【考点训练】第18章 勾股定理 18.2 勾股定理的逆定理:勾股数-1

合集下载

【考点训练】第18章 勾股定理 18.1 勾股定理:直角三角形的性质-1

【考点训练】第18章 勾股定理 18.1 勾股定理:直角三角形的性质-1

【考点训练】直角三角形的性质-1一、选择题(共5小题)1.(2013•长春)如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D在边AB上,DE⊥AB.若∠B 为锐角,BC∥DF,则∠B的大小为()2.(2013•内江)把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()3.(2013•昭通)如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是()4.(2012•临沂)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()5.(2012•漳州)将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是()二、填空题(共4小题)(除非特别说明,请填准确值)6.一副三角板按如图方式摆放,且∠1比∠2大50°,则∠2的度数是_________°.7.(2012•镇江)如图,∠1是Rt△ABC的一个外角,直线DE∥BC,分别交边AB、AC于点D、E,∠1=120°,则∠2的度数是_________.8.(2012•青海)如图,直线l1∥l2且l1,l2被直线l3所截,∠1=∠2=35°,∠P=90°,则∠3=_________度.9.(2013•南昌)如图△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为_________.三、解答题(共2小题)(选答题,不自动判卷)10.(2009•安顺)已知一次函数y=2x+b(k≠0)和反比例函数的图象交于点A(1,1)(1)求两个函数的解析式;(2)若点B是x轴上一点,且△AOB是直角三角形,求B点的坐标.11.(2010•重庆)已知:如图(1),在平面直角坐标xOy中,边长为2的等边△OAB的顶点B在第一象限,顶点A 在x轴的正半轴上.另一等腰△OCA的顶点C在第四象限,OC=AC,∠C=120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止.(1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;(2)在等边△OAB的边上(点A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;(3)如图(2),现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.【考点训练】直角三角形的性质-1参考答案与试题解析一、选择题(共5小题)1.(2013•长春)如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D在边AB上,DE⊥AB.若∠B 为锐角,BC∥DF,则∠B的大小为()2.(2013•内江)把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()3.(2013•昭通)如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是()4.(2012•临沂)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()5.(2012•漳州)将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是()二、填空题(共4小题)(除非特别说明,请填准确值)6.一副三角板按如图方式摆放,且∠1比∠2大50°,则∠2的度数是20°.7.(2012•镇江)如图,∠1是Rt△ABC的一个外角,直线DE∥BC,分别交边AB、AC于点D、E,∠1=120°,则∠2的度数是30°.8.(2012•青海)如图,直线l1∥l2且l1,l2被直线l3所截,∠1=∠2=35°,∠P=90°,则∠3=55度.9.(2013•南昌)如图△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为65°.三、解答题(共2小题)(选答题,不自动判卷)10.(2009•安顺)已知一次函数y=2x+b(k≠0)和反比例函数的图象交于点A(1,1)(1)求两个函数的解析式;(2)若点B是x轴上一点,且△AOB是直角三角形,求B点的坐标.)在反比例函数反比例函数的解析式为:.11.(2010•重庆)已知:如图(1),在平面直角坐标xOy中,边长为2的等边△OAB的顶点B在第一象限,顶点A 在x轴的正半轴上.另一等腰△OCA的顶点C在第四象限,OC=AC,∠C=120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止.(1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;(2)在等边△OAB的边上(点A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;(3)如图(2),现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.需要需要;②≤OC==时,QE=OQ==+﹣t)当OP=﹣﹣时,+<S=,)或()或(,)或(,关注中学生习题网官方微信公众号,免费学习资源、学习方法、学习资讯第一时间掌握。

第十八章勾股定理知识点分析

第十八章勾股定理知识点分析

第十八章:勾股定理(勾股定理 勾股定理逆定理) 一、勾股定理▼为何称为“勾股定理”?古代数学家将较短直角边称为“勾”,较长直角边称为“股”,斜边称为“弦”。

因而将直角三角形的这个性质称为“勾股定理”。

有“勾三股四弦五”之说,即32+42=52★勾股定理只适用于直角三角形,主要应用于①已知直角三角形的两边求第三边;②在直角三角形中已知其中一边求另两边的关系; 例:在△ABC中,∠C=90°(1) 若a=3,b=4,则c=_________;(2) 若a=6,c=10,则b=_________; (3)若c=34,a:b=8:15,则a=________,b=________.★易错点:(1)求直角三角形的边长时考虑不全面如:已知直角三角形两条边长分别为6,8,则其周长为_______________ ★(2)乱用勾股定理,对于非直角三角形也运用勾股定理如:已知△ABC 各边长均为整数,且AC=4,BC=3,AB 是唯一的最长边,则AB 的长可能是_________[5或6] 知识点2:勾股定理的证明(1)如图所示是用4个全等的直角三角形拼成的正方形,其中较长直角边为b ,较短直角边为a ,斜边为c 。

试证明a 2+b 2=c 2知识引申:我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如上图1所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边分别为a 、b ,那么(a+b )2的值是_________(25) (2)如图2所示,每个小方格的面积均为1,正方形A ,B ,C 的边长分别为a,b,c,试证明a 2+b 2=c 2如上图2,若正方形A 的面积为S1,B 的面积为S2,C 的面积为S3,则S1,S2,S3的关系为_________________已知:如图,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形,则S1,S2,S3的关系为______________若斜边AB=3,则图中阴影部分的面积为____________________。

人教版八年级下册数学 专题:第18章.勾股定理知识点与常见题型总结

人教版八年级下册数学 专题:第18章.勾股定理知识点与常见题型总结

八年级下册第18章.勾股定理知识点与常见题型总结1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. c ba HG FEDCB A方法二:b ac b a cca b c a b四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a b ccb a E DCB A3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b,a②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:A B C 30°D CB A AD B CCB D A题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c +=解:⑴10AB⑵8BC ==题型二:应用勾股定理建立方程例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解解:⑴4AC =, 2.4AC BC CD AB⋅== DB A C⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm 例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21E DCBA分析:此题将勾股定理与全等三角形的知识结合起来解:作DE AB ⊥于E ,Q 12∠=∠,90C ∠=︒∴ 1.5DE CD ==在BDE ∆中2290,2BED BE BD DE ∠=︒=-=QRt ACD Rt AED ∆≅∆QAC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4. ( 2014?安徽省,第8题4分)如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .B .C . 4D . 5考点: 翻折变换(折叠问题).分析: 设BN =x ,则由折叠的性质可得DN =AN =9﹣x ,根据中点的定义可得BD =3,在Rt △ABC 中,根据勾股定理可得关于x 的方程,解方程即可求解.解答: 解:设BN =x ,由折叠的性质可得DN =AN =9﹣x ,∵D 是BC 的中点,∴BD =3,在Rt △ABC 中,x 2+32=(9﹣x )2,解得x =4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.例5.已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.解析:解题之前先弄清楚折叠中的不变量。

人教版八年级下册数学 专题:第18章勾股定理知识点与常见题型总结

人教版八年级下册数学 专题:第18章勾股定理知识点与常见题型总结

八年级下册第18章.勾股定理知识点与常见题型总结1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCB A方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DA题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长 分析:直接应用勾股定理222a b c += 解:⑴2210AB AC BC =+=⑵228BC AB AC =-=题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:⑴224AC AB BC =-=, 2.4AC BCCD AB⋅==DBAC⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒ ∴ 1.5DE CD == 在BDE ∆中2290,2BED BE BD DE ∠=︒=-= Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4. ( 2014•安徽省,第8题4分)如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .B .C .4 D . 5考点: 翻折变换(折叠问题).分析: 设BN =x ,则由折叠的性质可得DN =AN =9﹣x ,根据中点的定义可得BD =3,在Rt △ABC 中,根据勾股定理可得关于x 的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.例5.已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.解析:解题之前先弄清楚折叠中的不变量。

人教版八年级下册数学 专题:第18章勾股定理知识点与常见题型总结

人教版八年级下册数学 专题:第18章勾股定理知识点与常见题型总结

八年级下册第18章.勾股定理知识点与常见题型总结1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCB A方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DA题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长 分析:直接应用勾股定理222a b c += 解:⑴2210AB AC BC =+=⑵228BC AB AC =-=题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:⑴224AC AB BC =-=, 2.4AC BCCD AB⋅==DBAC⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒ ∴ 1.5DE CD == 在BDE ∆中2290,2BED BE BD DE ∠=︒=-=Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4. ( 2014•安徽省,第8题4分)如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .B .C .4 D . 5考点: 翻折变换(折叠问题).分析: 设BN =x ,则由折叠的性质可得DN =AN =9﹣x ,根据中点的定义可得BD =3,在Rt △ABC 中,根据勾股定理可得关于x 的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.例5.已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.解析:解题之前先弄清楚折叠中的不变量。

第18章 勾股定理的逆定理及全章复习

第18章 勾股定理的逆定理及全章复习

18.2 勾股定理的逆定理(一)教学目标1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。

2.探究勾股定理的逆定理的证明方法。

3.理解原命题、逆命题、逆定理的概念及关系。

重点:掌握勾股定理的逆定理及简单应用。

难点:勾股定理的逆定理的证明。

教学过程:一.预习新知(阅读教材P73 — 75 , 完成课前预习)1.三边长度分别为3 cm 、4 cm 、5 cm 的三角形与以3 cm 、4 cm 为直角边的直角三角形之间有什么关系?你是怎样得到的?2.你能证明以6cm 、8cm 、10cm 为三边长的三角形是直角三角形吗?3.如图18.2-2,若△ABC 的三边长a 、b 、c 满足222c b a =+,试证明△ABC 是直角三角形,请简要地写出证明过程.4.此定理与勾股定理之间有怎样的关系? (1)什么叫互为逆命题(2)什么叫互为逆定理(3)任何一个命题都有 _____,但任何一个定理未必都有 __ 5.说出下列命题的逆命题。

这些命题的逆命题成立吗? (1) 两直线平行,内错角相等;(2) 如果两个实数相等,那么它们的绝对值相等; (3) 全等三角形的对应角相等;(4) 角的内部到角的两边距离相等的点在角的平分线上。

二.课堂展示例1:判断由线段a 、b 、c 组成的三角形是不是直角三角形: (1)17,8,15===c b a ; (2)15,14,13===c b a . (3)25,24,7===c b a ; (4)5.2,2,5.1===c b a ;三.随堂练习1.完成书上P75练习1、2图18.2-22.如果三条线段长a,b,c 满足222b c a -=,这三条线段组成的三角形是不是直角三角形?为什么?3.A,B,C 三地的两两距离如图所示,A 地在B 地的正东方向,C 地在B 地的什么方向?4.思考:我们知道3、4、5是一组勾股数,那么3k 、4k 、5k (k 是正整数)也是一组勾股数吗?一般地,如果a 、b 、c 是一组勾股数,那么ak 、bk 、ck (k 是正整数)也是一组勾股数吗?四.课堂检测1.若△ABC 的三边a ,b ,c 满足条件a 2+b 2+c 2+338=10a+24b+26c ,试判定△ABC 的形状.2.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为多少米?此三角形的形状为?3.已知:如图,在△ABC 中,CD 是AB 边上的高,且CD 2=AD ·BD 。

人教版八年级下册数学-专题:第18章.勾股定理知识点与常见题型总结

人教版八年级下册数学-专题:第18章.勾股定理知识点与常见题型总结

八年级下册 .勾股定理知识点与常见题型总结1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCB A方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =- ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DA题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长 分析:直接应用勾股定理222a b c += 解:⑴2210AB AC BC =+=⑵228BC AB AC =-=题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:⑴224AC AB BC =-=, 2.4AC BCCD AB⋅== DBAC⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E , 12∠=∠,90C ∠=︒ ∴ 1.5DE CD == 在BDE ∆中2290,2BED BE BD DE ∠=︒=-= Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4. ( 2014•安徽省,第8题4分)如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .B .C .4 D . 5考点: 翻折变换(折叠问题).分析: 设BN =x ,则由折叠的性质可得DN =AN =9﹣x ,根据中点的定义可得BD =3,在Rt △ABC 中,根据勾股定理可得关于x 的方程,解方程即可求解. 解答: 解:设BN =x ,由折叠的性质可得DN =AN =9﹣x , ∵D 是BC 的中点, ∴BD =3,在Rt △ABC 中,x 2+32=(9﹣x )2, 解得x =4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.例5.已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.解析:解题之前先弄清楚折叠中的不变量。

【考点训练】第18章勾股定理18.2勾股定理的逆定理:勾股定理的应用-1

【考点训练】第18章勾股定理18.2勾股定理的逆定理:勾股定理的应用-1

百货,则阿虎向西直走多少公尺后,他与神仙百货的距离为340公尺?(公尺?( )A . 100 B . 180 C . 220 D . 260 2.(2013•安顺)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行(颗树的树梢,问小鸟至少飞行( )A .8米 B . 10米C . 12米D . 14米3.(2011• 【考点训练】勾股定理的应用-1一、选择题(共5小题)1.(2011•台湾)已知小龙、阿虎两人均在同一地点,若小龙向北直走160公尺,再向东直走80公尺后,可到神仙金华)如图,西安路与南京路平行,并且与八一街金华)如图,西安路与南京路平行,并且与八一街垂直垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的八一街的交叉口,准备去书店,按图中的街道行走,最近的路程路程约为(约为( ) A .600m B .500m C . 400m D . 300m 4.(2013•济南)如图,小亮将升旗的济南)如图,小亮将升旗的绳子绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m 处,发现此时绳子末端距离地面2m ,则旗杆的高度为(,则旗杆的高度为(滑轮滑轮上方的部分忽略不计)为(上方的部分忽略不计)为( )A .12m B . 13m C . 16m D . 17m 5.(2013•鄂州)如图,已知鄂州)如图,已知直线直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB=.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB=( )A.6B.8C.10 D.12 _________米.米._________.(参考数据:=1.41,=1.73(参考数据:≈1.73,≈1.41,≈2.24)10.(2013•鄂州)小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A、B两点,测量数据如图,其中其中矩形矩形CDEF表示楼体,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四点在同一四点在同一直线直线上)问:上)问:(1)楼高多少米?)楼高多少米?(2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由.A . 100 B . 180 C . 220 D . 260 考点: 勾股定理的应用.专题: .点评: 本题考查了勾股定理的应用,解答关键是根据题意画出图形,运用数形结合的思想,可直观解答.本题考查了勾股定理的应用,解答关键是根据题意画出图形,运用数形结合的思想,可直观解答.A .8米 B . 10米 C . 12米 D . 14米数形结合.分析: 根据题意,画出图形,先设AE 的长是x 公尺,如图可得,BC=160公尺,AB=340公尺,利用勾股定理,可解答.可解答.解答: 解:设阿虎向西直走了x 公尺,如图,公尺,如图,由题意可得,AB=340,AC=x+80,BC=160,利用勾股定理得,(x+80)2+1602=3402,整理得,x 2+160x ﹣83600=0,x 1=220,x 2=﹣380(舍去),∴阿虎向西直走了220公尺.公尺.故选C考点: 勾股定理的应用.专题: 应用题.应用题. 分析: 根据“两点之间两点之间线段线段最短”可知:小鸟沿着两棵树的树梢进行小鸟沿着两棵树的树梢进行直线直线飞行,飞行,所行的所行的所行的路程路程最短,运用勾股定理可将两点之间的距离求出.两点之间的距离求出.解答: 解:如图,设大树高为AB=10m ,小树高为CD=4m ,过C 点作CE ⊥AB 于E ,则EBDC 是矩形,连接AC ,∴EB=4m ,EC=8m ,AE=AB ﹣EB=10﹣4=6m ,在Rt △AEC 中,AC==10m ,故选B .A . 600m B . 500m C . 400m D . 300m 点评: 本题考查正确运用本题考查正确运用勾股定理勾股定理.善于观察题目的信息是解题以及学好数学的关键..善于观察题目的信息是解题以及学好数学的关键.3.(2011•金华)如图,西安路与南京路平行,并且与八一街金华)如图,西安路与南京路平行,并且与八一街垂直垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的八一街的交叉口,准备去书店,按图中的街道行走,最近的路程路程约为(约为( )考点: 勾股定理的应用;勾股定理的应用;全等三角形全等三角形的判定与性质.专题: 计算题;压轴题.;压轴题.分析: 由于BC ∥AD ,那么有∠DAE=∠ACB ,由题意可知∠ABC=∠DEA=90°,BA=ED ,利用AAS 可证△ABC ≌△DEA ,于是AE=BC=300,再利用勾股定理可求AC ,即可求CE ,根据图可知从B 到E 的走法有两种,分别计算比较即可.有两种,分别计算比较即可.解答: 解:如右图所示,解:如右图所示,∵BC ∥AD ,∴∠DAE=∠ACB ,又∵BC ⊥AB ,DE ⊥AC ,∴∠ABC=∠DEA=90°,又∵AB=DE=400m ,∴△ABC ≌△DEA ,∴EA=BC=300m ,在Rt △ABC 中,AC==500m ,∴CE=AC ﹣AE=200,从B 到E 有两种走法:①BA+AE=700m ;②BC+CE=500m ,∴最近的路程是500m .故选B .点评: 本题考查了本题考查了平行线的性质平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC ≌△DEA ,并能比较从B 到E 有两种走法.有两种走法.A . 12m B . 13m C . 16m D . 17m x ,可得AC=AD=x ,AB=(x ﹣2)m ,BC=8m ,在Rt △ABC 中利用勾股定理可求出x.4.(2013•济南)如图,小亮将升旗的济南)如图,小亮将升旗的绳子绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m 处,发现此时绳子末端距离地面2m ,则旗杆的高度为(,则旗杆的高度为(滑轮滑轮上方的部分忽略不计)为(上方的部分忽略不计)为( )考点: 勾股定理的应用.专题: 应用题.应用题.分析: 根据题意画出示意图,设旗杆高度为解答: 解:设旗杆高度为x ,则AC=AD=x ,AB=(x ﹣2)m ,BC=8m ,在Rt △ABC 中,AB 2+BC 2=AC 2,即(x ﹣2)2+82=x 2,解得:x=17,即旗杆的高度为17米.米.故选D .点评: 本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线垂线.5.(2013•鄂州)如图,已知鄂州)如图,已知直线直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB=.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB=( )A .6 B . 8 C . 10 D . 12 考点: 勾股定理的应用;勾股定理的应用;线段线段的性质:两点之间线段最短;平行线之间的距离.专题: 压轴题.压轴题.N 作NM ⊥直线a ,连接AM , ∵A 到直线a 的距离为2,a 与b 之间的距离为4,∴AA ′分析: MN 表示表示直线直线a 与直线b 之间的距离,是定值,只要满足AM+NB 的值最小即可,作点A 关于直线a 的对称点A ′,连接A ′B 交直线b 与点N ,过点N 作NM ⊥直线a ,连接AM ,则可判断四边形AA ′NM 是平行四边形,得出AM=A ′N ,由两点之间,由两点之间线段线段最短,可得此时AM+NB 的值最小.过点B 作BE ⊥AA ′,交AA ′于点E ,在Rt △ABE 中求出BE ,在Rt △A ′BE 中求出A ′B 即可得出AM+NB .解答: 解:作点A 关于直线a 的对称点A ′,连接A ′B 交直线b 与点N ,过点=MN=4,∴四边形AA ′NM 是平行四边形,是平行四边形,∴AM+NB=A ′N+NB=A ′B ,过点B 作BE ⊥AA ′,交AA ′于点E ,易得AE=2+4+3=9,AB=2,A ′E=2+3=5,在Rt △AEB 中,BE==, 在Rt △A ′EB 中,A ′B==8.故选B .点评: 本题考查了本题考查了勾股定理勾股定理的应用、平行线之间的距离,解答本题的关键是找到点M 、点N 的位置,难度较大,注意掌握两点之间线段最短.注意掌握两点之间线段最短.的高度为的高度为 10 考点: 勾股定理的应用.分析: 如图,根据已知条件知AB+1﹣BC=11米,再由,∠BAC=30°,得到BC=AB ,接着就可以求出旗杆BC的高度.的高度.解答: 解:如图,依题意得AB+1﹣BC=11米,米,而在Rt △ABC 中,∠BAC=30°,∴BC=AB ,∴BC=10米.米.故填空答案:10.a ,b 的两个小正方形,使得a 2+b 2=52.①a ,b 的值可以是的值可以是 3,4 (提示:答案不惟一)(写出一组即可);专题: 压轴题;开放型.压轴题;开放型.点评: 此题比较简单,直接利用直角三角形中30°的角所对的边等于的角所对的边等于斜边斜边的一半就可以求出结果.的一半就可以求出结果.7.(2009•天津)如图,有一个边长为5的正方形纸片ABCD ,要将其剪拼成边长分别为②请你设计一种具有一般性的②请你设计一种具有一般性的裁剪裁剪方法,在图中画出裁剪线,并拼接成两个小正方形,同时说明该裁剪方法具有一般性:般性:图中的点E 可以是以BC 为直径的为直径的半圆半圆上的任意一点(点B ,C 除外).BE ,CE 的长分别为两个小正方形的边长的长分别为两个小正方形的边长 .考点: 勾股定理的应用.分析: ①使得a 2+b 2=52.由直角三角形勾股定理的很容易.由直角三角形勾股定理的很容易联想联想到a 、b 的值是3、4;②要求设计一般性的剪裁,则先分割出来一个边长为4的正方形,再把剩下的部分分为两个边长为1的正方形和两个长为3宽为1的矩形,四个四边形拼成一个边长为3的正方形.的正方形.解答: 解:①要使得a 2+b 2=52.考虑到直角三角形的特殊情况,a ,b 的取值可以使3,4一组(答案不唯一);②裁剪线及拼接方法如图所示:②裁剪线及拼接方法如图所示:按照上图所示剪裁,先剪一个边长是4的正方形;剩下的剪三个边长为1的正方形和两个长为3宽为1的矩形,然后将这些拼接成边长为3的正方形即可.的正方形即可.点评: 本题考查了学生的空间想象能力和发散思维能力.解决本题的关键是紧紧抓住a 2+b 2=52这个已知条件及剪拼过程拼过程面积面积不变的这个线索.不变的这个线索.8.(2009•河池)某小区有一块河池)某小区有一块等腰三角形等腰三角形的草地,它的一边长为20m ,面积为160m 2,为美化小区环境,现要给这块三角形草地围上白色的低矮栅栏,则需要栅栏的长度为这块三角形草地围上白色的低矮栅栏,则需要栅栏的长度为 20+4或40+16或40+8 m .考点: 勾股定理的应用;等腰三角形的性质.专题: 压轴题;分类讨论.压轴题;分类讨论.分析: 分20m 是底边和腰两种情况讨论;当是腰时又可以分为钝角三角形和是底边和腰两种情况讨论;当是腰时又可以分为钝角三角形和锐角锐角三角形两种情况,再次分情况讨;①当高在三角形的外部时,论.论.解答: 解:(1)当20是等腰三角形的底边时,的底边时,根据根据面积面积求得底边上的高AD 是16,再根据等腰三角形的三线合一,知:底边上的高也是底边上的再根据等腰三角形的三线合一,知:底边上的高也是底边上的中线中线,即底边的一半BD=10,根据根据勾股定理勾股定理即可求得其腰长AB===2,此时三角形的,此时三角形的周长周长是20+4;(2)当20是腰时,由于高可以在三角形的内部,也可在三角形的外部,又应分两种情况.是腰时,由于高可以在三角形的内部,也可在三角形的外部,又应分两种情况.根据面积求得腰上的高是16在R T △ADC 中,AD==12,从而可得BD=32,进一步根据勾股定理求得其底边是BC===16,此时三角形的周长是40+16; ②当高在三角形的内部时,②当高在三角形的内部时,根据勾股定理求得AD==12,BD=AB ﹣AD=8, 在R T △CDB 中,BC=是=8,此时三角形的周长是40+8;故本题答案为:20+4或40+16或40+8.点评: 此题的难点在于情况较多,注意每一种情况运用勾股定理进行计算.此题的难点在于情况较多,注意每一种情况运用勾股定理进行计算.(参考数据:=1.41,=1.73°,∠EBD=15°,在Rt考点: 勾股定理的应用.分析: 过点D 作DE ⊥AB 于点E ,证明△BCD ≌△BED ,在Rt △ADE 中求出DE ,继而得出CD ,计算出AC 的长度后,在Rt △ABC 中求出BC ,继而可判断是否超速.,继而可判断是否超速.解答: 解:过点D 作DE ⊥AB 于点E ,∵∠CDB=75°,∴∠CBD=15△CBD 和Rt △EBD 中,中,∵,∴△CBD ≌△EBD ,∴CD=DE ,在Rt △ADE 中,∠A=60°,AD=40米,米,则DE=ADsin60°=20米,米,故AC=AD+CD=AD+DE=(40+20)米,)米,在Rt △ABC 中,BC=ACtan ∠A=(40+60)米,)米,则速度==4+6≈12.92米/秒,秒,∵12.92米/秒=46.512千米/小时,小时,∴该车没有超速.∴该车没有超速.点评: 本题考查了本题考查了解直角三角形解直角三角形的应用,解答本题的关键是构造直角三角形,解答本题的关键是构造直角三角形,求出求出BC 的长度,需要多次解直角三角形,有一定难度.角形,有一定难度.10.(2013•鄂州)小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A 、B 两点,测量数据如图,其中其中矩形矩形CDEF 表示楼体,AB=150米,CD=10米,∠A=30°,∠B=45°,(A 、C 、D 、B 四点在同一四点在同一直线直线上)问:上)问:(1)楼高多少米?)楼高多少米?(2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由.(参考数据:≈1.73,≈1.41,≈2.24)考点:勾股定理的应用.应用题.专题:应用题.分析:(1)设楼高为x,则CF=DE=x,在Rt△ACF和Rt△DEB中分别用x表示AC、BD的值,然后根据AC+CD+BD=150,求出x的值即可;的值即可;(2)根据(1)求出的楼高x,然后求出20层楼的高度,比较x和20层楼高的大小即可判断谁的观点正确.米,解答:解:(1)设楼高为x米,则CF=DE=x米,∵∠A=30°,∠B=45°,∠ACF=∠BDE=90°,米,∴AC=x米,BD=x米,∴x+x=150﹣10,解得x==70(﹣1)(米),)米.∴楼高70(﹣1)米.米,(2)x=70(﹣1)≈70(1.73﹣1)=70×0.73=51.1米<3×20米,层.∴我支持小华的观点,这楼不到20层.思想求解,难度一般.方程思想求解,难度一般.点评:本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,利用本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,利用方程。

专题:第18章.勾股定理知识点与常见题型总结

专题:第18章.勾股定理知识点与常见题型总结

专题:第18章.勾股定理知识点与常见题型总结1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCB A方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =- ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DA题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长 分析:直接应用勾股定理222a b c += 解:⑴2210AB AC BC =+=⑵228BC AB AC =-=题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:⑴224AC AB BC =-=, 2.4AC BCCD AB⋅== DBAC⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E , 12∠=∠,90C ∠=︒ ∴ 1.5DE CD == 在BDE ∆中2290,2BED BE BD DE ∠=︒=-= Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4. ( 2014•安徽省,第8题4分)如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .B .C .4 D . 5考点: 翻折变换(折叠问题).分析: 设BN =x ,则由折叠的性质可得DN =AN =9﹣x ,根据中点的定义可得BD =3,在Rt △ABC 中,根据勾股定理可得关于x 的方程,解方程即可求解. 解答: 解:设BN =x ,由折叠的性质可得DN =AN =9﹣x , ∵D 是BC 的中点, ∴BD =3,在Rt △ABC 中,x 2+32=(9﹣x )2, 解得x =4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.例5.已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.解析:解题之前先弄清楚折叠中的不变量。

沪科版八年级下册数学第18章 勾股定理 勾股定理的逆定理(1)

沪科版八年级下册数学第18章 勾股定理 勾股定理的逆定理(1)

知1-练
1 判断下列三边组成的三角形是不是直角三角形: (1) a=2,b=3, c=4. () (2) a=9,b=7,c=12. () (3) a=25,b=20,c=15. ()
(来自《教材》)
知1-练
2 (中考·南京)下列长度的三条线段能组成钝角三角形
的是( )
A.3,4,4B.3,4,5
C.3,4,6D.3,4,7
3在△ABC中,∠A,∠B,∠C的对边分别为a,b,
c,且(a+b)(a-b)பைடு நூலகம்c2,则( )
A.∠A为直角
B.∠B为直角
C.∠C为直角
D.△ABC不是直角三角形
知1-练
4五根小木棒,其长度(单位:cm)分别为7,15, 20,24,25,现将它们摆成两个直角三角形, 其中正确的是( )
知2-讲
2.判断勾股数的方法: (1)确定是否是三个正整数; (2)确定最大数; (3)计算:看较小两数的平方和是否等于最大数的平方. 3.易错警示:勾股数必须同时满足两个条件: (1)三个数都是正整数; (2)两个较小数的平方和等于最大数的平方.
知2-讲
例3 已知:在△ABC中,三条边长分别为a=n2-1, b=2n,c=n2+1(n>1). 求证:△ABC为直角三 角形
则△ABC是什么三角形
(来自《教材》)
知2-练
3若直角三角形的三边长为三个连续的偶数,则它
的三边长分别是( )
A.3,4,5
B.6,8,10
C.3,4,6D.4,6,8
知2-练
4下面几组数中,为勾股数的一组是( ) A.4,5,6B.12,16,20 C.-10,24,26D.2.4,4.5,5.1 5下列几组数:①9,12,15;②8,15,17;③7, 24,25;④n2-1,2n,n2+1(n是大于1的整数), 其中是勾股数的有( ) A.1组B.2组C.3组D.4组

八年级数学下册第18章勾股定理18、2勾股定理的逆定理18、2、1勾股定理的逆定理新版沪科版

八年级数学下册第18章勾股定理18、2勾股定理的逆定理18、2、1勾股定理的逆定理新版沪科版

10.【2021·合肥庐阳区期中】若△ABC的三边长分别为a, b,c,且满足(a+b)(a-b)=c2,则该三角形是( D ) A.锐角三角形 B.以c为斜边长的直角三角形 C.以b为斜边长的直角三角形 D.以a为斜边长的直角三角形
11.若a,b都是正整数(a>2b),且a-b,3b,a+b分别 是一个直角三角形三边的长,则这个三角形的任一边 的长不可能是( C ) A.12 B.13 C.14 D.15
12.【合肥四十五中期中】如图,在5×5的正方形网格中, 从在格点上的点A,B,C,D中任取三点,所构成的三角 形恰好是直角三角形的个数为( ) A.1 B.2 C.3 D.4
【点拨】如图,连接AC,AB,AD,BC,CD,BD, 设小正方形的边长为1, 由勾股定理,得AB2=12+22=5,AC2=22+42=20,AD2=12 +32=10,BC2=52=25,CD2=12+32=10,BD2=12+22=5, ∴AB2+AC2=BC2,AD2+CD2=AC2,BD2+AB2=AD2, ∴△ABC,△ADC,△ABD是直角三角形,∴共3个直角三角 形,故选C. 【答案】C
16 见习题
1.如果三角形两边的平方和等于第三边的平方,那么这个三角 形是__直__角____三角形. 我们在判断一个三角形是不是直角三 角形时,可直接运用这个定理.
2.能够成为直角三角形三条边长度的三个正整数,称 为勾股数. 即勾股数必须满足以下两个条件:①以 三个数为边长的三角形是直角三角形;②三个数还 必须是_正__整__数___.
15.【创新题】某社区政府想把一块三角形废地开辟为植物 园,如图,测得AC=80 m,BC=60 m,AB=100 m.
(1)若入口E在边AB上,且与A,B的距离相等,求从入口E到 出口C的最短路线的长;

八年级数学下册 第18章 勾股定理 18.2 勾股定理的逆定理课件

八年级数学下册 第18章 勾股定理 18.2 勾股定理的逆定理课件
知识(zhī shi)目标
1.通过对绳子打结问题的观察、讨论,归纳得出勾股定理的 逆定理,会用勾股定理的逆定理判定三角形是直角三角形.
2.理解勾股数的概念,会判断一组数是不是勾股数. 3.在掌握勾股定理及其逆定理的基础上,会利用勾股定理的 逆定理解题.
第三页,共十八页。
18.2 勾股定理(ɡōu ɡǔ dìnɡ lǐ)的逆定理 目标突破
第18章 勾股定理(ɡōu ɡǔ dìnɡ lǐ)
18.2 勾股定理 的逆定理 (ɡōu ɡǔ dìnɡ lǐ)
第一页,共十八页。
第18章 勾股定理(ɡōu ɡǔ dìnɡ lǐ)
18.2 勾股定理 的逆定理 (ɡōu ɡǔ dìnɡ lǐ)
知识目标 目标突破 总结反思
第二页,共十八页。
18.2 勾股定理(ɡōu ɡǔ dìnɡ lǐ)的逆定理
第十二页,共十八页。
18.2 勾股定理(ɡōu ɡǔ dìnɡ lǐ)的逆定理
总结(zǒngjié)反思
知识点一 勾股定理(ɡōu ɡǔ dìnɡ lǐ)的逆定理
(1)勾股定理的逆定理:如果三角形两边的平方和等于第三边 的____平__方____,那么这个三角形是___直__角_三__角_形_____.即若△ABC 的 三边长 a,b,c 满足 a2+b2=c2,则△ABC 是直角三角形.
第五页,共十八页。
18.2 勾股定理(ɡōu ɡǔ dìnɡ lǐ)的逆定理
【归纳总结】判定一个三角形是直角三角形的方法: (1)根据角度判定:①有一个角是直角的三角形是直角三角形;② 有两个内角互余的三角形是直角三角形;③有一个内角等于另外两 个内角的和的三角形是直角三角形. (2)根据边长判定:最大边的平方等于较小两边的平方和的三角形 是直角三角形.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.
1cm,2cm,3cm
B.
2cm,4cm,5cm
C.
6cm,8cm,10cm
D.
考点:
勾股定理的逆定理;勾股数.
分析:
根据勾股定理的逆定理进行逐一判断即可.
解答:
解:A、不能,因为12+22=5≠42=16,故不能构成直角三角形;
B、不能,因为22+42=20≠52=25,故不能构成直角三角形;
故选C.
点评:
本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
2.下列四组线段中,可以构成直角三角形的是( )
A.
1,2,3
B.
2,3,4
C.
3,4,5
D.
4,5,6
考点:
勾股数.
专题:
21,28,35
考点:
勾股定理的逆定理;勾股数.
分析:
根据勾股定理的逆定理进行分析,从而得到答案.
解答:
解:A、不是,因为42+52≠62;
B、不是,因为52+72≠122;
C、不是,因为122+132≠152;
D、是,因为212+282=352.
故选D.
点评:
解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.
【考点训练】勾股数-1
一、选择题(共5小题)
1.(2012•合山市模拟)由线段a,b,c组成的三角形是直角三角形的是( )
A.
a=1,b=2,c=3
B.
a=2,b=3,c=4
C.
a=3,b=4,c=5
D.
a=4,b=5,c=6
2.下列四组线段中,可以构成直角三角形的是( )
A.
1,2,3
B.
2,3,4
考点:
勾股数.
分析:
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.
解答:
解:A、12+22≠32,不能构成直角三角形,故选项错误;
B、22+32≠42,不能构成直角三角形,故选项错误;
C、32+42=52,能构成直角三角形,故选项正确;
D、42+52≠62,不能构成直角三角形,故选项错误.
C.
3,4,5
D.
4,5,6
3.下列各组数中,是勾股数的为( )
A.
1,2,3
B.
4,5,6
C.
3,4,5
D.
7,8,9
4.(2010•温州模拟)下列三条线段能构成直角三角形的是( )
A.
1cm,2cm,3cm
B.
2cm,4cm,5cm
C.
6cm,8cm,10cm
D.
5.下列各组数中,是勾股数的一组是( )
关注中学生习题网官方微信公众号,免费学习资源、学习方法、学习资讯第一时间掌握。
微信公众账号:xitibaike
扫描二维码关注:
C、能,因为62+82=100=102,故能构成直角三角形;
D、不能,因为( )2+( )2=7≠( )2=5,故不能构成直角三角形.
故选C.
点评:
此题比较简单,考查的是勾股定理的逆定理,即a2+b2=c2.
5.下列各组数中,是勾股数的一组是( )
A.
4,5,6
B.
5,7,12
C.
12,13,15
ቤተ መጻሕፍቲ ባይዱD.
计算题.
分析:
本题可对四个选项分别进行计算,看是否满足勾股定理的逆定理,若满足则为答案.
解答:
解:A、12+22≠32,不能构成直角三角形,故不符合题意;
B、22+32≠42,不能构成直角三角形,故不符合题意;
C、32+42=52,能构成直角三角形,故符合题意;
D、42+52≠62,不能构成直角三角形,故不符合题意.
故选C.
点评:
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
3.下列各组数中,是勾股数的为( )
A.
1,2,3
B.
4,5,6
C.
3,4,5
D.
7,8,9
考点:
勾股数.
分析:
根据勾股定理的逆定理分别对各组数据进行检验即可.
解答:
解:A、错误,∵12+22=5≠32=9,∴不是勾股数;
A.
4,5,6
B.
5,7,12
C.
12,13,15
D.
21,28,35
【考点训练】勾股数-1
参考答案与试题解析
一、选择题(共5小题)
1.(2012•合山市模拟)由线段a,b,c组成的三角形是直角三角形的是( )
A.
a=1,b=2,c=3
B.
a=2,b=3,c=4
C.
a=3,b=4,c=5
D.
a=4,b=5,c=6
B、错误,∵42+52=41≠62=36,∴不是勾股数;
C、正确,∵32+42=25=52=25,∴是勾股数;
D、错误,∵72+82=113≠92=81,∴不是勾股数.
故选C.
点评:
此题比较简单,只要对各组数据进行检验,看各组数据是否符合勾股定理的逆定理即可.
4.(2010•温州模拟)下列三条线段能构成直角三角形的是( )
相关文档
最新文档