光敏电阻伏安特性光敏二极管光照特性
光敏电阻伏安特性、光敏二极管光照特性

1、光电效应光敏传感器的物理基础是光电效应,在光辐射作用下电子逸出材料的表面,产生光电子发射称为外光电效应,或光电子发射效应,基于这种效应的光电器件有光电管、光电倍增管等。
电子并不逸出材料表面的则是内光电效应。
光电导效应、光生伏特效应则属于内光电效应。
即半导体材料的许多电学特性都因受到光的照射而发生变化。
光电效应通常分为外光电效应和内光电效应两大类,几乎大多数光电控制应用的传感器都是此类,通常有光敏电阻、光敏二极管、光敏三极管、硅光电池等。
(1)光电导效应若光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。
它是一种内光电效应。
光电导效应可分为本征型和杂质型两类。
前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。
杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,从而使电导增加。
杂质型光电导的长波限比本征型光电导的要长的多。
(2)光生伏特效应在无光照时,半导体PN结内部自建电场。
当光照射在PN结及其附近时,在能量足够大的光子作用下,在结区及其附近就产生少数载流子(电子、空穴对)。
载流子在结区外时,靠扩散进入结区;在结区中时,则因电场E的作用,电子漂移到N区,空穴漂移到P区。
结果使N区带负电荷,P区带正电荷,产生附加电动势,此电动势称为光生电动势,此现象称为光生伏特效应。
2、实验原理(1)光敏电阻利用具有光电导效应的半导体材料制成的光敏传感器称为光敏电阻。
目前,光敏电阻应用的极为广泛,可见光波段和大气透过的几个窗口都有适用的光敏电阻。
利用光敏电阻制成的光控开关在我们日常生活中随处可见。
当内光电效应发生时,光敏电阻电导率的改变量为:(1)在(1)式中,e为电荷电量,为空穴浓度的改变量,为电子浓度的改变量,表示迁移率。
什么是光敏电阻的光谱特性

光敏电阻(photoresistor)是一种光电效应器件,它的特点就是随着入射光强度的变化而改变电阻值。
光敏电阻的光谱特性指的是其在不同波长的光线下对电阻值的变化情况。
一般来说,光敏电阻的电阻值随着入射光强度的增加而降低,而不同类型的光敏电阻对不同波长的光线敏感程度是不同的。
例如,CdS类型的光敏电阻对红外光线的敏感程度高于可见光线,而SiC类型的光敏电阻则对可见光线的敏感程度高于红外光线。
还有一类是红外光敏型电阻,它对波长在800 ~ 1100nm的红外光线有很高的敏感度.
因此,在选择和使用光敏电阻时,需要根据应用环境和需要测量的光线波长选择合适的类型。
光敏电阻基本特性及主要参数的测试

光敏电阻特性测试及分析南京理工大学紫金学院光电综合实验室光敏电阻主要参数及基本特性的测试一、工作原理光敏电阻器是利用半导体的光电效应制成的一种电阻值随入射光的强弱而改变的电阻器;半导体的导电能力取决于半导体导带内载流子数目的多少。
当光敏电阻受到光照时,价带中的电子吸收光子能量后跃迁到导带,成为自由电子,同时产生空穴,电子—空穴对的出现使电阻率变小。
光照愈强,光生电子—空穴对就越多,阻值就愈低。
当光敏电阻两端加上电压后,流过光敏电阻的电流随光照增大而增大。
入射光消失,电子-空穴对逐渐复合,电阻也逐渐恢复原值,电流也逐渐减小。
光敏电阻器一般用于光的测量、光的控制和光电转换(将光的变化转换为电的变化)光敏电阻的主要参量有暗电阻,亮电阻、光谱范围、峰值波长和时间常量等。
基本特性有伏安特性、光照特性、光谱特性等。
伏安特性是指在一定照度下,加在光敏电阻两端的电压和光电流之间的关系。
光照特性是指在一定外加电压下,光敏电阻的光电流与光通亮的关系。
根据光敏电阻的光谱特性,可分为三种光敏电阻器:1.紫外光敏电阻器:对紫外线较灵敏,包括硫化镉、硒化镉光敏电阻器等,用于探测紫外线。
2.红外光敏电阻器:主要有硫化铅、碲化铅、硒化铅。
锑化铟等光敏电阻器,广泛用于导弹制导、天文探测、非接触测量、人体病变探测、红外光谱,红外通信等国防、科学研究和工农业生产中。
3.可见光光敏电阻器:包括硒、硫化镉、硒化镉、碲化镉、砷化镓、硅、锗、硫化锌光敏电阻器等。
主要用于各种光电控制系统,如光电自动开关门户,航标灯、路灯和其他照明系统的自动亮灭,自动给水和自动停水装置,机械上的自动保护装置和“位置检测器”,极薄零件的厚度检测器,照相机自动曝光装置,光电计数器,烟雾报警器,光电跟踪系统等方面。
二、实验目的1、学习掌握光敏电阻工作原理2、学习掌握光敏电阻的基本特性3、掌握光敏电阻特性测试的方法4、了解光敏电阻的基本应用三、实验内容1、光敏电阻的暗电阻、亮电阻、光电阻测试实验(基本参数测试)2、光敏电阻的暗电流、亮电流、光电流测试实验(基本参数测试)3、光敏电阻的光谱特性测试实验(特性测试)4、光敏电阻的伏安特性测试实验(特性测试)四、测试仪器的技术参数及结构原理1、仪器的测量精度:电压:0.01V电流:0.01mA2、光学参数偏振片口径:35mm3、导轨长度: 980mm4、结构原理:结构如图(一)所示,在导轨上安置四个磁力滑座,分别将光源、起偏器、减偏器、接收器插入滑座內。
光敏电阻伏安特性、光敏二极管光照特性剖析

光敏传感器的光电特性研究(FB815型光敏传感器光电特性实验仪)凡是将光信号转换为电信号的传感器称为光敏传感器,也称为光电式传感器,它可用于检测直接由光照明度变化引起的非电量,如光强、光照度等;也可间接用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。
光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。
光敏传感器的物理基础是光电效应,通常分为外光电效应和内光电效应两大类,在光辐射作用下电子逸出材料的表面,产生光电子发射现象,则称为外光电效应或光电子发射效应。
基于这种效应的光电器件有光电管、光电倍增管等。
另一种现象是电子并不逸出材料表面的,则称为是内光电效应。
光电导效应、光生伏特效应都是属于内光电效应。
好多半导体材料的很多电学特性都因受到光的照射而发生变化。
因此也是属于内光电效应范畴,本实验所涉及的光敏电阻、光敏二极管等均是内光电效应传感器。
通过本设计性实验可以帮助学生了解光敏电阻、光敏二极管的光电传感特性及在某些领域中的应用。
【实验原理】1.光电效应:(1)光电导效应:当光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。
它是一种内光电效应。
光电导效应可分为本征型和杂质型两类。
前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。
杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,从而使电导增加。
杂质型光电导的长波限比本征型光电导的要长的多。
(2)光生伏特效应:在无光照时,半导体PN结内部有自建电场。
当光照射在PN结及其附近时,在能量足够大的光子作用下,在结区及其附近就产生少数载流子(电子、空穴对)。
光敏二极管与光敏电阻有何相同点和不同点

光敏二极管与光敏电阻有何相同点和不同点
相同点二极管
光敏二极管和光敏电阻的不同点
1、功能不同
光敏电阻,是利用半导体材料和其他材料的光特性实现可变电阻的功能,而光敏二极管,是利用半导体材料的光特性实现二极管的开关功能。
2、材料不同
虽然有些时候两者用同样的材料如硅,砷化镓,但是光敏电阻的材料范围比光敏二极管的更广。
3、参数不同
光敏电阻,标称电阻值、使用环境温度(最高工作温度)、测量功率、额定功率、标称电压(最大工作电压)、工作电流、温度系数、材料常数、时间常数等,而光敏二极管,最高工作电压,暗电流,光电流,光电灵敏度、响应时间、结电容和正向压降等。
4、结构不同
光敏电阻,只需要两个电极就行了,而光敏二极管,两个电极间要求能够形成一个PN结,而且为了加大导通电流,把一个电极的面积设计的很大,另一个相对很小。
(整理)光敏电阻简介

(1)光敏电阻的暗电阻、亮电阻、光电流暗电流:光敏电阻在室温条件下,全暗(无光照射)后经过一定时间测量的电阻值,称为暗电阻。
此时在给定电压下流过的电流。
亮电流:光敏电阻在某一光照下的阻值,称为该光照下的亮电阻。
此时流过的电流。
光电流:亮电流与暗电流之差。
光敏电阻的暗电阻越大,而亮电阻越小则性能越好。
也就是说,暗电流越小,光电流越大,这样的光敏电阻的灵敏度越高。
实用的光敏电阻的暗电阻往往超过1MΩ,甚至高达100MΩ,而亮电阻则在几kΩ以下,暗电阻与亮电阻之比在102~106之间,可见光敏电阻的灵敏度很高。
(2)光敏电阻的光照特性下图表示CdS光敏电阻的光照特性。
在一定外加电压下,光敏电阻的光电流和光通量之间的关系。
不同类型光敏电阻光照特性不同,但光照特性曲线均呈非线性。
因此它不宜作定量检测元件,这是光敏电阻的不足之处。
一般在自动控制系统中用作光电开关。
(3)光敏电阻的光谱特性光谱特性与光敏电阻的材料有关。
从图中可知,硫化铅光敏电阻在较宽的光谱范围内均有较高的灵敏度,峰值在红外区域;硫化镉、硒化镉的峰值在可见光区域。
因此,在选用光敏电阻时,应把光敏电阻的材料和光源的种类结合起来考虑,才能获得满意的效果。
(4)光敏电阻的伏安特性在一定照度下,加在光敏电阻两端的电压与电流之间的关系称为伏安特性。
图中曲线1、2分别表示照度为零及照度为某值时的伏安特性。
由曲线可知,在给定偏压下,光照度较大,光电流也越大。
在一定的光照度下,所加的电压越大,光电流越大,而且无饱和现象。
但是电压不能无限地增大,因为任何光敏电阻都受额定功率、最高工作电压和额定电流的限制。
超过最高工作电压和最大额定电流,可能导致光敏电阻永久性损坏。
(5)光敏电阻的频率特性当光敏电阻受到脉冲光照射时,光电流要经过一段时间才能达到稳定值,而在停止光照后,光电流也不立刻为零,这就是光敏电阻的时延特性。
由于不同材料的光敏,电阻时延特性不同,所以它们的频率特性也不同,如图。
光敏电阻基本特性及主要参数的测试

光敏电阻基本特性及主要参数的测试光敏电阻是一种能够根据光照强度来改变电阻值的器件。
光敏电阻的基本特性:1.光敏电阻的电阻值与光照强度成反比,即当光照强度增加时,电阻值会减小。
2.光敏电阻的电阻值与光照频率无关,只与光照强度有关。
3.光敏电阻通常用于测量光照强度或控制光照器件。
光敏电阻的主要参数包括:1.光敏电阻的阻值范围:光敏电阻的阻值可以根据具体的应用要求来选择,常见的阻值范围从几十欧姆到几百兆欧姆不等。
2. 光敏电阻的灵敏度:光敏电阻的灵敏度是指光照强度每改变一个单位,电阻值相对应改变的比例。
一般用百分比或者ppt(百万分之一)来表示。
3.光阻电阻温度系数:光敏电阻的阻值会受到温度变化的影响,因此其温度系数也是重要的一个参数。
一般来说,光阻的温度系数越小越好。
4.响应时间:光敏电阻的响应时间是指器件由在一个光强度状态下的阻值到达指定变化的时间。
响应时间越短,器件对光照强度的变化越敏感。
光敏电阻的测试方法:光敏电阻的测试一般是通过测量其在不同光照条件下的电阻值来进行的。
以下是一种常见的测试方法:1.连接电路:将光敏电阻与一个恒流源并联,电源的电流通过光敏电阻产生电压。
可以使用数字电压表或万用表来测量电压值。
2.光照条件:控制一个灯光源,根据需要调节光照强度,在测试过程中保持光照条件稳定。
3.测试步骤:在不同的光照强度下,记录光敏电阻的电压值,并通过电流值计算出电阻值。
可以使用模拟信号发生器或变阻器来改变灯光源的亮度。
4.数据分析:根据测试得到的电阻值和对应的光照强度,可以绘制出光敏电阻的光阻特性曲线,以及灵敏度的变化。
总结:光敏电阻是一种能够根据光照强度改变电阻值的器件。
其主要参数包括阻值范围、灵敏度、温度系数和响应时间。
光敏电阻的测试可以通过测量其在不同光照条件下的电阻值来进行,并进行数据分析和曲线绘制。
这些测试可以帮助我们了解光敏电阻的特性和性能,进而应用于特定的光照控制或测量场景中。
光照越强 阻值越大的 光敏电阻

光敏电阻是一种能够根据光照强度改变阻值的电阻器件。
它广泛应用于光电传感器、光控开关、光调电路等领域。
光敏电阻的阻值与光照的强弱成正比,光照越强,阻值越大。
接下来将从光敏电阻的工作原理、结构、特性及应用方面进行详细介绍。
一、光敏电阻的工作原理光敏电阻是利用光照影响半导体材料的电阻来实现光控功能的元件。
在光照作用下,半导体材料的载流子浓度发生变化,从而导致了电阻值的变化。
当有光照射到光敏电阻上时,光子激发了半导体内的电子,使得半导体的导电性增加,电阻值减小;反之,当光照减弱或消失时,电阻值增大。
这种基于光照强度的阻值变化特性使得光敏电阻成为一种理想的光控元件。
二、光敏电阻的结构光敏电阻通常由敏感材料、支撑材料、封装材料等组成。
敏感材料常用的有硫化镉、硒化镉、硫化铅等。
这些敏感材料是一种半导体材料,它们在光照下会产生电子和空穴,并因此改变电阻值。
而支撑材料则起到了支撑和固定敏感材料的作用,同时也有助于散热和表面保护。
封装材料则主要用于封装保护光敏电阻,通常采用透光性较好的材料,以保证光照的正常作用。
三、光敏电阻的特性1. 光敏电阻的灵敏度高: 由于其阻值随光照强度变化,因此具有很高的灵敏度,可感应微弱的光信号。
2. 频率响应快: 光敏电阻可以快速响应光照变化,适用于一些需要即时控制的场合。
3. 工作波长范围广: 光敏电阻对光波长的响应范围较广,包括可见光和红外光等波段。
4. 工作温度范围广: 光敏电阻在较宽的温度范围内均可正常工作,适用性强。
四、光敏电阻的应用1. 光敏电阻在光电传感器中的应用: 光敏电阻可以作为光电传感器的核心元件,用于检测光线的强弱,实现光线的自动控制。
2. 光敏电阻在光控开关中的应用: 光敏电阻可以用于制作光控开关,可以根据光照强度的变化来控制开关的通断。
3. 光敏电阻在光调电路中的应用: 光敏电阻可以作为光调电路的核心元件,用于调节光源的亮度,实现光照的自动调节。
总结:光敏电阻作为一种能够根据光照强度改变阻值的电阻器件,具有灵敏度高、频率响应快、工作波长范围广、工作温度范围广等特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光敏电阻伏安特性、光敏二极管光照特性(FB815型光敏传感器光电特性实验仪 )凡是将光信号转换为电信号的传感器称为光敏传感器,也称为光电式传感器,它可用于检测直接由光照明度变化引起的非电量,如光强、光照度等;也可间接用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。
光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。
光敏传感器的物理基础是光电效应,通常分为外光电效应和内光电效应两大类,在光辐射作用下电子逸出材料的表面,产生光电子发射现象,则称为外光电效应或光电子发射效应。
基于这种效应的光电器件有光电管、光电倍增管等。
另一种现象是电子并不逸出材料表面的,则称为是内光电效应。
光电导效应、光生伏特效应都是属于内光电效应。
好多半导体材料的很多电学特性都因受到光的照射而发生变化。
因此也是属于内光电效应范畴,本实验所涉及的光敏电阻、光敏二极管等均是内光电效应传感器。
通过本设计性实验可以帮助学生了解光敏电阻、光敏二极管、光敏三极管、硅光电池与光学纤维的光电传感特性及在某些领域中的应用。
【实验原理】1(光电效应:(1)光电导效应:当光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。
它是一种内光电效应。
光电导效应可分为本征型和杂质型两类。
前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。
杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,从而使电导增加。
杂质型光电导的长波限比本征型光电导的要长的多。
(2)光生伏特效应:在无光照时,半导体结内部有自建电场。
当光照射在结及其附近时,在能量PNPN足够大的光子作用下,在结区及其附近就产生少数载流子(电子、空穴对)。
载流子在结区外时,靠扩散进入结区;在结区中时,则因电场的作用,电子漂移到区,空穴漂移EN到区。
结果使区带负电荷,区带正电荷,产生附加电动势,此电动势称为光生电动PPN势,此现象称为光生伏特效应。
2(光敏传感器的基本特性:光敏传感器的基本特性则包括:伏安特性、光照特性等。
伏安特性:光敏传感器在一定的入射光照度下,光敏元件的电流与所加电压之间的关系称为IU光敏器件的伏安特性。
改变照度则可以得到一族伏安特性曲线。
它是传感器应用设计时的重要依据。
光照特性:光敏传感器的光谱灵敏度与入射光强之间的关系称为光照特性,有时光敏传感器的输出电压或电流与入射光强之间的关系也称为光照特性,它也是光敏传感器应用设计时选择参数的重要依据之一。
掌握光敏传感器基本特性的测量方法,为合理应用光敏传感器打好基础。
本实验主要是研究光敏电阻、硅光电池、光敏二极管、光敏三极管四种光敏传感器的基本特性。
(1)光敏电阻:利用具有光电导效应的半导体材料制成的光敏传感器称为光敏电阻。
目前光敏电阻应用的极为广泛,其工作过程为,当光敏电阻受到光照时,发生内光电效应,光敏电阻电导率的改变量为:,,,,p,e,,,,n,e,, (1) pne在(1)式中,为电子电荷量,,p为空穴浓度的改变量,为电子浓度的改变量,,n表示迁移率。
当两端加上电压后,光电流为: ,UAI,,,,,U (2) phd式中为与电流垂直的表面积,为电极间的间距。
在一定的光照度下,为恒定Ad,,1的值,因而光电流和电压成线性关系。
光敏电阻的伏安特性如图所示,不同的光强以5a得到不同的伏安特性,表明电阻值随光照度发生变化。
光照度不变的情况下,电压越高,光电流也越大,而且没有饱和现象。
当然,与一般电阻一样光敏电阻的工作电压和电流都不能超过规定的最高额定值。
光敏电阻的光照特性则如图所示。
不同的光敏电阻的光照特性是不同的,但是在5b的结果类似。
由于光敏电阻的光照特性是非线性大多数的情况下,曲线的形状都与图5b的,因此不适宜作线性敏感元件,这是光敏电阻的缺点之一。
所以在自动控制中光敏电阻常用作开关量的光电传感器。
(2)光敏二极管和光敏三极管:光敏二极管的伏安特性相当于向下平移了的普通二极管,光敏三极管的伏安特性和光敏二极管的伏安特性类似,如图所示。
但光敏三极管的光电流比同类型的光敏二7a(7b)极管大好几十倍,零偏压时,光敏二极管有光电流输出,而光敏三极管则无光电流输出。
原因是它们都能产生光生电动势,只因光电三极管的集电结在无反向偏压时没有放大作用,所以此时没有电流输出(或仅有很小的漏电流)。
光敏二极管, 光敏三极管的光照特性亦呈良好线性,如图7c,7d。
光敏二极管的的电流灵敏度一般为常数。
而光敏三极管在弱光时灵敏度低些,在强光时则有饱和现象,这是由于电流放大倍数的非线性所致,对弱信号的检测不利。
故一般在作线性检测元件时,应选择光敏二极管而不能用光敏三极管。
2实验(一)光敏电阻的伏安特性测试【实验目的】,(了解内光效应。
通过实验掌握光敏电阻工作原理。
,(,(了解光敏电阻的基本特性,测出它的伏安特性曲线曲线。
【实验仪器】型光敏传感器光电特性设计性实验仪,万用电表一只,导线若干。
FB815 【实验步骤】1 按实验仪面板示意图接好实验线路,8光源用标准钨丝灯。
将检测用光敏电阻装入待测点,连结电源,光源,2V~,12V电压电源(可调)。
0~12V2 先将可调光源调至一定的光照度,每次在一定的光照条件下,测出电源电压为:,2V, ,4V, ,6V, ,8V, ,10V, ,12VRU时电阻两端的电压,从而得到个61RUR光电流数据I,同时算出此,ph1.00kΩU,UccRR,时光敏电阻的阻值,即。
以后调节相对光强重复上述实验(要求至少在gIPh三个不同照度下重复以上实验)。
3 根据实验数据画出光敏电阻的一族伏安特性曲线。
表1 光敏电阻伏安特性测试数据表(照度: ) 电源电压(V) 2 4 6 8 10 12 R1电压UR1(V)(A)光电流Iph 光敏电压U0(V)(,)光敏电阻Rg3表2 光敏电阻伏安特性测试数据表(照度: ) 电源电压(V) 2 4 6 8 10 12 R1电压UR1(V) 光电流Iph (A)光敏电压U0(V) 光敏电阻Rg (,)表3 光敏电阻伏安特性测试数据表(照度: ) 电源电压(V) 2 4 6 8 10 12 R1电压UR1(V) 光电流Iph(A) 光敏电压U0(V) 光敏电阻Rg(,)实验(二)光敏二极管的光照度特性测试【实验目的】,(了解光敏二极管的工作原理。
,(了解硅光敏二极管的基本特性,并测出它的光照特性曲线。
【实验仪器】型光敏传感器光电特性设计性实验仪,万用电表一只,导线若干。
FB815 【实验步骤】1 按实验仪面板示意图,,接好实验线路。
2 选择一定的偏压,每次在一定的偏压下测出光敏二极管在相对光照度为“弱光”到逐步增URI,强的光电流数据,其中(1.00kΩph1.00kΩ为取样电阻)。
这里要求至少测出个不同的反3偏电压下的数据。
4表1光敏二极管光照特性测试数据表(电压: ) 照度 (Lux)U (V) R光电流 (A)表2 光敏二极管光照特性测试数据表(电压: ) 照度 (Lux)U (V) R光电流 (A)表3 光敏二极管光照特性测试数据表(电压: ) 照度 (Lux)U (V) R光电流(A)5型光敏传感器光电特性设计性实验仪,其结构如图所示。
1FB815该实验仪由光敏电阻、光敏二极管、光敏三极管、硅光电池四种光敏传感器及可调电源、电阻箱(自备)、数字万用表,九孔接线板与光学暗箱所组成。
具体介绍如下。
: 1.光学暗箱(见图2)3光学暗箱的大小为,中间位置是九孔实验板,学生可以在上面360,280,110mmL,L,?L按自己的需要搭建实验电路,在箱子的左里边有编号的接线孔,从里面直接128连到箱子左侧的外面,实验时将外用电源,测量万用表及变阻箱通过不同的接线口接入箱里的实验电路,当箱子密封以后,里面就与外界完全隔绝,工作时照明光路是置于暗箱中进行,从而消除杂散光对实验的影响。
图2是暗箱分布示意图。
62 . JK--30工作电源(见图3):本实验仪配有JK--30工作电源,图为专用电源面板功能分布图。
主要提供两路工作3电压,一路光电源输出,供白帜灯发光,电压可变,另一路传感器工作电源,有0~12V,2V, ,4V, ,6V, ,8V, ,10V, ,12V等量值变化,以保证实验的不同需要。
光敏传感器的照度可以通过调节可调光源的电压或改变光源与传感器之间的距离来调节。
3. 其他实验配件(见图4):7【附录1】FB815光敏传感器光电特性实验仪相对照度()参考表 Lux距离(cm) 5 6 7 8 9 10 电压12 2350 1950 1700 1530 1400 130011 1774 1459 1280 1156 1052 98010 1258 1059 923 825 756 7049 861 729 632 567 519 4808 548 469 411 368 338 3157 328 286 249 224 206 1916 173 158 138 123 113 1055 80.2 73.7 64.4 57.8 52.6 48.94 30.5 28.2 24.6 22.1 20.2 18.83 8.9 7.8 6.8 6.1 5.6 5.32.53.3 3 2.7 2.4 2.2 22 1.1 0.9 0.7 0.6 【附录2】九孔实验板插亏孔距离参考【思考题】1. 光敏传感器感应光照有一个滞后时间,即光敏传感器的响应时间,如何来测试光敏传感器的响应时间,2. 光照强度与距离的关系,验证光照强度与距离的平方成反比(把实验装置近似为点光源)。
8。