开关电源EMC过不了?都是PCB布板惹的祸!(上)
开关电源电磁兼容性问题
开关电源电磁兼容性问题开关电源因具有体积小、重量轻、效率高、工作可靠、可远程监控等优点,而广泛应用于工业、通讯、军事、民用、航空等各个领域。
在很多场合,开关电源,特别是通信开关电源要有很强的抗电磁干扰能力,如对浪涌、电网电压波动的适应能力,对静电、电场、磁场及电磁波等的抗干扰能力,保证自身能够正常工作以及对设备供电的稳定性。
一方面,因开关电源内部的功率开关管、整流或续流二极管及主功率变压器,是在高频开关的方式下工作,其电压电流波形多为方波。
在高压大电流的方波切换过程中,将产生严重的谐波电压及电流。
这些谐波电压及电流,一方面通过电源输入线或开关电源的输出线传出,对与电源在同一电网上供电的其它设备及电网产生干扰,使设备不能正常工作;另一方面,严重的谐波电压电流在开关电源内部产生电磁干扰,从而造成开关电源内部工作的不稳定,使电源的性能降低。
还有部分电磁场通过开关电源机壳的缝隙,向周围空间辐射,与通过电源线、直流输出线产生的辐射电磁场,一起通过空间传播的方式,对其它高频设备及对电磁场比较敏感的设备造成干扰,引起其它设备工作异常。
因此,对开关电源要限制由负载线、电源线产生的传导干扰,及由辐射传播的电磁场干扰,使处于同一电磁环境中的设备均能够正常工作,互不干扰[1][2].2 国内外电磁兼容性标准[1]电磁兼容性是指设备或系统在其电磁环境中能正常工作且不对该环境中的任何设备构成不能承受的电磁干扰的能力。
要彻底消除设备的电磁干扰及对外部一切电磁干扰信号是不可能的。
只能通过系统地制定设备与设备之间允许产生的电磁干扰大小及抵抗电磁干扰的能力的标准,才能使电气设备及系统间达到电磁兼容的要求。
国内外大量的电磁兼容性标准,为系统内的设备相互达到电磁兼容性制订了约束条件。
国际无线电干扰特别委员会(CISPR)是国际电工委员会(IEC)下属的一个电磁兼容标准化组织,设六个分会。
早在1934年就开展EMC标准的研究。
其中第六分会(SCC)主要负责制定关于干扰测量接收机及测量方法的标准。
开关电源的电磁干扰解决方法
差模干扰抑制器通常使用低通滤波元件构成,最简单的就是一只滤波电容接在两根电源线之间而形成的输入滤波电路(如图6中电容CX1),只要电容选择适当,就能对高频干扰起到抑制作用。该电容对高频干扰阻抗甚底,故两根电源线之间的高频干扰可以通过它,它对工频信号的阻抗很高,故对工频信号的传输毫无影响。该电容的选择主要考虑耐压值,只要满足功率线路的耐压等级,并能承受可预料的电压冲击即可。为了避免放电电流引起的冲击危害,CX电容容量不宜过大,一般在0.01~0.1μF之间。电容类型为陶瓷电容或聚酯薄膜电容。
ID=2πfCYVcY
式中:ID为漏电流;
f为电网频率。
一般装设在可移动设备上的滤波器,其交流漏电流应<1mA;若为装设在固定位置且接地的设备上的电源滤波器,其交流漏电流应<3.5mA,医疗器材规定的漏电流更小。由于考虑到漏电流的安全规范,电容CY的大小受到了限制,一般为2.2~33nF。电容类型一般为瓷片电容,使用中应注意在高频工作时电容器CY与引线电感的谐振效应。
1.2 输入电流畸变造成的噪声
开关电源的输入普遍采用桥式整流、电容滤波型整流电源。,在没有 PFC功能的输入级,由于整流二极管的非线性和滤波电容的储能作用,使得二极管的导通角变小,输入电流i成为一个时间很短、峰值很高的周期性尖峰电流。这种畸变的电流实质上除了包含基波分量以外还含有丰富的高次谐波分量。这些高次谐波分量注入电网,引起严重的谐波污染,对电网上其他的电器造成干扰。为了控制开关电源对电网的污染以及实现高功率因数,PFC电路是不可或缺的部分。
电源设计中的EMC问题与解决方法
电源设计中的EMC问题与解决方法在电源设计过程中,电磁兼容性(Electromagnetic Compatibility,简称EMC)问题是一个需要被高度关注的重要方面。
EMC问题的存在可能导致电子设备之间的相互干扰,从而影响系统的正常工作。
因此,深入了解电源设计中的EMC问题并寻求解决方法,对于保证产品稳定性和可靠性具有重要意义。
首先,我们来了解一些常见的EMC问题。
电源设计中的EMC问题主要包括以下几个方面:1. 电源线干扰:电源线作为电源输入和输出的连接途径,可能成为传导干扰的通道。
当电源线上的高频噪声传导到其他部分时,会引起其他电子设备的干扰,影响其正常使用。
2. EMI辐射:电源设备在工作过程中会产生电磁辐射,如果辐射幅度过高,可能会对周围的其他设备和信号线路产生干扰,使其无法正常工作。
3. 地线干扰:地线是电路中的参考电位点,负责回流电流。
但如果地线的阻抗较大或者回流电流过大,可能会导致地线产生较大的共模干扰,进而影响整个系统的正常工作。
接下来,我们将介绍一些解决电源设计中EMC问题的方法:1. 合理的布局设计:在电源设计过程中,应注意合理的布局设计。
通过将不同电路板的布局位置安排合理,减小信号之间的干扰。
将高频和低频电路分开布局,采用屏蔽罩等措施对敏感电路进行隔离,以减少电磁辐射和传导干扰。
2. 使用滤波器:在电源设计中,适当选择并使用滤波器可以有效减小电源线上的高频噪声。
滤波器能够过滤掉不需要的高频干扰信号,提高电源线的电磁兼容性。
3. 优化接地设计:合理的地线设计对于解决地线干扰问题至关重要。
通过降低地线的阻抗并增加回流电流的路径,减小共模干扰的产生。
同时,合理选择接地点,如使用星型接地方式,可以减少单点接地带来的电磁干扰。
4. 选择合适的电源元件:在电源设计中,选择合适的电源元件也能够有效降低EMC问题。
例如,采用能够提供更好电源抗干扰能力的开关电源,选择低电磁辐射的磁性元件等。
避免 pcb 设计中出现 emc 和 emi 的 9 个技巧 -回复
避免pcb 设计中出现emc 和emi 的9 个技巧-回复如何避免PCB 设计中出现EMC 和EMI 的问题。
引言:在电子产品的设计和制造过程中,电磁兼容性(EMC)和电磁干扰(EMI)是需要特别注意和解决的问题。
如果不正确处理EMC 和EMI,可能会导致电磁故障、性能问题、功能故障,甚至影响产品的市场竞争力。
因此,本文将介绍PCB 设计中的9个技巧,帮助避免EMC 和EMI 的出现。
一、理解EMC 和EMI 的概念:在开始探讨如何避免EMC 和EMI 之前,我们首先需要了解EMC 和EMI 的概念。
EMC 是指电子器件或系统在特定环境下能够以无干扰或受控的方式正常工作的能力。
而EMI 则是指电子器件或系统在工作过程中,产生的干扰能量向外界传播,对其他电子设备造成干扰。
二、合理布局与分离:PCB 设计中的布局和分离是避免EMC 和EMI 的重要因素之一。
在布局方面,应该合理规划电路板上各个模块、信号和功率链的位置,避免相互干扰。
在分离方面,设计者需要将模拟电路和数字电路、高频电路和低频电路、信号和功率线分离开来,避免它们之间的相互干扰。
三、地线设计和电源滤波:地线是PCB 设计中的一个重要因素,合理的地线设计能有效降低EMC 和EMI。
应尽量减少地线回路的面积,使用合适的地线宽度和间距,并注意地线与其他信号线的交叉。
同时,在电源输入端需要加入合适的滤波电路,以过滤电源线上的噪声,减轻EMI 的产生。
四、合理选择元器件和布局:元器件的选择和布局对于避免EMC 和EMI 也至关重要。
在选择元器件时,应优先选择具有良好EMC 性能的元器件,并根据设计需求选择合适的封装和引脚布局。
在布局过程中,需要避免元器件间的相互干扰,注意布局时的间距和引脚分离,以减少EMC 和EMI 发生的可能性。
五、正确使用屏蔽和引线:在设计PCB 时,合理使用屏蔽和引线也是减少EMC 和EMI 的一种有效方法。
对于高频和干扰敏感的电路,可以考虑添加屏蔽罩或屏蔽线,限制干扰源对电路的影响。
开关电源电磁兼容设计及电磁骚扰的抑制总结
开关电源电磁兼容设计及电磁骚扰的抑制总结开关电源电磁兼容(EMC)设计及电磁骚扰的抑制是在开关电源设计中不可避免的问题。
为了确保设备在工作时不会产生电磁干扰或受到电磁干扰的影响,我们需要采取一些措施来保证电磁兼容性。
以下是一些关键点,总结了开关电源的电磁兼容设计和电磁骚扰抑制的方法。
1.开关电源的布局设计:-尽量减小导线的长度和面积,在布局时要避免导线的交叉和平行排列,尤其是高频信号线和低频信号线。
-将高频部分布局在一起,低频部分布局在一起,以减少电磁干扰。
-使用多层PCB板设计,将地线、电源线和信号线分层布局,以降低电磁辐射和互相干扰。
2.滤波器设计:-在输入和输出端口附近添加滤波器,以减少电磁干扰的传播。
-使用电源滤波器,以减少电源线上的高频噪声。
-使用输入和输出滤波器,以降低辐射和传导的电磁干扰。
3.接地设计:-使用良好的接地方法,包括终端接地、屏蔽接地和共地接法,以降低电磁辐射和互相干扰。
-在布局时,将地线设计为低阻抗、低干扰的传输路径,确保电磁干扰的可靠耗散。
4.耦合器件的选择:-在开关和滤波器中选择适当的元器件,如电感、电容和变压器,以减少电磁辐射和传导的干扰。
-使用优质的耦合器件,具有更好的电磁兼容性和抑制电磁骚扰的能力。
5.使用屏蔽和接地:-在关键部位使用屏蔽盖板或屏蔽罩,以减少电磁辐射和传导的干扰。
-在电源线和信号线上使用屏蔽,并正确地接地屏蔽以提高电磁兼容性。
6.EMI测试和符合性认证:-完成EMI测试,以确保产品符合相关标准和规定。
-定期进行EMI测试,并及时修正和改进设计,以满足不断变化的要求和标准。
总之,开关电源电磁兼容设计及电磁骚扰的抑制是在开关电源设计中不可或缺的部分。
通过合理的布局设计、滤波器设计、接地设计、耦合器件选择、屏蔽和接地以及EMI测试和符合性认证等措施,我们可以有效地降低电磁辐射和传导的干扰,提高开关电源的电磁兼容性,保证产品的可靠性和稳定性。
PCB布局对电子产品EMC性能的影响
环测威官网:/在PCB中接地•公共代码干扰对PCB内部信号的影响印刷电路板(PCB)内部印刷线具有相对于参考接地板的寄生参数,当功能信号在PCB内传输时,电路中同一网络中的同一等电位节点不再具有等电位。
PCB内部的电流i从源端开始,通过一系列载流子返回信号源,形成信号。
更重要的是,我倾向于沿着具有低阻抗的路径流动,因此我通常保持不变的阻抗稳定性。
图1显示了共模干扰转换为PCB内差模干扰的过程。
我ð是指PCB流内的差模电流而我COM是指共模电流,要么从外部PCB开始,并通过参考接地板流入PCB或PCB,并返回到PCB的内部的内部通过参考地开始板。
高频我COM有两条路径:第一是从点甲到点乙内PCB从GND开始; 第二个是从端口S 1开始从A点到B点到PCB内由电容C.接地阻抗ŽAB 导致Δ的产生üAB,所以当正常信号被传递到IC 2,变形将发生的信号和共模干扰被转化成差模干扰,从而产生影响基于亦即式正常信号Ù 2 = û1 -ΔüAB。
因此,只要我COM进入PCB的内部通过I / O端口或空间辐射,差模滤波器电容在PCB的信号线只能按干扰旁路到GND。
该结果的先决条件是GND被认为是信号回流的低阻抗,并且电流总是朝向低阻抗方向流动。
•EMC设计实施的关键:PCB中的接地阻抗由高频信号产生EMC的原因在于信号参考电平GND不能保持其低阻抗特性。
随着参考电平阻抗Z GND的增加,信号传输质量也会降低。
为了解决高频干扰的问题,在EMC设计中使用了常用的方法,例如与“接地”紧密连接的滤波器,接地和屏蔽。
滤波器可视为对地电容,有两种结构,一种是将X电容连接到信号参考地,另一种是通过Y 电容或PCB内部的不同接地连接使信号连接到金属壳。
屏蔽可以视为PCB地面向太空扩环测威官网:/展的结果。
滤波器或屏蔽的目的是使高频共模干扰通过低阻抗旁路,以避免流入正常工作信号。
开关电源EMC过不了的主要原因解析
开关电源EMC过不了的主要原因解析电磁兼容性(EMC)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。
因此,EMC包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值;另一方面是指器具对所在环境中存在的电磁干扰具有一定程度的抗扰度,即电磁敏感性。
所谓电磁干扰是指任何能使设备或系统性能降级的电磁现象。
而所谓电磁干扰是指因电磁干扰而引起的设备或系统的性能下降。
EMC包括EMI(电磁干扰)及EMS(电磁耐受性)两部份,所谓EMI电磁干扰,乃为机器本身在执行应有功能的过程中所产生不利于其它系统的电磁噪声;而EMS 乃指机器在执行应有功能的过程中不受周围电磁环境影响的能力。
本文首先介绍了EMC的分类及标准,其次阐述了开关电源EMC干扰产生的原因,最后介绍了开关电源EMC过不了的主要原因,具体的跟随小编一起来了解一下。
EMC的分类及标准EMC(ElectromagneTIc CompaTIbility)是电磁兼容,它包括EMI(电磁骚扰)和EMS(电磁抗骚扰)。
EMC定义为:设备或系统在其电磁环境中能正常工作且不对该环境中的任何设备的任何事物构成不能承受的电磁骚扰的能力。
EMC整的称呼为电磁兼容。
EMP是指电磁脉冲。
EMC = EMI + EMS EMI :?磁干? EMS :?磁相容性(免疫力)EMI可分为传导ConducTIon及辐射RadiaTIon两部分,Conduction规范一般可分为:FCC Part 15JClass B;CISPR 22(EN55022,EN61000-3-2,EN61000-3-3) Class B;国标IT类(GB9254,GB17625)和AV类(GB13837,GB17625)。
FCC测试频率在450K-30MHz,CISPR 22测试频率在150K--30MHz,Conduction可以用频谱分析仪测试,Radiation则必须到专门的实验室测试。
开关电源电磁干扰(EMI)整改汇总
开关电源电磁干扰(EMI)整改汇总开关电源类产品的频率大概分四段:150K-400K-4M-20M-30M,这样分的好处是找问题迅速,一般前一段的主要问题在于滤波元器件上。
小功率开关电源用一个合适的X电容和一个共模电感可消除,从增加的元件对测试结果来看,一般电感对A V值有效,电容对QP值有效。
当然,这只是一般规律。
电容越大,滤除的频率越低。
电感越大(适可而止),滤除的频率越高。
400K-4M这一段主要是开关管,变压器等的干扰。
可以在管与散热片之间加屏蔽层(云母片),或者在引脚上套磁珠。
吸收电路上套磁珠有时也很有效。
变压器初次级之间的Y 电容也是不容忽视的。
次级对初级高压端合适还是低压端有时候对这段频率影响很大。
除此之外,调整滤波器也可以抑制其骚扰。
4M-20M这段主要是变压器等高频干扰,在没有找到根源前,大概通过调整滤波,接地,加磁珠等手段解除,有时也可能是输出端的问题。
20M 以后主要针对齐纳二级管,输出端电源输入端整改。
一般是用到磁珠,接地等。
值得注意的是,滤波器件因该远离变压器,散热器,否则容易耦合。
镇流器整改原理和开关电源类似,但是前部分超标并非调整滤波器件就都可以解除,最有效的办法是Y电容金属外壳,外壳再连接地线。
磁珠对高频抑制效果不错。
根据IEC 60384-14,电容器分为X电容及Y电容,1. X电容是指跨于L-N之间的电容器,2. Y电容是指跨于L-G/N-G之间的电容器。
(L="Line", N="Neutral", G="Ground")X电容底下又分为X1, X2, X3,主要差別在于:1. X1耐高压大于2.5 kV, 小于等于4 kV,2. X2耐高压小于等于2.5 kV,3. X3耐高压小于等于1.2 kVY电容底下又分为Y1, Y2, Y3,Y4, 主要差別在于:1. Y1耐高压大于8 kV,2. Y2耐高压大于5 kV,3. Y3耐高压n/a4. Y4耐高压大于2.5 kVX,Y电容都是安规电容,火线零线间的是X电容,火线与地间的是Y电容.它们用在电源滤波器里,起到电源滤波作用,分别对共模,差模工扰起滤波作用.作为工作于开关状态的能量转换装置,开关电源的电压、电流变化率很高,产生的干扰强度较大;干扰源主要集中在功率开关期间以及与之相连的散热器和高平变压器,相对于数字电路干扰源的位置较为清楚;开关频率不高(从几十千赫和数兆赫兹),主要的干扰形式是传导干扰和近场干扰;而印刷线路板 (PCB)走线通常采用手工布线,具有更大的随意性,这增加了PCB分布参数的提取和近场干扰估计的难度。
开关电源EMC传导整改总结
开关电源EMC传导整改总结第一篇:开关电源EMC 传导整改总结三合一主板的传导整改记录要理解传导干扰测试,首先要清楚一个概念:差模干扰与共模干扰差模干扰:存在于L-N线之间,电流从L进入,流过整流二极管正极,再流经负载,通过热地,到整流二极管,再回到N,在这条通路上,有高速开关的大功率器件,有反向恢复时间极短的二极管,这些器件产生的高频干扰,都会从整条回路流过,从而被接收机检测到,导致传导超标。
共模干扰:共模干扰是因为大地与设备电缆之间存在寄生电容,高频干扰噪声会通过该寄生电容,在大地与电缆之间产生共模电流,从而导致共模干扰。
下图为差模干扰引起的传导FALL数据,该测试数据前端超标,为差模干扰引起:下图为开关电源EMI原理部分:图中CX2001为安规薄膜电容(当电容被击穿或损坏时,表现为开路)其跨在L线与N线之间,当L-N之间的电流,流经负载时,会将高频杂波带到回路当中。
此时X电容的作用就是在负载与X电容之间形成一条回路,使的高频分流,在该回路中消耗掉,而不会进入市电,即通过电容的短路交流电让干扰有回路不串到外部。
对差模干扰的整改对策: 1.增大X电容容值2.增大共模电感感量,利用其漏感,抑制差模噪声(因为共模电感几种绕线方式,双线并绕或双线分开绕制,不管哪种绕法,由于绕制不紧密,线长等的差异,肯定会出现漏磁现象,即一边线圈产生的磁力线不能完全通过另一线圈,这使得L-N线之间有感应电动势,相当于在L-N之间串联了一个电感)下图为共模干扰测试FALL数据:电源线缆与大地之间的寄生电容,使得共模干扰有了回路,干扰噪声通过该电容,流向大地,在LISN-线缆-寄生电容-地之间形成共模干扰电流,从而被接收机检测到,导致传导超标(这也可以解释为什么有的主板传导测试时,不接地通过,一夹地线就超标。
USB模式下不接地时,电流回路只能通过L-二极管-负载-热地-二极管-N,共模电流不能回到LISN,LISN检测到的噪声较小,而当主板的冷地与大地直接相连时,线缆与大地之间有了回路,此时若共模噪声未被前端LC滤波电路吸收的话,就会导致传导超标)对共模干扰的整改对策: 1.加大共模电感感量2.调整L-GND,N-GND上的LC滤波器,滤掉共模噪声3.主板尽可能接地,减小对地阻抗,从而减小线缆与大地的寄生电容。
避免 pcb 设计中出现 emc 和 emi 的 9 个技巧
避免 pcb 设计中出现 emc 和 emi 的 9 个技巧:
避免PCB设计中出现EMC和EMI的9个技巧:
1.合理的分区:根据电路的功能,将PCB划分为不同的区域,如模拟区域、数字区域、
电源区域等。
在不同的区域之间设置适当的隔离,以减少信号之间的干扰。
2.合适的布局:在PCB布局时,应将高电流、高电压、高速数字信号等区域进行适当
的分离,避免相互干扰。
同时,要考虑到电源和地的分配,保证电源和地网络的连续性。
3.良好的接地设计:接地是解决EMC和EMI问题的关键。
设计合理的接地网络,可以
有效地抑制干扰信号,提高电路的稳定性。
4.使用适当的屏蔽技术:对于关键的电路部分,可以采用屏蔽措施,如电磁屏蔽罩、
导电衬垫等,以减少外界对电路的干扰。
5.合理的布线:在布线时,应避免使用过长的信号线、90度折线、突然的线宽变化等
不良布线方式。
合理的布线可以降低信号的传输阻抗,减少信号之间的干扰。
6.使用适当的滤波技术:在电路中加入适当的滤波器,可以有效地滤除高频噪声信号,
提高电路的抗干扰能力。
7.合理的元件布局:在元件布局时,应将元件按照功能进行分组,并保持合适的间距。
这样可以减少信号之间的耦合和干扰。
8.使用合适的去耦电容:在电路中加入适当的去耦电容,可以减小电源和地之间的噪
声,提高电路的稳定性。
9.进行充分的仿真和测试:在完成PCB设计后,应进行充分的仿真和测试,以确保设
计的可行性和可靠性。
同时,也可以通过测试来优化设计,提高电路的性能。
开关电源EMC过不了的主要原因解析
开关电源EMC过不了的主要原因解析
开关电源EMC过不了的主要原因
解析
电磁兼容性(EMC)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。
因此,EMC包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值;另一方面是指器具对所在环境中存在的电磁干扰具有一定程度的抗扰度,即电磁敏感性。
所谓电磁干扰是指任何能使设备或系统性能降级的电磁现象。
而所谓电磁干扰是指因电磁干扰而引起的设备或系统的性能下降。
EMC包括EMI(电磁干扰)及EMS(电磁耐受性)两部份,所谓EMI 电磁干扰,乃为机器本身在执行应有功能的过程中所产生不利于其它系统的电磁噪声;而EMS 乃指机器在执行应有功能的过程中不受周围电磁环境影响的能力。
本文首先介绍了EMC的分类及标准,其次阐述了开关电源EMC干扰产生的原因,最后介绍了开关电源EMC过不了的主要原因,具体的跟随小编一起来了解一下。
产品EMC辐射超标原因分析
产品EMC辐射超标原因分析造成EMC辐射超标的原因是多方面的,接口滤波不好,结构屏效低,电缆设计有缺陷都有可能导致辐射发射超标,但产生辐射的根本原因却在PCB的设计。
从EMC方面来关注PCB,主要关注这几个方面:1. 从减小辐射骚扰的角度出发,应尽量选用多层板,内层分别作电源层、地线层,用以降低供电线路阻抗,抑制公共阻抗噪声,对信号线形成均匀的接地面,加大信号线和接地面间的分布电容,抑制其向空间辐射的能力。
2. 电源线、地线、印制板走线对高频信号应保持低阻抗。
在频率很高的情况下,电源线、地线、或印制板走线都会成为接收与发射骚扰的小天线。
降低这种骚扰的方法除了加滤波电容外,更值得重视的是减小电源线、地线及其他印制板走线本身的高频阻抗。
因此,各种印制板走线要短而粗,线条要均匀。
3. 电源线、地线及印制导线在印制板上的排列要恰当,尽量做到短而直,以减小信号线与回线之间所形成的环路面积。
4. 电路元件和信号通路的布局必须最大限度地减少无用信号的相互耦合。
在PCB的不同的设计阶段所关注的问题点不同。
在元器件布局阶段需要注意:1. 接口信号的滤波、防护和隔离等器件是否靠近接口连接器放置,先防护,后滤波;电源模块、滤波器、电源防护器件是否靠近电源的入口放置,尽可能保证电源的输入线最短,电源的输入输出分开,走线互不交叉;2. 晶体、晶振、继电器、开关电源等强辐射器件或敏感器件是否远离单板拉手条、连接器;3. 滤波电容是否靠近IC的电源管脚放置,位置、数量适当;4. 时钟电路是否靠近负载,且负载均衡放置;5. 接口滤波器件的输入、输出是否未跨分割区;除光耦、磁珠、隔离变压器、A/D、D/A等器件外,其它器件是否未跨分割区;在PCB布线阶段需要注意:1. 电源、地的布线处理无地环路,电源及与对应地构成的回路面积小;2. 差分信号线对是否同层、等长、并行走线,保持阻抗一致,差分线间无其他走线;3. 时钟等关键信号线是否布内层(优先考虑优选布线层),并加屏蔽地线或与其他布线间距满足3W原则,关键信号走线是否未跨分割区;4. 是否无其他信号线从电源滤波器输入线下走线,滤波器等器件的输入、输出信号线是否未互相并行、交叉走线;尽管我们制定了种种PCB布局布线规则,但是在实现这些规则的时候,无论我们如何努力,设计中的缺陷总是象病魔一样挥之不去。
开关电源EMC过不了?都是PCB布板惹的祸!(下)
开关电源EMC过不了?都是PCB布板惹的祸!
(下)
接上文→开关电源EMC过不了?都是PCB布板惹的祸!(上)
十二、LLC电路的布板与EMC:
LLC电路大家最熟悉不过了,虚线圆圈是驱动电路,在电路设计时紧靠MOS管放置,也就是说IC提供的驱动只需要引二根线拉到驱动电路,驱动电路离MOS管近,避免被干扰(同时走线时也要注意驱动干扰到敏感信号,既是敏感信号也是干扰源);一旦驱动被干扰电源可想而知。
同理同步整流的MOS管驱动也要离同步整流管近,设计原理图时像此图
这样放就能很好理解,假如你将这电路给PCB工程师布板,他就很直观如何布局走线,你若是画得很乱,很多PCB工程师对电路理解得布透彻可能就容易布错板。
另外:原边有一个重要的环路,PFC电容与MOS管以及变压器,谐振电感,谐振电容构成的环路面积小;
副边整流滤波环路同样重要,电容的走线之前讲过,也很重要;
走线时注意高低压的距离,有些地方电压是浮动的,必须当作高压来对待,比如上管驱动以及对应的参考电压。
至于EMC方面LLC的开通是软开关,开通对EMC几乎没有影响,重点
关注是关断速度的快慢对EMC影响;还有MOS管结电容并的电容对EMC
影响很大,选择电容不合适,或是不加(MOS管自身也有结电容)对EMC
都可能有影响,这是重点注意的地方;此图没有Y电容,在MOS管正或者。
小白必看 开关电源的EMC干扰就是这么产生的
小白必看开关电源的EMC干扰就是这么产生的
在开关电源产品的研发过程中,EMC问题是工程师所必需克服的难题之一,也是不同功率的开关电源所共同具备的一个棘手问题。
EMC又称为电磁兼容,而想要使设计的产品符合电磁兼容标准,就必须弄清楚开关电源的电磁干扰都是从哪里来的。
本文将会就常见的几种电磁干扰产生的方式,进行简要总结和分析。
开关电路产生的电磁干扰
在开关电源的EMC设计中,工程师首先需要避免的就是从电源的开关电路中所产生的电磁干扰问题,这也是开关电源的主要干扰源之一。
开关电路在结构方面主要由开关管和高频变压器组成,因此它产生的du/dt具有较大幅度的脉冲,频带较宽且谐波丰富。
电源电压中断会产生与初级线圈接通时一样的磁化冲击电流瞬变,这种瞬变是一种传导型电磁干扰,既会影响变压器的初级,同时还会使传导干扰返回配电系统,造成电网谐波电磁干扰,从而影响其他设备的安全和经济运行。
整流电路产生的电磁干扰
在开关电源的EMC设计中,另一个较大的电磁干扰源就是整流电路。
在一些中小型电源的整流电路中,在输出整流二极管截止时都会有一个反向电流,它恢复到零点的时间与结电容等因素有关。
高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化。
高频变压器产生的电磁干扰。
大牛教你如何解决PCB设计中EMC问题
大牛教你如何解决PCB设计中EMC问题
随着高速设计时代的来临,PCB设计已经从以前简单的摆器件、拉线发展到一门以电工学为基础,综合电子、热、机械、化工等多学科的专业了。
PCB设计的好坏直接决定了产品开发的质量和周期,成为产品设计链中关键的一个环节。
在社会化分工越来越细的今天,PCB设计已逐渐成为一门独立的学科,在欧美,专业化的设计公司有力的推动了新技术、新产品的开发、应用。
过去几年中,专业的PCB设计公司如同雨后春笋般冒出,涌现出了一批设计质量和水平较高的专业PCB设计公司,作为一支新兴力量,这些公司把国内的PCB 设计行业提高了一个档次,从先前的PCB LAYOUT(拉线、画板)提升到仿真分析、布局、布线、技术支持的PCB全流程服务。
PCB设计行业作为一个新兴的行业,它有着自己的独有特点:
1、进入门槛较低。
入门简单,起步资金要求不高。
2、软件众多。
各有优缺点,选择合适的工具很重要。
如何避免开关电源设计中pcb电磁干扰
如何避免开关电源设计中PCB电磁干扰在任何开关电源设计中,PCB板的物理设计都是最后一个环节,如果设计方法不当,PCB可能会辐射过多的电磁干扰,造成电源工作不稳定,以下针对各个步骤中所需注意的事项进行分析:一、从原理图到PCB的设计流程建立元件参数-》输入原理网表-》设计参数设置-》手工布局-》手工布线-》验证设计-》复查-》CAM输出。
二、参数设置相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些。
最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil。
焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。
当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开。
三、元器件布局实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。
例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法。
每一个开关电源都有四个电流回路:(1)电源开关交流回路(2)输出整流交流回路(3)输入信号源电流回路(4)输出负载电流回路输入回路通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量。
所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回路和电源开关/整流回路之间的连接无法与电容的接线端直接相连,交流能量将由输入或输出滤波电容并辐射到环境中去。
电源开关交流回路和整流器的交流回路包含高幅梯形电流,这些电流中谐波成分很高,其频率远大于开关基频,峰值幅度可高达持续输入/输出直流电流幅度的5倍,过渡时间通常约为50ns。
开关电源传导与辐射超标整改方案
开关电源传导与辐射超标整改方案开关电源传导与辐射超标整改方案开关电源电磁干扰的产生机理及其传播途径功率开关器件的高额开关动作是导致开关电源产生电磁干扰(EMI)的主要原因。
开关频率的提高一方面减小了电源的体积和重量,另一方面也导致了更为严重的EMI问题。
开关电源工作时,其内部的电压和电流波形都是在非常短的时间内上升和下降的,因此,开关电源本身是一个噪声发生源。
开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种。
使电源产生的干扰不至于对电子系统和电网造成危害的根本办法是削弱噪声发生源,或者切断电源噪声和电子系统、电网之间的耦合途径。
现在按噪声干扰源来分别说明:1、二极管的反向恢复时间引起的干扰交流输入电压经功率二极管整流桥变为正弦脉动电压,经电容平滑后变为直流,但电容电流的波形不是正弦波而是脉冲波。
由电流波形可知,电流中含有高次谐波。
大量电流谐波分量流入电网,造成对电网的谐波污染。
另外,由于电流是脉冲波,使电源输入功率因数降低。
高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。
2、开关管工作时产生的谐波干扰功率开关管在导通时流过较大的脉冲电流。
例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。
当采用零电流、零电压开关时,这种谐波干扰将会很小。
另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。
3、交流输入回路产生的干扰无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。
开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。
开关电源EMI辐射超标整改方案
开关电源EMI辐射超标整改方案作为工作于开关状态的能量转换装置,开关电源的电压、电流变化率很高,产生的干扰强度较大;干扰源主要集中在功率开关期间以及与之相连的散热器和高平变压器,相对于数字电路干扰源的位置较为清楚;开关频率不高(从几十千赫和数兆赫兹),主要的干扰形式是传导干扰和近场干扰;而印刷线路板(PCB)走线通常采用手工布线,具有更大的随意性,这增加了PCB分布参数的提取和近场干扰估计的难度。
具体各个频率点超标解决方案如下:1MHz以内:以差模干扰为主1.增大X电容量;2.添加差模电感;3.小功率电源可采用PI型滤波器处理(建议靠近变压器的电解电容可选用较大些)。
1M-5MHz:差模共模混合,采用输入端并一系列X电容来滤除差摸干扰并分析出是哪种干扰超标并解决;5MHz:以上以共摸干扰为主,采用抑制共摸的方法。
对于外壳接地的,在地线上用一个磁环绕2圈会对10MHZ以上干扰有较大的衰减(diudiu2006);对于25--30MHZ不过可以采用加大对地Y电容、在变压器外面包铜皮、改变PCBLAYOUT、输出线前面接一个双线并绕的小磁环,最少绕10圈、在输出整流管两端并RC滤波器。
1M-5MHZ:差模共模混合,采用输入端并联一系列X电容来滤除差摸干扰并分析出是哪种干扰超标并以解决,1.对于差模干扰超标可调整X电容量,添加差模电感器,调差模电感量;2.对于共模干扰超标可添加共模电感,选用合理的电感量来抑制;3.也可改变整流二极管特性来处理一对快速二极管如FR107一对普通整流二极管1N4007。
5MHz以上:以共摸干扰为主,采用抑制共摸的方法。
对于外壳接地的,在地线上用一个磁环串绕2-3圈会对10MHZ以上干扰有较大的衰减作用;可选择紧贴变压器的铁芯粘铜箔,铜箔闭环。
处理后端输出整流管的吸收电路和初级大电路并联电容的大小。
对于20M-30MHz:1.对于一类产品可以采用调整对地Y2电容量或改变Y2电容位置;2.调整一二次侧间的Y1电容位置及参数值;3.在变压器外面包铜箔;变压器最里层加屏蔽层;调整变压器的各绕组的排布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源EMC过不了?都是PCB布板惹的祸!
(上)
说起开关电源的难点问题,PCB布板问题不算很大难点,但若是要布出一个精良PCB板一定是开关电源的难点之一(PCB设计不好,可能会导致无论怎幺调试参数都调试布出来的情况,这幺说并非危言耸听)原因是PCB布板时考虑的因素还是很多的,如:电气性能,工艺路线,安规要求,EMC影响等等;考虑的因素之中电气是最基本的,但是EMC又是最难摸透的,很多项目的进展瓶颈就在于EMC问题。
下面从22个方向给大家分享下PCB布板与EMC:
一、熟透电路方可从容进行PCB设计之EMI电路:
上面的电路对EMC的影响可想而知,输入端的滤波器都在这里;防雷击的压敏;防止冲击电流的电阻R102(配合继电器减小损耗);关键的虑差模X电容以及和电感配合滤波的Y电容;还有对安规布板影响的保险丝;这里的每一个器件都至关重要,要细细品味每一个器件的功能与作用。
设计电路时就要考虑的EMC严酷等级从容设计,比如设置几级滤波,Y电容数量的个数以及位置。
压敏大小数量选择,都与我们对EMC的需求密切相关,欢迎大家一起讨论看似简单其实每个元器件蕴含深刻道理的EMI电路。
二、电路与EMC:(最熟悉的反激主拓扑,看看电路中哪些关键地方蕴含了EMC的机理)。