【高考快递】2019年高三数学(理科)-2019年高三数学最新信息卷十理

合集下载

2019年高三数学(理科)试卷及答案(含解析)

2019年高三数学(理科)试卷及答案(含解析)

2019年高三数学(理科)试卷及答案(WORD版本试卷+名师解析答案,建议下载练习)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集为,集合,,则()A. B.C. D.【答案】B【解析】【分析】先化简B,再根据补集、交集的定义即可求出.【详解】∵A={x|0<x<2},B={x|x≥1},∴∁R B={x|x<1},∴A∩(∁R B)={x|0<x<1}.故选:B.【点睛】本题考查了集合的化简与运算问题,是基础题目.2.下面是关于复数的四个命题:;;的虚部为2;的共轭复数为.其中真命题为()A. B. C. D.【答案】A【解析】【分析】先将复数化简运算,可得|z|及和共轭复数,再依次判断命题的真假.【详解】复数z2+2i.可得|z|=2,所以p1:|z|=2;不正确;z2=(2+2i)2=8i,所以p2:z2=8i;正确;z=2+2i.z的虚部为2;可得p3:z的虚部为2;正确;z=2+2i的共轭复数为:2﹣2i;所以p4:z的共轭复数为﹣2﹣2i不正确;故选:A.【点睛】本题考查复数的运算法则以及命题的真假的判断与应用,是对基本知识的考查.3.已知某产品连续4个月的广告费(千元)与销售额(万元)()满足,,若广告费用和销售额之间具有线性相关关系,且回归直线方程为,,那么广告费用为5千元时,可预测的销售额为()万元A. 3B. 3.15C. 3.5D. 3.75【答案】D【解析】【分析】求出样本中心点代入回归直线方程,可得a,再将x=6代入,即可得出结论.【详解】由题意,,,代入0.6x+a,可得3=0.6×3.75+a,所以a=0.75,所以0.6x+0.75,所以x=5时,0.6×5+0.75=3.75,故选:D.【点睛】本题考查线性回归方程,考查学生的计算能力,利用回归方程恒过样本中心点是关键.4.已知数列为等差数列,且成等比数列,则的前6项的和为()A. 15B.C. 6D. 3【答案】C【解析】【分析】利用成等比数列,得到方程2a1+5d=2,将其整体代入{a n}前6项的和公式中即可求出结果.【详解】∵数列为等差数列,且成等比数列,∴,1,成等差数列,∴2,∴2=a1+a1+5d,解得2a1+5d=2,∴{a n}前6项的和为2a1+5d)=.故选:C.【点睛】本题考查等差数列前n项和的求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用.5.已知定义在的奇函数满足,当时,,则()A. B. 1 C. 0 D. -1【答案】D【解析】【分析】根据题意,分析可得f(x+4)=﹣f(x+2)=f(x),即函数是周期为4的周期函数,可得f(2019)=f(﹣1+2020)=f(﹣1),结合函数的奇偶性与解析式分析可得答案.【详解】根据题意,函数f(x)满足f(x+2)=﹣f(x),则有f(x+4)=﹣f(x+2)=f(x),即函数是周期为4的周期函数,则f(2019)=f(﹣1+2020)=f(﹣1),又由函数为奇函数,则f(﹣1)=﹣f(1)=﹣(1)2=﹣1;则f(2019)=﹣1;故选:D.【点睛】本题考查函数的奇偶性与周期性的应用,注意分析函数的周期.6.设且,则是的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要【答案】D【解析】【分析】由题意看命题“ab>1”与“”能否互推,然后根据必要条件、充分条件和充要条件的定义进行判断.【详解】若“ab>1”当a=﹣2,b=﹣1时,不能得到“”,若“”,例如当a=1,b=﹣1时,不能得到“ab>1“,故“ab>1”是“”的既不充分也不必要条件,故选:D.【点睛】本小题主要考查了充分必要条件,考查了对不等关系的分析,属于基础题.7.设,,,若,则与的夹角为()A. B. C. D.【答案】A【解析】【分析】由向量的坐标运算得:(0,),由数量积表示两个向量的夹角得:cosθ,可得结果.【详解】由(1,),(1,0),.则(1+k,),由,则0,即k+1=0,即k=﹣1,即(0,),设与的夹角为θ,则cosθ,又θ∈[0,π],所以,故选:A.【点睛】本题考查了数量积表示两个向量的夹角、及向量的坐标运算,属于简单题8.第24届国际数学家大会会标是以我国古代数学家赵爽的弦图为基础设计的,会标是四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为,大正方形的面积为,直角三角形中较小的锐角为,则()A. B. C. D.【答案】D【解析】【分析】由图形可知三角形的直角边长度差为a,面积为6,列方程组求出直角边得出sinθ,代入所求即可得出答案.【详解】由题意可知小正方形的边长为a,大正方形边长为5a,直角三角形的面积为6,设直角三角形的直角边分别为x,y且x<y,则由对称性可得y=x+a,∴直角三角形的面积为S xy=6,联立方程组可得x=3a,y=4a,∴sinθ,tanθ=.∴===,故选:D.【点睛】本题考查了解直角三角形,三角恒等变换,属于基础题.9.如图所示,正方形的四个顶点,,,,及抛物线和,若将一个质点随机投入正方形中,则质点落在图中阴影区域的概率是()A. B. C. D.【答案】B【解析】【分析】利用几何槪型的概率公式,求出对应的图形的面积,利用面积比即可得到结论.【详解】∵A(﹣1,﹣1),B(1,﹣1),C(1,1),D(﹣1,1),∴正方体的ABCD的面积S=2×2=4,根据积分的几何意义以及抛物线的对称性可知阴影部分的面积:S=2[1﹣]dx=2(x3)2[(1)﹣0]=2,则由几何槪型的概率公式可得质点落在图中阴影区域的概率是.故选:B.【点睛】本题主要考查几何槪型的概率的计算,利用积分求出阴影部分的面积是解决本题的关键.10.如果是抛物线上的点,它们的横坐标,是抛物线的焦点,若,则()A. 2028B. 2038C. 4046D. 4056【答案】B【解析】【分析】由抛物线性质得|P n F|x n+1,由此能求出结果.【详解】∵P1,P2,…,P n是抛物线C:y2=4x上的点,它们的横坐标依次为x1,x2,…,x n,F是抛物线C的焦点,,∴=(x1+1)+(x2+1)+…+(x2018+1)=x1+x2+…+x2018+2018=2018+20=2038.故选:B.【点睛】本题考查抛物线中一组焦半径和的求法,是中档题,解题时要认真审题,注意抛物线的性质的合理运用.11.已知函数,记,若存在3个零点,则实数的取值范围是()A. B.C. D.【答案】C【解析】【分析】由g(x)=0得f(x)=e x+a,分别作出两个函数的图象,根据图象交点个数与函数零点之间的关系进行转化求解即可.【详解】由g(x)=0得f(x)=e x+a,作出函数f(x)和y=e x+a的图象如图:当直线y=e x+a过A点时,截距a=,此时两个函数的图象有2个交点,将直线y=e x+a向上平移到过B(1,0)时,截距a=-e,两个函数的图象有2个交点,在平移过程中直线y=e x+a与函数f(x)图像有三个交点,即函数g(x)存在3个零点,故实数a的取值范围是,故选:C.【点睛】本题主要考查分段函数的应用,考查了函数零点问题,利用函数与零点之间的关系转化为两个函数的图象的交点问题是解决本题的关键,属于中档题.12.设是双曲线的左右焦点,是坐标原点,过的一条直线与双曲线和轴分别交于两点,若,,则双曲线的离心率为()A. B. C. D.【答案】D【解析】【分析】由条件得到=,连接A,在三角形中,由余弦定理可得A,再由双曲线定义A=2a,可得.【详解】∵,得到|,∴=,又,连接A,,在三角形中,由余弦定理可得A,又由双曲线定义A=2a,可得,∴=,故选D.【点睛】本题考查了双曲线的定义的应用及离心率的求法,综合考查了三角形中余弦定理的应用,属于中档题.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若满足约束条件,则的最大值为____.【答案】5【解析】【分析】画出约束条件的可行域,利用目标函数的几何意义,转化求解目标函数的最值即可.【详解】x,y满足约束条件的可行域如图:由解得A(1,2).由可行域可知:目标函数经过可行域A时,z=x+2y取得最大值:5.故答案为:5.【点睛】本题考查线性规划的简单应用,目标函数的几何意义是解题的关键,考查计算能力.14.设,则的值为__________.【答案】1【解析】【分析】分别令x=0和x=-1,即可得到所求.【详解】由条件,令x=0,则有=0,再令x=-1,则有-1=,∴,故答案为1.【点睛】本题考查二项式定理的系数问题,利用赋值法是解决问题的关键,属于中档题. 15.在平面直角坐标系中,已知过点的直线与圆相切,且与直线垂直,则实数__________.【答案】【解析】因为在圆上,所以圆心与切点的连线与切线垂直,又知与直线与直线垂直,所以圆心与切点的连线与直线斜率相等,,所以,故填:.16.已知函数,过点作与轴平行的直线交函数的图像于点,过点作图像的切线交轴于点,则面积的最小值为____.【答案】【解析】【分析】求出f(x)的导数,令x=a,求得P的坐标,可得切线的斜率,运用点斜式方程可得切线的方程,令y=0,可得B的坐标,再由三角形的面积公式可得△ABP面积S,求出导数,利用导数求最值,即可得到所求值.【详解】函数f(x)=的导数为f′(x),由题意可令x=a,解得y,可得P(a,),即有切线的斜率为k,切线的方程为y﹣(x),令y=0,可得x=a﹣1,即B(a﹣1,0),在直角三角形P AB中,|AB|=1,|AP|,则△ABP面积为S(a)|AB|•|AP|•,a>0,导数S′(a)•,当a>1时,S′>0,S(a)递增;当0<a<1时,S′<0,S(a)递减.即有a=1处S取得极小值,且为最小值e.故答案为:e.【点睛】本题考查导数的运用:求切线的方程和单调区间、极值和最值,注意运用直线方程和构造函数法,考查运算能力,属于中档题.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数的最小正周期为,将函数的图像向右平移个单位长度,再向下平移个单位长度,得到函数的图像.(1)求函数的单调递增区间;(2)在锐角中,角的对边分别为,若,,求面积的最大值.【答案】(1)(2)【解析】【分析】(1)利用三角恒等变换化简函数f(x)的解析式,再根据正弦函数的单调求得函数f(x)的单调递增区间.(2)先利用函数y=A sin(ωx+φ)的图象变换规律,求得g(x)的解析式,在锐角△ABC中,由g()=0,求得A的值,再利用余弦定理、基本不等式,求得bc的最大值,可得△ABC 面积的最大值.【详解】(1)由题得:函数==,由它的最小正周期为,得,∴由,得故函数的单调递增区间是(2)将函数的图像向右平移个单位长度,再向下平移个单位长度,得到函数的图像,在锐角中,角的对边分别为,若,可得,∴.因为,由余弦定理,得,∴,∴,当且仅当时取得等号.∴面积,故面积的最大值为【点睛】本题主要考查三角恒等变换,函数y=A sin(ωx+φ)的图象变换规律,正弦函数的单调性,余弦定理、基本不等式的应用,属于中档题.18.设是等差数列,前项和为,是等比数列,已知,,,.(1)求数列和数列的通项公式;(2)设,记,求.【答案】(1),;(2)【解析】【分析】(1)设数列的公差为等比数列{b n}的公比为q,由已知列式求得d,q及首项,则可求数列和{b n}的通项公式;(2)由(1)知,,利用错位相减直接求和.【详解】(1)设数列的公差为,等比数列的公比为由已知得:,即,又,所以,所以由于,,所以,即(不符合题意,舍去)所以,所以和的通项公式分别为,.(2)由(1)知,,。

高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)

高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)

立体几何平行、垂直位置关系专练1、如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .2、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD .3、如图,正三棱柱ABC-A 1B 1C 1的高为6,其底面边长为2.已知点M ,N 分别是棱A 1C 1,AC 的中点,点D 是棱CC 1上靠近C 的三等分点.求证:(1)B 1M ∥平面A 1BN ;(2)AD ⊥平面A 1BN.4、如图,等边三角形ABC与直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M为AB的中点.(1)证明:CM⊥DE;(2)在边AC上找一点N,使CD∥平面BEN.5、如图,矩形ABCD所在平面与三角形ABE所在平面互相垂直,AE=AB,M,N,H分别为DE,AB,BE 的中点.求证:(1)MN∥平面BEC;(2)AH⊥CE.6、如图,在三棱台ABCDEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在请确定点G的位置;若不存在,请说明理由.7、在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =,过A 作AF SB ⊥,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.(1)求证:平面EFG ∥平面ABC .(2)求证:BC SA ⊥.8、如图,在直三棱柱111ABC A B C -中,AB BC ⊥,点D 为棱1C C 的中点,1AC 与1A D 交于点E ,1BC 与1B D 交于点F ,连结EF .求证:(1)//AB EF ;(2)平面11A B D ⊥平面11B BCC .9、【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .点,平面PAB ⊥底面ABCD ,90PAB ∠= .求证:(1)//PB 平面AEC ;(2)平面PAC ⊥平面ABCD .11、2.(2020·江苏省镇江高三二模)如图,三棱锥P ABC -中,点D ,E 分别为AB ,BC 的中点,且平面PDE ⊥平面ABC .()1求证://AC 平面PDE ;()2若2PD AC ==,PE =PBC ⊥平面ABC .12、(2020·江苏省建湖高级中学高三月考)如图,在四面体ABCD 中,,90AD BD ABC =∠= ,点,E F 分别为棱,AB AC 上的点,点G 为棱AD 的中点,且平面//EFG 平面BCD .(1)求证:12EF BC =;(2)求证:平面EFD ⊥平面ABC .点,PA ⊥平面ABCD .(1)求证://PB 平面AEC ;(2)若四边形ABCD 是矩形且PA AD =,求证:AE ⊥平面PCD .14、(2020·江苏省高三二模)如图,在三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,AB AC ⊥,E ,F 分别是棱AB ,BC 的中点.求证:(1)11AC ∥平面1B EF ;(2)1AC B E ⊥.15、(2020·江苏省连云港高三)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E 、F 分别为AD 、PB 的中点.(Ⅰ)求证:PE BC ⊥;(Ⅱ)求证:平面PAB ⊥平面PCD ;(Ⅲ)求证://EF 平面PCD .16、(2020·江苏省苏州高三)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A1B 1∥平面DEC 1;(2)BE ⊥C 1E .17、(2020·江苏省通州高三)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面1,2,1,,AB BC AA AC BC E F ⊥===分别是11,AC BC 的中点.(1)求证: 平面ABE ⊥平面11B BCC ;(2)求证:1C F ∥平面ABE ;18、(2020·江苏省高三三模)如图,三棱柱111ABC A B C -中,1BC B C =,O 为四边形11ACC A 对角线交点,F 为棱1BB 的中点,且AF ⊥平面11BCC B .(1)证明://OF 平面ABC ;(2)证明:四边形11ACC A 为矩形.参考答案1.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .【解析】(1)∵四棱锥P ABCD -中,PA ⊥平面ABCD ,AB 平面ABCD , ∴AB PA ⊥,又AB AD ⊥,,PA AD ⊂平面PAD ,PA AD A ⋂=, ∴AB ⊥面PAD .PD ⊂面PAD ,∴AB PD ⊥. (2)连结BD AC O ⋂=,连结MO , ∵//AD BC ,2AD BC =,2DO BO ∴=,∵在PBD ∆中,2DM MP =,2DO BO =∴//PB MO , 又PB ⊄面MAC ,MO ⊂面MAC ,∴//PB 面MAC .2.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD . 【详解】(1)因为在ΔPAC 中,E 为PA 的中点,O 为AC 的中点, 所以//EO PC又EO ⊄平面PCD ,PC ⊂平面PCD , 所以//EO 平面PCD同理可证,//FO 平面PCD ,又EO FO O = ,EO ⊂平面EFO ,FO ⊂平面EFO 所以平面//EFO 平面PCD .(2)因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA BD ⊥因为底面ABCD 是菱形,所以AC BD ⊥,又,,PA AC A PA PAC AC PAC =⊂⊂ 平面平面所以BD ⊥平面PAC 。

专题04 二项式定理-2019年高考理数母题题源系列全国Ⅲ专版(解析版)

专题04 二项式定理-2019年高考理数母题题源系列全国Ⅲ专版(解析版)

【母题原题1】【2019年高考全国Ⅲ卷理数】(1+2x 2 )(1+x )4的展开式中x 3的系数为A .12B .16C .20D .24【答案】A【解析】由题意得x 3的系数为3144C 2C 4812+=+=,故选A .【名师点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.【母题原题2】【2018年高考全国Ⅲ卷理数】522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .80【答案】C【解析】由题可得522x x ⎛⎫+ ⎪⎝⎭的展开式的通式为()521031552C C 2rr r rr r r T x x x --+⎛⎫⋅⋅== ⎪⎝⎭,令1034r -=,得2r =,所以展开式中4x 的系数为225C 240⨯=.故选C .【名师点睛】本题主要考查二项式定理,属于基础题.【母题原题3】【2017年高考全国Ⅲ卷理数】()()52x y x y +-的展开式中33x y 的系数为A .80-B .40-C .40D .80【答案】C【解析】()()()()555222x y x y x x y y x y +-=-+-,专题04 二项式定理由()52x y -展开式的通项公式()()515C 2rrrr T x y -+=-,可得:当3r =时,()52x x y -展开式中33x y 的系数为()3325C 2140⨯⨯-=-; 当2r =时,()52y x y -展开式中33x y 的系数为()2235C 2180⨯⨯-=,则33x y 的系数为804040-=.故选C .【名师点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.【命题意图】高考对本部分内容的考查以能力为主,重点考查二项式定理的通项公式及其应用,要求同学们熟练掌握并灵活应用二项式定理的通项公式,考查分类讨论的数学思想.【命题规律】高考试题对该部分内容考查的主要角度有两种:一种是利用通项公式求解指定的项;一种利用通项公式考查系数、指数问题,如常数项、2x 项的系数等.重点对该部分内容的考查仍将以能力考查为主,利用题意写出通项公式是关键,通项公式是解决本类问题的核心与灵魂. 【答题模板】解答本类题目,一般考虑如下两步: 第一步:考查()na b +的展开式的通项公式其通项公式为1C r n r rr n T a b -+=,通项公式是后面进行讨论和计算的基础;第二步:结合代数式的整体进行考查结合题意,考查r 的某个值的特殊情形,据此分类讨论即可求得的系数. 【方法总结】 1.二项式()()na b n *+∈N 展开式()011222nn n n r n r rn nn n n n n a b C a C a b C a b C a b C b ---+=++++++,从恒等式中我们可以发现以下几个特点: (1)()na b +完全展开后的项数为()1n +;(2)展开式按照a 的指数进行降幂排列,对于展开式中的每一项,,a b 的指数呈此消彼长的特点.指数和为n ;(3)在二项式展开式中由于按a 的指数进行降幂排列,所以规定“+”左边的项视为a ,右边的项为b ,比如:()1n x +与()1nx +虽然恒等,但是展开式却不同,前者按x 的指数降幂排列,后者按1的指数降幂排列.如果是()na b -,则视为()na b +-⎡⎤⎣⎦进行展开;(4)二项展开式的通项公式1r n r rr n T C a b -+= (注意是第1r +项).2.二项式系数:项前面的01,,,nn n n C C C 称为二项式系数,二项式系数的和为2n ;二项式系数的来源:多项式乘法的理论基础是乘法的运算律(分配律,交换律,结合律),所以在展开时有这样一个特征:每个因式都必须出项,并且只能出一项,将每个因式所出的项乘在一起便成为了展开时中的某项.对于()na b +可看作是n 个()a b +相乘,对于n r r a b - 意味着在这n 个()a b +中,有()n r -个式子出a ,剩下r 个式子出b ,那么这种出法一共有r n C 种.所以二项式展开式的每一项都可看做是一个组合问题.而二项式系数便是这个组合问题的结果. 3.系数:是指该项经过化简后项前面的数字因数.注:(1)在二项式定理中要注意区分二项式系数与系数.二项式系数是展开式通项公式中的C rn ,对于确定的一个二项式,二项式系数只由r 决定.而系数是指展开并化简后最后项前面的因数,其构成一方面是二项式系数,同时还有项本身的系数.例如:()521x +展开式中第三项为()32235C 21T x =⋅⋅,其中25C 为该项的二项式系数,而()322335C 2180T x x =⋅⋅=,化简后的结果80为该项的系数.(2)二项式系数与系数的概念不同,但在某些情况下可以相等:当二项式中每项的系数均为1时(排除项本身系数的干扰),则展开后二项式系数与系数相同.例如()51x + 展开式的第三项为()32235C 1T x =⋅⋅,可以计算出二项式系数与系数均为10.4.有理项:系数为有理数,次数为整数的项,比如212,5x x就不是有理项. 5.()na b +与()na b -的联系 首先观察他们的通项公式,()na b +:1r n r r r n T C a b -+=;()n a b -:()()'11r rr n r r n r rr n n T C a b C a b --+=-=-.两者对应项的构成是相同的,对应项的系数相等或互为相反数.其绝对值相等.所以在考虑()na b -系数的绝对值问题时,可将其转化为求()na b +系数的问题.1.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》数学】23(1)(31)x x -+的展开式中4x 的系数是 A .27 B .–27 C .26 D .–26【答案】B【解析】()()32131x x -+展开式中4x 的系数,1x -中的x 与()3231x +展开式中3x 项相乘,但()3231x +展开式中没有3x 项,1x -中的1-与()3231x +展开式中4x 项相乘,()21243C 327xx =,所以4x 的系数是27-,故选B .【名师点睛】本题考查二项式的展开式与多项式相乘,得到项的系数,属于简单题.2.【云南省2019届高三第一次高中毕业生复习统一检测数学】在102()x x-的二项展开式中,6x 的系数等于 A .–180 B .53- C .53D .180【答案】D【解析】102()x x-的二项展开式的通项公式为102110C (2)r r r r T x -+=-⋅⋅, 令1026r -=,求得2r =,可得6x 的系数为2210(21C )80-⋅=.故选D .【名师点睛】本题主要考查二项式定理的应用,考查二项展开式的通项公式,考查二项展开式的特定项的系数的求法,属于基础题.3.【西藏拉萨市2019届高三第三次模拟考试数学】若()52a x x x ⎛⎫+- ⎪⎝⎭展开式的常数项等于–80,则a = A .–2 B .2 C .–4 D .4【答案】A【解析】由题意3325C (1)80a ⨯-=-,解得2a =-.故选A .【名师点睛】本题考查二项式定理,解题关键是掌握二项展开式的通项公式,同时掌握多项式乘法法则. 4.【西藏拉萨市2019届高三下学期第二次模拟考试数学】5()(2)x y x y +-的展开式中33x y 的系数为 A .–80 B .–40 C .40 D .80【答案】C【解析】要求()()52x y x y +-的展开式中33x y 的系数,则x y +中x 与()52x y -展开式中23x y 相乘,以及x y +中y 与()52x y -展开式中32x y 相乘,而()52x y -展开式中,23x y 项为()()233235C 240x y x y -=-,32x y 项为()()322325C 280x y x y -=.所以()()52x y x y +-的展开式中33x y 的项为333333408040x y x y x y -+=,故选C .【名师点睛】本题考查二项式展开式与多项式相乘,其中某一项的系数,属于基础题.5.【西藏山南市第二高级中学2019届高三下学期第一次模拟考试数学】二项式621x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项为 A .64 B .30 C .15 D .1【答案】C【解析】二项式621x x ⎛⎫+ ⎪⎝⎭的展开式的通项公式为66316621C C rr r rr r T x x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭,令630r -=,求得2r =,故展开式中的常数项为26C 15=,故选C .【名师点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题.6.【广西柳州市2019届高三毕业班1月模拟考试高三数学】设0sin d x a x π=⎰,则6a x ⎛ ⎝的展开式中的常数项为__________.(用数字填写) 【答案】60【解析】0sin d x a x π=⎰cos πcos02=-+=,则662a x x ⎛⎛= ⎝⎝,展开式的通项为(6162rrr r T C x -+⎛⎫= ⎪⎝⎭,当4r =时得到常数项为(2446260C x ⎛⎫= ⎪⎝⎭,故答案为60.【名师点睛】本题考查了定积分的计算,考查了二项式定理的运用,考查了计算能力,属于基础题.7.【广西壮族自治区南宁、梧州等八市2019届高三4月联合调研考试数学】二项式63x⎛⎝的展开式中4x 的系数为__________.(用数字作答) 【答案】15【解析】因为二项式63x⎛ ⎝的展开式的通项为()()()1718632216611kk kkk k kk T C x x C x ---+⎛⎫=-=- ⎪⎝⎭,令71842k -=得4k =, 所以展开式中4x 的系数为()446115C -=.故答案为:15.【名师点睛】本题主要考查指定项的系数,熟记二项展开式的通项公式即可,属于基础题型. 8.【广西南宁市、玉林市、贵港市等2019届高三毕业班摸底考试数学】()()5211x x +-的展开式中的含5x 的系数为__________.(用数字作答) 【答案】11【解析】()()5211x x +-=()()55211x x x -+-而()51x -展开式的通项为()515C 1rr r r T x -+=-取3r =和5r =,得()51x -展开式中含3x 和5x 项的系数分别为10和1, 所以()()5211x x +-的展开式中的含5x 的系数为10+1=11.【名师点睛】本题考查了等价转化的数学思想,以及利用二项式展开式的通项公式解决二项展开式指定项的系数问题,属于基础题.9.【贵州省贵阳市2019年高三5月适应性考试(二)数学】621x x ⎛⎫- ⎪⎝⎭展开式中的常数项为__________. 【答案】15.【解析】通项公式T r +16C r =(x 2)6–r1()r x-=(–1)r 6C r x 12–3r,令12–3r =0,解得r =4.∴展开式中的常数项为46C =15.故答案为:15.【名师点睛】本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题. 10.【贵州省遵义市绥阳中学2019届高三模拟卷(一)数学】()()341212x x +-展开式中4x 的系数为__________. 【答案】48【解析】因为()()()()()()333342221212141214214x x x x x x x+-=--=---,又()3214x-展开式的通项为()2134kk kk TC x +=-,令24k =得2k =,所以原式展开式中4x 的系数为()223448C -=.故答案为:48.【名师点睛】本题主要考查二项式定理,熟记二项展开式的通项公式即可,属于基础题型. 11.【贵州省贵阳第一中学、云南师大附中、广西南宁三中2019届高三“333”高考备考诊断联考数学】若6x ⎛+ ⎝⎭的展开式的常数项是45,则常数a 的值为__________. 【答案】3【解析】6a x ⎛+ ⎝⎭展开式的通项公式为6316·C r r r r T x -+=,令630r -=,求得2r =, 可得它的常数项为26C ·45a =,1545a ∴=,3a ∴= 故答案为:3.【名师点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.12.【贵州省遵义市2019届高三年级第一次联考试卷数学】若二项式2nm x ⎫+⎪⎭展开式的二项式系数之和为32,常数项为10,则实数m 的值为__________. 【答案】2【解析】根据题意,2nm x ⎫⎪⎭展开式中二项式系数之和是32,有2n=32,则n =5,则2nm x ⎫⎪⎭展开式的通项为T r +1=5C r •)5–r•(2m x )r =m r •5C r •552r x -,令552r-=0,可得r =1,则2nm x ⎫⎪⎭展开式中的常数项为T 2=m •15C ,则有m •15C =10,即m =2,故答案为:2.【名师点睛】本题考查二项式定理的应用,解题的关键是由二项式系数的性质求出n ,并得到该二项式的通项.13.【云南省保山市2019年普通高中毕业生市级统一检测数学】已知(12)n x +的展开式中只有第4项的二项式系数最大,则多项式()211()nx x x++展开式中的常数项为__________. 【答案】35【解析】由()12nx +的展开式中只有第4项的二项式系数最大,所以6n =.多项式61x x ⎛⎫+ ⎪⎝⎭的通项公式:662166C C r r r r rr T x x x ---+==,其中0,1,2,,6r =.考虑61x x ⎛⎫+ ⎪⎝⎭展开式中的常数项和含2x -的项: (1)令622r -=-,则4r =; (2)令620r -=,则3r =.故常数项为4366C C 152035+=+=.故答案为:35.【名师点睛】本题考查了二项式定理的展开式的通项公式,考查了推理能力与计算能力,属于基础题. 14.【山西省晋城市2019届高三第三次模拟考试数学】()()27231x x --的展开式中,3x 的系数为__________.【答案】–455【解析】依题意,3x 的系数为332217774C (1)12C (1)9C (1)455⨯⨯--⨯⨯-+⨯⨯-=-.故答案为:–455.【点睛】本题考查二项式定理,考查推理论证能力以及分类讨论思想,是基础题.15.【辽宁省葫芦岛市普通高中2019届高三第二次模拟考试数学】1(2)n x x-(n 为正整数)的展开式中各项的二项式系数之和为128,则其展开式中含x 项的系数是__________. 【答案】560-【解析】依题意可知2128n =,解得7n =,()712x x --展开式的通项公式为()()()717727721C C 2rrrr r rr x x x ----⋅-=-⋅⋅⋅,当721r -=时3r =,故含x 项的系数为()3437C 12560-⨯⨯=-.故答案为:560-.【点睛】本小题主要考查二项式系数和,考查二项式展开式的通项公式以及二项式展开式中指定项的系数的求法,属于基础题.。

2019年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

2019年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

绝密★启用前2019年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给的四个选项中,只有一项是符合题目要求的。

1.已知集合,则A.B.C.D.2.若,则z=A.B.C.D.3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5B.0.6C.0.7D.0.84.(1+2x2)(1+x)4的展开式中x3的系数为A.12B.16C.20D.245.已知各项均为正数的等比数列{a n}的前4项为和为15,且a5=3a3+4a1,则a3= A.16B.8C.4D.26.已知曲线在点(1,a e)处的切线方程为y=2x+b,则A.B.a=e,b=1C.D.,7.函数在的图象大致为A.B.C.D.8.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M 是线段ED的中点,则A.BM=EN,且直线BM、EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM、EN是异面直线D.BM≠EN,且直线BM,EN是异面直线9.执行下边的程序框图,如果输入的为0.01,则输出的值等于A. B. C. D.10.双曲线C:=1的右焦点为F,点P在C的一条渐进线上,O为坐标原点,若,则△PFO的面积为A.B.C.D.11.设是定义域为R的偶函数,且在单调递减,则A.(log3)>()>()B.(log3)>()>()C.()>()>(log3)D.()>()>(log3)12.设函数=sin()(>0),已知在有且仅有5个零点,下述四个结论:①在()有且仅有3个极大值点②在()有且仅有2个极小值点③在()单调递增④的取值范围是[)其中所有正确结论的编号是A.①④B.②③C.①②③D.①③④二、填空题:本题共4小题,每小题5分,共20分。

2019年高考数学全国卷和北京卷试题对比分析及2020届高三复习策略

2019年高考数学全国卷和北京卷试题对比分析及2020届高三复习策略

备考建议
1. 重视基础知识、基本技能和基本思想方法的复习
概念的理解要准确而且深刻 基本解题技巧的掌握要精确而且熟练 基本思想方法的渗透要立足于课堂
2. 突出重点,抓住知识之间的相互联系
函数内容仍然占据主体地位 函数与方程、数列与不等式、向量与立体几何等内容的结合
①函数内容占比最高 ②线性规划、三视图等内容删去
学生得分情况分析-本科
理科 要求:80分
选择题:40分 填空题:10分
17题: 12分 18题: 8分 19题: 6分 解答题 20题: 2分 21题: 1分 选做题:3分 容错分:2分
文科 要求:90分
选择题:45分 填空题:10分
17题: 12分 18题: 12分 19题: 6分 解答题 20题: 2分 21题: 1分体几何:圆柱
圆锥曲线:双曲线
6
统计:系统抽样
函数与导数:切线方程 立体几何:点线面关系
7
三角函数
向量:向量的线性运算 不等式:线性规划
8
向量的数量积
三角函数图像的性质
函数:函数的图像
9
程序框图
立体几何:三视图
函数:函数的性质
10
圆锥曲线:双曲线
立体几何:线面夹角
程序框图
11
解三角形
三角函数的定义
题序 1-12 13-16
题型
选择题 填空题
分值
单题:5分 一共60分
单题:5分 一共20分
17-21
解答题(必做)
单题:12分 一共60分
22-23
解答题(选做)
单题:10分 一共10分
难度设置
基础题×6 中档题×5 高档题×1 基础题×1 中档题×2 高档题×1

专题06 导数的几何意义-2019年高考数学(理)母题题源系列(全国Ⅲ专版)(原卷版)

专题06 导数的几何意义-2019年高考数学(理)母题题源系列(全国Ⅲ专版)(原卷版)

【母题原题1】【2019年高考全国Ⅲ卷,理数6】已知曲线e ln xy a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =-【答案】D【解析】e ln 1,xy a x '=++1|e 12x k y a ='==+=,1e a -∴=将(1,1)代入2y x b =+得21,1b b +==-,故选D .【名师点睛】本题关键得到含有a ,b 的等式,利用导数几何意义和点在曲线上得到方程关系.【母题原题2】【2018年高考全国Ⅲ卷,理数14】曲线()1e x y ax =+在点()01,处的切线的斜率为2-,则a =________. 【答案】3-【解析】()e 1e x x y a ax =++',则()012f a =+=-',所以3a =-,故答案为:3-. 【名师点睛】本题主要考查导数的计算和导数的几何意义,属于基础题.【命题意图】本类题通常主要考查导数的几何意义,切线方程的不同形式的求解.【命题规律】导数的几何意义最常见的是求切线方程和已知切线方程求参数值,常以选择题、填空题的形式出现,有时也出现在解答题的第一问,难度中等. 【答题模板】1.求曲线y=f (x )的切线方程若已知曲线y=f (x )过点P (x 0,y 0),求曲线过点P 的切线方程. (1)当点P (x 0,y 0)是切点时,切线方程为y–y 0=f'(x 0)(x–x 0). (2)当点P (x 0,y 0)不是切点时,可分以下几步完成: 第一步:设出切点坐标P'(x 1,f (x 1));第二步:写出过点P'(x 1,f (x 1))的切线方程y–f (x 1)=f'(x 1)(x–x 1); 第三步:将点P 的坐标(x 0,y 0)代入切线方程求出x 1;第四步:将x 1的值代入方程y–f (x 1)=f'(x 1)(x–x 1)可得过点P (x 0,y 0)的切线方程. 2.根据切线的性质求倾斜角或参数值由已知曲线上一点P (x 0,y 0)处的切线与已知直线的关系(平行或垂直),确定该切线的斜率k ,然后利用导数的几何意义得到k=f'(x 0)=tan θ,其中倾斜角θ∈[0,π),进一步求得倾斜角θ或有关参数的值.3.已知切线的斜率求切点已知斜率k ,求切点(x 1,f (x 1)),应先解方程f'(x 1)=k 得出x 1,然后求出f (x 1)即可.【经验分享】利用导数的几何意义求曲线的切线方程的问题的关键就是抓住切点,首先要分清题目所求的是“在曲线上某点处的切线方程”还是“过某点的切线方程”.(1)求曲线y =f (x )在0x x 处的切线方程可先求0()f 'x ,再利用点斜式写出所求切线方程;(2)求过某点的曲线的切线方程要先设切点坐标,求出切点坐标后再求切线方程.总之,求解切线问题的关键是切点坐标,无论是已知切线斜率还是切线经过某一点,切点坐标都是化解难点的关键所在. 【方法总结】导数的几何意义蕴含着“逼近”和“以直代曲”的思想方法,对后面即将学习的利用导数研究函数的性质有至关重要的作用,同时导数的几何意义的应用即利用导数的几何意义求解曲线的切线方程问题是本课的重点和难点.有关切线方程的问题有以下四类题型: 类型一:已知切点,求曲线的切线方程,此类题较为简单,只须求出曲线的导数()f 'x ,并代入点斜式方程即可. 类型二:已知斜率,求曲线的切线方程,此类题可利用斜率求出切点,再用点斜式方程加以解决. 类型三:已知过曲线上一点,求切线方程,过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.类型四:已知过曲线外一点,求切线方程,此类题可先设切点,再求切点,即用待定切点法来求解.1.【四川省教考联盟2019届高三第三次诊断性考试数学】设曲线(e 1)xy a x =--在点(0,0)处的切线方程为y x =,则a = A .0 B .1 C .2D .32.【四川省成都市第七中学2019届高三二诊模拟考试数学】函数()ex xf x =在2x =处的切线方程为 A .2234e e y x =- B .2238e e y x =- C .2214e ey x =-+D .21ey x =-3.【四川省绵阳市2019届高三第二次(1月)诊断性考试数学】若函数()2ln 21f x x x bx =+--的图象上任意一点的切线斜率均大于0,则实数b 的取值范围为 A .(-∞,4) B .(-∞,4]C .(4,+∞)D .(0,4)4.【四川省内江市2019届高三第一次模拟考试数学】若函数()3=ln f x x x x +-,则曲线()y f x =在点()()1,1f 处的切线的倾斜角是A .π6B .π3 C .2π3D .5π65.【四川省华蓥市第一中学2019届高三入学调研考试数学】已知函数()()ln 1cos f x x x ax =+⋅-在()()0,0f 处的切线倾斜角为45o,则a =A .2-B .1-C .0D .36.【云南省曲靖市第一中学2019届高三高考复习质量监测三数学】曲线ln 2(0)y a x a =->在1x =处的切线与两坐标轴成的三角形的面积为4,则a 的值为A B .2 C .4D .87.【西藏拉萨市2019届高三第三次模拟考试数学】若曲线3222y x x =-+在点A 处的切线方程为46y x =-,且点A 在直线10mx ny +-=(其中0m >,0n >)上,则12m n+的最小值为A .B .3+C .6+D .8.【四川省百校2019届高三模拟冲刺卷数学】已知函数()2ln f x x a x b =++在点1x =处的切线方程为42y x =-,则a b +=__________.9.【四川省攀枝花市2019届高三第一次统一考试数学】曲线()2af x x x=+在点()()1,1f 处的切线与直线20x y +-=垂直,则实数a =__________.10.【四川省绵阳市高中2019届高三第一次诊断性考试数学】若函数()()311f x x t x =+--的图象在点()()1,1f --处的切线平行于x 轴,则t =__________.11.【四川省宜宾市第四中学2019届高三12月月考数学】已知函数()31f x x ax =++的图象在点()()1,1f 处的切线过点()1,1-,则a =__________.12.【贵州省遵义航天高级中学2019届高三第四次模拟考试数学】曲线2e 24x y x x =+-在1x =处的切线方程是__________.13.【贵州省2019届高三普通高等学校招生适应性考试数学】曲线3113y x x =++在点()01,处切线的方程为__________.14.【贵州省遵义航天高级中学2019届高三第四次模拟考试数学】曲线2ln(1)y x =+在点(1,0)处的切线方程为__________.。

2019-2020年高考数学总复习专题9.1直线方程和圆的方程试题含解析

2019-2020年高考数学总复习专题9.1直线方程和圆的方程试题含解析

2019-2020年高考数学总复习专题9.1直线方程和圆的方程试题含解析 【三年高考】 1.【xx 江苏高考,10】在平面直角坐标系中,以点为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为【答案】【考点定位】直线与圆位置关系2.【xx 江苏,理9】在平面直角坐标系中,直线被圆截得的弦长为 .【答案】【解析】圆的圆心为,半径为,点到直线的距离为2222(1)33512d +⨯--==+,所求弦长为22925522455l r d =-=-=. 【考点】直线与圆相交的弦长问题.3.【xx 江苏,理12】在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是__________.【答案】4. 【xx 高考新课标2理数改编】圆的圆心到直线的距离为1,则a = .【答案】【解析】试题分析:圆的方程可化为,所以圆心坐标为,由点到直线的距离公式得:考点:圆的方程、点到直线的距离公式.【名师点睛】直线与圆的位置关系的判断方法(1)几何法:由圆心到直线的距离d与半径长r的大小关系来判断.若d>r,则直线与圆相离;若d=r,则直线与圆相切;若d<r,则直线与圆相交.(2)代数法:联立直线与圆的方程,消元后得到关于x(或y)的一元二次方程,根据一元二次方程的解的个数(也就是方程组解的个数)来判断.如果Δ<0,方程无实数解,从而方程组也无实数解,那么直线与圆相离;如果Δ=0,方程有唯一实数解,从而方程组也有唯一一组实数解,那么直线与圆相切;如果Δ>0,方程有两个不同的实数解,从而方程组也有两组不同的实数解,那么直线与圆相交.提醒:直线与圆的位置关系的判断多用几何法.5. 【xx高考新课标3理数】已知直线:与圆交于两点,过分别做的垂线与轴交于两点,若,则__________________.【答案】4考点:直线与圆的位置关系.【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.6.【xx高考山东文数改编】已知圆M:截直线所得线段的长度是,则圆M与圆N:的位置关系是.【答案】相交【解析】由()得(),所以圆的圆心为,半径为,因为圆截直线所得线段的长度是,所以=MN ==,,因为,所以圆与圆相交. 考点:1.直线与圆的位置关系;2.圆与圆的位置关系.【名师点睛】本题主要考查直线与圆的位置关系、圆与圆的位置关系问题,是高考常考知识内容.本题综合性较强,具有“无图考图”的显著特点,解答此类问题,注重“圆的特征直角三角形”是关键,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.7.【xx 高考北京文数改编】圆的圆心到直线的距离为 .【答案】【解析】试题分析:圆心坐标为,由点到直线的距离公式可知.考点:直线与圆的位置关系【名师点睛】点到直线(即)的距离公式记忆容易,对于知求,很方便.8.【xx 高考上海文科】已知平行直线012:,012:21=++=-+y x l y x l ,则的距离________.【答案】 【解析】试题分析:利用两平行线间距离公式得d 5=== 考点:两平行线间距离公式.【名师点睛】确定两平行线间距离,关键是注意应用公式的条件,即的系数应该分别相同,本题较为容易,主要考查考生的基本运算能力.9.【xx 高考浙江文数】已知,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是_____,半径是______.【答案】;5.【解析】试题分析:由题意,,时方程为,即,圆心为,半径为5,时方程为224448100x y x y ++++=,不表示圆.考点:圆的标准方程.【易错点睛】由方程222(2)4850a x a y x y a +++++=表示圆可得的方程,解得的值,一定要注意检验的值是否符合题意,否则很容易出现错误.10.【xx 高考天津文数】已知圆C 的圆心在x 轴的正半轴上,点在圆C 上,且圆心到直线 的距离为,则圆C 的方程为__________.【答案】【解析】 试题分析:设,则2|2|452,25355a a r =⇒==+=,故圆C 的方程为 考点:直线与圆位置关系【名师点睛】求圆的方程有两种方法:(1)代数法:即用“待定系数法”求圆的方程.①若已知条件与圆的圆心和半径有关,则设圆的标准方程,列出关于a ,b ,r 的方程组求解.②若已知条件没有明确给出圆的圆心或半径,则选择圆的一般方程,列出关于D ,E ,F 的方程组求解.(2)几何法:通过研究圆的性质,直线和圆的关系等求出圆心、半径,进而写出圆的标准方程.11.【xx 高考新课标2,理7】过三点,,的圆交y 轴于M ,N 两点,则________.【答案】412.【xx 高考陕西,理15】设曲线在点(0,1)处的切线与曲线上点处的切线垂直,则的坐标为 .【答案】【解析】因为,所以,所以曲线在点处的切线的斜率,设的坐标为(),则,因为,所以,所以曲线在点处的切线的斜率,因为,所以,即,解得,因为,所以,所以,即的坐标是,所以答案应填:.13.【xx 高考湖北,理14】如图,圆与轴相切于点,与轴正半轴交于两点(在的上方), 且.(Ⅰ)圆的标准..方程为 ; (Ⅱ)过点任作一条直线与圆相交于两点,下列三个结论:①; ②; ③.其中正确结论的序号是 . (写出所有正确结论的序号)【答案】(Ⅰ);(Ⅱ)①②③【解析】(Ⅰ)依题意,设(为圆的半径),因为,所以,所以圆心,故圆的标准方程为.(Ⅱ)联立方程组,解得或,因为在的上方,所以,,令直线的方程为,此时,,所以,,,,因为,,所以. 所以2221(21)22222NBMANA MB -==-=-+,222121222222NBMANA MB +=+=+=-+14.【xx 陕西高考理第12题】若圆的半径为1,其圆心与点关于直线对称,则圆的标准方程为_______.【答案】【解析】因为圆心与点关于直线对称,所以圆心坐标为.所以圆的标准方程为:,故答案为.【xx 年高考命题预测】纵观近几年各地高考试题,对直线方程和圆的方程这部分的考查,主要考查直线的方程、圆的方程,从题型来看,高考中一般以选择题和填空的形式考查,难度较低,部分省份会在解答题中,这部分内容作为一问,和作为进一步研究其他问题的基础出现,难度较高,虽然全国各地对这部分内容的教材不同,故对这部分内容的侧重点不同,但从直线方程和圆的方程的基础知识,解析几何的基本思想的考查角度来说,有共同之处,恰当地关注图形的几何特征,提高解题效率.对直线方程的考查.一般会和倾斜角、斜率、直线方向向量或者其他知识结合.平面内两条直线的位置关系的考查,属于简单题,主要以两条直线平行、垂直为主,以小题的形式出现.对圆的方程的考查,在高考中应一般在选择题、填空题中出现,关注确定圆的条件.预测xx年对这一部分考查不会有太大变化.【xx年高考考点定位】高考对直线的方程和圆的方程的考查有二种主要形式:一是考查直线的方程;二是考查平面内两条直线的位置关系;三是考查圆的方程.【考点1】直线的方程【备考知识梳理】1、直线的倾斜角和斜率(1)直线的的斜率为k,倾斜角为α,它们的关系为:k=tanα;(2)若A(x1,y1),B(x2,y2),则.2.直线的方程a.点斜式:;b.斜截式:;c.两点式:;d.截距式:;e.一般式:,其中A、B不同时为0.【规律方法技巧】1. 斜率的定义是,其中是切斜角,故可结合正切函数的图象研究切斜角的范围与斜率的取值范围以及斜率的变化趋势.2. 直线的方向向量也是体现直线倾斜程度的量,若是直线的方向向量,则().3.平行或者垂直的两条直线之间的斜率关系要倍加注意.3.直线的五种直线方程,应注意每个方程的适用范围,解答完后应检验不适合直线方程的情形是否也满足已知条件.【考点针对训练】1.已知直线过直线和的交点,且与直线垂直,则直线的方程为________【答案】【解析】由题意得:直线可设为,又过直线和的交点,所以直线的方程为2.过点引直线,使点,到它的距离相等,则这条直线的方程为.【答案】【解析】显然直符合题意,此直线过线段的中点,又,时方程为,化简为,因此所求直线方程为或.【考点2】两条直线的位置关系【备考知识梳理】(1)若l 1,l 2均存在斜率且不重合:①l 1//l 2 k 1=k 2;②l 1l 2 k 1k 2=-1;③(2)若0:,0:22221111=++=++C y B x A l C y B x A l 当时,平行或重合,代入检验;当时,相交;当时,.【规律方法技巧】1.与已知直线垂直及平行的直线系的设法与直线22(00)Ax By C A B ≠++=+垂直和平行的直线方程可设为:(1)垂直:;(2)平行:.2.转化思想在对称问题中的应用对称问题一般是将线与线的对称转化为点与点的对称,利用坐标转移法.【考点针对训练】1.若直线l 1:x +2y -4=0与l 2:mx +(2-m )y -3=0平行,则实数m 的值为 .【答案】【解析】由题意得:2.已知直线,直线()()2:2220l m x m y -+++=,且,则的值为____.【答案】-1或-2【解析】根据两直线平形当斜率存在时,需满足斜率相等,纵截距不等,所以当时,显然两直线平行,符合题意;当时,,,若平行需满足且,解得:,综上,答案为-1或-2.【考点3】几种距离【备考知识梳理】(1)两点间的距离:平面上的两点间的距离公式:(2)点到直线的距离:点到直线的距离.(3)两条平行线间的距离:两条平行线与间的距离.【规律方法技巧】1.点到直线的距离问题可直接代入点到直线的距离公式去求.注意直线方程为一般式.2.动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而计算简便,如本例中|PA |=|PB |这一条件的转化处理.1.已知直线与直线平行,则它们之间的距离是 .【答案】2【解析】由题意,,所以直线方程为,即,.2.已知直线l 1:ax+2y+6=0,l 2:x+(a 1)y+a 21=0,若l 1⊥l 2,则a= ,若 l 1∥l 2,则a= ,此时l 1和l 2之间的距离为 .【答案】, 1,;【考点4】圆的方程【备考知识梳理】标准式:,其中点(a ,b )为圆心,r>0,r 为半径,圆的标准方程中有三个待定系数,使用该方程的最大优点是可以方便地看出圆的圆心坐标与半径的大小. 一般式:022=++++F Ey Dx y x ,其中为圆心为半径,,圆的一般方程中也有三个待定系数,即D 、E 、F .若已知条件中没有直接给出圆心的坐标(如题目为:已知一个圆经过三个点,求圆的方程),则往往使用圆的一般方程求圆方程.【规律方法技巧】1.二元二次方程是圆方程的充要条件“A=C ≠0且B=0”是一个一般的二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的必要条件.二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件为“A=C ≠0、B=0且”,它可根据圆的一般方程推导而得.2.确定一个圆的方程,需要三个独立条件.“选形式、定参数”是求圆的方程的基本方法:是指根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数.3.求圆的方程时,要注意应用圆的几何性质简化运算.(1)圆心在过切点且与切线垂直的直线上.(2)圆心在任一弦的中垂线上.(3)两圆内切或外切时,切点与两圆圆心三点共线.1.已知圆的圆心为抛物线的焦点,且与直线相切,则该圆的方程为_________________.【答案】【解析】抛物线的焦点为(1,0),所以圆的圆心为(1,0),圆心到直线的距离,所以所求圆的方程为.2.已知圆与直线及都相切,圆心在直线上,则圆的方程为______________________.【答案】【解析】直线与直线两条平行线的距离,圆的半径,由,得,由,得,直径的两个端点,,因此圆心坐标,圆的方程.【两年模拟详解析】1.【xx届江苏省如东高级中学高三2月摸底】在平面直角坐标系中,已知过点的直线与圆相切,且与直线垂直,则实数__________.【答案】2.【xx届湖南省长沙市长郡中学高三下第六次月考理科】若直线和直线将圆分成长度相等的四段弧,则.【答案】18【解析】试题分析:由题意得:圆心到两直线距离相等,且等于,因此或,即18考点:直线与圆位置关系3.【xx届江苏省扬州中学高三12月月考】已知动圆与直线相切于点,圆被轴所截得的弦长为,则满足条件的所有圆的半径之积是.【答案】【解析】试题分析:设圆心,半径为,根据圆被轴所截得的弦长为得:,又切点是,所以,且,所以解得或,从而或,,所以答案应填:.考点:1、直线与圆相切;2、直线与圆相交;3、圆的标准方程.4.【xx 届南京市、盐城市高三年级第二次模拟】在平面直角坐标系中,直线与直线相交于点,则当实数变化时,点到直线的距离的最大值为______.【答案】【解析】 由题意得,直线的斜率为,且经过点,直线的斜率为,且经过点,且直线所以点落在以为直径的圆上,其中圆心坐标,半径为,则圆心到直线的距离为,所以点到直线的最大距离为。

2019届高三数学(理)二轮复习精品同步:第1部分 基础送分题:教师用书:题型专题(4) 不等式(通用版)

2019届高三数学(理)二轮复习精品同步:第1部分 基础送分题:教师用书:题型专题(4) 不等式(通用版)

题型专题(四) 不等式(1)一元二次不等式ax 2+bx +c >0(或<0)(a ≠0,Δ=b 2-4ac >0),如果a 与ax 2+bx +c 同号,则其解集在两根之外;如果a 与ax 2+bx +c 异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.(2)解简单的分式、指数、对数不等式的基本思想是利用相关知识转化为整式不等式(一般为一元二次不等式)求解.[题组练透]1.(2019·河北五校联考)如图,已知R 是实数集,集合A ={x |log 12(x -1)>0},B =⎩⎨⎧⎭⎬⎫x |2x -3x <0,则阴影部分表示的集合是( )A .[0,1]B .[0,1)C .(0,1)D .(0,1]解析:选D 由题意可知A ={x |1<x <2},B =⎩⎨⎧⎭⎬⎫x |0<x <32,且图中阴影部分表示的是B ∩(∁R A )={x |0<x ≤1},故选D.2.已知函数f (x )=(ax -1)(x +b ),若不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是( )A.⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫12,+∞B.⎝⎛⎭⎫-32,12C.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫32,+∞D.⎝⎛⎭⎫-12,32 解析:选A 由f (x )>0,得ax 2+(ab -1)x -b >0,又其解集是(-1,3), ∴a <0,且⎩⎨⎧1-aba =2,-ba =-3,解得a =-1或13(舍去),∴a =-1,b =-3, ∴f (x )=-x 2+2x +3, ∴f (-2x )=-4x 2-4x +3,由-4x 2-4x +3<0,得4x 2+4x -3>0, 解得x >12或x <-32,故选A.3.(2019·泉州质检)设函数f (x )=⎩⎪⎨⎪⎧lg (x +1),x ≥0,-x 3,x <0,则使得f (x )≤1成立的x 的取值范围是________.解析:由⎩⎨⎧x ≥0,lg (x +1)≤1得0≤x ≤9,由⎩⎨⎧x <0,-x 3≤1得-1≤x <0,故f (x )≤1的解集为[-1,9].答案:[-1,9] [技法融会]1.求解一元二次不等式的3步:第一步,二次项系数化为正数;第二步,解对应的一元二次方程;第三步,若有两个不相等的实根,则利用“大于在两边,小于夹中间”得不等式的解集.2.(易错提醒)解形如一元二次不等式ax 2+bx +c >0时,易忽视系数a 的讨论导致漏解或错解,要注意分a >0,a <0进行讨论.基本不等式:a +b2≥ab(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)应用:两个正数的积为常数时,它们的和有最小值;两个正数的和为常数时,它们的积有最大值.[题组练透]1.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为( ) A .1 B.32 C .2 D.52解析:选B 2x +2x -a =2(x -a )+2x -a+2a ≥22(x -a )·2x -a+2a =4+2a ,由题意可知4+2a ≥7,解得a ≥32,即实数a 的最小值为32,故选B.2.(2019·湖北七市联考)已知直线ax +by -6=0(a >0,b >0)被圆x 2+y 2-2x -4y =0截得的弦长为25,则ab 的最大值是( )A .9 B.92 C .4 D.52解析:选B 将圆的一般方程化为标准方程为(x -1)2+(y -2)2=5,圆心坐标为(1,2),半径r =5,故直线过圆心,即a +2b =6,∴a +2b =6≥2a ·2b ,可得ab ≤92,当且仅当a =2b=3时等号成立,即ab 的最大值是92,故选B.3.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元解析:选C 设该容器的总造价为y 元,长方体的底面矩形的长为x m ,因为无盖长方体的容积为4 m 3,高为1 m ,所以长方体的底面矩形的宽为4xm ,依题意,得y =20×4+10⎝⎛⎭⎫2x +2×4x=80+20⎝⎛⎭⎫x +4x ≥80+20×2 x ·4x=160⎝⎛⎭⎫当且仅当x =4x ,即x =2时取等号. 所以该容器的最低总造价为160元.4.(2019·江西两市联考)已知x ,y ∈R +,且x +y +1x +1y =5,则x +y 的最大值是( )A .3 B.72 C .4 D.92解析:选C 由x +y +1x +1y =5,得5=x +y +x +y xy ,∵x >0,y >0,∴5≥x +y +x +y ⎝⎛⎭⎫x +y 22=x+y +4x +y,∴(x +y )2-5(x +y )+4≤0,解得1≤x +y ≤4,∴x +y 的最大值是4.[技法融会]1.利用不等式求最值的3种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而可利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值.2.(易错提醒)利用基本不等式求最值时要注意“一正、二定、三相等”,三个条件缺一不可.解决线性规划问题的一般步骤(1)作图——画出约束条件所确定的平面区域和目标函数所表示的平面直线系中的任意一条直线l .(2)平移——将l 平行移动,以确定最优解所对应的点的位置.有时需要对目标函数l 和可行域边界的斜率的大小进行比较.(3)求值——解有关方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值. [题组练透]1.(2019·河南六市联考)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =( )A .6B .5C .4D .3解析:选B 画出不等式组所表示的可行域如图中阴影部分所示,作直线l :y =x ,平移l可知,当直线l 经过A 时,z =x -y 取得最小值-1,联立⎩⎨⎧y =2x -1,x -y =-1,得⎩⎨⎧x =2,y =3,即A (2,3),又A (2,3)在直线x +y =m 上,∴m =5,故选B.2.(2019·福建质检)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,y +2≥0,x +y +2≥0,则(x +2)2+(y +3)2的最小值为( )A .1 B.92C .5D .9解析:选B 不等式组表示的可行域为如图所示的阴影部分,由题意可知点P (-2, -3)到直线x +y +2=0的距离为|-2-3+2|2=32,所以(x +2)2+(y +3)2的最小值为⎝⎛⎭⎫322=92,故选B.3.(2019·全国甲卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,x -3≤0,则z =x -2y 的最小值为________.解析:不等式组⎩⎨⎧x -y +1≥0,x +y -3≥0,x -3≤0表示的可行域如图中阴影部分所示.由z =x -2y 得y =12x -12z .平移直线y =12x ,易知经过点A (3,4)时,z 有最小值,最小值为z =3-2×4=-5.答案:-54.(2019·山西质检)设实数x ,y 满足⎩⎪⎨⎪⎧2x +y -2≤0,x -y +1≥0,x -2y -1≤0,则y -1x -1的最小值是________.解析:画出不等式组所表示的可行域,如图所示,而y -1x -1表示区域内一点(x ,y )与点D (1,1)连线的斜率,∴当x =13,y =43时,y -1x -1有最小值为-12.答案:-125.(2019·全国乙卷)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900 元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析:设生产产品A x 件,产品B y 件,由已知可得约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N ,即⎩⎪⎨⎪⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ∈N ,y ∈N . 目标函数为z =2 100x +900y ,由约束条件作出不等式组表示的可行域如图中阴影部分.作直线2 100x +900y =0,即7x +3y =0,当直线经过点B 时,z 取得最大值,联立⎩⎨⎧10x +3y =900,5x +3y =600,解得B (60,100). 则z max =2 100×60+900×100=216 000(元). 答案:216 000 [技法融会]1.线性目标函数z =ax +by 最值的确定方法线性目标函数z =ax +by 中的z 不是直线ax +by =z 在y 轴上的截距,把目标函数化为y =-a b x +z b ,可知zb 是直线ax +by =z 在y 轴上的截距,要根据b 的符号确定目标函数在什么情况下取得最大值、什么情况下取得最小值.2.(易错提醒)解线性规划问题,要注意边界的虚实;注意目标函数中y 的系数的正负;注意最优整数解.1.不等式的可乘性(1)a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc . (2)a >b >0,c >d >0⇒ac >bd .2.不等式的性质在近几年高考中未单独考查,但在一些题的某一点可能考查,在今后复习中应引起关注.[题组练透]1.(2019·河南六市联考)若1a <1b <0,则下列结论不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |解析:选D 由题可知b <a <0,所以A ,B ,C 正确,而|a |+|b |=-a -b =|a +b |,故D 错误,选D.2.已知a ,b ,c ∈R ,那么下列命题中正确的是( ) A .若a >b ,则ac 2>bc 2 B .若a c >bc,则a >bC .若a 3>b 3且ab <0,则1a >1bD .若a 2>b 2且ab >0,则1a <1b解析:选C 当c =0时,可知A 不正确;当c <0时,可知B 不正确;对于C ,由a 3>b 3且ab <0知a >0且b <0,所以1a >1b成立,C 正确;当a <0且b <0时,可知D 不正确.[技法融会]1.判断多个不等式是否成立,常用方法:一是直接使用不等式性质,逐个验证;二是用特殊法排除.2.利用不等式性质解决问题的注意事项(1)不等式两边都乘以一个代数式时,考察所乘的代数式是正数、负数或0;(2)不等式左边是正数,右边是负数,当两边同时平方后不等号方向不一定保持不变; (3)不等式左边是正数,右边是负数,当两边同时取倒数后不等号方向不变等.一、选择题1.已知关于x 的不等式(ax -1)(x +1)<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,则a =( ) A .2 B .-2 C .-12 D.12解析:选B 根据不等式与对应方程的关系知-1,-12是一元二次方程ax 2+x (a -1)-1=0的两个根,所以-1×⎝⎛⎭⎫-12=-1a,所以a =-2,故选B. 2.(2019·北京高考)已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x -y 的最大值为( )A .-1B .3C .7D .8解析:选C 作出线段AB ,如图所示.作直线2x -y =0并将其向下平移至直线过点B(4,1)时,2x -y 取最大值为2×4-1=7. 3.(2019·福建四地六校联考)已知函数f (x )=x +ax +2的值域为(-∞,0]∪[4,+∞),则a的值是( )A.12B.32C .1D .2 解析:选C 由题意可得a >0,①当x >0时,f (x )=x +ax +2≥2a +2,当且仅当x =a 时取等号;②当x <0时,f (x )=x +ax+2≤-2a +2,当且仅当x =-a 时取等号.所以⎩⎨⎧2-2a =0,2a +2=4,解得a =1,故选C. 4.已知函数f (x )=(x -2)(ax +b)为偶函数,且在(0,+∞)单调递增,则f (2-x )>0的解集为( )A .{ x | x >2或x <-2}B .{ x |-2< x <2}C .{ x | x <0或x >4}D .{ x |0< x <4}解析:选C 由题意可知f (-x )=f (x ),即(-x -2)·(-ax +b )=(x -2)(ax +b ),(2a -b )x =0恒成立,故2a -b =0,即b =2a ,则f (x )=a (x -2)( x +2).又函数在(0,+∞)单调递增,所以a >0.f (2-x )>0即ax (x -4)>0,解得x <0或x >4.故选C. 5.(2019·赣中南五校联考)对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,且c ≠0,则a >b ; ②若a > b ,c>d ,则a +c >b +d ; ③若a > b ,c> d ,则ac >bd ; ④若a > b ,则1a >1b .其中正确的有( )A .1个B .2个C .3个D .4个解析:选B ①ac 2>bc 2,且c ≠0,则a >b ,①正确;②由不等式的同向可加性可知②正确;③需满足a ,b ,c ,d 均为正数才成立;④错误,比如:令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B.6.(2019·安徽江南十校联考)若x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y ≥0,x +y -4≤0,y ≥12x 2,则z =y -x 的取值范围为( )A .[-2,2] B.⎣⎡⎦⎤-12,2 C .[-1,2] D.⎣⎡⎦⎤-12,1 解析:选B 作出可行域(图略),设直线l :y =x +z ,平移直线l ,易知当l 过直线3x -y =0与x +y -4=0的交点(1,3)时,z 取得最大值2;当l 与抛物线y =12x 2相切时,z 取得最小值,由⎩⎪⎨⎪⎧z =y -x ,y =12x 2,消去y 得x 2-2 x -2z =0,由Δ=4+8z =0,得z =-12,故-12≤z ≤2,故选B.7.(2019·河北五校联考)若对任意正实数x ,不等式1x 2+1≤ax 恒成立,则实数a 的最小值为( )A .1 B. 2 C.12 D.22解析:选C 因为1x 2+1≤a x ,即a ≥x x 2+1,而x x 2+1=1x +1x ≤12(当且仅当x =1时取等号),所以a ≥12.故选C.8.(2019·河南八市联考)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =3x +2y 的最小值为1,则a =( )A.14B.12C.34D .1 解析:选B 根据约束条件作出可行域(如图中阴影部分所示),把z =3x +2y 变形为y =-32x +z 2,得到斜率为-32,在y 轴上的截距为z2,随z 变化的一族平行直线,当直线z =3x +2y 经过点B 时,截距z2最小,即z 最小,又B 点坐标为(1,-2a ),代入3x +2y =1,得3-4a =1,得a =12,故选B.9.某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元B .C .17万元D .18万元解析:选D 设该企业每天生产甲产品x 吨,乙产品y 吨,每天获得的利润为z 万元, 则有z =3x +4y ,由题意得x ,y 满足⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,作出可行域如图中阴影部分所示,根据线性规划的有关知识,知当直线3x +4y -z =0过点B (2,3)时,z 取最大值18,故该企业每天可获得最大利润为18万元.故选D.10.(2019·湖北七市联考)设向量a =(1,k ),b =(x ,y ),记a 与b 的夹角为θ.若对所有满足不等式|x -2|≤y ≤1的x ,y ,都有θ∈⎝⎛⎭⎫0,π2,则实数k 的取值范围是( )A .(-1,+∞)B .(-1,0)∪(0,+∞)C .(1,+∞)D .(-1,0)∪(1,+∞)解析:选D 首先画出不等式|x -2|≤y ≤1所表示的区域,如图中阴影部分所示,令z =a ·b =x +ky ,∴问题等价于当可行域为△ABC 时,z >0恒成立,且a 与b 方向不相同,将△ABC 的三个端点值代入,即⎩⎨⎧k +1>0,k +3>0,2+0·k >0,解得k >-1,当a 与b 方向相同时,1·y =x ·k ,则k =y x∈[0,1],∴实数k 的取值范围是(-1,0)∪(1,+∞),故选D. 11.若两个正实数x ,y 满足1x +4y =1,且不等式x +y 4<m 2-3m 有解,则实数m 的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞)解析:选B 由题可知,1=1x +4y ≥24xy =4xy,即xy ≥4,于是有m 2-3m >x +y 4≥xy ≥4,故m 2-3m >4,化简得(m +1)(m -4)>0,即实数m 的取值范围为(-∞,-1)∪(4,+∞).12.设二次函数f (x )=ax 2+bx +c 的导函数为f ′(x ).若∀x ∈R ,不等式f (x )≥f ′(x )恒成立,则b 2a 2+2c 2的最大值为( ) A.6+2 B.6-2C .22+2D .22-2解析:选B 由题意得f ′(x )=2ax +b ,由f (x )≥f ′(x )在R 上恒成立,得ax 2+(b -2a )x +c -b ≥0在R 上恒成立,则a >0且Δ≤0,可得b 2≤4ac -4a 2,则b 2a 2+2c 2≤4ac -4a 2a 2+2c 2=4⎝⎛⎭⎫c a -12⎝⎛⎭⎫c a 2+1,又4ac -4a 2≥0,∴4·c a -4≥0,∴c a -1≥0,令t =c a -1,则t ≥0.当t >0时,b 2a 2+2c 2≤4t 2t 2+4t +3=42t +3t+4≤426+4=6-2(当且仅当t =62时等号成立),当t =0时,b 2a 2+2c 2=0,故b 2a 2+2c 2的最大值为6-2,故选B.二、填空题13.(2019·湖北华师一附中联考)若2x +4y =4,则x +2y 的最大值是________.解析:因为4=2x +4y =2x +22y ≥22x ×22y =22x +2y ,所以2x +2y ≤4=22,即x +2y ≤2,当且仅当2x =22y =2,即x =2y =1时,x +2y 取得最大值2.答案:214.(2019·河北三市联考)如果实数x ,y 满足条件⎩⎪⎨⎪⎧x +y -2≥0,x -1≤0,y -2≤0,且z =y x +a 的最小值为12,则正数a 的值为________.解析:根据约束条件画出可行域如图中阴影部分所示,经分析可知当x =1,y =1时,z取最小值12,即11+a =12,所以a =1.答案:115.(2019·江西两市联考)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是________.解析:设z =x +2y +3x +1=x +1+2(y +1)x +1=1+2·y +1x +1,设z ′=y +1x +1,则z ′的几何意义为动点P (x ,y )到定点D (-1,-1)的斜率.画出可行域如图中阴影部分所示,则易得z ′∈[k DA ,k DB ],易得z ′∈[1,5],∴z =1+2·z ′∈[3,11].答案:[3,11]16.(2019·湖南东部六校联考)对于问题:“已知关于x 的不等式ax 2+bx +c >0的解集为(-1,2),解关于x 的不等式ax 2-bx +c >0”,给出如下一种解法:解:由ax 2+bx +c >0的解集为(-1,2),得a (-x )2+b (-x )+c >0的解集为(-2,1),即关于x 的不等式ax 2-bx +c >0的解集为(-2,1).参考上述解法,若关于x 的不等式k x +a +x +b x +c<0的解集为⎝⎛⎭⎫-1,-13∪⎝⎛⎭⎫12,1,则关于x 的不等式kx ax +1+bx +1cx +1<0的解集为________.解析:不等式kxax+1+bx+1cx+1<0,可化为ka+1x+b+1xc+1x<0,故得-1<1x<-13或12<1x<1,解得-3<x<-1或1<x<2,故kxax+1+bx+1cx+1<0的解集为(-3,-1)∪(1,2).答案:(-3,-1)∪(1,2)。

(完整)2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)

(完整)2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)

2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019·南昌一模]已知复数()i2ia z a +=∈R 的实部等于虚部,则a =( ) A .12-B .12C .1-D .12.[2019·梅州质检]已知集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =,则集合A B I 中元素的个数为( ) A .2B .3C .4D .53.[2019·菏泽一模]已知向量()1,1=-a ,()2,3=-b ,且()m ⊥+a a b ,则m =( ) A .25B .25-C .0D .154.[2019·台州期末]已知圆C :()()22128x y -+-=,则过点()3,0P 的圆C 的切线方程为( ) A .30x y +-=B .30x y --=C .230x y --=D .230x y +-=5.[2019·东北三校]中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有( ) A .30种B .50种C .60种D .90种6.[2019·汕尾质检]边长为1的等腰直角三角形,俯视图是扇形,则该几何体的体积为( )A .π9B .π3C .π6D .π187.[2019合肥质检]将函数()π2sin 16f x x ⎛⎫=+- ⎪⎝⎭的图象上各点横坐标缩短到原来的12(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是( ) A .函数()g x 的图象关于点π,012⎛⎫- ⎪⎝⎭对称B .函数()g x 的周期是π2C .函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增D .函数()g x 在π0,6⎛⎫⎪⎝⎭上最大值是18.[2019·临沂质检]执行如图所示的程序框图,输出的值为( )A .0B .12C .1D .1-9.[2019·重庆一中]2sin80cos70cos20︒︒-=︒( )A .3B .1C 3D .210.[2019·揭阳一模]函数()f x 在[)0,+∞单调递减,且为偶函数.若()21f =-,则满足()31f x -≥-的x 的取值范围是( ) A .[]1,5B .[]1,3C .[]3,5D .[]2,2-11.[2019·陕西联考]已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为2F ,若C 的左支上存在点M ,使得直线0bx ay -=是线段2MF 的垂直平分线,则C 的离心率为( )AB .2CD .512.[2019·临川一中]若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:1212x x y y +0,则称()f x 为“柯西函数”,则下列函数:①()()10f x x x x=+>;②()()ln 0e f x x x =<<;③()cos f x x =;④()21f x x =-.其中为“柯西函数”的个数为( ) A .1 B .2 C .3 D .4二、填空题:本大题共4小题,每小题5分,共20分.13.[2019·江门一模]已知a 、b 、c 是锐角ABC △内角A 、B 、C 的对边,S 是ABC △的面积,若8a =,5b =,S =,则c =_________.14.[2019·景山中学]已知a ,b 表示直线,α,β,γ表示不重合平面. ①若a αβ=I ,b α⊂,a b ⊥,则αβ⊥;②若a α⊂,a 垂直于β内任意一条直线,则αβ⊥; ③若αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥;④若a α⊥,b β⊥,a b ∥,则αβ∥.上述命题中,正确命题的序号是__________.15.[2019·林芝二中]某传媒大学的甲、乙、丙、丁四位同学分别从影视配音、广播电视、公共演讲、播音主持四门课程中选修一门,且这四位同学选修的课程互不相同.下面是关于他们选课的一些信息:①甲同学和丙同学均不选播音主持,也不选广播电视;②乙同学不选广播电视,也不选公共演讲;③如果甲同学不选公共演讲,那么丁同学就不选广播电视.若这些信息都是正确的,依据以上信息可推断丙同学选修的课程是_______(填影视配音、广播电视、公共演讲、播音主持)16.[2019·河南联考]若一直线与曲线eln y x =和曲线2y mx =相切于同一点P ,则实数m =________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)[2019·长郡中学]设正项数列{}n a 的前n 项和为n S n a 与1n a +的等比中项,其中*n ∈N .(1)求数列{}n a 的通项公式;(2)设()11211n n n n n a b a a +++=-⋅,记数列{}n b 的前n 项和为n T ,求证:21n T <.18.(12分)[2019·维吾尔一模]港珠澳大桥是中国建设史上里程最长,投资最多,难度最大的跨海桥梁项目,大桥建设需要许多桥梁构件.从某企业生产的桥梁构件中抽取100件,测量这些桥梁构件的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[)55,65,[)65,75,[]75,85内的频率之比为4:2:1.(1)求这些桥梁构件质量指标值落在区间[]75,85内的频率;(2)若将频率视为概率,从该企业生产的这种桥梁构件中随机抽取3件,记这3件桥梁构件中质量指标值位于区间[)45,75内的桥梁构件件数为X ,求X 的分布列与数学期望.19.(12分)[2019·淄博模拟]如图,在四棱锥P ABCD -中,AB CD ∥,1AB =,3CD =,2AP =,23DP =,60PAD ∠=︒,AB ⊥平面PAD ,点M 在棱PC 上.(1)求证:平面PAB ⊥平面PCD ;(2)若直线PA ∥平面MBD ,求此时直线BP 与平面MBD 所成角的正弦值.20.(12分)[2019·泰安期末]已知椭圆()22122:10x y C a b a b+=>>的离心率为2,抛物线22:4C y x =-的准线被椭圆1C 截得的线段长为2.(1)求椭圆1C 的方程;(2)如图,点A 、F 分别是椭圆1C 的左顶点、左焦点直线l 与椭圆1C 交于不同的两点M 、N (M 、N 都在x 轴上方).且AFM OFN ∠=∠.证明:直线l 过定点,并求出该定点的坐标.21.(12分)[2019·衡水中学]已知函数()23ln f x x ax x =+-,a ∈R . (1)当13a =-时,求函数()f x 的单调区间;(2)令函数()()2x x f x ϕ'=,若函数()x ϕ的最小值为32-,求实数a 的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】[2019·揭阳一模]以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为22cos 2a ρθ=(a ∈R ,a 为常数)),过点()2,1P 、倾斜角为30︒的直线l 的参数方程满足32x t =+,(t 为参数).(1)求曲线C 的普通方程和直线l 的参数方程;(2)若直线l 与曲线C 相交于A 、B 两点(点P 在A 、B 之间),且2PA PB ⋅=,求a 和PA PB -的值.23.(10分)【选修4-5:不等式选讲】[2019·汕尾质检]已知()221f x x x =++-的最小值为t .求t 的值;若实数a ,b 满足2222a b t +=,求221112a b +++的最小值.2019届高三第三次模拟考试卷理 科 数 学(二)答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C 【解析】∵()2i i i 1i 2i 2i 22a a a z -++===--的实部等于虚部,∴122a=-,即1a =-.故选C . 2.【答案】A【解析】由题意,集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =, ∴{}8,14A B =I ,∴集合A B I 中元素的个数为2.故选A . 3.【答案】A【解析】()()()1,12,312,31m m m m m +=-+-=--a b ,结合向量垂直判定,建立方程,可得12310m m --+=,解得25m =,故选A . 4.【答案】B【解析】根据题意,圆C :()()22128x y -+-=,P 的坐标为()3,0, 则有()()2231028-+-=,则P 在圆C 上,此时20113CP K -==--,则切线的斜率1k =, 则切线的方程为3y x =-,即30x y --=,故选B . 5.【答案】B【解析】若同学甲选牛,那么同学乙只能选狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11210C C 20⋅=,若同学甲选马,那么同学乙能选牛、狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11310C C 30⋅=,∴共有203050+=种.故选B . 6.【答案】A【解析】 侧视图是直角边长为1的等腰直角三角形,圆锥的高为1,底面半径为1, 俯视图是扇形,圆心角为2π3,几何体的体积为112ππ113239⨯⨯⨯⨯=.故选A .7.【答案】C【解析】将函数()f x 横坐标缩短到原来的12后,得到()π2sin 216g x x ⎛⎫=+- ⎪⎝⎭,当π12x =-时,π112f ⎛⎫-=- ⎪⎝⎭,即函数()g x 的图象关于点π,112⎛⎫-- ⎪⎝⎭对称,故选项A 错误;周期2ππ2T ==,故选项B 错误; 当π0,6x ⎛⎫∈ ⎪⎝⎭时,πππ2662x ⎛⎫+∈ ⎪⎝⎭,,∴函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增,故选项C 正确;∵函数()g x 在π0,6⎛⎫ ⎪⎝⎭上单调递增,∴()π16g x g ⎛⎫<= ⎪⎝⎭,即函数()g x 在π0,6⎛⎫⎪⎝⎭上没有最大值,故选项D 错误.故选C .8.【答案】A【解析】第一次循环,1k =,cos01S ==,112k =+=,4k >不成立; 第二次循环,2k =,π131cos 1322S =+=+=,213k =+=,4k >不成立; 第三次循环,3k =,32π31cos 12322S =+=-=,314k =+=,4k >不成立; 第四次循环,4k =,1cos π110S =+=-=,415k =+=,4k >成立, 退出循环,输出0S =,故选A . 9.【答案】C 【解析】∵()2sin 6020cos702sin80cos70cos20cos20︒+︒︒-︒-︒=︒︒2sin 60cos202cos60sin 20cos70cos20︒︒+︒︒-︒=︒2sin 60cos20sin 20cos70cos20︒︒+︒-︒=︒2sin 60cos202sin 603cos20︒︒==︒=︒.故选C .10.【答案】A【解析】∵函数()f x 为偶函数,∴()()312f x f -≥-=等价于()()32f x f -≥, ∵函数()f x 在[)0,+∞单调递减,∴32x -≤,232x -≤-≤,15x ≤≤,故选A . 11.【答案】C【解析】()2,0F c ,直线0bx ay -=是线段2MF 的垂直平分线, 可得2F 到渐近线的距离为222F P b b a ==+,即有22OP c b a =-=,由OP 为12MF F △的中位线,可得122MF OP a ==,22MF b =,可得212MF MF a -=,即为222b a a -=,即2b a =,可得221145c b e a a==+=+=.故选C .12.【答案】B【解析】由柯西不等式得:对任意实数1x ,1y ,2x ,2y ,2222121211220x x y y x y x y +-+⋅+≤恒成立, (当且仅当1221x y x y =取等号)若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:222212121122x x y y x y x y +-+⋅+的最大值为0,则函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,使得OA u u u r,OB u u u r 共线,即存在过原点的直线y kx =与()y f x =的图象有两个不同的交点: 对于①,方程()10kx x x x=+>,即()211k x -=,不可能有两个正根,故不存在; 对于②,,由图可知不存在;对于③,,由图可知存在;对于④,,由图可知存在,∴“柯西函数”的个数为2,故选B .二、填空题:本大题共4小题,每小题5分,共20分. 13.【答案】7【解析】根据三角形面积公式得到1sin sin 2S ab C C =⨯⇒=∵三角形为锐角三角形,故得到角C 为π3,再由余弦定理得到222π1cos 7322a b c c ab+-==⇒=.故答案为7.14.【答案】②④【解析】对于①,根据线面垂直的判定定理,需要一条直线垂直于两条相交的直线,故不正确, 对于②,a α⊂,a 垂直于β内任意一条直线,满足线面垂直的定理,即可得到αβ⊥, 又a α⊂,则αβ⊥,故正确,对于③,αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥或a b ∥,或相交,故不正确, 对于④,可以证明αβ∥,故正确. 故答案为②④. 15.【答案】影视配音【解析】由①知甲和丙均不选播音主持,也不选广播电视; 由②知乙不选广播电视,也不选公共演讲;由③知如果甲不选公共演讲,那么丁就不选广播电视,综上得甲、乙、丙均不选广播电视,故丁选广播电视,从而甲选公共演讲,丙选影视配音, 故答案为影视配音. 16.【答案】12【解析】曲线eln y x =的导数为e'y x=,曲线2y mx =的导数为2y mx '=,由e2mx x =,0x >且0m >,得x =e 2⎫⎪⎪⎭,代入eln y x =得e 2=,解得12m =,故答案为12.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)n a n =;(2)见解析.【解析】(1)∵2n S 是n a 与1n a +的等比中项,∴()221n n n n n S a a a a =+=+, 当1n =时,21112a a a =+,∴11a =.当2n ≥时,22111222n n n n n n n a S S a a a a ---=-=+--,整理得()()1110n n n n a a a a --+--=. 又0n a >,∴()112n n a a n --=≥,即数列{}n a 是首项为1,公差为1的等差数列. ∴()()1111n a a n d n n =+-=+-=. (2)()()()1121111111n n n n b n n n n +++⎛⎫=-⋅=-+ ⎪++⎝⎭,∴21232111111111122334212221n n T b b b b n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++=+-+++-++-+ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L L11121n =-<+. 18.【答案】(1)0.05;(2)见解析.【解析】(1)设区间[]75,85内的频率为x ,则区间[)55,65,[)65,75内的频率分别为4x 和2x . 依题意得()0.0040.0120.0190.0310421x x x +++⨯+++=,解得0.05x =. ∴这些桥梁构件质量指标值落在区间[]75,85内的频率为0.05.(2)从该企业生产的该种桥梁构件中随机抽取3件,相当于进行了3次独立重复实验, ∴X 服从二项分布(),B n p ,其中3n =.由(1)得,区间[]45,75内的频率为0.30.20.10.6++=, 将频率视为概率得0.6p =.∵X 的所有可能取值为0,1,2,3,且()00330C 0.60.40.064P X ==⨯⨯=,()11231C 0.60.40.288P X ==⨯⨯=,()22132C 0.60.40.432P X ==⨯⨯=,()33033C 0.60.40.216P X ==⨯⨯=.∴X 的分布列为:X P0.0640.2880.4320.216X 服从二项分布(),B n p ,∴X 的数学期望为30.6 1.8EX =⨯=.19.【答案】(1)见解析;(2219565【解析】(1)∵AB ⊥平面PAD ,∴AB DP ⊥,又∵23DP=,2AP=,60PAD∠=︒,由sin sinPD PAPAD PDA=∠∠,可得1sin2PDA∠=,∴30PDA∠=︒,90APD∠=︒,即DP AP⊥,∵AB AP A=I,∴DP⊥平面PAB,∵DP⊂平面PCD,∴平面PAB⊥平面PCD;(2)以点A为坐标原点,AD所在的直线为y轴,AB所在的直线为z轴,如图所示,建立空间直角坐标系,其中()0,0,0A,()0,0,1B,()0,4,3C,()0,4,0D,)3,1,0P.从而()0,4,1BD=-u u u r,)3,1,0AP=u u u r,()3,3,3PC=-u u u r,设PM PCλ=u u u u r u u u r,从而得()33,31,3Mλλλ+,()33,31,31BMλλλ=+-u u u u r,设平面MBD的法向量为(),,x y z=n,若直线PA∥平面MBD,满足BMBDAP⎧⋅=⎪⎪⋅=⎨⎪⋅=⎪⎩u u u u ru u u ru u u rnnn,即)()()31313104030x y zy zx yλλλ-+++-=-=⎨+=,得14λ=,取()3,3,12=--n,且()3,1,1BP=-u u u r,直线BP与平面MBD所成角的正弦值等于33122sin195651565BPBPθ⋅-+===⨯⋅u u u ru u u rnn20.【答案】(1)2212xy+=;(2)直线l过定点()2,0.【解析】(1)由题意可知,抛物线2C的准线方程为1x=,又椭圆1C2,∴点2⎛⎝⎭在椭圆上,∴221112a b+=,①又2cea==,∴222212a bea-==,∴222a b=,②,由①②联立,解得22a=,21b=,∴椭圆1C的标准方程为2212xy+=.(2)设直线:l y kx m =+,设()11,M x y ,()22,N x y ,把直线l 代入椭圆方程,整理可得()222214220k x km m +++-=,()()222222164212216880k m k m k m ∆=-+-=-+>,即22210k m -+>,∴122421kmx x k +=-+,21222221m x x k -=+,∵111FM y k x =+,221FN yk x =+,M 、N 都在x 轴上方,且AFM OFN ∠=∠,∴FM FN k k =-,∴121211y yx x =-++,即()()()()122111kx m x kx m x ++=-++, 整理可得()()1212220kx x k m x x m ++++=,∴()2222242202121m km k k m m k k -⎛⎫⋅++-+= ⎪++⎝⎭,即22224444420km k k m km k m m ---++=,整理可得2m k =, ∴直线l 为()22y kx k k x =+=+,∴直线l 过定点()2,0. 21.【答案】(1)见解析;(2)56-.【解析】(1)13a =-时,()2ln f x x x x =--,则()()()221121x x x x f x x x +---'==, 令()'0f x =,解得12x =-或1x =,而0x >,故1x =,则当()0,1x ∈时,()0f x '<,即()f x 在区间内递减, 当()1,x ∈+∞时,()0f x '>,即()f x 在区间内递增. (2)由()23ln f x x ax x =+-,()123f x x a x'=+-, 则()()23223x x f x x ax x ϕ'==+-,故()2661x x ax ϕ'=+-, 又()()264610a ∆=-⨯⨯->,故方程()0x ϕ'=有2个不同的实根,不妨记为1x ,2x ,且12x x <, 又∵12106x x =-<,故120x x <<,当()20,x x ∈时,()0x ϕ'<,()x ϕ递减, 当()2,x x ∈+∞时,()0x ϕ'>,()x ϕ递增, 故()()322222min 23x x x ax x ϕϕ==+-,①又()20x ϕ'=,∴2226610x ax +-=,即222166x a x -=,②将222166x a x -=代入式,得2222222222222233316112323622x x x x x x x x x x x -+⋅⋅-=+--=--, 由题意得3221322x x --=-,即322230x x +-=,即()()222212230x x x -++=,解得21x =, 将21x =代入式中,得56a =-.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.【答案】(1)222x y a -=,3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数);(2)2a =±,432. 【解析】(1)由22cos 2a ρθ=得()2222cos sin a ρθθ-=,又cos x ρθ=,sin y ρθ=,得222x y a -=,∴C 的普通方程为222x y a -=, ∵过点()2,1P 、倾斜角为30︒的直线l 的普通方程为)321y x =-+, 由32x =得112y t =+,∴直线l 的参数方程为3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数). (2)将3212x t y ==+⎧⎪⎪⎨⎪⎪⎩代入222x y a -=,得()()222231230t t a ++-=, 依题意知()()222231830a ∆⎡⎤=-->⎣⎦,则上方程的根1t 、2t 就是交点A 、对应的参数,∵()21223t t a ⋅=-,由参数t 的几何意义知1212PA PB t t t t ⋅=⋅=⋅,得122t t ⋅=, ∵点P 在A 、B 之间,∴120t t ⋅<,∴122t t ⋅=-,即()2232a -=-,解得24a =(满足0∆>),∴2a =±, ∵1212PA PB t t t t -=-=+,又()122231t t +=-, ∴432PA PB -=. 23.【答案】(1)2;(2)1.【解析】(1)()31,12213,1131,1x x f x x x x x x x +≥⎧⎪=++-=+-<<⎨⎪--≤-⎩,故当1x =-时,函数()f x 有最小值2,∴2t =. (2)由(1)可知22222a b +=,故22124a b +++=,∴2222222222212111112121121244b a a b a b a b a b +++++++⎛⎫+++=+⋅=≥ ⎪++++⎝⎭, 当且仅当22122a b +=+=,即21a =,20b =时等号成立,故221112a b +++的最小值为1.。

2019年高三数学最新信息卷六理

2019年高三数学最新信息卷六理

A. 25 m 12
B. 25 m 6
C. 9 m 5
D. 18 m 5
5. [2019 ·安阳一模 ] 已知向量 a 2,1 , a b 4 , a b 1 ,则 b ( )
A. 2
B. 3
C. 6
D. 12
6. [2019 ·张家界期末 ] 如图是一个中心对称的几何图形,已知大圆半径为
2,以半径为直径画出
A.自 2005 年以来,我国人口总量呈不断增加趋势 B.自 2005 年以来,我国人口增长率维持在 0.5% 上下波动 C.从 2005 年后逐年比较,我国人口增长率在 2016 年增长幅度最大 D.可以肯定,在 2015 年以后,我国人口增长率将逐年变大 4.[2019 ·邯郸一模 ] 位于德国东部萨克森州的莱科勃克桥(如图所示)有“仙境之桥”之称,它的
保持健康心态,勇敢面对中考;合理饮食,合理睡眠;预祝金榜题名,万事如意!保持健康心态,勇敢面对中考;合理饮食,合理睡眠;预祝金榜题名,万事如意!加油!!!
忍别人所不能忍受的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获!加油!!!忍别人所不能忍受的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获!加油!!!忍别人所不能忍受的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获!加油!!! 专业 1
第Ⅰ卷
一、选择题:本大题共
12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符
合题目要求的.
1. [2019 ·桂林一模 ] 已知集合 A 0,2 , B y y ex 1, x R ,则 A B (

桥形可以近似地看成抛物线,该桥的高度为
的距离为(

5 m ,跨径为 12 m ,则桥形对应的抛物线的焦点到准线

2019年高考真题和模拟题分项汇编数学(理):专题11 算法初步(含解析)

2019年高考真题和模拟题分项汇编数学(理):专题11 算法初步(含解析)

专题11 算法初步1.【2019年高考天津卷理数】阅读下边的程序框图,运行相应的程序,输出S 的值为A .5B .8C .24D .29【答案】B【分析】根据程序框图,逐步写出运算结果即可.【解析】1,2S i ==;11,1225,3j S i ==+⨯==;8,4S i ==,结束循环,输出8S =.故选B .【名师点睛】解答本题要注意要明确循环体终止的条件是什么,会判断什么时候终止循环体. 2.【2019年高考北京卷理数】执行如图所示的程序框图,输出的s 值为A .1B .2C .3D .4【答案】B【分析】根据程序框图中的条件逐次运算即可. 【解析】初始:1s =,1k =,运行第一次,2212312s ⨯==⨯-,2k =,运行第二次,2222322s ⨯==⨯-,3k =,运行第三次,2222322s ⨯==⨯-,结束循环,输出2s =,故选B .【名师点睛】本题考查程序框图,属于容易题,注重基础知识、基本运算能力的考查.3.【2019年高考全国Ⅰ卷理数】如图是求112122++的程序框图,图中空白框中应填入A .12A A =+ B .12A A =+C .112A A=+D .112A A=+【答案】A【分析】本题主要考查算法中的程序框图,渗透阅读、分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出作出选择.【解析】初始:1,122A k ==≤,因为第一次应该计算1122+=12A +,1k k =+=2; 执行第2次,22k =≤,因为第二次应该计算112122++=12A +,1k k =+=3, 结束循环,故循环体为12A A=+,故选A .【秒杀速解】认真观察计算式子的结构特点,可知循环体为12A A=+.4.【2019年高考全国Ⅲ卷理数】执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于A .4122- B .5122-C .6122-D .7122-【答案】C【分析】根据程序框图,结合循环关系进行运算,可得结果. 【解析】输入的ε为0.01,11,01,0.01?2x s x ==+=<不满足条件; 1101,0.01?24s x =++=<不满足条件;⋅⋅⋅611101,0.00781250.01?22128S x =++++==<满足条件,结束循环;输出676111112(1)22222S =+++=⨯-=-,故选C .【名师点睛】解答本题关键是利用循环运算,根据计算精确度确定数据分析. 5.【2019年高考江苏卷】下图是一个算法流程图,则输出的S 的值是______________.【答案】5【分析】结合所给的流程图运行程序确定输出的值即可. 【解析】执行第一次,1,1422x S S x =+==≥不成立,继续循环,12x x =+=; 执行第二次,3,2422x S S x =+==≥不成立,继续循环,13x x =+=; 执行第三次,3,342xS S x =+==≥不成立,继续循环,14x x =+=;执行第四次,5,442xS S x =+==≥成立,输出 5.S =【名师点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构;(2)要识别、运行程序框图,理解框图所解决的实际问题;(3)按照题目的要求完成解答并验证.6.【天津市和平区2018-2019学年度第二学期高三年级第三次质量调查】在如图所示的计算1592017++++L 的程序框图中,判断框内应填入的条件是A .2017?i ≤B .2017?i <C .2013?i <D .2021?i ≤【答案】A【解析】由题意结合流程图可知当2017i =时,程序应执行S S i =+,42021i i =+=, 再次进入判断框时应该跳出循环,输出S 的值;结合所给的选项可知判断框内应填入的条件是2017?i ≤.故选A .7.【吉林省长春市北京师范大学长春市附属中学2019届高三第四次模拟考试】根据如图所示的程序框图,当输入的x 值为3时,输出的y 值等于A .1B .eC .1e -D .2e -【答案】C【解析】由题3x =,231x x =-=-,此时0x >,继续运行,1210x =-=-<,程序运行结束,得1e y -=,故选C .8.【西南名校联盟重庆市第八中学2019届高三5月高考适应性月考卷(六)】执行如图所示的程序框图,则输出的值为A .4B .5C .6D .7【答案】C【解析】由题可得3,27,315,431,563,6S i S i S i S i S i ==→==→==→==→==, 此时结束循环,输出6i =,故选C .9.【山东省济宁市2019届高三二模】阅读如图所示的程序框图,运行相应的程序,输出的S 的值等于A .30B .31C .62D .63【答案】B【解析】由流程图可知该算法的功能为计算123412222S =++++的值,即输出的值为512341(12)122223112S ⨯-=++++==-.故选B .10.【辽宁省大连市2019届高三第二次模拟考试】执行如图所示的程序框图,若输出结果为1,则可输入的实数x 值的个数为A .1B .2C .3D .4【答案】B【分析】根据程序框图的含义,得到分段函数221,2log ,2x x y x x ⎧-≤⎪=⎨>⎪⎩,分段解出关于x 的方程,即可得到可输入的实数x 值的个数.【解析】根据题意,该框图的含义是:当2x ≤时,得到函数21y x =-;当2x >时,得到函数2log y x =, 因此,若输出的结果为1时,若2x ≤,得到211x -=,解得x = 若2x >,得到2log 1x =,无解,因此,可输入的实数x 的值可能为2个.故选B . 11.【江西省新八校2019届高三第二次联考】如图所示的程序框图所实现的功能是A .输入a 的值,计算2021(1)31a -⨯+的值B .输入a 的值,计算2020(1)31a -⨯+的值C .输入a 的值,计算2019(1)31a -⨯+的值D .输入a 的值,计算2018(1)31a -⨯+的值 【答案】B【解析】由程序框图,可知1a a =,132n n a a +=-,由i 的初值为1,末值为2019, 可知,此递推公式共执行了201912020+=次,又由132n n a a +=-,得113(1)n n a a +-=-,得11(1)3n n a a --=-⨯即1(1)31n n a a -=-⨯+,故2021120202021(1)31(1)31a a a -=-⨯+=-⨯+,故选B . 12.【山西省2019届高三考前适应性训练(二模)】执行如图所示的程序框图,则输出x 的值为A.2-B.1 3 -C.12D.3【答案】A【分析】根据程序框图进行模拟运算得到x的值具备周期性,利用周期性的性质进行求解即可.【解析】∵12x=,∴当1i=时,13x=-;2i=时,2x=-;3i=时,3x=,4i=时,12x=,即x的值周期性出现,周期数为4,∵201850442=⨯+,则输出x的值为2-,故选A.【名师点睛】本题主要考查程序框图的识别和判断,结合条件判断x的值具备周期性是解决本题的关键,属于中档题.13.【青海省西宁市第四高级中学、第五中学、第十四中学三校2019届高三4月联考】若某程序框图如图所示,则该程序运行后输出的值是A .5B .4C .3D .2【答案】B【分析】模拟执行循环结构的程序得到n 与i 的值,计算得到2n =时满足判断框的条件,退出循环,输出结果,即可得到答案.【解析】模拟执行循环结构的程序框图, 可得:6,1n i ==, 第1次循环:3,2n i ==; 第2次循环:4,3n i ==; 第3次循环:2,4n i ==,此时满足判断框的条件,输出4i =.故选B .【名师点睛】本题主要考查了循环结构的程序框图的应用,其中解答中根据给定的程序框图,根据判断框的条件推出循环,逐项准确计算输出结果是解答的关键,着重考查了考生的运算与求解能力,属于基础题.14.【江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第三次调研】下图是一个算法流程图.若输出 的值为4,则输入x 的值为______________.【答案】1-【解析】当1x ≤时,由流程图得3y x =-, 令34y x =-=,解得1x =-,满足题意. 当1x >时,由流程图得3y x =+, 令34y x =+=,解得1x =,不满足题意. 故输入x 的值为1-.15.【北京市人大附中2019届高三高考信息卷(三)】执行如图所示的程序框图,若输入x 值满足24x -<≤,则输出y 值的取值范围是______________.【答案】[3,2]-【解析】根据输入x 值满足24x -<≤,利用函数的定义域,分成两部分:即22x <<﹣和24x ≤≤,当22x <<﹣时,执行23y x =- 的关系式,故31y -≤<,当24x ≤≤时,执行2log y x =的关系式,故12y ≤≤. 综上所述:[3,2]y ∈-,故输出y 值的取值范围是[3,2]-.。

专题05 等比数列-2019年高考理数母题题源系列全国Ⅲ专版(解析版)

专题05 等比数列-2019年高考理数母题题源系列全国Ⅲ专版(解析版)

【母题原题1】【2019年高考全国Ⅲ卷理数】已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3= A .16 B .8 C .4 D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【名师点睛】本题主要考查等比数列的通项公式和前n 项和公式,联立等比数列的通项公式和前n 项和公式构成方程组,可以知其三求其二,属于基础题.【母题原题2】【2018年高考全国Ⅲ卷理数】等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 【答案】(1)()12n n a -=-或12n n a -= .(2)6m =.【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =.故1(2)n n a -=-或12n n a -=.专题05 等比数列(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m-=-,此方程没有正整数解.若12n n a -=,则21nn S =-.由63m S =得264m =,解得6m =.综上,6m =.【名师点睛】本题主要考查等比数列的通项公式和前n 项和公式,属于基础题.【母题原题3】【2017年高考全国Ⅲ卷理数】等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .24- B .3- C .3 D .8【答案】A【解析】设等差数列{}n a 的公差为d ,由a 2,a 3,a 6成等比数列可得2326a a a =,即()()()212115d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,故{}n a 前6项的和为()()()6166166166122422S a d ⨯-⨯-=+=⨯+⨯-=-.故选A . 【名师点睛】(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【命题意图】1.熟练掌握等比数列的通项公式、前n 项和公式.2.掌握与等比数列有关的数列求和的常见方法.3.了解等比数列与指数函数的关系.【命题规律】从近三年高考情况来看,本讲是高考的考查热点,主要考查等比数列的基本运算和性质,等比数列的通项公式和前n 项和公式,尤其要注意以数学文化为背景的数列题,题型既有选择题、填空题,也有解答题. 【答题模板】求数列的通项、求和问题时,第一步:根据题意求通项.注意等比数列通项形如指数函数的形式. 第二步:利用函数性质研究数列的性质,例如周期、单调性等. 第三步:利用函嫩、数列的交汇性质来综合求解问题.第四步:查看关键点、易错点及解题规范,例如错位相减去的计算量较大,注意检验. 【方法总结】1.等比数列的判定与证明常用方法如下: (1)定义法.1n n a a +=q (q 为常数且q ≠0)或-1n n aa =q (q 为常数且q ≠0,n ≥2)⇔{a n }为等比数列; (2)等比中项法.21n a +=a n ·a n+2(a n ≠0,n ∈N *)⇔{a n }为等比数列;(3)通项公式法.a n =a 1q n –1(其中a 1,q 为非零常数,n ∈N *)⇔{a n }为等比数列;(4)前n 项和公式法.若S n 表示数列{a n }的前n 项和,且S n =–aq n +a (a ≠0,q ≠0,q ≠1),则数列{a n }是公比为q 的等比数列.由a n+1=qa n ,q ≠0,并不能断言{a n }为等比数列,还要验证a 1≠0.证明一个数列{a n }不是等比数列,只需要说明前三项满足22a ≠a 1·a 3,或者存在一个正整数m ,使得21m a +≠a m ·a m+2即可.2.等比数列的基本运算方法:(1)通项法:等比数列由首项a 1和公比q 确定,所有关于等比数列的计算和证明,都可围绕a 1和q 进行.(2)对于等比数列的相关问题,一般给出两个条件就可以通过列方程(组)求出a 1,q .如果再给出第三个条件就可以完成a n ,a 1,q ,n ,S n 的“知三求二”问题. 例如:①若已知n ,a n ,S n ,先验证q=1是否成立,若q ≠1,可以通过列方程组-111,(1-),1-n n n n a a q a q S q ⎧=⎪⎨=⎪⎩求出关键量a 1和q ,问题可迎刃而解.②若已知数列{a n }中的两项a n 和a m ,可以利用等比数列的通项公式,得到方程组-11-11,,n n m ma a q a a q ⎧=⎨=⎩两式相除可先求出q ,然后代入其中一式求得a 1,进一步求得S n .另外,还可以利用公式a n =a m ·q n –m 直接求得q ,可减少运算量.(3)对称设元法:一般地,若连续奇数个项成等比数列,则可设该数列为…,xq,x ,xq ,…;若连续偶数个项成等比数列,则可设该数列为…,3x q ,x q,xq ,xq 3,…(注意:此时公比q 2>0,并不适合所有情况).这样既可减少未知量的个数,也使得解方程较为方便. 3.错位相减法一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求解,一般是在等式的两边同乘以等比数列{b n }的公比,然后作差求解.若{b n }的公比为参数(字母),则应对公比分等于1和不等于1两种情况讨论.1.【广西南宁市2019届高三毕业班第一次适应性测试数学】在等比数列{}n a 中,若23a =,524a =-,则1a =A .23 B .23- C .32-D .32【答案】C 【解析】因为3528a q a ==-,所以2q =-,从而132a =-.故选C . 【名师点睛】本题考查了等比数列的基本量运算,属于基础题.2.【广西南宁市2019届高三毕业班第一次适应性测试数学】在等比数列{}n a 中,若22a =,554a =-,则1a = A .23B .23-C .32-D .32【答案】B 【解析】因为35227a q a ==-,所以3q =-,从而2123a a q ==-.故选B . 【名师点睛】本题主要考查了等比数列的基本量运算,属于基础题.3.【四川省成都市外国语学校2019届高三一诊模拟考试数学】在正项等比数列{}n a 中,512a =,673a a +=.则满足123123......n n a a a a a a a a ++++>的最大正整数n 的值为A .10B .11C .12D .13【答案】C【解析】∵正项等比数列{}n a 中,512a =,()26753a a a q q +=+=,∴26q q +=. ∵0q >,解得,2q =或3q =-(舍),∴1132a =,∵()1231122132 (1232)n nn a a a a --++++==-,∴()1221123232n n nn -->⨯.整理得,()1152n n n ⎛⎫>-- ⎪⎝⎭,∴112n <≤,经检验12n =满足题意,故选C .【名师点睛】本题主要考查了等比数列的通项公式及求和公式,等比数列的性质等知识的简单综合应用,属于中档试题.4.【四川省巴中市2019届高三零诊考试数学】记n S 为等比数列{a n }的前n 项和,已知S 2=2,S 3=–6.则{a n }的通项公式为A .(2)nn a =- B .2nn a =- C .(3)nn a =-D .3nn a =-【答案】A【解析】根据题意,设等比数列{}n a 的首项为1a ,公比为q ,又由22S =,36S =-,则有()()1211216a q a q q ⎧+=⎪⎨++=-⎪⎩,解得12a =-,2q =-,则()2nn a =-,故选A . 【名师点睛】本题考查等比数列中基本量的计算,属于简单题.5.【四川省南充市高三2019届第二次高考适应性考试高三数学】已知等比数列{}n a 中的各项都是正数,且1321,,22a a a 成等差数列,则101189a a a a +=+ A.1+B.1C.3+D.3-【答案】C【解析】因为等比数列{a n }中的各项都是正数,设公比为q ,得q >0, 且1321,,22a a a 成等差数列,可得3122a a a =+,即a 1q 2=a 1+2a 1q , 因为10a ≠,得q 2–2q –1=0,解得q =或q =1(舍),则101189a a a a +=+()28989q a a a a +=+q 2=C . 【名师点睛】本题考查等比数列的通项公式和等差数列的中项性质,考查方程思想和运算能力,属于基础题.6.【四川省攀枝花市2019届高三第二次统一考试数学】已知等比数列{}n a 的各项均为正数,且13a ,312a ,22a 成等差数列,则64a a = A .1 B .3 C .6 D .9【答案】D【解析】设各项都是正数的等比数列{a n }的公比为q ,(q >0) 由题意可得2312a ⨯=13a +22a ,即q 2–2q –3=0, 解得q =–1(舍去),或q =3,故64a a =q 2=9.故选D .【名师点睛】本题考查等差中项的应用和等比数列的通项公式,求出公比是解决问题的关键,属于基础题.7.【四川省成都石室中学2019届高三第二次模拟考试数学】设等比数列{}n a 的前n 项和为n S ,公比为q .若639S S =,562S =,则1a =A .3 BC D .2【答案】D【解析】等比数列{a n }中,若S 6=9S 3,则q ≠±1, 若S 6=9S 3,则()()631111911a q a q qq--=⨯--,解可得q 3=8,则q =2,又由S 5=62,则有S 5=()5111a q q--=31a 1=62,解得a 1=2,故选D .【名师点睛】本题考查等比数列的前n 项和公式的应用,属于基础题.8.【四川省宜宾市2019届高三第二次诊断性考试数学】等比数列{}n a 的各项均为正数,已知向量()45,a a =a ,()76,a a =b ,且4⋅=a b ,则2122210log log log a a a ++⋯+=A .12B .10C .5D .22log 5+【答案】C【解析】()45,a a =a ,()76,a a =b ,且4⋅=a b ,∴47a a +56a a =4, 由等比数列的性质可得:110a a =…=47a a =56a a =2, 则2122210log log log a a a +++=log 2(12a a •10a )=()5521102log log 25a a ==.故选C .【名师点睛】本题考查数量积运算性质、等比数列的性质及其对数运算性质,考查推理能力与计算能力,属于中档题.9.【贵州省贵阳市2019届高三2月适应性考试(一)数学】等比数列{a n }的前n 项和S n =a •2n +1(n ∈N *),其中a 是常数,则a =A .2-B .1-C .1D .2【答案】B【解析】n =1时,a 1=S 1=2a +1.n ≥2时,a n =S n –S n –1=a •2n +1–(a •2n –1+1),化为a n =a •2n –1, 对于上式n =1时也成立, ∴2a +1=a ,解得a =–1.故选B .【名师点睛】本题考查了等比数列的通项公式、方程的解法,考查了推理能力与计算能力,属于中档题. 10.【河南省新乡市2019届高三第三次模拟测试数学】已知等比数列{}n a 的前n 项和为n S ,且55S =,1030S =,则15S =A .90B .125C .155D .180【答案】C【解析】因为等比数列{}n a 的前n 项和为n S , 所以51051510,,S S S S S --成等比数列,因为5105,30S S ==,所以105151025,255125S S S S -=-=⨯=, 故1512530155.S =+=故选C .【名师点睛】本题考查了等比数列的性质,若等比数列{}n a 的前n 项和为n S ,则232,,n n n n nS S S S S --也成等比数列,这是解题的关键,属于较为基础题.11.【甘肃、青海、宁夏2019届高三上学期期末联考数学】设等比数列{}n a 的前n 项和为n S ,若122a a -=,236a a -=,则4S =A .–60B .–40C .20D .40【答案】B【解析】设等比数列的公比为q ,由12232,6a a a a -=-=,可得1121126a a q a q a q -=⎧⎨-=⎩,解得131q a =⎧⎨=-⎩, 故()441134013S -⨯-==--,故选B .【名师点睛】等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题. 12.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评数学】在等比数列{}n a 中,131a a +=,5791120a a a a +++=,则1a =A .16B .13C .2D .4【答案】B【解析】因为()45713a a a a q +=+=q 4,()891113a a a a q +=+,所以q 8+q 4=20,所以q 4=4或q 4=–5(舍),所以q 2=2,13a a +211a a q =+=13a =1,所以1a 13=. 故选B .【点睛】本题考查了等比数列的通项公式,考查等比数列的性质,要求熟练掌握等比数列的性质的应用,比较基础.13.【湖南省益阳市桃江县第一中学2019届高三5月模拟考试数学】已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S = A .10 B .7 C .8 D .4【答案】C【解析】由题意得13123321231322111124a a a a a S a a a a a a a +++++=+===,38S ∴=,故选C . 【点睛】本题考查等比数列性质的应用,关键是能够根据下角标的关系凑出关于3S 的方程,属于基础题.14.【江西省临川一中2019届高三年级考前模拟考试数学】已知正项等比数列{}n a 的前n 项和为n S ,且2474S S =,则公比q 的值为A .1B .1或12CD.±【答案】C【解析】因为2474S S =,所以()()()124234344a a S S a a +=-=+, 故234q =,因为{}n a 为正项等比数列,故0q >,所以q =C . 【点睛】一般地,如果{}n a 为等比数列,n S 为其前n 项和,则有性质: (1)若,,,*,m n p q m n p q ∈+=+N ,则m n p q a a a a =;(2)公比1q ≠时,则有nn S A Bq =+,其中,A B 为常数且0A B +=;(3)232,,,n n n n n S S S S S --为等比数列(0n S ≠)且公比为nq .15.【山东省临沂市2019年普通高考模拟考试(三模)数学】已知等比数列{}n a 中,37a =,前三项之和321S =,则公比q 的值为A .1B .12-C .1或12-D .112-或【答案】C【解析】等比数列{}n a 中,37a =,前三项之和321S =, 若1q =,37a =,33721S =⨯=,符合题意;若1q ≠,则()213171211a q a q q⎧=⎪-⎨=⎪-⎩,解得12q =-,即公比q 的值为1或12-,故选C .【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题.等比数列基本量的运算是等比11数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知三求二”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.16.【安徽省江淮十校2019届高三年级5月考前最后一卷数学】已知等比数列{}n a 的公比12q =-,该数列前9项的乘积为1,则1a = A .8 B .16C .32D .64【答案】B 【解析】由已知1291a a a =,又2192837465a a a a a a a a a ====,所以951a =,即51a =,所以41112a ⎛⎫-= ⎪⎝⎭,116a =,故选B . 【点睛】本题主要考查等比数列的性质以及等比数列的基本量计算,熟记等比数列的性质与通项公式即可,属于常考题型.17.【山西省2019届高三高考考前适应性训练(三)数学】已知等比数列{}n a 的前n 项和的乘积记为n T ,若29512T T ==,则8T = A .1024 B .2048 C .4096 D .8192【答案】C【解析】设等比数列{}n a 的公比为q ,由29T T =得761a =,故61a =,即511a q =.又2121512a a a q ==,所以91512q =,故12q =,所以36312832424096a T T a q ⎛⎫===== ⎪⎝⎭.故选C .【点睛】本题考查等比数列的性质、等比数列的通项公式,考查计算化简的能力,属中档题.。

高三数学试题(理科)

高三数学试题(理科)

高三数学试题(理科)本试卷分Ⅰ、Ⅱ两卷,第Ⅰ卷1至2页,第Ⅱ卷3到6页,共150分,考试时间120分注意事项:1.考生必须将自己的姓名、学号、考试科目用铅笔涂写在答题卡上,并在答卷前将班别、姓名、学号、等填写在试卷上.2.第一大题每小题选出答案后,用铅笔把答题卡上对应的答案标号涂黑. 3.请用蓝色或黑色钢笔或圆珠笔答卷.考试结束后,试卷必须全部上交.参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中的发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率为:P n (k )=C n k P k (1-p )n-k球的表面积公式为:S=4πR 2,其中R 表示球的半径. 球的体积公式为:V=34πR 3,其中R 表示球的半径. 第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的4个选项中,只有一项是符合题目要求的.1.已知U 为全集,若集合A 、B 、C 满足A ∩B=A ∩C ,则可以推出( ) A . B=C B .A ∪B=A ∪C C .A ∪(U C B)=A ∪(U C C) D .(U C A)∪B=(U C A)∪C 2.函数g (x )满足g (x )g (-x )=1,且g (x )≠1,g (x )不恒为常数,则函数f (x)=g(x)+1g(x)-1( )A .是奇函数不是偶函数B .是偶函数不是奇函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数3.已知函数f (x)=223(1)131(1)x x x x x x ⎧+->⎪-⎨⎪+≤⎩,则f –1(3)=( ) A .10 B .12 C . 23 D . -124.设f (x)=1()0x x ⎧⎨⎩为有理数(为无理数),使所有x 均满足x ·f (x)≤g (x)的函数g(x)是( )A .g (x)=sinxB .g (x)=xC .g (x)=x 2D .g (x)=|x| 5.二项式(1x-)n 展开式中含有x 4项,则n 的可能取值是( )A .5B .6C .3D .76.设OA u u u v =a v ,OB uuu v =b v ,OC u u u v =c v ,当c v =λa v +μb v (λ,μ∈R),且λ+μ=1时,点C 在( )A .线段AB 上 B .直线AB 上C .直线AB 上,但除去点AD . 直线AB 上,但除去点B7.从17个相异的元素中选出2a -1个不同元素的选法记为P ,从17个相异的元素中选出2a 个不同元素的选法记为Q ,从18个相异的元素中选出12个不同元素的选法记为S ,若P+Q=S ,则a 的值为( )A . 6B . 6或8C .3D .3或68.若一个平面与正方体的12条棱所成的角均为θ,那么cos θ等于( ) A.3 B .3 C .2 D.69.设OM u u u u v =(1,12),ON u u u v =(0,1),则满足条件0≤OP uuu v ·OM u u u u v ≤1,0≤OP uuu v ·ON u u u v ≤1的10.已知函数f k图象上相邻的一个最大值点与一个最小值点恰好在x 2+y 2=k 2上,则f (x)的最小正周期为( )A .1B .2C .3D .411.2003年12月,全世界爆发“禽流感”,科学家经过深入的研究终于发现了一种细菌M在杀死“禽流感”病毒N 的同时能够自我复制,已知1个细菌M 可以杀死1个病毒N ,并生成2个细菌M ,那么1个细菌M 和2047个“禽流感”病毒N 最多可生成细菌M 的数值是( )A . 1024B .2047C .2048D .204912.已知抛物线的一条过焦点F 的弦PQ ,点R 在直线PQ 上,且满足OR uuu v =12(OP uuu v +OQ uuu v),R 在抛物线准线上的射影为S ,设α,β是ΔPQS 中的两个锐角,则下面4个式子中不一定正确的是( )A .tan α·tan β=1B .sin α+sinC .cos α+cos β>1D .|tan(α-β)|>tan2αβ+高三(1-12班)数学试题(理科)班别____________ 学号______________ 姓名___________ 得分___________第II 卷 (非选择题 共90分)二、填空题13.把函数sin y x x =-的图象,按向量(),m n =-va (m >0)平移后所得的图象关于y 轴对称,则m 的最小正值为__________________14.若关于x 的不等式2-2x >|x -a | 至少有一个负数解,则a 的取值范围为__________________. 15.利用函数f (t)=12+3sin[2365π(t -81)]可用来估计某一天的白昼时间的长短,其中f (t)表示白昼的小时数,t 是某天的序号,t=0表示1月1日,依此类推0≤t ≤365,若二月份28天,则这一地区一年中白昼最长的大约是 月 日.16.在平面几何里,有勾股定理“设ΔABC 的两边AB 、AC 互相垂直,则AB 2+AC 2=BC 2”.拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是:“设三棱锥O -ABC 的三个侧面OAB 、OAC 、OBC 两两相互垂直, 则______________________________________________.” 三、解答题:本大题6个小题,共74分17.(本小题满12分)已知A 、B 是ΔABC 的两个内角,a v sin 22A B A B i j +-+v v ,其中i j v v 、为互相垂直的单位向量,若||a =v.(Ⅰ) 试问tanA ·tanB 是否为定值? 若为定值,请求出;否则请说明理由. (Ⅱ) 求tanC 的最大值,并判断此时三角形的形状.18. (本小题12分)设数列{a n }的前n 项和为S n ,已知a 1=1,S n =na n ﹣2n(n ﹣1),(n ∈N*)(Ⅰ) 求证数列{a n }为等差数列,并写出通项公式; (Ⅱ) 是否存在自然数n ,使得40032321=++++nS S S S n Λ?若存在,求出n 的值; 若不存在,说明理由;19.(本小题满分12分)甲、乙两人进行乒乓球比赛,在每一局比赛中,甲获胜的概率为P . (Ⅰ)如果甲、乙两人共比赛4局,甲恰好负2局的概率不大于其恰好胜3局的概率,试求P的取值范围; (Ⅱ)如果P=13,当采用3局2胜制的比赛规则时,求甲获胜的概率.20. (本小题满分12分)在正四棱柱ABCD —A 1B 1C 1D 1中,侧棱是底面边长的2倍,P 是侧棱CC 1上的一点. (Ⅰ)求证:不论P 在侧棱CC 1上任何位置,总有BD ⊥AP ;(Ⅱ)若CC 1=3C 1P ,求平面AB 1P 与平面ABCD 所成二面的余弦值. (Ⅲ)当P 点在侧棱CC 1上何处时,AP 在平面B 1AC 上的射影是∠B 1AC 的平分线.21. (本小题满分14分)已知点Q 位于直线3x =-右侧,且到点()1,0F -与到直线3x =-的距离之和等于4. (Ⅰ) 求动点Q 的轨迹C ;(Ⅱ) 直线l 过点()1,0M 交曲线C 于A 、B 两点,点P 满足1()2FP FA FB =+u u u r u u u r u u u u r ,0EP AB =u u ur u u u r g ,又OE uuu r=(0x ,0),其中O 为坐标原点,求0x 的取值范围;(Ⅲ) 在(Ⅱ)的条件下,PEF ∆能否成为以EF 为底的等腰三角形?若能,求出此时直线l 的方程;若不能,请说明理由.ABCDA 1 D 1C 1 B 1P22.(本小题满分12分)已知函数f(x)满足f(x+y)= f(x)·f(y)且f(1)=1 2 .(Ⅰ)当n∈N+时,求f(n)的表达式.(Ⅱ)设a n=n·f(n),n∈N+,求证a1+a2+…+a n<2.答案:1.D 由A ∩B=A ∩C 知B ,C 在A 内部的元素相同,由韦恩图可得. 2.A3.C 2231x x x +--=(1)(3)1x x x -+-=x+3 依题意 当x>1时 f(x)>4当x ≤1时 f(x)=3x+1≤4 令t= f -1(3) ∴f(t)=3<4 即3t+1=3 ∴t=234.D 将f(x)拆成:当x 是有理数时,f(x)=1;当x 是无理数时,f(x)=0,然后一一验证即可5.C 展开式的通项为r nC (1x)n-r ·(-)r =(-1)r ·r n C 4()3r n r x --(r=0,1,2,…n )即存在自然数r ,使43r -(n -1) =4即7r=3n+12且n ≥r,故选C. 6.B ∵n+μ=1 ∴λ=1-μ,∵c v =λa v +μb v =a v +μ(b v -a v )=a v +μAB u u u v∴AC u u u v =c v -a v =μAB u u u v ,即AC u u u v 与AB u u u v共线.7.D 法一:反代法.分别取a=6,8代入验证。

专题07 平面向量-2019年高考理数母题题源系列(全国Ⅰ专版)(解析版)

专题07 平面向量-2019年高考理数母题题源系列(全国Ⅰ专版)(解析版)

专题07 平面向量【母题来源一】【2019年高考全国I 卷理数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6 B .π3 C .2π3D .5π6【答案】B【解析】因为()-a b ⊥b ,所以2()-⋅=⋅-a b b a b b =0,所以2⋅=a b b ,所以cos θ=22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为π3, 故选B .【名师点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.【母题来源二】【2018年高考全国I 卷理数】在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC -C .3144AB AC +D .1344AB AC +【答案】A【解析】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC =++=+, 所以3144EB AB AC =-.故选A.【名师点睛】该题考查的是有关平面向量的基本问题,涉及的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.【母题来源三】【2017年高考全国I 卷理数】已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |=___________. 【答案】3【解析】方法一:222|2|||44||4421cos 60412+=+⋅+=+⨯⨯⨯+=a b a a b b , 所以|2|1223+==a b .方法二:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为3【名师点睛】平面向量中涉及有关模长的问题时,常用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.【命题意图】高考对本部分的考查主要涉及平面向量的数量积和向量的线性运算,以运算求解和数形结合为主,重点掌握数量积的坐标表达式,会进行平面向量数量积的运算,能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系,掌握向量加法、减法、数乘的运算及其几何意义等,注重转化与化归思想的应用. 【命题规律】1.平面向量的数量积一直是高考的一个热点,尤其是平面向量的数量积,主要考查平面向量的数量积的运算、向量的几何意义、模与夹角、两向量的垂直等问题.题型一般以选择题、填空题为主.2.平面向量的基本定理及坐标表示是高考中的一个热点内容,尤其是用坐标表示的向量共线的条件是高考考查的重点内容,一般是通过向量的坐标表示,将几何问题转化为代数问题来解决,多以选择题或填空题的形式呈现,有时也作为解答题中的条件,应用向量的平行或垂直关系进行转换. 【方法总结】(一)平面向量线性运算问题的求解策略:(1)进行向量运算时,要尽可能地将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量,三角形的中位线及相似三角形对应边成比例等性质,把未知向量用已知向量表示出来.(2)向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在线性运算中同样适用.(3)用几个基本向量表示某个向量问题的基本技巧: ①观察各向量的位置; ②寻找相应的三角形或多边形; ③运用法则找关系; ④化简结果.(二)用平面向量基本定理解决问题的一般思路:(1)先选择一组基底,并运用平面向量基本定理将条件和结论表示成该基底的线性组合,再进行向量的运算.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便,另外,要熟练运用线段中点的向量表达式.(三)平面向量数量积的类型及求法:(1)平面向量数量积有两种计算公式:一是夹角公式⋅=a b ||||cos θa b ;二是坐标公式⋅=a b1212x x y y +.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简. (3)两个应用:①求夹角的大小:若a ,b 为非零向量,则由平面向量的数量积公式得cos θ=||||⋅a ba b (夹角公式),所以平面向量的数量积可以用来解决有关角度的问题.②确定夹角的范围:数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角. (四)平面向量的模及其应用的类型与解题策略:(1)求向量的模.解决此类问题应注意模的计算公式2||==⋅a a a a ,或坐标公式22||x y =+a 的应用,另外也可以运用向量数量积的运算公式列方程求解. (2)求模的最值或取值范围.解决此类问题通常有以下两种方法:①几何法:利用向量加减法的平行四边形法则或三角形法则,结合模的几何意义求模的最值或取值范围;②代数法:利用向量的数量积及运算法则转化为不等式或函数求模的最值或取值范围. (3)由向量的模求夹角.对于此类问题的求解,其实质是求向量模方法的逆运用. (五)向量与平面几何综合问题的解法:(1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决. (2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程来进行求解.1.【山东省安丘市、诸城市、五莲县、兰山区2019届高三5月校际联合考试数学试题】已知1=a ,2=b ,且()⊥-a a b ,则向量a 在b 方向上的投影的数量为 A .1B 2C .12D .2【答案】D【解析】由()⊥-a a b 得()0⋅-=a a b ,所以1⋅=⋅=a b a a , 所以向量a 在b 方向上的投影的数量为2cos ,22⋅===a b a a b b , 故选D.【名师点睛】本题主要考查向量的投影,熟记向量数量积的几何意义即可,属于常考题型.求解时,先由()⊥-a a b 求出⋅a b ,再由cos ,a a b 即可求出结果.2.【河北省保定市2019年高三第二次模拟考试数学试题】把点()3,2A 按向量()1,4=a 移到点B ,若2OB BC =-(O 为坐标原点),则C 点坐标为A .()1,1-B .1,12⎛⎫⎪⎝⎭ C .()2,3D .11,2⎛⎫- ⎪⎝⎭【答案】C【解析】因为点()3,2A 按向量()1,4=a 移动后得到点()4,6, 所以()4,6B ,设(),C x y ,则()4,6OB =,()4,6BC x y =--,又2OB BC =-,所以()()424626x y ⎧=--⎪⎨=--⎪⎩,解得:23x y =⎧⎨=⎩,所以()2,3C . 故选C.【名师点睛】本题主要考查了平移知识,还考查了向量数乘的坐标运算,考查计算能力及方程思想,属于较易题.求解时,点()3,2A 按向量()1,4=a 移动后得到点()4,6,设(),C x y ,求得OB ,BC ,再利用2OB BC =-列方程组可得:()()424626x y ⎧=--⎪⎨=--⎪⎩,解方程组即可.3.【广东省东莞市2019届高三第二学期高考冲刺试题(最后一卷)数学试题】已知非零向量,m n 满足4=n m ,且()2⊥+m m n ,则,m n 的夹角为A .π6B .π3 C .π2D .2π3【答案】D【解析】∵4=n m ,且()2⊥+m m n ,∴()22222||cos ,0⋅+=+⋅=+=m m n m m n m m n m n ,且0,0≠≠m n , ∴2||cos ,0+=m n m n ,∴21cos ,2=-=-mm n n , 又0,π≤…m n ,∴2π,3=m n .故选D .【名师点睛】本题考查向量垂直的充要条件,向量数量积的运算及计算公式,以及向量夹角的范围,属于基础题.求解时,根据()2⊥+m m n ,得()20⋅+=m m n ,再根据4=n m 进行数量积的运算即可求出cos ,m n 的值,根据向量夹角的范围即可求出夹角.4.【湖南师范大学附属中学2019届高三数学试题】如图所示,在正方形ABCD 中,E 为AB 的中点,F 为CE 的中点,则AF =A .3144AB AD + B .1344AB AD + C .12AB AD +D .3142AB AD +【答案】D【解析】连接AC ,根据题意得:1()2AF AC AE =+,又AC AB AD =+,12AE AB =, 所以1131()2242AF AB AD AB AB AD =++=+.故选D.【名师点睛】本题主要考查了平面向量的基本定理的简单应用,属于基础试题.解答本题时,根据题意得:1()2AF AC AE =+,结合向量加法的四边形法则及平面向量的基本定理可求.5.【山西名师联盟2019届高三5月内部特供卷数学试题】已知向量,a b 满足2(1,2),(1,)m m +==a b b ,且a 在b 25,则实数m = A .2± B .2 C .5±D 5【答案】A【解析】因为向量,a b 满足2(1,2),(1,)m m +==a b b ,22(0,)m =+-=a a b b ,所以20,,22m m ⎛⎫=⋅= ⎪⎝⎭a ab ,设向量,a b 的夹角为θ,则2225||(||cos )12mm =+=⋅=θb a a b , 所以42516160m m --=,即()()225440m m +-=,解得2m =±. 故选A.【名师点睛】本题主要考查向量的投影及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是cos ⋅=θa b a b ,二是1212x x y y ⋅=+a b ,主要应用以下几个方面: (1)求向量的夹角,cos ⋅=⋅θa ba b(此时⋅a b 往往用坐标形式求解); (2)求投影,a 在b 上的投影是⋅a bb; (3)若向量,a b 垂直,则0⋅=a b ;(4)求向量m n +a b 的模(平方后需求⋅a b ).6.【福建省宁德市2019届高三毕业班第二次(5月)质量检查考试数学试题】若已知向量()1,2=-a ,()1,m =-b ,若//a b ,则⋅a b 的值为A .5B .4C .4-D .5-【答案】D【解析】∵向量()1,2=-a ,()1,m =-b ,且//a b , ∴20m -=,即()1,2=-b , ∴145⋅=--=-a b , 故选D.【名师点睛】本题考查平面向量的坐标运算,涉及向量平行的充要条件,数量积坐标运算,考查计算能力,属于基础题.求解时,利用向量平行的充要条件得到m ,进而利用数量积的坐标运算得到结果. 7.【广东省2019届高三适应性考试数学试题】已知ABC △中,点M 是边BC 的中点,若点O 满足23OA OB OC ++=0,则A .0OM BC ⋅=B .0OM AB ⋅=C .OM BC ∥D .OM AB ∥【答案】D【解析】由点M 是边BC 的中点,可得2OM OB OC =+, 由23OA OB OC ++=0,可得OA OC ++2(OB OC +)23OA OBOA +=-+4OM =0, 即2(OA OB -)+12OM =0, 可得AB =6OM ,即OM ∥AB , 故选D .【名师点睛】本题考查向量的中点表示,以及向量的加减运算和向量共线定理的运用,考查化简运算能力,属于基础题.解答时,由向量的中点表示和加减运算、以及向量的共线定理,即可得到结论. 8.【安徽省江淮十校2019届高三年级5月考前最后一卷数学试题】已知向量(1,2)=a ,(2,3)=-b ,(4,5)=c ,若()+⊥λa b c ,则实数=λA .12-B .12C .2-D .2【答案】C【解析】因为(1,2)=a ,(2,3)=-b ,所以()12,23-+λλλa +b =,又()+⊥λa b c ,所以()0+⋅=λa b c ,即()()412+523=0-+λλ,解得= 2-λ. 故选C.【名师点睛】本题主要考查向量数量积的坐标运算,熟记运算法则即可,属于常考题型.求解时,由,a b 的坐标,表示出λa +b ,再由()+⊥λa b c ,得到()()412+523=0-+λλ,进而可求出结果. 9.【安徽省合肥市2019届高三第三次教学质量检测数学试题】若向量,a b 的夹角为120︒,1=a ,27-=a b ,则=bA .12B 7C .1D .2【答案】C【解析】因为222244cos ,-=+-a b a b a b a b , 又,120=︒a b ,1=a ,27-a b , 所以27=142++b b ,解得32=-b (舍去)或1=b . 故选C.【名师点睛】本题考查求平面向量的模,常用方法是用数量积或22=a a 求解.求解时,先对27-=a b 两边同时平方,代入已知条件,即可解得b .10.【湖南省师范大学附属中学2019届高三下学期模拟(三)数学试题】已知向量a ,b 满足2=a ,且()40+=>λλa b a ,则当λ变化时,⋅a b 的取值范围是A .(,0)-∞B .(,1)-∞-C .(0,)+∞D .(1,)-+∞【答案】D【解析】由已知,(1)4-=λa b ,得2(1)4-=⋅λa a b ,因为||2,0=>λa ,所以11⋅=->-λa b , 故选D.【名师点睛】本题考查向量数量积,向量的线性运算,是基础题.求解时,由向量数量积得1⋅=-λa b 即可求解.11.【福建省泉州市2019届高三第二次(5月)质检数学试题】已知向量,a b 满足1=a ,(),2t t =-b ,-a b与a 垂直,则-a b 的最小值为A .22B .1C 2D .2【答案】B【解析】由题意知-a b 与a 垂直,则()0-⋅=a b a ,可得21⋅==a b a . 又由222+-=-⋅a b a a b b ()22=12+[2]t t -+-()2=211t -+ 所以当1t =时,-a b 取得最小值1. 故选B .【名师点睛】本题主要考查了向量的数量积的运算及其应用,以及向量的垂直条件和向量的模的计算,其中解答中熟记向量的模、数量积和向量的坐标运算,合理准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.求解时,根据向量的模与数量积的运算,求得()2211t -=-+a b 根据二次函数的性质,即可求解.12.【山东省淄博市部分学校2019届高三5月阶段性检测(三模)数学试题】如图,已知等腰梯形ABCD 中,24,5,AB DC AD BC E ====是DC 的中点,P 是线段BC 上的动点,则EP BP ⋅的最小值是A .95- B .0 C .45-D .1【答案】A【解析】由等腰梯形的知识可知cos B =, 设BP x =,则5CP x =, ∴2565()1()(5)(1)EP BP EC CP BP EC BP CP BP x x x x ⋅=+⋅=⋅+⋅=⋅⋅+⋅⋅-=-, 05x 剟,∴当355x =时,EP BP ⋅取得最小值95-. 故选A .【名师点睛】本题考查了平面向量的数量积运算,属于中档题.求解时,计算cos B ,设BP x =,把EP EC CP =+代入得出关于x 的函数,根据x 的范围得出最小值.13.【江西省临川一中2019届高三年级考前模拟考试数学试题】已知向量()3,4=a ,()1,k =-b ,且⊥a b ,则4+a b 与a 的夹角为________.【答案】4π 【解析】因为⊥a b ,故0⋅=a b ,所以340k -+=,故34k =,故()41,7+=-a b , 设4+a b 与a 的夹角为θ, 则2cos 5025525θ===⨯⨯, 因为[]0,π∈θ,故π4=θ, 故填4π. 【名师点睛】解答时,先计算出k ,再求出4+a b 与a 的坐标,计算出它们的夹角的余弦后可求夹角的大小.向量的数量积有两个应用:(1)计算长度或模长,通过用=⋅a a a ;(2)计算角,cos ,⋅=a b a b a b.特别地,两个非零向量,a b 垂直的等价条件是0⋅=a b . 14.【河南省八市重点高中联盟“领军考试”2019届高三压轴数学试题】已知向量()cos ,sin =θθa ,向量(1,=-b ,则3-a b 的最大值是______.【答案】6【解析】由题意,向量()cos ,sin =θθa ,则()33cos ,3sin =θθa ,所以向量3a 的终点在以原点为圆心,3为半径的圆上,又由||3=b ,则其终点也在此圆上,当3a 与b 反向时,3-a b 最大,最大值为6.【名师点睛】本题主要考查了向量的坐标运算,以及向量的坐标表示的应用,其中解答中熟练应用向量的几何意义和向量的坐标表示是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.求解时,由向量()cos ,sin =θθa ,得到向量3a 的终点在以原点为圆心,3为半径的圆上,又由||3=b ,则其终点也在此圆上,当3a 与b 反向时,即可求解,得到答案.15.【湖南省郴州市2019届高三第三次质量检测数学试题】在ABC △中,D 为BC 的中点,且33BC AD ==,则AB AC ⋅=_______. 【答案】54- 【解析】()()22AD DB A AB A D DC C AD BD =++=-⋅⋅95144=-=-. 【名师点睛】本题主要考查向量的基向量表示及向量运算,选择已知信息较多的向量作为基底,是求解这类问题的重要策略.求解时,用AD 表示出所求向量,利用数量积相乘可得结果.。

2019年高考理科数学全国卷3(附参考答案和详解)

2019年高考理科数学全国卷3(附参考答案和详解)

!!请 考 生 在 第 $$$+ 题 中 任 选 一 题 作 答如 果 多 做则 按 所 做 的 第 一 题 计 分 !作 答 时 请 写 清 题 号 ! $$!$本 小 题 满 分 !# 分 %选 修 )2),坐 标 系 与 参 数 方 程
$ % 如 图#在 极 坐 标 系 3# 中#+ $$##%#0 槡$#) # $ % . 槡$#+) #5$$#%#弧+50#05 .!#.55所 在 圆 的 圆 心 分 别 是 $ % $!##%# !#$ #$!#%#曲 线 "! 是 弧+50#曲 线 "$ 是 弧
甲离子残留百分比直方图
乙离子残留百分比直方图 第 !7 题 图
记. 为事件,&乙离子残留在体内的百分比不低于"!"'#根 据直方图得到 1$.%的估计值为#!7#! $!%求 乙 离 子 残 留 百 分 比 直 方 图 中 '#( 的 值 $$%分别估计甲/乙离子残留 百 分 比 的 平 均 值$同 一 组 中 的 数 据 用 该 组 区 间 的 中 点 值 为 代 表 %!
记 2和 1红 楼 梦 2的 人 数 之 间 的 关 系 如 图 ,
易知调查的 !## 位 学 生 中 阅
读 过 1西 游 记 2的 学 生 人 数
为 7#!
所以该校阅读 过 1西 游 记2的
学生人数与该校学生总数比
值的估 计 值 为!7###*#!7!故
第(题图
选 %!
2!答 案 !;
解析!方法!,"!)"""#"!)"#2 的 展 开 式 中 "( 的 系 数 为 !
(!答 案 !% 解析!

精品2019届高三数学上学期第一次教学质量检查考试试题 理(含解析)

精品2019届高三数学上学期第一次教学质量检查考试试题 理(含解析)

蚌埠市2019届高三年级第一次教学质量检查考试数学(理工类)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,若,则()A. B. C. D.【答案】A【解析】依题意可知是集合的元素,即,解得,由,解得.2. 设是复数的共轭复数,且,则()A. 3B. 5C.D.【答案】D【解析】,故.3. 若满足约束条件则的最小值为()A. -3B. 0C. -4D. 1【答案】A【解析】画出可行域如下图所示,由图可知目标函数在点处取得最小值为.4. “直线不相交”是“直线为异面直线”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B5. 已知等差数列的前项和为,且满足,,则()A. 4B. 5C. 6D. 7【答案】B【解析】设等差数列的公差为,,联立解得,则,故选B.6. 已知,且,则()A. B. C. D.【答案】A【解析】,由于角为第三象限角,故,.7. 已知,则()A. 18B. 24C. 36D. 56【答案】B【解析】,故,.8. 已知,下列程序框图设计的是求的值,在“”中应填的执行语句是()A. B. C. D.【答案】A【解析】不妨设,要计算,首先,下一个应该加,再接着是加,故应填.9. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积可能为()A. B. C. D.【答案】A【解析】由三视图可知,该几何体由半个圆锥和一个三棱锥组合而成.故体积为.10. 已知为双曲线的左焦点,直线经过点,若点,关于直线对称,则双曲线的离心率为()A. B. C. D.【答案】C【解析】∵点,关于直线对称,,又∵直线经过点,∴直线的方程为,的中点坐标为,∴,化简整理得,即,,解得,(舍去),故选C.11. 已知,顺次连接函数与的任意三个相邻的交点都构成一个等边三角形,则()A. B. C. D.【答案】B【解析】当正弦值等于余弦值时,函数值为,故等边三角形的高为,由此得到边长为,边长即为函数的周期,故.【点睛】本题主要考查三角函数的图像与性质.首先大致画出正弦函数图像和余弦函数图像,通过观察可知可知,三角形左右两个顶点之间为一个周期,故只需求出等边三角形的边长即可.再根据可知等边三角形的高,由此求得边长即函数的周期,再由周期公式求得的值.12. 定义在上的奇函数满足:当时,(其中为的导函数).则在上零点的个数为()A. 4B. 3C. 2D. 1【答案】D【解析】构造函数,,由于当时,,故当时,为增函数.又,所以当时,成立,由于,所以,由于为奇函数,故当时,,即只有一个根就是.【点睛】本题考查了零点的判断,考查了函数的奇偶性,和利用导数来研究函数的单调性.本题的难点在于构造新函数,然后利用导数来判断新函数的最值,进而判断出的取值.如何构造函数,主要靠平时积累,解题时要多尝试.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知,是两个不同的平面向量,满足:,则__________.【答案】【解析】,,解得,当时,两个是相同的向量,故舍去,所以.14. 已知函数图象关于原点对称.则实数的值为__________.【答案】【解析】依题意有,,,故.15. 已知是抛物线的焦点,是上一点,是坐标原点,的延长线交轴于点,若,则点的纵坐标为__________.【答案】【解析】由于三角形为直角三角形,而,即为中点,设,而,故,代入抛物线方程得,即点的纵坐标为.【点睛】本题主要考查直线和抛物线的位置关系,考查直角三角形斜边的中线等于斜边一半这一几何性质.首先根据题目所给的条件画出图像,突破口就在题目所给条件,这就联想到直角三角形斜边中线等于斜边一半这一几何性质,可得是的中点,设出坐标,代入抛物线方程即可得到所求的结果.16. 已知满足,,,则__________.(用表示)【答案】【解析】依题意,与已知条件相加可得.....................三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,角的对边分别为,且,(1)求的面积;(2)若,求的周长.【答案】(1) (2)的周长为【解析】【试题分析】(1)根据余弦定理,由得到,,在利用三角形面积公式可求得面积.(2)利用三角形内角和定理,有,展开后结合已知条件可求得.利用正弦定理求得,利用配方法可求得由此求得周长为.【试题解析】(1)∵,∴,即,∴;(2)∵,∴由题意,∴,∵,∴,∴∵,∴.∴的周长为.18. 如图,在四棱锥中,是等边三角形,,.(1)求证:平面平面;(2)若直线与所成角的大小为60°,求二面角的大小.【答案】(1)见解析(2)90°【解析】【试题分析】(1)由于是等边三角形,结合勾股定理,可计算证明三条直线两两垂直,由此证得平面,进而得到平面平面.(2)根据(1)证明三条直线两两垂直,以为空间坐标原点建立空间直角坐标系,利用和所成角为计算出点的坐标,然后通过平面和平面的法向量计算二面角的余弦值并求得大小.【试题解析】(1)∵,且是等边三角形∴,,均为直角三角形,即,,∴平面∵平面∴平面平面(2)以为单位正交基底,建立如图所示的空间直角坐标系.令,,∴,,,.设,则,.∵直线与所成角大小为60°,所以,即,解得或(舍),∴,设平面的一个法向量为.∵,,则即令,则,所以.∵平面的一个法向量为,∵,,则即令,则,,∴.∴,故二面角的大小为90°.19. 为监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取10件零件,度量其内径尺寸(单位:).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的内径尺寸服从正态分布. (1)假设生产状态正常,记表示某一天内抽取的10个零件中其尺寸在之外的零件数,求及的数学期望;(2)某天正常工作的一条生产线数据记录的茎叶图如下图所示:①计算这一天平均值与标准差;②一家公司引进了一条这种生产线,为了检查这条生产线是否正常,用这条生产线试生产了5个零件,度量其内径分别为(单位:):85,95,103,109,119,试问此条生产线是否需要进一步调试,为什么?参考数据:,,,,,,,.【答案】(1) (2)①②生产线异常,需要进一步调试【解析】【试题分析】(1)依题意可知满足二项分布,根据二项分布的公式计算出,然后用减去这个值记得到的值.利用二项分布的期望公式,直接计算出的值.(2)分别计算出均值和标准差,计算的范围,发现不在这个范围内,根据原理可知需要进一步调试.【试题解析】(1)由题意知:或,,∵,∴;(2)①所以②结论:需要进一步调试.理由如下:如果生产线正常工作,则服从正态分布,零件内径在之外的概率只有0.0026,而根据原则,知生产线异常,需要进一步调试.20. 已知椭圆经过点,离心率.(1)求的方程;(2)设直线经过点且与相交于两点(异于点),记直线的斜率为,直线的斜率为,证明:为定值.【答案】(1) (2)见解析【解析】【试题分析】(1)依题意可知,解方程组可求得椭圆的标准方程.(2)当直线斜率斜率不存在时,不符合题意.当斜率存在时,设出直线的方程,联立直线的方程和椭圆的方程,写出韦达定理,计算的值,化简后结果为,由此证明结论成立.【试题解析】(1)因为椭圆,经过点,所以.又,所以,解得.故而可得椭圆的标准方程为:.(2)若直线的斜率不存在,则直线的方程为,此时直线与椭圆相切,不符合题意.设直线的方程为,即,联立,得.设,,则所以为定值,且定值为-1.【点睛】本题主要考查椭圆标准方程的求法,考查直线与圆锥曲线位置关系,考查一元二次方程根与系数关系.椭圆标准方程的参数有两个,要确定这两个参数,需要有两个条件,结合恒等式,列方程组来求的椭圆的标准方程.考查直线和圆锥曲线位置关系,要注意直线斜率不存在的情况.21. 已知函数,(其中为自然对数的底数,).(1)若函数的图象与函数的图象相切于处,求的值;(2)当时,若不等式恒成立,求的最小值.【答案】(1) ,(2)【解析】【试题分析】(1)依题意求得切点为,斜率为,由此列方程组可求得的值.(2)将原不等式等价变形为,构造函数,利用导数求得的最大值为,由此求得的最小值. 【试题解析】(1),.(过程略)(2)令,则,当时,单调递增,而,∴时,不合题意当时,令,则,∵为减函数,∴时,,单调递增,时,,单调递减,∴,即.(△)但,等号成立当且仅当且.故(△)式成立只能即.【点睛】本题主要考查导数与切线有关的知识.考查利用导数解不等式恒成立问题.解决导数与切线有关的问题,关键点在于切点和斜率,联络点在于切点的横坐标,以此建立方程组,求得未知参数的值.不等式恒成立问题往往可以考虑构造函数法,利用函数的最值来求解.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程已知曲线的极坐标方程为,的参数方程为(为参数).(1)将曲线与的方程化为直角坐标系下的普通方程;(2)若与相交于两点,求.【答案】(1) (2)【解析】【试题分析】(1)对方程两边乘以,由此求得曲线的普通方程.对的参数方程利用加减消元法可求得的普通方程.(2)将的参数方程代入,利用韦达定理和直线参数的几何意义,来求的弦长的值. 【试题解析】(1)曲线的普通方程为,曲线的普通方程为(2)将的参数方程代入的方程,得,得:解得,∴.23. 选修4-5:不等式选讲已知.(1)当时,求不等式的解集;(2)若函数与的图象恒有公共点,求实数的取值范围.【答案】(1) (2)【解析】【试题分析】(1)利用零点分段法,去绝对值,分别求解每一段的解集.由此计算不等式的解集.(2)先求得函数的最小值,求得函数的最大值,比较这两个数值的大小,即可求得有公共点时,实数的取值范围. 【试题解析】(1)当时,,由得,;(2),该二次函数在处取得最小值,因为函数,在处取得最大值故要使函数与的图象恒有公共点,只需要,即.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高考高三最新信息卷理 科 数 学(十)注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、考生号填写在答题卡上。

2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试卷上无效。

3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。

4、考试结束,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019·益阳模拟]若i 为虚数单位,复数z 满足:()1i i z +=,则z =( ) A .2B .1CD2.[2019·赤峰模拟]设集合{}2log 1A x x =≤,{}2B x x =∈≤Z ,则A B 中的元素个数为( )A .0B .1C .2D .33.[2019·钟祥模拟]某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号,001,002,,699,700.从中抽取70个样本,如下提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是( )A .623B .328C .253D .0074.[2019·东南七校]若双曲线以2y x =±为渐近线,且过(A ,则双曲线的方程为( ) A .2214y x -=B .2214y x -=C .221168x y -=D .221168y x -=5.[2019·成都外国语]若平面向量(),1x =a ,()2,31x =-b ,若∥a b ,则x =( ) A .15B .23-C .1或23-D .1或156.[2019·海淀联考]如图,正方体1111ABCD A B C D -被平面1ACB 和平面1ACD 分别截去三棱锥1B ACB -和三棱锥1D ACD -后,得到一个n 面体,则这个n 面体的左视图为( )A .B .C .D .7.[2019·陕师附中]函数2ln x x y x=的图象大致是( )A .B .C .D .8.[2019·延庆一模]已知数列{}n a 中,11a =,111n na a +=+,若利用下面程序框图计算该数列的 第2019项,则判断框内的条件是( )A .2016n ≤B .2017n ≤C .2018n ≤D .2019n ≤9.[2019·凯里一中]在锐角三角形ABC 中,已知a ,b ,c 分别是角A ,B ,C 的对边,2sin a B =,4a =,则ABC △面积的最大值为( ) A.B.C.D.10.[2019·上饶联考]已知函数()f x 是定义域为R 上的偶函数,若()f x 在(],0-∞上是减函数,2且112f ⎛⎫= ⎪⎝⎭,则不等式()4log 1f x >的解集为( )A.()2,⎛+∞⎝⎭B .⎛ ⎝⎭C .()10,2,2⎛⎫+∞ ⎪⎝⎭D .()2,+∞11.[2019·哈六中]已知()()sin f x x ωθ=+(其中0ω>,0π2θ<<),()()120f x f x ''==,12x x -的最小值为π2,且()3πf x f x ⎛⎫=- ⎪⎝⎭,将()f x 的图象向左平移π6个单位得()g x ,则()g x 的单调递减区间是( )A .()π,2ππk k k ⎡⎤+∈⎢⎥⎣⎦ZB .()2ππ,π63πk k k ⎡⎤++∈⎢⎥⎣⎦ZC .()5ππ,π36πk k k ⎡⎤++∈⎢⎥⎣⎦ZD .()7ππ,π1212πk k k ⎡⎤++∈⎢⎥⎣⎦Z12.[2019·安徽联考]已知函数()()243,111,12x x x f x x x ⎧++≤-⎪=⎨+>-⎪⎩,若关于x 的不等式()()2f x m x <+恰有2个整数解,则实数m 的取值范围为( )A .81,00,34⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦B .81,00,33⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦C .31,00,24⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦D .31,00,23⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.[2019·新疆诊断]设x ,y 满足约束条件2010x y x y x m -+≥+-≥≤⎧⎪⎨⎪⎩,若2z x y =+的最大值为11,则m 的值为_____.14.[2019·青岛一模]部分与整体以某种相似的方式呈现称为分形,谢尔宾斯基三角形是一种分形,由波兰数学家谢尔宾斯基1915年提出.具体操作是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程得到如图所示的图案,若向该图案随机投一点,则该点落在黑色部分的概率是__________.15.[2019·东莞冲刺]已知抛物线()2:20C y px p =>的焦点为F ,准线为l ,过点F 直线'l 与抛物线C 交于点M (M 在x 轴的上方),过M 作MN l ⊥于点N ,连接NF 交抛物线C 于点Q ,则NQ QF=_______.16.[2019·吉安一中]已知在三棱锥A BCD -中,2AB AD BD===,BC CD =AC 则三棱锥A BCD -外接球的表面积为__________.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)[2019·成都外国语]已知数列{}n a 是等差数列,且21a =-,数列{}n b 满足()12,3,4n n n b b a n --==,且131b b ==.(1)求1a 的值;(2)求数列{}n b 的通项公式.18.(12分)[2019·银川一中]2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计, 本次台风造成全省直接经济损失119.52亿元,适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图:(1)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如上表,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?(2)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,李师傅比张师傅早到小区的天数的分布列和数学期望.附:临界值表参考公式:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++.19.(12分)[2019·聊城二模]如图,四边形ABCD是边长为2的正方形,E为CD的中点,以AE为折痕把ADE△折起,使点D到达点P的位置,且60PAB∠=︒.(1)求证:平面PEC⊥平面PAB;(2)求二面角P AE B--的余弦值.20.(12分)[2019·衡水联考]已知椭圆()2222:10x yE a ba b+=>>的左,右焦点分别为1F,2F,,且122F F=.(1)求椭圆E的方程;(2)设椭圆的下顶点为B,过右焦点2F作与直线2BF关于x轴对称的直线l,且直线l与椭圆分别交于点M,N,O为坐标原点,求OMN△的面积.421.(12分)[2019·华大联盟]已知函数()2113ln 244f x x a xx =+++-,()ln g x x =. (1)求证:()21114f x a x ⎛⎫≥-+ ⎪⎝⎭;(2)用{}max ,p q 表示p q ,中的最大值,记()()(){}max ,h x f x g x =,讨论函数()h x 零点的个数.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】[2019·重庆诊断]在平面直角坐标系xOy 中,直线l的参数方程为121x t y ⎧⎪⎪⎨==-+⎪⎪⎩(t 为参数),以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为()2cos 0a a ρθ=>. (1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若直线l 与曲线C 相交于A B ,两点,设点()0,1M -,已知2MA MB AB ⋅=,求实数a 的值.23.(10分)【选修4-5:不等式选讲】[2019·皖南八校]已知函数()3223f x x x =---. (1)求不等式()f x x >的解集;(2)若关于x 的不等式()22f x a a <+恰有3个整数解,求实数a 的取值范围.绝密 ★ 启用前2019年高考高三最新信息卷理科数学答案(十)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D 【解析】∵11i 22i iz ==++,∴z .故选D . 2.【答案】C【解析】因为{}2log 1A x x =≤,故{}02A x x =<≤, 因为{}2B x x =∈≤Z ,所以{}02A B x x =∈<≤Z ,所以{}1,2AB =,元素的个数为2,故选C .3.【答案】A【解析】从表中第5行第6列开始向右读取数据,得到的前6个编号分别是:253,313,457,007,328,623, 则得到的第6个样本编号是623.故选A . 4.【答案】A【解析】根据题意,双曲线以2y x =±为渐近线,设双曲线的方程为224y x t -=,又由双曲线经过点(A,则有(244t -=,解可得1t =,则双曲线的方程为2214y x -=,故选A .5.【答案】C【解析】(),1x =a ,()2,31x =-b ,且∥a b ,()31120x x ∴--⨯=,解得23x =-或1x =,本题正确选项C .6.【答案】D【解析】由题意,正方体1111ABCD A B C D -被平面1ACB 和平面1ACD 分别截去三棱锥1B ACB -和 三棱锥1D ACD -后,得到一个7面体,根据几何体的截面图,可得其左视图为D ,故选D . 7.【答案】D【解析】函数2ln x x y x=为偶函数,则图像关于y 轴对称,排除B .当0x >时,2ln ln x x y x x x==,ln 1y x '=+,0e 1y x >⇒>',100ey x <⇒'<<,ln y x x ∴=在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1e ,⎛⎫+∞ ⎪⎝⎭上单调递增.故选D .8.【答案】C【解析】通过分析,本程序满足“当型”循环结构,判断框内为满足循环的条件, 第一次循环,12A =,即211112a a ==+,112n =+=,第二次循环,121312A ==+,即321213a a ==+,213n =+=, ,第2018次循环,即求2019201811a a =+的值,201812019n =+=,此时满足题意,应退出循环,输出A 的值,所以判断框内应为2018n ≤,故选C . 9.【答案】B【解析】在ABC △中,由正弦定理得sin sin a bA B=,2sin a B =2sin sin B A B =,解得sin A , ABC △为锐角三角形,则1cos 2A ==, 由余弦定理得2222cos a b c bc A =+-,2216b c bc =+-,22162bc b c bc ∴+=+≥,16bc ≤,当且仅当b c =时,等号成立,1sin 2ABC S bc A ∴=⋅=≤△B 项.10.【答案】C【解析】根据题意作出函数的简图如下:结合图像可得41log 2x >或者41log 2x <-,解之得2x >或者102x <<,故选C . 11.【答案】A【解析】∵()()sin f x x ωθ=+,其中0ω>,π0,2θ⎛⎫∈ ⎪⎝⎭,()()120f x f x ''==,21min π2x x -=,∴π122πT ω⋅==,∴2ω=,∴()()sin 2f x x θ=+. 又()π3f x f x ⎛⎫=- ⎪⎝⎭,∴()f x 的图象的对称轴为π6x =,∴22πππ6k θ⋅+=+,k ∈Z , 又π0,2θ⎛⎫∈ ⎪⎝⎭,∴π6θ=,()πsin 26f x x ⎛⎫=+ ⎪⎝⎭.将()f x 的图象向左平移π6个单位得()sin 2cos236ππG x x x ⎛⎫=++= ⎪⎝⎭的图象,令2π22ππk x k ≤≤+,求得πππ2k x k ≤≤+,则()cos 2G x x =的单调递减区间是π,π2πk k ⎡⎤+⎢⎥⎣⎦, 故选A . 12.【答案】C【解析】若0m =,显然不等式()()2f x m x <+仅有1个整数解2-;若0m <,如图(1)所示,不等式()()2f x m x <+的整数解为3-和2-, 即()()9123321616342m m -+<-+-+≥-+⎧⎪⎨⎪⎩,解得302m -≤<;若0m >,如图(2)所示,不等式()()2f x m x <+的整数解为2-和1-, 即()14312122m m-+<-+≥⎧⎪⎨⎪⎩,解得104m <≤.综上所述,实数m 的取值范围为31,00,24⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦,故选C .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.【答案】3【解析】作出不等式组2010xy x y x m -+≥+-≥≤⎧⎪⎨⎪⎩表示的区域,如下图:作出直线:20l x y +=,由图可得,当直线l 往上平移,经过点(),2m m +时,z 最大,由已知得2211m m ++=,解得3m =. 14.【答案】916【解析】由图可知:黑色部分由9个小三角形组成,该图案由16个小三角形组成,这些小三角形都是全等的,设“向该图案随机投一点,则该点落在黑色部分”为事件A ,由几何概型中的面积型可得()991616S P A S ==小三角形小三角形,故选B . 15.【答案】2【解析】由抛物线定义可得MF MN =,l '倾斜角为π3,MN l ⊥,所以π3NMF ∠=,即三角形MNF 为正三角形,因此NF 倾斜角为2π3,由222y px p y x =⎫=-⎪⎭⎧⎪⎨⎪⎩,解得362p p x x ==或(舍),即6Q px =,62226P P NQ P P QF ⎛⎫-- ⎪⎝⎭==-.16.【答案】28π3【解析】2AB AD BD ===,BC CD ==ABD ∴△是正三角形,BCD △是等腰直角三角形,设ABD △中心为2O ,P ,BCD △外心为1O ,则1O 是斜边BD 的中点, 所以11CO =,1AO =12O O , 设三棱锥A BCD -外接球球心为O , 则1OO ⊥平面BCD ,2OO ⊥平面ABD ,由余弦定理1cos AO C ∠== 15π6AO C ∠=,125π6ππ23OO O ∠=-=,1122OO O O ∴==, 设球半径为R ,22221147133R OC OO CO ==+=+=,∴球的表面积为228π4π3R =,故答案为28π3.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)3-;(2)244n b n n =-+.【解析】(1)由数列{}n b 满足1n n n b b a --=,(2n ≥,n ∈*N ),2121b b a ∴-==-,131b b ==,20b ∴=,3321a b b =-=,数列{}n a 是等差数列,()32112d a a ∴=-=--=,12123a a d ∴=-=--=-,1a 的值为3-.(2)由(1)可知数列{}n a 是以3-为首项,以2为公差的等差数列,()32125n a n n =-+-=-,∴当2n ≥时,125n n b b n --=-,()12215n n b b n ---=--, ,211b b -=-,将上述等式相加整理得()()211251432n n b b n n n -+--=⋅-=-+,244n b n n ∴=-+,(2n ≥),当1n =时,11b =也满足,244n b n n ∴=-+(n ∈*N ). 18.【答案】(1)见解析;(2)()218E ξ=. 【解析】(1)如下表:()225030695 4.046 3.84139113515K ⨯⨯-⨯=≈>⨯⨯⨯.所以有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关. (2)设李师傅、张师傅到小区的时间分别为x ,y ,则(),x y 可以看成平面中的点. 试验的全部结果所构成的区域为(){},78,7.58.5x y x y Ω=≤≤≤≤,则1S Ω=,事件A 表示“李师傅比张师傅早到小区”,所构成的区域为(){},,78,7.58.5A x y y x x y =≥≤≤≤≤,即图中的阴影部分面积为111712228A S =-⨯⨯=,所以()78A S P A S Ω==,连续3天内,李师傅比张师傅早到小区的天数记为ξ,则73,8B ξ⎛⎫~ ⎪⎝⎭,()218E ξ=.19.【答案】(1)见解析;(2)14.【解析】(1)因为四边形ABCD 是正方形,所以折起后PE PA ⊥,且PA AB =, 因为60PAB ∠=︒,所以PAB △是正三角形,所以PB PA =.又因为正方形ABCD 中,E 为CD 的中点,所以EA EB =,所以PAE PBE ≅△△, 所以EPB EPA ∠=∠,所以PE PB ⊥, 又因为PAPB P =,所以PE ⊥平面PAB .又PE ⊂平面PEC ,所以平面PEC ⊥平面PAB . (2)取AB 中点F ,连结PF ,EF ,则AB PF ⊥,AB EF ⊥, 又PFEF F =,则AB ⊥平面PEF .又AB ⊂平面ABCE ,所以平面PEF ⊥平面ABCE . 在平面PEF 内作PO EF ⊥于O 点,则PO ⊥平面ABE .以O 点为原点,OF 为x 轴,OP 为z 轴,如图建立空间直角坐标系. 在PEF △中,PF 1PE =,2EF =.∴PO ==,12EO =,故P ⎛ ⎝⎭,1,0,02E ⎛⎫- ⎪⎝⎭,3,1,02A ⎛⎫- ⎪⎝⎭,∴3,1,2PA ⎛=- ⎝⎭,()2,1,0AE =-. 设平面PAE 的一个法向量为()1,,x y z =n ,则由110PA AE ⋅=⋅⎧⎪⎨⎪⎩=n n ,得30220x y x y --=-+=⎧⎪⎨⎪⎩,令1x =,得2y =,z =,∴11,2,⎛= ⎝⎭n . 因为平面ABE 的法向量为()20,0,1=n ,则1213cos 441,==-n n , 又二面角P AE B --为锐二面角,∴二面角P AE B --的余弦值为14.20.【答案】(1)2212x y +=;(2)23.【解析】(1)由题得,22c a c ==⎧⎪⎨⎪⎩,解得1a c ⎧==⎪⎨⎪⎩1b =, 所以椭圆E 的方程为2212x y +=.(2)由题可知,直线l 与直线2BF 关于x 轴对称,所以20l BF k k +=. 由(1)知,椭圆E 的方程为2212x y +=,所以()21,0F ,()0,1B -,所以210101BF k --==-,从而1l k =-,所以直线l 的方程为()011y x -=-⨯-,即10x y +-=. 联立方程2221034012x y x x x y ⎧⎪⎨⎪+-=⇒-=+=⎩,解得0x =或43x =. 设()11,M x y ,()22,N x y ,不妨取10x =,243x =,所以当10x =,11y =;当243x =,213y =-, 所以()0,1M ,41,33N ⎛⎫- ⎪⎝⎭.MN =.设原点O 到直线l 的距离为d,则d =,所以112223OMN S MN d =⨯⨯==△. 21.【答案】(1)见解析;(2)见解析.【解析】(1)证明:设()()21111ln 14x f x a x x x ϕ⎡⎤⎛⎫=--+=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,定义域为()0,+∞,则()22111x x x x xϕ'-=-=. 当01x <<时,()0x ϕ'<;当1x >时,()0x ϕ'>, 故()x ϕ在()0,1内是减函数,在()1,+∞内是增函数, 所以1x =是()x ϕ的极小值点,也是()x ϕ的最小值点,所以()()()min10x x ϕϕϕ≥==,所以()21114f x a x ⎛⎫≥-+ ⎪⎝⎭.(2)解:函数()f x 的定义域为()0,+∞,()()()23233211111212222x x x x f x x x x x x '+---=--==, 当01x <<时,()0f x '<;当1x >时,()0f x '>,所以()f x 在()0,1内是减函数,在()1,+∞内是增函数, 所以1x =是()f x 的极小值点,也是()f x 的最小值点, 即()()min 1f x f a ==, 若0a =,则()()()()221311132444x x f x g x x x x -+-=+-=-, 当01x <<时,()()f x g x >;当1x =时,()()f x g x =;当1x >时,()()f x g x <. 所以()()(),01,1f x x h xg x x ⎧<<⎪=⎨≥⎪⎩,于是()h x 只有一个零点1x =.当0a >,则当01x <≤时,()()f x g x >,此时()()0h x f x a =≥>, 当1x >时,()0f x a >>,()0g x >,此时()0h x >, 所以()h x 没有零点.当0a <,则当01x <<时,根据(1)可知,()21114f x a x ⎛⎫≥-+ ⎪⎝⎭,而01<<,所以()211104f a >-+=, 又因为()()min 10f x f a ==<,所以()f x 在()0,1上有一个零点0x , 从而一定存在()01,c x ∈,使得()()f c g c =, 即21130244a c c +-+=,所以2311424a cc -=+.当x c >时,()()22211311112024224444c x c x g x f x a x x c cx cx x x c -+⎛⎫-=--+-=--++=-+> ⎪⎝⎭, 所以()()g x f x >,从而()()(),0,f x x c h xg x x c⎧<≤⎪=⎨>⎪⎩,于是()h x 有两个零点0x 和1.故当0a <时,()h x 有两个零点.综上,当0a =时,()h x 有一个零点,当0a >时,()h x 没有零点,当0a <时,()h x 有两个零点.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.【答案】(1)直线10l y --=,曲线22:20C x y ax +-=;(2)a =. 【解析】(1)因为直线l的参数方程为121x t y ⎧⎪⎪⎨==-+⎪⎪⎩,消去t 化简得直线l10y --=,由2cos a ρθ=,得22cos a ρρθ=,因为222x y ρ=+,cos x ρθ=,所以222x y ax +=,所以曲线C 的直角坐标方程为2220x y ax +-=.(2)将121x t y ⎧⎪⎪⎨==-⎪⎪⎩,代入2220x y ax +-=,得221104t at ⎛⎫+-+-= ⎪ ⎪⎝⎭,即)210t a t -+=,)240Δa=->,则12t t a +=,121t t =,∴121MA MB t t ⋅==, ∴21AB =,∴()())2222121212441AB t t t t t t a=-=+-=-=,∵0a >,∴a =)240Δa=->,∴a =23.【答案】(1)15,,24⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭;(2)111,0,22⎡⎫⎛⎤--⎪ ⎢⎥⎣⎭⎝⎦.【解析】(1)由题意,函数()3223f x x x =---,可得()21,32355,3231,2x x f x x x x x ⎧--≤⎪⎪⎪=-<<⎨⎪⎪+≥⎪⎩, 因为()f x x >,所以当23x ≤时,1x x -->,12x <-; 当2332x <<时,55x x ->,5342x <<;当32x ≥时,1x x +>,32x ≥, 所以不等式()f x x >的解集为15,,24⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭.(2)由(1)知()f x 的单调减区间为2,3⎛⎫-∞ ⎪⎝⎭,单调增区间为2,3⎛⎫+∞ ⎪⎝⎭,又()21f -=,()10f -=,()01f =-,()10f =,()23f =, 所以2021a a <+≤,所以112a -≤<-或102a <≤,故a 的取值范围为111,0,22⎡⎫⎛⎤--⎪ ⎢⎥⎣⎭⎝⎦.。

相关文档
最新文档