11(3)9990(4)2664和1062【分析】(1)根据“希望数”的定义得到:72(35)+=+x即可求解;(2)根据“希望数”的定义得到关于x y、的二元一次方程组即可求解;(3)设最大的希望数为abcd,根据b c d、、均为非负整数,a为正整数,得到018<+≤b c,09<+≤a d,再根据“希望数”的定义及千位数越大整个数就越大可知,取9a=即可求解;(4)根据=m abcd,2d a=且b c、均是2的倍数且m为“希望数”得到03a<≤,由此得到a的最小值为1,最大值为3即可求解.(1)解:∥375x 为“希望数”,由“希望数”的定义可知:72(35)+=+x , 解出:9x =.故答案为:9(2)解:∥正整数91x y 和28x y 都是“希望数”,∥92(1)82(2)+=+⎧⎨+=+⎩y x x y ,解得:65x y =⎧⎨=⎩,∥11x y +=.(3)解:设最大的“希望数”为abcd , ∥abcd 为“希望数”,∥2()+=+b c a d ,∥b c d 、、均为非负整数,a 为正整数,∥018<+≤b c ,即得到:09<+≤a d ,∥一个四位数千位越大则这个数就越大,∥9,0==a d ,此时9b c ==,∥最大的“希望数”为9990.(4) 解:由题意可知:=m abcd ,2d a =且b c 、均是2的倍数, ∥=m abcd 是“希望数”,∥2()2(2)6+=+=+=b c a d a a a ,由题意可知:各个数位数字均不超过6,且千位不为0, ∥026<=≤d a ,∥03a <≤,∥a 的最小值为1,最大值为3,当1a =时,22d a ==,66+==b c a , ∥=m abcd 最小,∥0,6==b c ,∥m 的最小值为1062;当3a =时,26==d a ,618+==b c a , ∥=m abcd 最大,∥9,9==b c ,此时不满足b c 、均是2的倍数,舍去;当2a =时,24==d a ,612+==b c a , ∥=m abcd 最大,且,b c 不超过6,∥6b c ==,∥m 的最大值为2664;综上所述:m 的最大值与最小值分别是2664和1062.【点睛】本题借助“希望数”这个新定义考查了二元一次方程组的解法,不等式求参数的取值范围,本题的关键是读懂题意,理解新定义,找出a 、b 、c 、d 之间的关系.26.(1)y=−13x+2; (2)m=-2113或-21; (3)点M 的横坐标为-3或-【分析】(1)先求出点C 的坐标,再运用待定系数法求得答案;(2)如图1,设点E 的横坐标为m ,可得:E (m ,−13m+2),F (m ,2m+9),G (0,−13m+2),进而得出:EF=|73m+7|,EG=|m|,根据EF=2EG ,建立方程求解即可; (3)如图2,分三种情况:∥当CN=MN 时,则∥MCN=∥CMN=45°,推出∥CMO=90°,即CM∥x 轴,故点M 的横坐标为-3;∥当CM 2=M 2N 2时,则∥M 2CN 2=∥M 2N 2C=67.5°,推出:∥M2CN 2=∥CM 2O ,OM 2M 的横坐标为-∥当CN=CM 时,∥CMN=∥CNM=45°,此时,点N 必与点O 重合,不符合题意.(1)∥点C (-3,n )在直线y=2x+9上,∥n=2×(-3)+9=3,∥C(-3,3),设直线CD的解析式为y=kx+b,∥C(-3,3),D(6,0),∥33 60k bk b-+⎧⎨+⎩==,解得:132kb⎧-⎪⎨⎪⎩==,∥直线CD的解析式为y=−13x+2;(2)如图1,设点E的横坐标为m,∥点E在直线CD上,EF∥x轴交直线AB于点F,EG∥y轴于点G,∥E(m,−13m+2),F(m,2m+9),G(0,−13m+2),∥EF=|(2m+9)-(−13m+2)|=|73m+7|,EG=|m|,∥EF=2EG,∥|73m+7|=|m|,∥m=-2113或-21;(3)如图2,∥∥CMN=45°,且∥CMN为等腰三角形,∥CN=MN或CM=MN或CN=CM,∥当CN=MN时,则∥MCN=∥CMN=45°,∥C(-3,3),∥∥COM=45°,∥∥CMO=90°,即CM∥x轴,∥M1(-3,0),即点M的横坐标为-3;∥当CM2=M2N2时,则∥M2CN2=∥M2N2C=67.5°,∥∥OM2N2=∥M2N2C-∥COM2=67.5°-45°=22.5°,∥∥CM2O=∥CM2N2+∥OM2N2=45°+22.5°=67.5°,∥∥M2CN2=∥CM2O,∥OM2,∥M2(-,0),即点M的横坐标为-;∥当CN=CM时,∥CMN=∥CNM=45°,∥∥MCN=90°,此时,点N必与点O重合,不符合题意;综上所述,点M的横坐标为-3或-.27.(1)50;10元;12.5元;115.2°(2)见解析(3)估计该校八年级学生总共捐款13100元【分析】(1)根据捐款20元的人数和所占的百分比,可以计算出本次共抽查的学生人数;结合条形统计图,根据众数,中位数的定义可得结果;用360°×B类捐款所占比例可得B类捐款的扇形圆心角度数;(2)根据(1)的结论计算出捐款10元的人数,从而可以将条形统计图补充完整;(3)根据条形统计图中的数据,可以得到七年级800名学生共捐款多少元.(1)解:本次共抽查学生:7÷14%=50(人),由条形统计图可得,捐款金额的众数是10元,由于捐款25元和20元的学生共有11人,捐款15元的学生有14人,所以从大到小排列,第25、26位的捐款数为15元和10元,所以中位数是(10+15)÷2=12.5(元),B类捐款的扇形圆心角度数为:360°×1650=115.2°;故答案为:50,10,12.5,115.2°;(2)解:捐款10元的学生有:50-9-14-7-4=16(人),补全的条形统计图如图所示:(3)解:150×(5×9+10×16+15×14+20×7+25×4)×1000=150×655×1000=13100(元),即估计七年级1000名学生共捐款13100元.。

北师大版八年级上期期末数学考试题及答案

北师大版八年级上期期末数学考试题及答案

北师大版八年级上期期末数学考试题及答案A 卷100分B 卷50分 总分150分 时间120分钟全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间l20分钟。

A 卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题。

A 卷(共100分) 第Ⅰ卷(选择题,共30分)一、选择题(本题共有10个小题,每小题3分,共30分)在每小题给出的四个选项中,只 有一项是正确的,把正确的序号填在题后的括号内。

1.将右边的图案按顺时针方向旋转90º后可以得到的图案是( )(A ) (B ) (C ) (D ) 2.下列运算正确的是( ) (A)24-= (B)33=- (C) 24±= (D)393=3.内角和与外角和相等的多边形是( )(A)三角形 (B) 四边形 (C) 五边形 (D) 六边形 4.在平面直角坐标系中,位于第二象限的点是( ) (A) (-2,-3) (B) (2, -4) (C) ( -2,3) (D) (2,3) 5.下面几组数据能作为直角三角形三边的是( )(A) 2,3,4 (B) 5,3,4 (C)4,6,9 (D)5,12,14 6.已知⎩⎨⎧-==11y x 是方程032=--my x 的一个解,那么m 的值是( )(A) 1 (B) 3 (C) -3 (D) -17.下列图形既量轴对称又是中心对称的图形是( )(A) 正三角形 (B) 平行四边形 (C) 等腰梯形 (D) 正方形 8.在平面直角坐标系中,直线k b kx y (+=<0,b >0)不经过 ( )(A) 第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限 9.如图,将张矩形纸片对折后再对折,然后沿着图中的虚线剪下,得到①、②两部分,将②展开的得到的平面图形是( )(A) 矩形 (B) 平行四边形 (C) 梯形 (D) 菱形10.如图,在平面直角坐标系中,平行四边形ABCD的顶点A 、B 、D 的坐标分别为(0,0)、(5,0)、(2,3), 则顶点C 的坐标是( )(A) (3,7) (B) (5,3) (C) (7,3) (D) (8,2) 二、填空题:(每小题4分,共16分) 11.若022=+-y x ,则=+y x .12.若菱形的两条对角线长分别为6cm 、8cm ,则其周长为 cm .13.对于一次函数52-=x y ,如果21x x <,那么1y 2y (填“>” 、“=” “<”). 14.如图是用形状、大小完全相同的等腰梯形密铺成的图案的一部分, 则该图案中等腰梯形的较大内角的度数为 度.三、(第15题每小题6分,第16题6分,共18分) 15.解下列各题:(1)解方程组: ⎩⎨⎧=-=+115332y x y x(2)化简:)()(12212141180-+---π.16.如果523++-b a b a 为b a 3-的算术平方根,1221---b a a 为21a -的立方根,求b a 32-的平方根.①②A C EB F D CD BE A 四、(每小题8分,共16分)17.如图,在△ABC 中,已知D 是BC 边上的一点,连接AD,取AD 的中点E,过点A 作BC 的平行线与CE 的延长线交于点F,连接DF. (1)求证:AF=DC.(2)若AD=CF,试判断四边形AFDC 是什么样的四边形?并证明你的结论.18.某长途汽车站规定,乘客可以免费携带一定质量的行李,若超过该质量则需购买行李票,且行李费y (元)与行李质量x (千克)间的一次函数关系式为)0(5≠-=k kx y .现知贝贝带了60千克的行李,交了行李费5元.(1)若京京带了84千克的行李,则该交行李费多少元? (2)旅客最多可免费携带多少千克的行李?五、(每小题10分,共20分)19.如图,已知AD 是△ABC 的中线,∠ADC=45º,把△ABC 沿AD 对折,点C 落在点E 的位置,连接BE,若BC=6cm .(1)求BE 的长;(2)当AD=4cm 时,求四边形BDAE 的面积.20.如图,在平面直角坐标系xOy 中,已知直线2321+-=x y 与x 轴、y 轴分别交于点A 和点B,直线)0(2≠+=k b kx y 经过点C(1,0)且与线段AB 交于点P,并把△ABO 分成两部分.(1)求△ABO 的面积.(2)若△ABO 被直线CP 分成的两部分的面积相等,求点P 的坐标及直线CP 的函数表达式.B 卷(50分)一、填空题:(每小题4分,共20分)21.若某数的平方根为3+a 和152-a ,则a = . 22.如图,在平面直角坐标系中, △ABC 的顶点坐标分别 为A(3,6)、B(1,3)、C(4,2).如果将△ABC 绕点C 顺时针 旋转90º,得到C B A '''∆,那么点A 的对应点A '的坐标 为 .23.当53+=x 时,代数式1062+-x x 的值为 .24.在四边形ABCD 中,对角线AC 、BD 交于点O ,从①AB=CD ;②AB ∥CD ;③OA=OC ;④OB=OD ;⑤AC=BD ;⑥∠ABC=90º这六个条件中,可选取三个推出四边形ABCD 是矩形,如①②⑤→四边形ABCD 是矩形.请再写出符合要求的两个: ; .25.若直线p x y +=3与直线q x y +-=2的图象交x 轴于同一点,则p 、q 之间的关系式为 .二、(共8分)26.(1)备用图(2)在(1)的条件下,设20名学生本次测试成绩的众数是a ,中位数为b ,求5b a -的值.三、(共10分)27.如图①,在Rt △ABC 中,已知∠A=90º,AB=AC,G 、F 分别是AB 、AC 上两点,且GF ∥BC ,AF=2,BG=4.(1)求梯形BCFG 的面积.(2)有一梯形DEFG 与梯形BCFG 重合,固定△ABC,将梯形DEFG 向右运动,直到点D 与点C 重合为止,如图②.①若某时段运动后形成的四边形G G BD '中,DG ⊥G B ',求运动路程BD 的长,并求此时2B G '的值.②设运动中BD 的长度为x ,试用含x 的代数式表示出梯形DEFG 与Rt △ABC 重合部分的面积.A G F B(D)C(E)图①A G FB DC EG ' F ' 图②四、(共12分)28.如图,在平面直角坐标系xOy 中,已知直线PA 是一次函数y=x+m (m>0)的图象,直线PB 是一次函数n n x y (3+-=>m )的图象,点P 是两直线的交点,点A 、B 、C 、Q 分别是两条直线与坐标轴的交点。

北师大版八年级上期末考试数学试题及答案

北师大版八年级上期末考试数学试题及答案

北师大版八年级上期末考试数学试题及答案班级 姓名 学号试卷说明:1.练习时间120分钟;2.试卷分A 、B 卷,满分150分.A 卷 (100分)一、选择题(本题有10个小题,每小题3分,共30分.以下每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在题后括号内)1. 如果一个数的算术平方根等于它本身,那么这个数是……………………………( ) (A) 0 (B) 1 (C) 0或1 (D) -1或0或1 2. 以下五个图形中,是中心对称的图形共有………………………………………( )(A) 2个 (B) 3个 (C) 4个 (D) 5个3.将直角三角形的三边都扩大相同的倍数后,得到的三角形一定是………………( )(A) 直角三角形 (B)锐角三角形 (C) 钝角三角形 (D) 以上三种情况都有可能 4.将△ABC 的三个顶点的横坐标乘以-1,纵坐标不变,则所得图形………………( )(A) 与原图形关于y 轴对称 (B) 与原图形关于x 轴对称 (C) 与原图形关于原点对称 (D) 向x 轴的负方向平移了一个单位 5、甲、乙两根绳共长17米,如果甲绳减去它的51,乙绳增加1米,两根绳长相等,若设甲绳长x 米,乙绳长y 米,那么可列方程组 ( )A. ⎪⎩⎪⎨⎧+=-=+15117y x x y xB. ⎪⎩⎪⎨⎧-=+=+15117y x y x C. ⎪⎩⎪⎨⎧+=-=+15117y x y x D. ⎪⎩⎪⎨⎧-=-=+15117y x x y x6.已知一组数据1,7,10,8,x ,6,0,3,若5=x ,则x 应等于 ( ) A. 6 B.5 C.4 D.27、四边形ABCD 的对角线AC 和BD 相交于点O ,设有下列条件:①AB=AD ;②∠ DAB=900;③AO=CO ,BO=DO ;④矩形ABCD ;⑤菱形ABCD ,⑥正方形ABCD ,则在下列推理不成立的是 ( ) A 、①④⇒⑥ B 、①③⇒⑤ C 、①②⇒⑥ D 、②③⇒④8、菱形的一个内角是60º,边长是5cm ,则这个菱形的较短的对角线长是 ( ) A 、cm 25 B 、cm 5 C 、cm 35 D 、cm 3109、函数y=x 图象向下平移2个单位长度后,对应函数关系式是( ) (A )y=2x (B )y=21x (C )y=x +2 (D )y=x -210正比例函数y=(1-2m)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( ) A. m <0 B. m >0 C.m <21 D.21>m二、填空题:(每小题3分,共15分) 11、 64的平方根是 .12、一个多边形每个外角都等于45,则其边数为 ,内角和为 。

北师大版八年级(上)期末数学试卷(b卷)及答案

北师大版八年级(上)期末数学试卷(b卷)及答案

北师大版八年级(上)期末数学试卷一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题纸的相应位置填涂。

1.(4分)在下列实数中,最小的数是()A.﹣B.﹣1C.0D.32.(4分)在下列各组数中,是勾股数的是()A.1、2、3B.2、3、4C.3、4、5D.4、5、63.(4分)平方根等于它本身的数是()A.﹣1B.0C.1D.±14.(4分)如图,下列条件能判断AB∥DC的是()A.∠3=∠4B.∠1=∠4C.∠1=∠2D.∠2=∠35.(4分)地球的水资源越来越枯竭,全世界都提倡节约用水,小明把自己家1月至6月份的用水量绘制成折线图,那么小明家这6个月的月平均用水量是()A.10吨B.9吨C.8吨D.7吨6.(4分)若函数y=2x+a与y=﹣x的图象交于点P(2,b),则关于x,y的二元一次方程组的解是()A.B.C.D.7.(4分)若m=1+,则以下对m的值估算正确的是()A.0<m<1B.1<m<2C.2<m<3D.3<m<48.(4分)能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2B.a=C.a=1D.a=9.(4分)如图,直线a⊥b,若以平行于a的直线为x轴,以平行于b的直线为y轴,建立平面直角坐标系,若A (﹣3,2),B(2,﹣3),则坐标系的原点最有可能是()A.O1B.O2C.O3D.O410.(4分)在平面直角坐标系中,有三个点A(﹣3,1),B(﹣1,5),C(0,m),当△ABC的周长最短时,m的值为()A.﹣10B.﹣8C.4D.7二、填空题:本题共6小题,每小题4分,共24分。

请将答案填入答题纸的相应位置。

11.(4分)请写出一个无理数.12.(4分)数据3,3,3,3,3的方差是.13.(4分)若线段AB∥x轴,且A(2,m),B(3,1),则m的值为.14.(4分)把一副三角尺按如图所示的方式放置,其中30°角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.若∠ADF=100°,则∠BMD=°.15.(4分)一次函数y=(k﹣1)x+3的图象上任意不同两点M(x1,y1),N(x2,y2)满足:当x1<x2时,y1<y2.则k的取值范围是.16.(4分)如图所示的四边形图案是用4个全等的直角三角形拼成的.已知四边形ABCD的面积为64,四边形EFGH 的面积为9,若用x、y表示直角三角形的两直角边(x>y);下列四个结论:①x2+y2=64;②x﹣y=3;③x+y=;④2xy+9=64.其中正确的是.(写出所有正确结论的序号)三、解答题:本题共9小题,共86分。

北师大二附中西城实验学校上学期初二数学期中考试试卷

北师大二附中西城实验学校上学期初二数学期中考试试卷

2015-2016学年度第一学期北师大二附中西城实验学校初二年级数学期中检测试题(时间100分钟 满分100分) 20XX 年11月一、选择题(每题3分,共30分)1.下列各式从左边到右边的变形中,是因式分解的是A. ay ax y x a +=+)(B. 4)4(442+-=+-x x x x C. x x x x x 3)4)(4(3162+-+=+- D. )12(55102-=-x x x x 2.若分式112--x x 的值为0,则应满足的条件是 A. x ≠1 B. x =-1 C. x =1 D. x =±13.下列各数,属于用科学记数法表示的是( )A .20.7×10-2B .0.35×10-1C .2004×10-3D .3.14×10-54.下列命题中,正确的是A.三条边对应相等的两个三角形全等B.周长相等的两个三角形全等C.三个角对应相等的两个三角形全等D.面积相等的两个三角形全等 5...如果把分式.....y x yx ++2中的..x .和.y .都扩大...10..倍,那么分式的值(......... ). A .扩大10倍 B .缩小10倍 C .是原来的32D .不变6.如图,AE =AF ,AB =AC ,EC 与BF 交于点O ,∠A =60°, ∠B =25°,则∠EOB 的度数为( ). A .60° B .70° C .75° D .85°7.如图,AD 是△ABC 的角平分线,从点D 向AB 、AC 两边作垂线段,垂足分别为E 、F ,那么下列结论中错误..的是 A .DE=DF B .AE =AF C .BD=CD D .∠ADE=∠ADF8.下列各式中正确的有( )①;9)31(2=-②2-2=-4;③a 0=1;④(-1)-1=1;⑤(-3)2=36.A .2个B .3个C .4个D .1个9.如图, 在△ABC 中,AB =BC ,将△ABC 绕顶点A 顺时针旋转一个角度后,恰好使AB ′∥BC . 若∠B =20°,则△ABC 旋转了( ) A .10° B .20° C .30° D .45°10.已知:如图,在△ABC 中,AB=AC ,BF=CD ,BD=CE ,∠FDE =α,则下列结论正确的是A .1802=∠+A α B .90=∠+A α C .902=∠+A α D.180=∠+A α二、填空题(每题2分,共16分)11...当..x .______......时,分式....13-x x有意义..... 12.分解因式: x 3–x =_____________.13.约分:22515mn m n-=_____________. 14.如果7,0-==+xy y x ,则22xy y x += .15.如图,在ABC △和DCB △中,AB DC =,AC 与BD 相交于点E ,若不再添加任何字母与辅助线,要使ABC DCB △≌△,则还需增加的一个条件____________.第9题图(第7题)2题图OF ECBA学校:________________班级:________________姓名:________________学号:________________ ------------------------------------密-------------封-------------线-------------内-------------请-------------不-------------要-------------答-------------题------------------------------------αFEDCBA第10题图第15题图α16.已知,如图△ABC 中,3,5==AC AB ,则中线AD 的取值范围是______________. 17.如图,在△ABC 中,∠C=90°,AB=10,AD 是△ABC 的一条角平分线.若CD=3,则△ABD 的面积为__________________.18.在ΔABC 中,高AD 、BE 所在直线交于H 点,若BH =AC ,则∠ABC 的值为_________. 三、解答题(本题共29分,19-24题每题4分,25题5分)19.分解因式:ax 2–2ax + a . 20.计算 |3|)12()21(01-+---21.计算: 2222223432⎪⎭⎫⎝⎛-⋅÷d cd b a c ab 22.计算.22y x xy y x y --+23.解方程:. x x x -=-222 24.解方程:.238111x x x +-=--25.先化简,再求值 221211, 2.111x x x x x x x ⎛⎫-+-+÷= ⎪+-+⎝⎭其中四、作图题(4分) 26.已知:∠α.求作:∠AOB=∠α.并作出∠AOB 的平分线OC要求:保留作图痕迹,不写作法.五证明题:(27-29题每题5分,30题6分,共21分) 27.已知:如图,CB =DE ,∠B =∠E ,∠BAE =∠CAD .求证:∠ACD =∠ADC ..EABCD CDBA第16题图第17题图-----------------------------密-------------封-------------线-------------内-------------请-------------不-------------要-------------答-------------题------------------------------------D 28.已知: AC =BD ,AD ⊥AC ,BC ⊥BD . 求证:AD =BC ;29.如图,已知:在四边形ABCD 中,过C 作CE ⊥AB 于E ,并且CD=CB , ∠ABC+∠ADC=180° (1)求证:AC 平分∠BAD ; (2)若AE=9,BE=3,求AD 的长30.在△ABC 中,AB=AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧作△ADE ,使AE=AD ,∠DAE=∠BAC .设∠BAC=α,∠BCE=β. (1)如图1,如果∠BAC=90°,∠BCE=____________度;(2)如图2,你认为α、β之间有怎样的数量关系?并说明理由.(3)当点D 在线段BC 的延长线上....移动时,α、β之间又有怎样的数量关系?请在备用图上画出图形,并直接写出你的结论.学校:________________班级:________________姓名:________________学号:________________ ------------------------------------密-------------封-------------线-------------内-------------请-------------不-------------要-------------答-------------题------------------------------------2015-2016学年度第一学期北师大二附中西城实验学校初二年级数学期中检测试题(时间100分钟 满分100分) 20XX 年11月一、选择题(每题3分,共30分)1.下列各式从左边到右边的变形中,是因式分解的是A. ay ax y x a +=+)(B. 4)4(442+-=+-x x x x C. x x x x x 3)4)(4(3162+-+=+- D. )12(55102-=-x x x x 2.若分式112--x x 的值为0,则应满足的条件是 A. x ≠1 B. x =-1 C. x =1 D. x =±13.下列各数,属于用科学记数法表示的是( )A .20.7×10-2B .0.35×10-1C .2004×10-3D .3.14×10-54.下列命题中,正确的是A.三条边对应相等的两个三角形全等B.周长相等的两个三角形全等C.三个角对应相等的两个三角形全等D.面积相等的两个三角形全等 5...如果把分式.....y x yx ++2中的..x .和.y .都扩大...10..倍,那么分式的值(......... ).A .扩大10倍B .缩小10倍C .是原来的32D .不变6.如图,AE =AF ,AB =AC ,EC 与BF 交于点O ,∠A =60°, ∠B =25°,则∠EOB 的度数为( ). A .60° B .70° C .75° D .85°7.如图,AD 是△ABC 的角平分线,从点D 向AB 、AC 两边作垂线段,垂足分别为E 、F ,那么下列结论中错误..的是 A .DE=DF B .AE =AF C .BD=CD D .∠ADE=∠ADF8.下列各式中正确的有( )①;9)31(2=-②2-2=-4;③a 0=1;④(-1)-1=1;⑤(-3)2=36.A .2个B .3个C .4个D .1个9.如图, 在△ABC 中,AB =BC ,将△ABC 绕顶点A 顺时针旋转一个角度后,恰好使AB ′∥BC . 若∠B =20°,则△ABC 旋转了( ) A .10° B .20° C .30° D .45°10.已知:如图,在△ABC 中,AB=AC ,BF=CD ,BD=CE ,∠FDE =α,则下列结论正确的是A .1802=∠+A α B .90=∠+A α C .902=∠+A α D.180=∠+A α二、填空题(每题2分,共16分)11...当..x .31≠__..____....时,分式....13-x x有意义..... 12.分解因式: x 3–x =_ )1)(1(-+x x x ____________.13.约分:22515mn m n -=__mn3-___________. 14.如果7,0-==+xy y x ,则22xy y x += 0 .15.如图,在ABC △和DCB △中,AB DC =,AC 与BD 相交于点E ,若不再添加任何字母与辅助线,要使ABC DCB △≌△,则还需增加的一个条件____不唯一________.第9题图(第7题)2题图OF ECBA学校:________________班级:________________姓名:________________学号:________________ ------------------------------------密-------------封-------------线-------------内-------------请-------------不-------------要-------------答-------------题------------------------------------αFEDCBA第10题图第15题图α16.已知,如图△ABC 中,3,5==AC AB ,则中线AD 的取值范围是____1<AD<4__________.17.如图,在△ABC 中,∠C=90°,AB=10,AD 是△ABC 的一条角平分线.若CD=3,则△ABD 的面积为______15___________.18.在ΔABC 中,高AD 、BE 所在直线交于H 点,若BH =AC ,则∠ABC 的值为___013545或_______.三、解答题(本题共29分,19-24题每题4分,25题5分) 19.分解因式:ax 2–2ax + a . 20.计算 |3|)12()21(01-+---2)1(-=x a =2-1+3=421.计算: 2222223432⎪⎭⎫⎝⎛-⋅÷d cd b a c ab 22.计算.22y x xy y x y --+ acd d b a cd c ab 234934222222=∙∙= 222))((y x y y x y x xy y x y --=-+-+=23.解方程:238111x x x +-=--. 24.解方程:x x x -=-222 原方程无解不是原方程的解(代入(检测:∴=∴=-+==10)11)x 11x x x x 220)222-=∴-=∴≠--=-=x x x x x 原方程的解为是原方程的解代入(检测:25.先化简,再求值 221211, 2.111x x x x x x x ⎛⎫-+-+÷= ⎪+-+⎝⎭其中221-x ===时原式当解:原式x x四、作图题(4分) 26.已知:∠α.求作:∠AOB=∠α.并作出∠AOB 的平分线OC要求:保留作图痕迹,不写作法. 略学校:________________班级:________________姓名:________________学号:________________ ------------------------------------密-------------封-------------线-------------内-------------请-------------不-------------要-------------答-------------题------------------------------------CDBA第16题图第17题图D 五证明题:(27-29题每题5分,30题6分,共21分) 27.已知:如图,CB =DE ,∠B =∠E ,∠BAE =∠CAD .求证:∠ACD =∠ADC . ∵∠BAE =∠CAD∴∠BAE-∠CAE=∠CAD-∠CAE 即∠BAC=∠EAD 在△ABC和△AED 中,∴△ABC ≌△AED (AAS ). ∴AC=AD . ∴∠ACD =∠ADC .28.已知: AC =BD ,AD ⊥AC ,BC ⊥BD . 求证:AD =BC ; 证明:联接DC ∵AD ⊥AC ,BC ⊥BD . ∴∠A=∠D=90°在RT △ADC 和RT △BCD 中, {DC=DC AC=BD∴RT △ABC ≌RT △AED .(HL ) ∴AD=BC29.如图,已知:在四边形ABCD 中,过C 作CE ⊥AB 于E ,并且CD=CB , ∠ABC+∠ADC=180°(1)求证:AC 平分∠BAD ;(2)若AE=9,BE=3,求AD 的长;证明:(1)作CF ⊥AD ,交AD 延长线与F ∵∠CDF+∠ADC=180° ∠ABC+∠ADC=180°∴∠CDF=∠ABC ,即∠EBC=∠CDF∵CE ⊥AB ,那么∠CEB=∠CFD=90° 在△CFD 和△CEB 中,{ ∠CEB=∠CFD∠EBC=∠CDF CD=CB∴△CDF ≌△CBE(AAS) ∴CE=CF∵CF ⊥AD ,CE ⊥AB ,CE=CF ∴AC 平分∠BAD (2)∵AC 平分∠BAD∴∠FAC=∠EAC 在△CFA 和△CEA 中, {∠CEA=∠CFA∠FAC=∠EAC AC=AC∴△CFA ≌△CEA .(AAS ) ∴AF=AE=9 △CDF ≌△CBE ∴DF=BE=3 AD=AF-FD=9-3=630.在△ABC 中,AB=AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧作△ADE ,使AE=AD ,∠DAE=∠BAC .设∠BAC=α,∠BCE=β.EABCD(1)如图1,如果∠BAC=90°,∠BCE=_____90_______度; (2)如图2,你认为α、β之间有怎样的数量关系?并说明理由.(3)当点D 在线段BC 的延长线上移动时,α、β之间又有怎样的数量关系?请在 备用图上画出图形,并直接写出你的结论.(2)α+β=180° 理由:∵∠BAC=∠DAE ,∴∠BAC﹣∠DAC=∠DAE ﹣∠DAC . 即∠BAD=∠CAE . 在△ABD 与△ACE 中,∴△ABD ≌△ACE , ∴∠B=∠ACE .∴∠B+∠ACB=∠ACE+∠ACB . ∴∠B+∠ACB=β, ∴α+∠B+∠ACB=180°, ∴α+β=180°;当点D 在射线BC 上时,α+β=180°; ∵∠BAC=∠DAE , ∴∠BAD=∠CAE , ∵AB=AC ,AD=AE , ∴△ABD ≌△ACE (SAS ),∴∠B=∠ACE ,∵∠BAC+∠B+∠BCA=180°,∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°, ∴ α+β=180°;。

2023—2024学年最新北师大新版八年级上学期数学期末考试试卷(含参考答案)

2023—2024学年最新北师大新版八年级上学期数学期末考试试卷(含参考答案)

最新北师大新版八年级上学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟 一、选择题(每题只有一个正确选项,每小题3分,满分30分) 1、在实数﹣1.414,,π,3.14,,3.1212212221…(相邻两个1之间依次增加一个2),中,无理数的个数是( )个. A .1B .2C .3D .42、一次函数y =x ﹣2的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限3、甲、乙、丙、丁四支女子花样游泳队的人数相同,且平均身高都是1.68m ,身高的方差分别是S 2甲=0.15,S 2乙=0.12,S 2丙=0.10,S 2丁=0.12,则身高比较整齐的游泳队是( ) A .甲B .乙C .丙D .丁4、下列图形中,由∠1=∠2,能得到AB ∥CD 的是( )A .B .C .D .5、下列命题中的真命题是( ) A .相等的角是对顶角B .内错角相等C .全等三角形的面积相等D .若m 2=n 2,则m =n6、△ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,下列条件不能判定△ABC 为直角三角形的是( ) A .∠A +∠B =∠C B .C .a :b :c =32:42:52D .a :b :c =5:12:137、在同一坐标系中,函数y =kx 与y =3x ﹣k 的图象大致是( )A .B .C .D .8、在平面直角坐标系中,P (1,2),点Q 在x 轴下方,PQ ∥y 轴,若PQ =5,则点Q 的坐标为( ) A .(﹣4,2)B .(6,2)C .(1,﹣3)D .(1,7)9、如图,已知∠1=∠2=∠3=55°,则∠4的度数是( ) A .55° B .95°C .115°D .125°10、如图,直线与x 轴,y 轴分别交于点A 和点B ,点C 在线段AB 上,且点C 坐标为(m ,2),点D 为线段OB 的中点,点P 为OA 上一动点,当△PCD 的周长最小时,点P 的坐标为( ) A .(﹣3,0)B .C .D .二、填空题(每小题3分,满分18分)11、若直线y =﹣2x +1经过(3,y 1),(﹣2,y 2),则y 1,y 2的大小关系是 . 12、在平面直角坐标系中,直线y =2x ﹣1过点P (a ,b ),则6a ﹣3b +2020的值为 .13、已知平面直角坐标系第四象限内的点P (3﹣m ,2m +6)到两坐标轴的距离相等,则m 的值为 .14、直角三角形两条直角边的长分别为8和6,则斜边上的高为 . 15、一只蚂蚁从圆柱体的下底面A 点沿着侧面爬到上底面B 点,已知圆柱的底面半径为2cm ,高为8cm (π取3),则蚂蚁所走过的最短路径的长是 16、如图,在平面直角坐标系中,长方形AOBC 的边OB 、OA 分别在x 轴、y 轴上,点D 在边BC 上,将该长方形沿AD 折叠,点C 恰好落在边OB 上的E 处,若点A (0,4),OB =5,则点D 的坐标是 .第9题图第10题图 第15题图第16题图最新北师大新版八年级上学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算(3﹣π)0﹣++|﹣4|.18、我市河边的景观区内有一块四边形空地,如图所示,景区管理人员想在这块空地上铺满观赏草坪,需要测量其面积,经技术人员测量,∠ABC=90°,AB=20米,BC=15 米,CD=7 米,AD=24 米.请用你学过的知识帮助管理员计算出这块空地的面积.19、已知一次函数的图象过A(﹣3,﹣5),B(1,3)两点.(1)求这个一次函数的表达式;(2)试判断点P(﹣2,1)是否在这个一次函数的图象上.20、阳光中学积极开展课后延时服务活动,提供了“有趣的生物实验,虚拟机器人竞赛,国际象棋大赛,趣味篮球训练,经典影视欣赏……”等课程供学生自由选择一个学期后,该校为了解学生对课后延时服务的满意情况,随机对部分学生进行问卷调查,并将调查结果按照“A.非常满意;B.比较满意;C.基本满意;D.不满意”四个等级绘制成了如图所示的两幅不完整的统计图.请根据图中信息,解答下列问题:(1)该校抽样调查的学生人数为人,请补全条形统计图;(2)样本中,学生对课后延时服务满意情况的“中位数”所在等级为,“众数”所在等级为;(填“A,B,C或D”)(3)若该校共有学生2000人,估计全校学生对课后延时服务满意的(包含A,B,C三个等级)有多少人?21、如图,在平面直角坐标系中,△ABC在坐标系中A(1,1),B(4,2),C(3,4).(1)在图中画出△ABC关于x轴的对称图形△A1B1C1,并分别写出对应点A1,B1,C1的坐标.(2)求S.22、如图,已知∠1+∠2=180°,∠B=∠E.(1)试猜想AB与CE之间有怎样的位置关系?并说明理由.(2)若CA平分∠BCE,∠B=50°,求∠A的度数.23、某商场代销甲、乙两种商品,其中甲种商品进价为120元/件,售价为130元/件,乙种商品进价为100元/件,售价为150元/件.(1)若商场用39000元购进这两种商品若干,销售完后可获利润9500元,则该商场购进甲、乙两种商品各多少件?(2)现商场需购进这两种商品共200件,设购进甲种商品a件,两种商品销售完后可获总利润为w元,如果购进甲种商品的数量至少100件,求销售完这批商品获得的最大利润.24、如图,在平面直角坐标系中,点A在x轴上,且A(4,0),点B在y轴上,且B(0,4).(1)若点E在线段AB上,OE⊥OF,且OE=OF,①试证明:△BOE≌△AOF;②求AE+AF的值;(2)在(1)的条件下,过点O作OM⊥EF,交AB于点M,试证明:AM2+BE2=EM2.25、如图,直线l1:y=x+2和直线l2与x轴分别相交于A,B两点,且两直线相交于点C,直线l2与y轴相交于点D(0,﹣4),OA=2OB.(1)求点A的坐标及直线l2的函数表达式;(2)求△ABC的面积;(3)试探究在x轴上是否存在点P,使得∠BDP=45°,若存在,请求出点P的坐标;若不存在,请说明理由.最新北师大新版八年级上学期数学期末考试试卷(参考答案)一、选择题题号12345678910答案D B C D C C B D D B二、填空题11、y1<y2 12、2023 13、-9 14、4.8 15、10 16、(5,1.5)三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、9﹣4.18、四边形ABCD的面积为234平方米.19、(1)一次函数解析式为:y=2x+1;(2)点P(﹣2,1)不在一次函数图象上.20、(1)校抽样调查的学生人数为(人),图略(2)答案为:B,A;(3))有1800人.21、解:(1)如图1,△A1B1C1即为所求;A1(1,﹣1),B1(4,﹣2),C1(3,﹣4);(2)S=3×3﹣×1×3×1×2﹣×2×3=3.5;22、解:(1)(略)(2)65°.23、解:(1)该商场购进甲种商品200件,乙种商品150件.(2)最大利润为6000元.24、(1)①略②4;(2)证明:连接FM.证明略25、(1)y=2x﹣4;(2)△ABC的面积为:;(3)点P的坐标为(12,0)或(﹣,0).。

北师大版八年级数学上册期末复习综合训练(含答案)

北师大版八年级数学上册期末复习综合训练(含答案)

2022-2023学年北师大版八年级数学上册期末复习综合训练一、单选题1.下列各组数是勾股数的是( )A .3,5,7B .5,7,9C .3,5,4D .2,2,32.已知一直角三角形的木版,三边的平方和为1800,则斜边长为( )A .80B .30C .90D .1203.在下列实数中:22,0.3433433347-(相邻的两个4之间3的个数逐次加1),无理数有( )A .1个B .2个C .3个D .4个4.下列计算正确的是( )A B CD 3=-5.计算 )A .B .5C .5D .6.2022年北京冬奥会的单板U 形技巧资格赛中,谷爱凌滑完后,六名裁判打分如下:94,94,96,96,96,97,则六名裁判所打分数的众数和中位数分别是( )A .94,96B .96,95C .96,96D .94,957.在平面直角坐标系中,点()2,3A -关于x 轴的对称点的坐标是( )A .()2,3B .()2,3-C .()2,3-D .()2,3--8.下列函数中,属于正比例函数的有( )①1y x =-;①y x =;①1y x=①13r x =-;①2s r π=;①3x y =- A .2个 B .3个 C .4个 D .5个9.如图,函数(0)y kx b k =+≠的图象经过点(3,0)B ,与函数2y x =的图象交于点A ,则关于x 的方程2kx b x +=的解为( )A .0x =B .1x =C .2x =D .3x =10.已知关于x ,y 的方程组+=+1=3+5x y a x y a -⎧⎨-⎩,给出下列说法: ①当=0a 时,该方程组的解也是方程21x y +=-的一个解;①当=1a 时,则220x y -=;①无论a 取任何实数,2x y +的值始终不变,以上三种说法中正确的有( )个A .0B .1C .2D .311.如图所示的是由截面为同一种长方形的墙砖粘贴的部分墙面,其中三块横放的墙砖比两块竖放的墙砖低30cm ,两块竖放的墙砖比两块横放的墙砖高50cm ,则每块墙砖的截面面积是( )A .2600cmB .2900cmC .21200cmD .21500cm12.如图,点E 在AC 的延长线上,下列条件中,不能判定AB CD ∥的是( )A .12∠=∠B .3=4∠∠C .A DCE ∠=∠D .180D DBA ∠+∠=︒二、填空题13.定理“直角三角形的两个锐角互余”的逆定理是________________________.14.某校甲,乙,丙三班级同学在一次数学测验中的平均分都相同,若方差分别是215.2s =甲,213.2s =乙,210.3s =丙,则成绩最稳定的班级是__________________.15.1a b --是27的立方根,则a b -的平方根为 ________.16.在①ABC 中,若AC =15,BC =13,AB 边上的高CD =12,则①ABC 的周长为________________. 17.新定义:[],a b 为一次函数y ax b =+(a ,b 为常数,且0a ≠)关联数.若关联数[]1,2m +所对应的一次函数是正比例函数,则关于x 的方程1322x m-=的解为______. 18.《孙子算经》记载:今有3人共车,二车空;二人共车,九人步,问人与车各几何?译文:今有若干人乘车,若每三人共乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9人无车可乘.问共有多少人?多少辆车?若设有x 人,y 辆车,则可列方程组为__.三、解答题19.解方程组(1)331x y x y +=⎧⎨-=⎩(2)3()2()107422x y x y x y x y ++-=⎧⎪⎨+-+=⎪⎩20.游泳是一项全身性运动,可以舒展肌体,增强人体的心肺功能.在学校举办的一场游泳比赛中,抽得10名学生200米自由泳所用时间(单位:秒)如下:245 270 260 265 305 265 290 250 255 265(1)这10名学生200米自由泳所用时间的平均数、中位数和众数分别是多少?(2)如果有一名学生的成绩是267秒,你觉得他的成绩如何?请说明理由.21.先化简,再求值:(1)()()()322a b a b ab ab +÷-+-,其中ab(2)()()()()22323412x x x x x +---+-,其中x22.如图所示,一架云梯长25m ,斜靠在一面墙上,梯子底端离墙7m ,这个梯子的顶端距地面有多高?如果梯子顶端下滑了4m,那么梯子的底端在水平方向上也滑动了4m吗?23.已知:如图,①A=①ADE,①C=①E.(1)若①EDC=3①C,求①C的度数;(2)求证:BE①CD.24.在平面直角坐标系中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫作整点.记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;①若区域W内没有整点,直接写出k的取值范围.25.木工师傅要用40张木工板做长方体包装箱,准备先把这些木工板分成两部分,一部分做侧面,一部分做底面.已知:一:1张木工板,恰好做3个底面,或者做2个侧面(1大1小);二:2个底面和4个侧面(2大2小)可以做成一个包装箱.根据以上材料解决下列问题:(1)工人师傅分别需用多少张木工板做侧面和底面,才能使做成的侧面和底面正好配套?(2)如果需要做这个包装箱20个,那么至少还需要同样的木工板多少张?(直接写出结果)参考答案1.C2.B3.B4.B5.A6.C7.D8.B9.B10.D11.B12.B13.有两个角互余的三角形是直角三角形.14.丙15.2±16.32或4217.1x=18.3(2)29y xy x-=⎧⎨+=⎩19.解:(1)331x yx y①②+=⎧⎨-=⎩①-①得:42,y=解得:1,2 y=把12y=代入①得:3,2x=所以方程组的解为:3212xy⎧=⎪⎪⎨⎪=⎪⎩;(2)3()2()107422x y x y x y x y ①②++-=⎧⎪⎨+-+=⎪⎩ 由①得:214x yx y ① ①-①得:24,x y解得:2x y +=-①把①代入①得:8x y -=①①+①得:3,x =把3x =代入①得:5,y =-所以方程组的解为:35x y20.(1)解:将数据从小到大排列:245,250,255,260,265,265,265,270 ,290 ,305中位数为第5个与第6个的平均数:265265=2652+,众数为265, 平均数为()124525025526026526526527029030510+++++++++267=, 平均数为267,中位数为265,众数为265;(2)根据(1)中得到的样本数据的平均数可以估计,在这次比赛中,该名学生的成绩处于平均水平;这名学生的成绩为267秒,大于中位数265秒,可得这名学生的成绩处于中等偏下水平.21(1)解:()()()322a b a b ab ab +÷-+-=()223a b ab ab +÷-4-=222a b b --4=22a b -5.当a、b2213=--5.(2)解:()()()()22323412x x x x x +---+-=22244444x x x x x ++--9-+=25x -当x25-=2-.22解:在Rt ①AOB 中,①AB =25m ,OB =7m ,,①OA 24=(m ),①AA ′=4m ,①OA ′=OA ﹣AA ′=20m ;在Rt ①A ′OB ′中,①OB ′15( m ),①BB ′=OB ′﹣OB =8(m ).故这个梯子的顶端距地面24m ;梯子的底端在水平方向上不是滑动了4m ,而是滑动了8m . 23.(1)①①A =①ADE ,①AC ①DE ,①①EDC +①C =180°,又①①EDC =3①C ,①4①C =180°,即①C =45°;(2)①AC ∥DE ,①①E =①ABE ,又①①C =①E ,①①C =①ABE ,①BE ∥CD .24.(1)解:令0,1x y ==,①直线l 与y 轴的交点坐标()01,.(2)当2k =时,2122y x x y =+==,,﹣,如图所示:此时区域内有6个整点,分别是()()()()()()000,11,1111210,,﹣,﹣,,,,,,; ①当0k >时,0x k =>,0y k =-<,区域内必含有坐标原点,故不符合题意;当10k -≤<时,W 内点的横坐标在−1到0之间,故10k -≤<时W 内无整点;当21k -≤-<时,W 内可能存在的整数点横坐标只能为−1,此时边界上两点坐标为()1M k --,和()11N k --+,,1MN =;当k 不为整数时,其上必有整点,但2k =-时,只有两个边界点为整点,故W 内无整点;当2k ≤-时,横坐标为−2的边界点为()2k --,和()221k --+,,线段长度为13k -+>,故必有整点.综上所述:10k -≤<或2k =-时,W 内没有整数点.25.(1)解:设工人师傅用x 张木工板做侧面,y 张木工板做底面,才能使做成的侧面和底面正好配套, 根据题意得:403224x y y x +=⎧⎪⎨=⎪⎩, 解得:3010x y =⎧⎨=⎩. 答:工人师傅用30张木工板做侧面,10张木工板做底面,才能使做成的侧面和底面正好配套.(2)解:由(1)知,工人师傅用30张木工板做侧面,10张木工板做底面,可以做成103215⨯÷=个包装箱,还差5个包装箱,①一个包装箱需要102153=张木工板做底,30215=张做侧面①还需21 2551333⨯+⨯=张,①至少需要14张木工板,答:至少需要14张木工板.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档