实验报告-发光二极管伏安曲线测量(完成版)
二极管的伏安特性曲线实验报告

二极管的伏安特性曲线实验报告实验报告实验名称:二极管的伏安特性曲线实验实验目的:1. 理解半导体材料的特性2. 理解二极管的基本结构和工作原理3. 掌握二极管的伏安特性曲线及其应用实验原理:二极管是一种半导体元器件,由p型半导体和n型半导体构成。
p型半导体具有正电荷载流子(空穴),n型半导体具有负电荷载流子(电子)。
当p型半导体接触n型半导体时,形成p-n结,随着外加正向电压的增加,p-n结区域中的空穴和电子被推向p区和n区,p-n结中的电阻变小,形成导通状态;当外加反向电压增加时,p-n结中的电阻增大,形成截止状态。
实验步骤:1. 将二极管连接在电路实验板上,通过万用表测量二极管的端子正向电压和反向电压;2. 在电源电压恒定条件下,分别改变二极管的正向电压和反向电压,记录相应的电路电流值;3. 根据实验数据,绘制二极管的伏安特性曲线图。
实验结果:通过实验数据,绘制出了二极管的伏安特性曲线,曲线呈现出明显的“S”型。
当正向电压为0.6-0.7V时,二极管开始导通,电路电流急剧增加;反向电压逐渐增加时,电路电流基本保持稳定。
二极管的正向导通电压和反向击穿电压分别为0.6-0.7V和80-100V。
实验分析:由伏安特性曲线可知,当二极管处于正向电压时,p-n结中的空穴和电子呈现出向前方向移动的趋势,形成电流;而当二极管处于反向电压时,p-n结中的电费载流子被压缩,在p-n结中形成尖锐的电场,电子与空穴受到强烈的吸引而向内流动,从而产生少量的逆向电流。
实验结论:通过本次实验,我们得到了二极管的伏安特性曲线图,理解并掌握了二极管的基本结构和工作原理,这对我们深入理解半导体材料和电子元器件的特性及其应用具有重要意义。
实验四 二极管伏安特性曲线的测试

实验四二极管伏安特性曲线的测试一、实验目的掌握利用万用表检测二极管的方法、学习使用图示仪测量半导体二极管特性曲线的方法。
二、实验仪器YB4810A晶体管特性图示仪、万用表三、实验原理晶体二极管是具有单向导电性能的半导体两极器件。
它由一个PN结加上相应的引线和管壳组成,用符号“”表示,本符号中左边为正极,接P型半导体,右边为负极,接N型半导体。
根据二极管制造时所用的材料不同可分为硅管和锗管两种:硅管的正向管压降一般为0.6~0.8V,锗管的正向管压降则一般为0.2~0.3V。
加在二极管两端的电压U与通过该二极管的电流I之间的关系称二极管的伏安特性。
二极管的伏安特性曲线可以通过YB4810A型晶体管特性图示仪的测试直观得到。
四、实验内容和步骤1、二极管的检测将万用表选择二极管档位,完成以下检测,并做好记录工作。
①发光二极管发光二极管的长脚为正。
用万用表进行测试时,若万用表有示数,则红表笔所测端为二极管的正极,同时发光二极管会发光;若没有读数,则将表笔反过来再测一次。
如果两次测量都没有示数,表示此发光二极管已经损坏。
将万用表的读数记录下来,该数值即为二极管的正向管压降。
②稳压二极管稳压二极管有黑圈的一端为负。
用万用表进行测试时,若万用表有示数,则红表笔所测端为正,黑表笔端为负;若没有读数,则将表笔反过来再测一次。
如果两次测量都没有示数,表示此稳压二极管已经损坏。
将万用表的读数记录下来,该数值即为二极管的正向管压降。
③整流二极管整流二极管有白色圈的一端为负。
用万用表进行测试时,若万用表有示数,则红表笔所测端为正,黑表笔端为负;若没有读数,则将表笔反过来再测一次。
如果两次测量都没有示数,表示此整流二极管已经损坏。
将万用表的读数记录下来,该数值即为二极管的正向管压降。
2、特性曲线的测试选用二极管,按照如图1将二极管放置合适的位置,使用YB4810A型图示仪进行测量。
记录二极管的输入特性曲线和反向击穿特性曲线,并按比例进行测画和记录,分别标注I D、U D、、I Z和U Z的具体数值、单位和正负号,并说明所测二极管和稳压管的型号等。
测量二极管的伏安特性实验报告

测量二极管的伏安特性实验报告测量二极管的伏安特性实验报告引言:二极管是一种常见的电子元件,具有单向导电性质。
在电子学领域中,测量二极管的伏安特性是非常重要的实验之一。
通过测量二极管在不同电压和电流条件下的特性曲线,可以了解其工作状态和性能参数。
本实验旨在通过实际测量,探究二极管的伏安特性,并分析其特性曲线的变化规律。
实验步骤:1. 实验准备首先,我们需要准备一台数字万用表、一台可变直流电源、一根双头插针导线和一只二极管。
确保实验环境安全,并将电源接地。
2. 连接电路将电源的正极与数字万用表的电流测量端相连,再将二极管的正极与电源的负极相连,最后将二极管的负极与数字万用表的电流测量端相连。
3. 测量伏安特性逐渐调节电源的输出电压,从0V开始,每隔0.2V记录一组电流和电压的数值。
当电流达到一定值时,停止增加电压,记录此时的电流和电压数值。
然后,逐渐减小电源的输出电压,同样每隔0.2V记录一组电流和电压的数值。
直到电流减小到接近0A时,停止减小电压,记录此时的电流和电压数值。
4. 绘制伏安特性曲线将测得的电流和电压数值绘制成伏安特性曲线图。
横轴表示电压,纵轴表示电流。
根据实验数据,可以观察到二极管在不同电压下的电流变化情况,了解其导电特性。
实验结果与分析:根据实际测量数据绘制的伏安特性曲线,我们可以看到在正向电压下,二极管的电流随电压的增加而迅速增大。
这是因为在正向电压下,二极管的正极与负极之间形成了电势差,使得电子从N区域向P区域移动,从而导致电流的增大。
而在反向电压下,二极管的电流非常小,几乎接近于零。
这是因为在反向电压下,二极管的P区域与N区域之间的势垒增大,阻止了电子的流动。
此外,我们还可以观察到二极管的正向电压与电流之间存在一个临界点,称为二极管的正向压降。
当电压超过这个临界点时,电流急剧增加。
这是因为当正向电压超过二极管的正向压降时,势垒被破坏,电子可以自由地通过二极管,导致电流的急剧增加。
实验报告-发光二极管伏安曲线测量

【实验题目】发光二极管的伏安特性【实验记录】
1.实验仪器
2.红色发光二极管正向伏安特性测量数据记录表
3.绿色发光二极管正向伏安特性测量数据记录表
4.蓝色发光二极管正向伏安特性测量数据记录表
5. 电表内阻测量: A R = 4.94Ω (30mA) V R =
6.006kΩ (6V )
【数据处理】
在同一坐标系中作出红、绿、蓝发光二极管的伏安特性曲线。
对比红、绿、蓝三种发光二极管的伏安特性曲线,定性判断其导通电压的大小。
由图像及表格分析可知,导通电压:红色>绿色>蓝色;
大致数据为 红色: 蓝色: 绿色:
【总结与讨论】
(1)二极管阻值与电流表内阻相近,与电压表内阻相差很多,因此采取电流表外接法。
(2)在图像弯曲部分应多测几组数据,使图像更加准确。
(电流不超过20mA)
(3)发光二极管的伏安特性曲线在0到导通电压之间曲线与X轴接近,达到导通电压后快速上升,最终
应接近直线。
【复习思考题】
发光二极管有哪些应用?试举一两例并介绍其工作原理。
(1)交流开关指示灯
用发光二极管作白炽灯开关的指示灯,当开关断开时,电流经R、LED和灯泡形成回路,LED亮,方便在黑暗中找到开关,此时回路中电流很小,灯泡不会亮;当接通开关时,灯泡被点亮,LED熄灭。
(2)指示灯
当装置通电后,经过限流电阻产生mA级别的电流,流经LED的时候发光,用以指示电源接通。
报告成绩(满分30分):⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽指导教师签名:⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽日期:⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽。
实验1 二极管伏安特性曲线的测试

实验1 二极管伏安特性曲线的测试
一、实验目的:
学会使用电流表和电压表(或万用表)测试二极管的伏安特性。
二、实验器材
稳压电源、万用表(两个)、二极管(IN4007、2AP9)、电位器、电阻、实验电路板。
三、实验内容和步骤
1、测试二极管的正向特性
(1)按实验线路图1连接好电路。
(2)接通电源,调节R1的值,按表1所列的数据逐渐增大二极管两端的电压。
测出对应的流过二极管的正向电流I V,把测量结果填入表1中
(3)按表1中记录数据,在直角坐标系上逐点描出两种二极管的正向特性曲线。
图1
正向电压(V) 0 0.2 0.4 0.6 0.8 1 2 3
正向电流(mA)1N4007 2AP9
2、测试二极管的反向特性
(1)按实验线路图2连接好电路(电压表与二极管并联)
(2)输出电压从0V开始起调,按每2V间隔依次提高加在二极管两端的反向电压,并测量不同反压时的反向漏电流并将其数据记入表2中(测量时要注意万用表的量程和极性)。
(3)按表2中记录数据,在同一个直角坐标系上描出两种二极管的反向特性曲线。
图2
反向电压(V)0 2 4 6 8
1N4007
反向电流(μA)
2AP9。
二极管伏安特性曲线实验报告

二极管伏安特性曲线实验报告实验名称:二极管伏安特性曲线实验报告实验目的:通过对二极管的伏安特性进行测量,了解二极管的基本特性和工作原理。
实验器材:二极管、直流电源、万用表、电阻箱实验原理:二极管是一种半导体元件,具有单向导电性。
二极管正向导通电压较低,反向击穿电压较高。
在正向电压下,二极管两端间的电流与电压之间的关系可以用伏安特性曲线表示。
伏安特性曲线是指在不同电流下,二极管正向电压与两端电压之间的关系。
实验步骤:1. 将二极管连接在直流电源的正极与万用表的红色表笔之间,将直流电源的负极与万用表的黑色表笔之间连接一个小电阻,相当于串联一个电阻作为二极管的负载。
2. 通过调节直流电源的输出电压,从 0V 开始逐渐增加正向电压,每增加 0.1V 记录一组电压和电流数值,直到二极管正向电流较大时停止测量。
3. 将直流电源的极性反向,继续测量二极管反向电压下的电流和电压数值。
实验结果:正向电流(mA)正向电压(V)反向电流(uA)反向电压(V)0 0.00 0 0.000.2 0.10 0 0.101.0 0.20 0 0.205.0 0.30 0 0.3010.0 0.40 0 0.4030.0 0.50 0 0.5050.0 0.60 0 0.6070.0 0.70 0 0.7080.0 0.80 0 0.8090.0 0.90 0 0.90100.0 1.00 2.5 1.00150.0 1.10 27.1 1.10200.0 1.20 204.3 1.20250.0 1.30 614.7 1.30300.0 1.40 3485.8 1.40350.0 1.50 22382.9 1.50实验分析:根据伏安特性曲线,当二极管正向电压超过其正向击穿电压时,电流会急剧增加。
在正向电流较小时,正向电压与电流呈线性关系。
但当正向电流达到一定值时,二极管会进入饱和状态,使电流增加速度变慢,且电压变化范围也会明显缩小。
二极管伏安特性曲线实验报告

二极管伏安特性曲线实验报告二极管伏安特性曲线实验报告引言:二极管是一种常见的电子元件,它具有非线性的伏安特性。
通过研究二极管的伏安特性曲线,可以更好地理解二极管的工作原理和特性。
本实验旨在通过实验测量,绘制二极管的伏安特性曲线,并分析其特点和应用。
实验过程:1. 实验器材准备:本实验所需的器材有:二极管、直流电源、电阻、万用表、导线等。
2. 实验步骤:(1)将二极管连接到电路中,注意极性的正确连接。
(2)将直流电源接入电路,调节电压为适当的范围,如0-10V。
(3)通过万用表测量电压和电流的数值,并记录下来。
(4)调节直流电源的电压,重复步骤(3),得到不同电压下的电流数值。
(5)根据测量数据,绘制二极管的伏安特性曲线。
实验结果:根据实验测量的数据,我们得到了二极管的伏安特性曲线。
在实验中,我们发现了以下几个重要的特点:1. 正向特性:当二极管的正向电压增加时,电流呈指数增长。
这是因为在正向电压作用下,二极管的P区域和N区域之间的势垒逐渐减小,导致电子和空穴的扩散增加,形成电流。
当正向电压超过二极管的导通电压时,电流急剧增加,二极管进入导通状态。
2. 反向特性:当二极管的反向电压增加时,电流基本保持为零,直到达到反向击穿电压。
反向击穿电压是指当反向电压达到一定程度时,势垒电场足以使电子和空穴发生碰撞,形成电流。
在反向击穿电压下,二极管的电流急剧增加,导致二极管受损。
3. 饱和电流和饱和电压:在正向特性中,当二极管的正向电压继续增大时,电流并不会无限增加,而是趋于饱和。
饱和电流是指当正向电压增大到一定程度时,二极管的电流达到最大值并趋于稳定。
饱和电压是指在饱和状态下,二极管的电压维持在一个相对稳定的值。
实验分析:通过实验测量得到的二极管的伏安特性曲线,我们可以进一步分析其特点和应用。
1. 整流器:二极管的正向特性使其成为一种理想的整流器。
在交流电路中,通过使用二极管,可以将交流电信号转换为直流电信号。
二极管的伏安特性实验报告

二极管的伏安特性实验报告二极管的伏安特性实验报告引言:二极管是一种常见的电子元件,具有非常重要的应用价值。
它是一种具有单向导电性的电子器件,能够将电流限制在一个方向上流动。
本实验旨在通过测量二极管在不同电压下的电流变化,探究其伏安特性,并分析其在电子设备中的应用。
实验装置:本实验所需的装置主要包括:二极管、直流电源、电阻、万用表等。
实验过程:1. 首先,将二极管与直流电源和电阻连接起来,组成一个电路。
2. 调节直流电源的电压,从0V开始逐渐增加,每次增加一个固定的电压值。
3. 在每个电压值下,使用万用表测量二极管的电流,并记录下来。
4. 根据测得的电压和电流数据,绘制伏安特性曲线图。
实验结果:根据实验数据绘制的伏安特性曲线图显示,二极管的伏安特性呈现出明显的非线性特性。
在正向偏置时,电流随着电压的增加而迅速增大;而在反向偏置时,电流保持在一个极低的水平上。
讨论与分析:1. 正向偏置时,二极管的导通特性使得电流能够顺利通过。
当电压增加到二极管的正向压降(正向电压)时,电流急剧增加,呈指数增长。
这是由于二极管内部的PN结在正向偏置下形成了导电通道,电流能够自由地流动。
这种特性使得二极管在电子设备中广泛应用于整流、放大、开关等电路中。
2. 反向偏置时,二极管的导通特性被阻断,电流无法通过。
在反向电压下,二极管的电流仅仅是由于少量的载流子扩散而产生的,因此电流非常微弱。
这种反向电流被称为反向饱和电流。
反向偏置使得二极管具有了单向导电性,可以用于保护电路免受反向电压的损害。
3. 二极管的伏安特性曲线图中,还可以观察到一个重要的参数——二极管的截止电压。
截止电压是指当二极管的电压低于一定值时,电流基本上为零。
截止电压是二极管的重要参数之一,它决定了二极管在电路中的工作状态和特性。
结论:通过本次实验,我们深入了解了二极管的伏安特性及其在电子设备中的应用。
二极管具有单向导电性,能够将电流限制在一个方向上流动。
它在正向偏置下具有导通特性,在反向偏置下具有阻断特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【实验题目】发光二极管的伏安特性【实验记录】
1.实验仪器
2.红色发光二极管正向伏安特性测量数据记录表
3.绿色发光二极管正向伏安特性测量数据记录表
4.蓝色发光二极管正向伏安特性测量数据记录表
5. 电表内阻测量:
A R = 5.0Ω(30mA ) V R = 5.985Ω(6V )
【数据处理】
在同一坐标系中作出红、绿、蓝发光二极管的伏安特性曲线。
对比红、绿、蓝三种发光二极管的伏安特性曲线,定性判断其导通电压的大小。
由图可知,红色发光二极管的导通电压最小,约为2.00V ;蓝色次之,约为3.12V ;绿色发光二极管
的导通电压最大,约为3.21V 。
【总结与讨论】
通过实验及由发光二极管伏安特性曲线易知,当二极管正向接通时,开始时LED 电流随电压变化几
乎不可察,发光二极管不发光,但当电压大于某一值时(开启电压后),电流随电压的变化率呈线性增加,而且红色二极管增长最快。
【复习思考题】
发光二极管有哪些应用?试举一两例并介绍其工作原理。
1,各种指示灯,原理是当装置通电后,经过限流电阻产生mA级别的电流,流经LED的时候发光,用以指示电源接通;2,可以用作景观灯,原理同上;3,信号灯,原理都一样。
报告成绩(满分30分):⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽指导教师签名:⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽日期:⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽。