模电实验报告 二极管使用
电子技术实验报告(二极管应用电路)

实验报告(二)课程名称: 电子技术实验项目: 二极管应用电路专业班级:姓名: 座号: 09实验地点: 仿真室实验时间:指导老师: 成绩:实验目的: 1.通过二极管的伏安特性的绘制, 加强对二极管单向导通特性的理解;2.掌握直流稳压电源的制作及其特点。
实验内容: 1.二极管伏安特性曲线绘制;2.直流稳压电源制作。
实验步骤: 1.二极管伏安特性曲线绘制二极管测试电路(1)创建电路二极管测试电路;(2)调整V1电源的电压值, 记录二极管的电流与电压并填入表1;(3)调整V2电源的电压值, 记录二极管的电流与电压并填入表2;(4)根据实验结果, 绘制二极管的伏安特性。
V1 200mV 400mV 600mV 800mV 1V 2V 3VU D198.445mV 373.428 mV 47.16 mV 528.7 mV 549.97 mV 670.25 mV 653.78 mV I D15.4 mA 265.7 mA 1.284 mA 2.798 mA 4.5 mA 1.379 mA 23.403 mAV2 20V 40V 60 V 80V 100VU D20V 40V 50.018V 50.118V 50.13VI D0A 0A 99.19 mA 298.82 mA 498.6mA2.直流稳压电源制作(1)创建整流滤波电路如图2—2;(2)利用虚拟示波器, 观察输出电压uo的波形, 并测量仪表输出直流电压Uo(Uo为RL上的电压), 用教材上的公式计算Uo’,对比二者是否相等;(3)令RL=200Ω, 讲电容C改成22Uf,观察uo的波形, 测量Uo, 用教材上的公式计算Uo’,对比二者是否相等;(4)将电容C设置成开路故障, 观察uo的波形, 测量Uo, 用教材上的公式计算Uo’,对比二者是否相等;(5)将D1设为开路故障, 观察uo的波形, 测量Uo, 用教材上的公式计算Uo’,对比二者是否相等;(6)将D1和电容C同时设为开路故障, 观察uo的波形, 测量Uo, 用教材上的公式计算Uo’,对比二者是否相等;(7)在电路中加入稳压电路如图2-3, 观察滤波后uc波形及uo的波形, 测量Uo;整流滤波电路整流滤波稳压电路实验总结:二极管具有单向导通特性稳压二极管如果工作在反向击穿区, 则当反向电流的变化量较大时, 二极管两端响应的电压变化量却很小, 说明具有稳压性学生签名:年月日。
模拟电子技术Multisim仿真试验61二极管特性仿真试验

第6章 模拟电子技术Multisim仿真实验
2.实验原理 在射极跟随器电路中,信号由基极和地之间输入,由发 射极和地之间输出,集电极交流等效接地,所以,集电极是 输入/输出信号的公共端,故称为共集电极电路。又由于该 电路的输出电压是跟随输入电压变化的,所以又称为射极跟 随器。
334
183
80
35
第6章 模拟电子技术Multisim仿真实验
结论:从表6-1中RD的值可以看出,二极管的电阻值不 是一个固定值。当在二极管两端加正向电压时,若正向电压 比较小,则二极管呈现很大的正向电阻,正向电流非常小, 称为“死区”。当二极管两端的电压达到0.6 V左右时,电 流急剧增大,电阻减小到只有几十欧姆,而两端的电压几乎 不变,此时二极管工作在“正向导通区”。
第6章 模拟电子技术Multisim仿真实验
4.实验步骤 (1) 测量变压器的输出波形。变压器后的电路暂不要连 接,用示波器测量变压器的输入、输出波形,输出波形与输 入波形完全相同,只是幅度不同,如图6-5所示。 (2) 将电路按图6-4所示电路进行连接,先将J1断开, 用示波器同时观察输入波形和桥式整流输出波形,波形如图
80%
85%
90%
100%
12.5
50.001 75.001 100.002 100.747 100.894 101.670
0
0
0
0
0.019
0.049
0.233
∞
∞
∞
∞
5.3k
2k
436
第6章 模拟电子技术Multisim仿真实验
结论:由表6-2所示的测试结果可知,二极管加上反向 电压时,电阻很大,电流几乎为0。比较表6-1和表6-2,二 极管反偏电阻大、而正偏电阻小,说明二极管具有单向导电 性。但若加在二极管上的反向电压太大时,二极管进入反向 击穿区,反向电流急剧增大,而电压值变化很小。
西安工业大学模电仿真实验1实验报告

实验一、仿真软件基础及单级阻容耦合放大电路仿真设计一、实验目的(1)熟练掌握multisim10电路创建过程。
(2)学会使用multisim10对二极管特性进行测试验证。
(3)了解仿真分析法中的直流工作点分析法。
(4)掌握测量放大器的电压放大倍数方法。
(5)掌握静态工作点变化对放大器输出波形的影响。
(6)了解不同的负载对放大倍数的影响。
(7)学会测量放大器的输入、输出电阻方法。
二、实验内容2.1半导体二极管伏安特性测试2.1.1半导体二极管正向伏安特性测试R阻值的大小,可以改变二极管两端正向画出二极管正向特性测试仿真电路图。
改变W电压的大小,从而其对应的正向特性参数。
图1 测试二极管正向伏安特性实验电路在仿真电路图1中,依次设置滑动变阻器R W触点至下端间的电阻值,调整二极管两端的电压。
启动仿真开关,将测得的V D、I D及换算的r D的数值填入表2.1中,研究分析仿真数据。
表2.1 二极管正向伏安特性测量数据2.1.2半导体二极管反向伏安特性测试画出二极管反向特性测试仿真电路。
改变W R 阻值的大小,可以改变二极管两端反向电压的大小,从而其对应的反向特性参数。
图2 测试二极管反向伏安特性实验电路在仿真电路图 2中,依次设置滑动变阻器W R 触点至下端间的电阻值,调整二极管两端的电压。
启动仿真开关,将测得的D V 、D I 及换算的D r 的数值填入表2.2中,研究分析仿真数据。
通过表2.1和表2.2数据描绘二极管伏安特性曲线,总结二极管的伏安特性。
答:正向特性,理想的二极管,正向电流和电压成指数关系。
反向特性,理想的二极管,不论反向电压多大,反向都无电流。
2.2单级阻容放大电路仿真实验2.2.1构建电路,画出单级阻容耦合放大电路图图3 单级阻容耦合放大电路2.2.2静态工作点测试(1)调节滑动变阻器大约在48%左右,(2)利用直流工作点分析法(DC Operating Point Analysis)来分析和计算电路Q点,分析数据并记录在表2.3中。
二极管应用实验报告

二极管应用实验报告二极管应用实验报告引言:二极管是一种重要的电子元件,具有单向导电性质,广泛应用于电子电路中。
本实验旨在通过实际操作和观察,探究二极管在不同应用场景下的特性和效果。
实验一:二极管的整流特性实验目的:通过搭建整流电路,观察二极管在交流电源下的整流效果,并分析其特性。
实验步骤:1. 准备材料:二极管、变压器、电阻、电容、示波器等。
2. 搭建整流电路:将二极管串联在交流电源电路中,通过变压器调节电压大小。
3. 接入示波器:将示波器连接到电路中,观察输出波形。
实验结果:在交流电源下,二极管实现了电流的单向导通,输出波形呈现出明显的半波整流效果。
通过调节电压大小,我们发现输出波形的峰值与输入电压呈线性关系。
实验分析:二极管的整流特性使其在电源转换和电路稳定性方面具有重要应用。
通过实验,我们验证了二极管在交流电源下的整流效果,并了解了其在电路中的作用。
实验二:二极管的稳压特性实验目的:通过搭建稳压电路,研究二极管在稳定电压输出方面的应用。
实验步骤:1. 准备材料:二极管、电阻、电容、稳压二极管等。
2. 搭建稳压电路:将稳压二极管与电阻、电容等元件连接,形成稳压电路。
3. 测量输出电压:通过示波器或万用表等工具,测量稳压电路输出的电压大小。
实验结果:在稳压电路中,二极管通过调节电流大小,实现了稳定的输出电压。
我们发现,无论输入电压如何变化,稳压二极管都能保持输出电压的稳定性。
实验分析:二极管的稳压特性使其在电源稳定和电路保护方面起到重要作用。
通过实验,我们深入了解了稳压二极管的工作原理,并验证了其在稳压电路中的应用效果。
实验三:二极管的信号调制特性实验目的:通过搭建调制电路,研究二极管在信号传输和调制方面的应用。
实验步骤:1. 准备材料:二极管、电容、电阻、信号发生器等。
2. 搭建调制电路:将信号发生器与二极管、电容、电阻等元件连接,形成调制电路。
3. 观察输出信号:通过示波器等工具,观察调制电路输出的信号波形。
二极管的实训报告

二极管的实训报告以下是关于二极管实训的报告:实验名称:二极管的基本实验实验目的:1. 了解二极管的基本原理和特性;2. 掌握二极管的正向工作状态和反向截止状态;3. 学习如何在电路中正确使用二极管。
实验仪器和材料:1. 二极管(常见的有硅二极管和锗二极管);2. 直流电源;3. 电压表;4. 电流表;5. 阻焊板;6. 电线等。
实验步骤:1. 连接电路:将二极管和电源、电压表、电流表连接在阻焊板上,确保连接正确。
2. 正向工作状态测量:调整电源的正向电压,记录电压表和电流表的数值,观察二极管的正向工作状态的灯光等变化。
3. 反向截止状态测量:调整电源的反向电压,记录电压表和电流表的数值,观察二极管的反向截止状态的灯光等变化。
4. 实验数据记录与分析:根据实验数据,计算电流和电压之间的关系,并分析二极管在正向工作状态和反向截止状态下的特性。
实验结果与讨论:实验数据记录如下:正向电压(V) | 电流(mA)-----------------0.5 | 2.51.0 | 5.01.5 | 7.52.0 | 10.0反向电压(V) | 电流(uA)-----------------0.5 | 0.51.0 | 1.01.5 | 1.52.0 | 2.0根据实验数据,我们可以看出在正向工作状态下,电流与电压呈线性关系,而在反向截止状态下,电流非常小,可以基本忽略不计。
这说明二极管在正向工作状态下具有导电性,而在反向截止状态下具有非导电性。
这是由于二极管的结构和物理特性所决定的。
实验总结:通过本次实验,我们对二极管的基本原理和特性有了更深入的了解。
我们了解到二极管在电路中的作用,掌握了如何使用二极管,并通过实验数据分析得出了二极管在正向工作状态和反向截止状态下的特性。
这对我们今后在电子电路设计与应用中起到了重要的指导作用。
二极管实验报告

二极管实验报告引言:二极管作为一种常见的电子元件,广泛应用于各种电路中。
本次实验旨在通过实验验证二极管的特性和工作原理,并探索其在电路中的应用。
一、实验装置和方法1. 实验装置:本实验所使用的装置包括:二极管、直流电源、电阻、示波器以及电线等。
2. 实验方法:首先,将二极管正确连接到电路中。
二极管的端口分别插在电阻和直流电源的正负极之间。
然后,将示波器连接到二极管的两端,通过观察示波器上的波形来观察二极管的特性。
二、实验结果和讨论1. 实验结果:在实验过程中,我们观察到以下几个现象:a) 在直流电源的正向电压下,二极管正常导通;b) 在直流电源的反向电压下,二极管正常截断。
2. 结果分析:通过实验观察结果,我们可以得出以下结论:a) 正向电压下,二极管通过,电流正常流动;b) 反向电压下,二极管关断,电流无法流动。
这是因为二极管是一种引入了PN结的半导体器件。
当二极管的正极连接在P区,负极连接在N区时,称为正向偏置,此时二极管的PN结处于导通状态,电流正常流动。
而当二极管的正极连接在N区,负极连接在P区时,称为反向偏置,此时二极管的PN结处于截断状态,电流无法流动。
3. 工作原理:二极管的工作原理基于PN结的电流传导规律。
在正向偏置下,P区的正空穴和N区的电子会发生复合,形成电流。
而在反向偏置下,P区的空穴和N区的电子受到电场的影响,被分开而无法形成电流。
三、二极管的应用1. 整流器:二极管可以用于整流,即将交流信号转换为直流信号。
交流信号通过二极管后,正向半个周期时,二极管导通,电流通过;反向半个周期时,二极管截断,电流无法通过。
通过这种方式,可以实现交流电的整流。
2. 信号检测器:二极管也可以用作信号检测器,在收音机等设备中常见。
当无线电频率信号通过二极管时,根据二极管正向偏置和反向截断的特性,可以将高频信号转换成低频信号,用于处理和放大。
3. 发光二极管(LED):LED是一种特殊的二极管,具有发出可见光的特性。
二极管实训报告

实训报告1 《二极管的识别与检测》2节课[ 岗位描述] 实际工作中,电子元器件检测是第一道电子产品质量控制点。
一般大中型电子企业都设有专门从事电子元器件检测的部门。
因此掌握电子元器件的识别与检测技能,即可胜任电子企业质量检测部门相关岗位。
[ 实训目的 ] 1. 掌握普通二极管的识别与简易检测方法。
2.掌握专用二极管的识别与简易检测方法。
[ 实训器材 ] 表11.普通单色二极管的检测:a.正向导通电压1.5-2.5v.外加电压越大越亮。
注意实际电压不能使led超过其最大工作电流。
b. 检测时,要用r×10k挡(因内电池电压为9v),方法同普通二极管,只是正向电大得多,甚至测量时还微微发光。
2.稳压二极管的检测:a.工作在反压状态,具有稳压作用,检测方法同普通二极管。
b.不同处:用r×1k挡测反向电阻很大,换用r×10k, 其反向电阻减小很多。
若换挡电阻基本不变,说明是普通二极管。
变化则为稳压二极管。
[ 原理 ] 使用r×10k挡内电池9v,若稳压二极管反向击穿电压比<9v,则因击穿而电阻减小很多。
而普通二极管反向击穿电压比普通管大得多,不会击穿。
3.普通光电二极管的检测:a.光电二极管工作在反向偏置状态。
b.无光照时,光电二极管与普通管一样,反向电流小,反向电阻大(几十兆以上);有光照时,反向电流明显增加,反向电阻明显减小(几千-几十千),反向电流与光照成正比。
检测有无光照电阻相差很大。
检测结果相差不大说明已坏或不是光电二极管。
[ 实训步骤 ] 1.普通二极管的识别与检测。
在下表中填好检测结果。
【注意】a.塑封白环一端为负极,玻璃封装黑环一端为负极。
b.检测时两手不能同时接触两引脚,表至于r×1k挡,并欧姆调零。
调零时间不能太长。
c.读数要用平面镜成像规律。
2.专用二极管的识别与检测。
在下表中填好测量结果。
【注意】a.测试发光二极管,应用r×10k挡并调零。
实验1二极管实验报告

北京物资学院信息学院实验报告课程名_电子技术实验名称二极管半波整流实验实验日期 2012 年 3 月 5 日实验报告日期 2012 年 3 月 26 日姓名____曾曦________学号___2010211300__________小组成员名称_____________无___________________一、实验目的1.熟悉模拟电路实验箱系统硬件电路结构和功能2.掌握虚拟示波器和万用表的使用方法二、实验内容为了更好地掌握模拟电路实验箱各组成部件的硬件电路结构和功能,我们将设计一个二极管半波整流电路,用虚拟万用表测量电压、电阻值,应用虚拟示波器测量波形。
三、实验环境1.实验箱TD_AS2.PC +虚拟仪器(万用表+示波器)四、实验步骤(描述实验步骤及中间的结果或现象。
在实验中做了什么事情,怎么做的,发生的现象和中间结果)1.模拟电路实验箱系统硬件结构和功能·通用实验单元:基本放大电路、差动放大电路、集成运算电路、功率放大器、串联稳压电路、集成稳压电路。
·恒压源单元:DC ① +1.2V~+12V、0.2A; -1.2V~-12V、0.2A。
② +12V、0.2A; -12V、0.2A。
③ +5V、1.5A; -5V、0.2A; +2.5V、0.1A。
AC : 7.5V、 0.2A。
·波形发生器单元:输出波形:方波、三角波、正弦波。
幅值:方波 Vp-p:0~12V。
三角波 Vp-p:0~12V。
正弦波 Vp-p:0~12V。
频率范围(四档):2Hz~20Hz、20Hz~200Hz、200Hz~2KHz、2KHz~80KHz。
·直流信号源单元:两路 -0.5V~+0.5V、-5V~+5V 两档连续可调。
·开关及显示:12组开关,8组显示灯。
·元器件单元:包括电位器、电阻器、电容器、二极管。
·可选配PAC开发板:PAC10、 PAC20 、PAC80。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟电路实验二——二极管实验报告
0 石媛媛
1、绘制二极管的正向特性曲线(测试过程中注意控制电流大小):
一开始,我用欧姆表测量了二极管电阻,正向基本无电阻,反向电阻确实是很大。
然后我们测量其输出特性曲线,发现很吻合:
1、在电压小于某一值时确实没有电流,之后一段电流很小(几毫安~几十毫安);
2、当二极管两端电压大于左右时电流急剧增大(后测试二极管正向压降约为),这个就是其
正向导通电压。
二极管被导通后电阻很小,(图中可看出斜率很大,近似垂直)相当于
短路。
3、当我们使电压反向,电流基本为零,但是当电压大于某一值(反向击穿电压)时电流又开始增大。
2、焊接半波整流电路,并用示波器观察其输入输出波形,观察正向压降对整流电路的影响;电路图:
方波正弦波
三角波
半波整流电路的效果:输出信号只有正半周期(或负半周期),这就把交流电变为直流电。
这是由于二极管的单向导电性。
但是电的利用效率低,只有一半的线信号被保留下来。
3、焊接桥式整流电路,并用示波器观察其输入输出波形;
电路图:
桥式整流电路是全波整流,在电压正向与反向时,分别有两个管子处于正向导通区、两个管子在反向截止区,从而使输出电压始终同向。
而且电压在整个周期都有输出,效率高。
但是发现桥式整流电路的输出信号(尤其是三角波时)未达到理想波形,应该是电路板焊接的焊接点不够牢固或其他问题导致信号的微失真。
5、使用二极管设计一个箝位电路,能把信号(0-10V)的范围限制在3V~5V之间:
设计的电路:
电路原理:当输入信号在0—4V时,4V>U1,二极管正向导通;输出电压稳定在4V左右当输入信号在4V—10V时,二极管反偏,相当于断路,此时电路由电源,1K电阻,51Ω电阻构成。
因为要想使输出值小于5V,所以我选择了一个较小阻值电阻和一个大阻值电阻串联,这样51Ω电阻分压小,故输出电压一直小于5V,起到了钳位效果。
实验数据:
输入电压/V输出电压/V
4
6
10
实验心得:
1、焊接心得: A、锡越少越牢固,不要在一点反复焊接,很容易使之前的焊点虚焊。
B、焊接前做好规划,把该点处要连的元件和导线尽量一次连好。
C、短距离连接可以用元件本身(如电阻两端的细锡线)或点连,长距离链接要用带皮的导线。
D、电源线正负要区分好颜色,方便后续操作。
这样就可以避免出现这次我们组因为焊接技术不到位,在一点出反复焊接,又丑又不牢靠从而在桥式整流电路的效果中出现误差的错误了。
2、对于数据的记录上感受更深入了。
实验数据记录是为了得出实验结论的需要,没有确定
的比例,不需要事先给自己规定好每隔多少取值。
比如二极管一开始我们取1V,2V,都没有什么电流,这段的数据就可以间隔很大的略记,而后面二极管被导通后,电流变化很快,这一段就要在小间隔下记录,才能绘制出理想的二极管输出曲线。
3、对于自己设计电路,我觉得首先要理解电路的功能,比如一开始我们就从网上找了很多
钳位电路的例子但是都是对交流电的,而在本次实验中,处理的应该是直流电,这就不
适用了。
第二,要好好学好模拟电路的课程,明白原理才能更好的设计。
比如钳位中,我们首先想到的应该是用到二极管的单向导电性,以及一个固定电源的作用,知道了这些,设计变得更有目的,才能快而准确。
不过这次实验也给我们带来了很大的惊喜,没想到自己设计的电路一下子就能工作了,体会到了工科学生那种在纸上演算,觉得原理上一定能实现,结果一做果然符合自己预期的快感。
感觉很有成就感。