2020年四川省成都市中考数学模拟卷10(解析版)

合集下载

2020年四川省成都市中考数学试卷(后附答案及详尽解析)

2020年四川省成都市中考数学试卷(后附答案及详尽解析)

2020年四川省成都市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)(2020•成都)﹣2的绝对值是( )A .﹣2B .1C .2D .12 2.(3分)(2020•成都)如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是( )A .B .C .D .3.(3分)(2020•成都)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为( )A .3.6×103B .3.6×104C .3.6×105D .36×1044.(3分)(2020•成都)在平面直角坐标系中,将点P (3,2)向下平移2个单位长度得到的点的坐标是( )A .(3,0)B .(1,2)C .(5,2)D .(3,4)5.(3分)(2020•成都)下列计算正确的是( )A .3a +2b =5abB .a 3•a 2=a 6C .(﹣a 3b )2=a 6b 2D .a 2b 3÷a =b 36.(3分)(2020•成都)成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是( )A .5人,7人B .5人,11人C .5人,12人D .7人,11人7.(3分)(2020•成都)如图,在△ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交AC 于点D ,连接BD .若AC =6,AD =2,则BD 的长为( )A .2B .3C .4D .6 8.(3分)(2020•成都)已知x =2是分式方程k x +x−3x−1=1的解,那么实数k 的值为( )A .3B .4C .5D .6 9.(3分)(2020•成都)如图,直线l 1∥l 2∥l 3,直线AC 和DF 被l 1,l 2,l 3所截,AB =5,BC =6,EF =4,则DE 的长为( )A .2B .3C .4D .10310.(3分)(2020•成都)关于二次函数y =x 2+2x ﹣8,下列说法正确的是( )A .图象的对称轴在y 轴的右侧B .图象与y 轴的交点坐标为(0,8)C .图象与x 轴的交点坐标为(﹣2,0)和(4,0)D .y 的最小值为﹣9二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)(2020•成都)分解因式:x 2+3x = .12.(4分)(2020•成都)一次函数y =(2m ﹣1)x +2的值随x 值的增大而增大,则常数m的取值范围为 .13.(4分)(2020•成都)如图,A ,B ,C 是⊙O 上的三个点,∠AOB =50°,∠B =55°,则∠A 的度数为 .14.(4分)(2020•成都)《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系.其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为 .三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(2020•成都)(1)计算:2sin60°+(12)﹣2+|2−√3|−√9; (2)解不等式组:{4(x −1)≥x +2,①2x+13>x −1.②. 16.(6分)(2020•成都)先化简,再求值:(1−1x+3)÷x+2x 2−9,其中x =3+√2. 17.(8分)(2020•成都)2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有 人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为 ;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.18.(8分)(2020•成都)成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台A处的高度,某数学兴趣小组在电视塔附近一建筑物楼项D处测得塔A处的仰角为45°,塔底部B处的俯角为22°.已知建筑物的高CD约为61米,请计算观景台的高AB的值.(结果精确到1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)19.(10分)(2020•成都)在平面直角坐标系xOy中,反比例函数y=mx(x>0)的图象经过点A(3,4),过点A的直线y=kx+b与x轴、y轴分别交于B,C两点.(1)求反比例函数的表达式;(2)若△AOB的面积为△BOC的面积的2倍,求此直线的函数表达式.20.(10分)(2020•成都)如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB于点F.(1)求证:AC是⊙O的切线;(2)若AB =10,tan B =43,求⊙O 的半径;(3)若F 是AB 的中点,试探究BD +CE 与AF 的数量关系并说明理由.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)(2020•成都)已知a =7﹣3b ,则代数式a 2+6ab +9b 2的值为 .22.(4分)(2020•成都)关于x 的一元二次方程2x 2﹣4x +m −32=0有实数根,则实数m 的取值范围是 .23.(4分)(2020•成都)如图,六边形ABCDEF 是正六边形,曲线F A 1B 1C 1D 1E 1F 1…叫做“正六边形的渐开线”,FA 1̂,A 1B 1̂,B 1C 1̂,C 1D 1̂,D 1E 1̂,E 1F 1̂,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线F A 1B 1C 1D 1E 1F 1的长度是 .24.(4分)(2020•成都)在平面直角坐标系xOy 中,已知直线y =mx (m >0)与双曲线y =4x 交于A ,C 两点(点A 在第一象限),直线y =nx (n <0)与双曲线y =−1x 交于B ,D 两点.当这两条直线互相垂直,且四边形ABCD 的周长为10√2时,点A 的坐标为 .25.(4分)(2020•成都)如图,在矩形ABCD 中,AB =4,BC =3,E ,F 分别为AB ,CD边的中点.动点P 从点E 出发沿EA 向点A 运动,同时,动点Q 从点F 出发沿FC 向点C 运动,连接PQ ,过点B 作BH ⊥PQ 于点H ,连接DH .若点P 的速度是点Q 的速度的2倍,在点P 从点E 运动至点A 的过程中,线段PQ 长度的最大值为 ,线段DH 长度的最小值为 .五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)(2020•成都)在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y (单位:件)与线下售价x (单位:元/件,12≤x <24)满足一次函数的关系,部分数据如下表: x (元/件)12 13 14 15 16 y (件) 1200 1100 1000 900 800(1)求y 与x 的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.27.(10分)(2020•成都)在矩形ABCD 的CD 边上取一点E ,将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若BC =2BA ,求∠CBE 的度数;(2)如图2,当AB =5,且AF •FD =10时,求BC 的长;(3)如图3,延长EF ,与∠ABF 的角平分线交于点M ,BM 交AD 于点N ,当NF =AN +FD 时,求AB BC 的值.28.(12分)(2020•成都)在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0),B (4,0)两点,与y 轴交于点C (0,﹣2).(1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,连接BD ,记△BDE 的面积为S 1,△ABE 的面积为S 2,求S 1S 2的最大值; (3)如图2,连接AC ,BC ,过点O 作直线l ∥BC ,点P ,Q 分别为直线l 和抛物线上的点.试探究:在第一象限是否存在这样的点P ,Q ,使△PQB ∽△CAB .若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.2020年四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)(2020•成都)﹣2的绝对值是( )A .﹣2B .1C .2D .12 【解答】解:﹣2的绝对值为2.故选:C .2.(3分)(2020•成都)如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是( )A .B .C .D .【解答】解:从左面看是一列2个正方形.故选:D .3.(3分)(2020•成都)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为( )A .3.6×103B .3.6×104C .3.6×105D .36×104【解答】解:36000=3.6×104,故选:B .4.(3分)(2020•成都)在平面直角坐标系中,将点P (3,2)向下平移2个单位长度得到的点的坐标是( )A .(3,0)B .(1,2)C .(5,2)D .(3,4)【解答】解:将点P (3,2)向下平移2个单位长度所得到的点坐标为(3,2﹣2),即(3,0),故选:A .5.(3分)(2020•成都)下列计算正确的是( )A .3a +2b =5abB .a 3•a 2=a 6C .(﹣a 3b )2=a 6b 2D .a 2b 3÷a =b 3【解答】解:A 、3a 与2b 不是同类项,不能合并,原计算错误,故此选项不符合题意;B 、a 3•a 2=a 5,原计算错误,故此选项不符合题意;C 、(﹣a 3b )2=a 6b 2,原计算正确,故此选项符合题意;D 、a 2b 3÷a =ab 3,原计算错误,故此选项不符合题意.故选:C .6.(3分)(2020•成都)成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是( )A .5人,7人B .5人,11人C .5人,12人D .7人,11人【解答】解:5出现了2次,出现的次数最多,则众数是5人;把这组数据从小到大排列:5,5,7,11,12,最中间的数是7,则中位数是7人. 故选:A .7.(3分)(2020•成都)如图,在△ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交AC 于点D ,连接BD .若AC =6,AD =2,则BD 的长为( )A .2B .3C .4D .6【解答】解:由作图知,MN 是线段BC 的垂直平分线,∴BD =CD ,∵AC =6,AD =2,∴BD =CD =4,故选:C .8.(3分)(2020•成都)已知x =2是分式方程k x +x−3x−1=1的解,那么实数k 的值为( )A .3B .4C .5D .6 【解答】解:把x =2代入分式方程得:k 2−1=1,解得:k =4.故选:B .9.(3分)(2020•成都)如图,直线l 1∥l 2∥l 3,直线AC 和DF 被l 1,l 2,l 3所截,AB =5,BC =6,EF =4,则DE 的长为( )A .2B .3C .4D .103【解答】解:∵直线l 1∥l 2∥l 3,∴AB BC =DE EF ,∵AB =5,BC =6,EF =4,∴56=DE 4,∴DE =103,故选:D .10.(3分)(2020•成都)关于二次函数y =x 2+2x ﹣8,下列说法正确的是( )A .图象的对称轴在y 轴的右侧B .图象与y 轴的交点坐标为(0,8)C .图象与x 轴的交点坐标为(﹣2,0)和(4,0)D .y 的最小值为﹣9【解答】解:∵二次函数y =x 2+2x ﹣8=(x +1)2﹣9=(x +4)(x ﹣2),∴该函数的对称轴是直线x =﹣1,在y 轴的左侧,故选项A 错误;当x =0时,y =﹣8,即该函数与y 轴交于点(0,﹣8),故选项B 错误;当y=0时,x=2或x=﹣4,即图象与x轴的交点坐标为(2,0)和(﹣4,0),故选项C错误;当x=﹣1时,该函数取得最小值y=﹣9,故选项D正确;故选:D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)(2020•成都)分解因式:x2+3x=x(x+3).【解答】解:x2+3x=x(x+3).12.(4分)(2020•成都)一次函数y=(2m﹣1)x+2的值随x值的增大而增大,则常数m的取值范围为m>12.【解答】解:∵一次函数y=(2m﹣1)x+2中,函数值y随自变量x的增大而增大,∴2m﹣1>0,解得m>1 2.故答案为:m>1 2.13.(4分)(2020•成都)如图,A,B,C是⊙O上的三个点,∠AOB=50°,∠B=55°,则∠A的度数为30°.【解答】解:∵OB=OC,∠B=55°,∴∠BOC=180°﹣2∠B=70°,∵∠AOB=50°,∴∠AOC=∠AOB+∠BOC=70°+50°=120°,∵OA=OC,∴∠A=∠OCA=180°−120°2=30°,故答案为:30°.14.(4分)(2020•成都)《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系.其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为 {5x +2y =102x +5y =8 .【解答】解:设1头牛值金x 两,1只羊值金y 两, 由题意可得,{5x +2y =102x +5y =8,故答案为:{5x +2y =102x +5y =8.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上) 15.(12分)(2020•成都)(1)计算:2sin60°+(12)﹣2+|2−√3|−√9;(2)解不等式组:{4(x −1)≥x +2,①2x+13>x −1.②.【解答】解:(1)原式=2×√32+4+2−√3−3 =√3+4+2−√3−3 =3;(2){4(x −1)≥x +2,①2x+13>x −1.②,由①得,x ≥2; 由②得,x <4,故此不等式组的解集为:2≤x <4.16.(6分)(2020•成都)先化简,再求值:(1−1x+3)÷x+2x 2−9,其中x =3+√2. 【解答】解:原式=x+3−1x+3•(x−3)(x+3)x+2=x ﹣3, 当x =3+√2时, 原式=√2.17.(8分)(2020•成都)2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有180人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为126°;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.【解答】解:(1)根据题意得:54÷30%=180(人),答:这次被调查的学生共有180人;故答案为:180;(2)根据题意得:360°×(1﹣20%﹣15%﹣30%)=126°,答:扇形统计图中“篮球”对应的扇形圆心角的度数为126°,故答案为:126°;(3)列表如下:甲乙丙丁甲一(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)一(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)一(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)一∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)=212=16.18.(8分)(2020•成都)成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台A处的高度,某数学兴趣小组在电视塔附近一建筑物楼项D处测得塔A处的仰角为45°,塔底部B处的俯角为22°.已知建筑物的高CD约为61米,请计算观景台的高AB的值.(结果精确到1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)【解答】解:过点D作DE⊥AB于点E,根据题意可得四边形DCBE是矩形,∴DE=BC,BE=DC=61,在Rt△ADE中,∵∠ADE=45°,∴AE=DE,∴AE=DE=BC,在Rt △BDE 中,∠BDE =22°, ∴DE =BEtan22°≈610.40≈152.5,∴AB =AE +BE =DE +CD =152.5+61≈214(米). 答:观景台的高AB 的值约为214米.19.(10分)(2020•成都)在平面直角坐标系xOy 中,反比例函数y =mx (x >0)的图象经过点A (3,4),过点A 的直线y =kx +b 与x 轴、y 轴分别交于B ,C 两点. (1)求反比例函数的表达式;(2)若△AOB 的面积为△BOC 的面积的2倍,求此直线的函数表达式.【解答】解:(1)∵反比例函数y =mx(x >0)的图象经过点A (3,4), ∴k =3×4=12,∴反比例函数的表达式为y =12x ; (2)∵直线y =kx +b 过点A , ∴3k +b =4,∵过点A 的直线y =kx +b 与x 轴、y 轴分别交于B ,C 两点, ∴B (−bk,0),C (0,b ),∵△AOB 的面积为△BOC 的面积的2倍, ∴12×4×|−bk |=2×12×|−bk |×|b |,∴b =±2, 当b =2时,k =23, 当b =﹣2时,k =2,∴直线的函数表达式为:y=23x+2,y=2x﹣2.20.(10分)(2020•成都)如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB于点F.(1)求证:AC是⊙O的切线;(2)若AB=10,tan B=43,求⊙O的半径;(3)若F是AB的中点,试探究BD+CE与AF的数量关系并说明理由.【解答】解:(1)如图,连接OD,∵⊙O与边AB相切于点D,∴OD⊥AB,即∠ADO=90°,∵AO=AO,AC=AD,OC=OD,∴△ACO≌△ADO(SSS),∴∠ADO=∠ACO=90°,又∵OC是半径,∴AC是⊙O的切线;(2)∵tan B=43=ACBC,∴设AC=4x,BC=3x,∵AC2+BC2=AB2,∴16x 2+9x 2=100, ∴x =2, ∴BC =6,∵AC =AD =8,AB =10, ∴BD =2, ∵OB 2=OD 2+BD 2, ∴(6﹣OC )2=OC 2+4, ∴OC =83, 故⊙O 的半径为83;(3)连接OD ,DE ,由(1)可知:△ACO ≌△ADO ,∴∠ACO =∠ADO =90°,∠AOC =∠AOD , 又∵CO =DO ,OE =OE , ∴△COE ≌△DOE (SAS ), ∴∠OCE =∠OED , ∵OC =OE =OD ,∴∠OCE =∠OEC =∠OED =∠ODE ,∴∠DEF =180°﹣∠OEC ﹣∠OED =180°﹣2∠OCE , ∵点F 是AB 中点,∠ACB =90°, ∴CF =BF =AF , ∴∠FCB =∠FBC ,∴∠DFE =180°﹣∠BCF ﹣∠CBF =180°﹣2∠OCE , ∴∠DEF =∠DFE , ∴DE =DF =CE ,∴AF =BF =DF +BD =CE +BD .四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上) 21.(4分)(2020•成都)已知a =7﹣3b ,则代数式a 2+6ab +9b 2的值为 49 . 【解答】解:∵a =7﹣3b , ∴a +3b =7, ∴a 2+6ab +9b 2 =(a +3b )2 =72 =49, 故答案为:49.22.(4分)(2020•成都)关于x 的一元二次方程2x 2﹣4x +m −32=0有实数根,则实数m 的取值范围是 m ≤72.【解答】解:∵关于x 的一元二次方程2x 2﹣4x +m −32=0有实数根, ∴△=(﹣4)2﹣4×2×(m −32)=16﹣8m +12≥0, 解得:m ≤72, 故答案为:m ≤72.23.(4分)(2020•成都)如图,六边形ABCDEF 是正六边形,曲线F A 1B 1C 1D 1E 1F 1…叫做“正六边形的渐开线”,FA 1̂,A 1B 1̂,B 1C 1̂,C 1D 1̂,D 1E 1̂,E 1F 1̂,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线F A 1B 1C 1D 1E 1F 1的长度是 7π .【解答】解:FA1̂的长=60⋅π⋅1180=π3,A 1B 1̂的长=60⋅π⋅2180=2π3, B 1C 1̂的长=60⋅π⋅3180=3π3, C 1D 1̂的长=60⋅π⋅4180=4π3, D 1E 1̂的长=60⋅π⋅5180=5π3, E 1F 1̂的长=60⋅π⋅6180=6π3,∴曲线F A 1B 1C 1D 1E 1F 1的长度=π3+2π3+⋯+6π3=21π3=7π, 故答案为7π.24.(4分)(2020•成都)在平面直角坐标系xOy 中,已知直线y =mx (m >0)与双曲线y =4x交于A ,C 两点(点A 在第一象限),直线y =nx (n <0)与双曲线y =−1x交于B ,D 两点.当这两条直线互相垂直,且四边形ABCD 的周长为10√2时,点A 的坐标为 (√2,2√2)或(2√2,√2) .【解答】解:联立y =mx (m >0)与y =4x 并解得:{x =2√m y =±2√m,故点A 的坐标为(√m,2√m ),联立y =nx (n <0)与y =−1x 同理可得:点D (√−1n ,−√−n ),∵这两条直线互相垂直,则mn =﹣1,故点D (√m ,1√m ),则点B (−√m ,√m), 则AD 2=(√m−√m )2+(2√m √m )2=5m +5m ,同理可得:AB 2=5m +5m =AD 2,则AB =14×10√2,即AB 2=252=5m +5m , 解得:m =2或12,故点A 的坐标为(√2,2√2)或(2√2,√2), 故答案为:(√2,2√2)或(2√2,√2).25.(4分)(2020•成都)如图,在矩形ABCD 中,AB =4,BC =3,E ,F 分别为AB ,CD 边的中点.动点P 从点E 出发沿EA 向点A 运动,同时,动点Q 从点F 出发沿FC 向点C 运动,连接PQ ,过点B 作BH ⊥PQ 于点H ,连接DH .若点P 的速度是点Q 的速度的2倍,在点P从点E运动至点A的过程中,线段PQ长度的最大值为3√2,线段DH长度的最小值为√13−√2.【解答】解:连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O 作ON⊥CD于N.∵四边形ABCD是矩形,DF=CF,AE=EB,∴四边形ADFE是矩形,∴EF=AD=3,∵FQ∥PE,∴△MFQ∽△MEP,∴MFME =FQPE,∵PE=2FQ,∴EM=2MF,∴EM=2,FM=1,当点P与A重合时,PQ的值最大,此时PM=√AE2+ME2=√22+22=2√2,MQ=√FQ2+MF2=√12+12=√2,∴PQ=3√2,∵MF∥ON∥BC,MO=OB,∴FN=CN=1,DN=DF+FN=3,ON=12(FM+BC)=2,∴OD=√DN2+ON2=√32+22=√13,∵BH⊥PQ,∴∠BHM=90°,∵OM=OB,∴OH=12BM=12×√22+22=√2,∵DH≥OD﹣OH,∴DH ≥√13−√2,∴DH 的最小值为√13−√2, 故答案为3√2,√13−√2.五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)(2020•成都)在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y (单位:件)与线下售价x (单位:元/件,12≤x <24)满足一次函数的关系,部分数据如下表: x (元/件) 12 13 14 15 16 y (件)120011001000900800(1)求y 与x 的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润. 【解答】解:(1)∵y 与x 满足一次函数的关系, ∴设y =kx +b ,将x =12,y =1200;x =13,y =1100代入得:{1200=12k +b 1100=13k +b ,解得:{k =−100b =2400,∴y 与x 的函数关系式为:y =﹣100x +2400; (2)设线上和线下月利润总和为m 元,则m =400(x ﹣2﹣10)+y (x ﹣10)=400x ﹣4800+(﹣100x +2400)(x ﹣10)=﹣100(x ﹣19)2+7300,∴当x 为19元/件时,线上和线下月利润总和达到最大,此时的最大利润为7300元. 27.(10分)(2020•成都)在矩形ABCD 的CD 边上取一点E ,将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若BC =2BA ,求∠CBE 的度数;(2)如图2,当AB =5,且AF •FD =10时,求BC 的长;(3)如图3,延长EF ,与∠ABF 的角平分线交于点M ,BM 交AD 于点N ,当NF =AN +FD 时,求AB BC的值.【解答】解:(1)∵将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处, ∴BC =BF ,∠FBE =∠EBC , ∵BC =2AB , ∴BF =2AB , ∴∠AFB =30°, ∵四边形ABCD 是矩形, ∴AD ∥BC ,∴∠AFB =∠CBF =30°, ∴∠CBE =12∠FBC =15°;(2)∵将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处, ∴∠BFE =∠C =90°,CE =EF , 又∵矩形ABCD 中,∠A =∠D =90°,∴∠AFB +∠DFE =90°,∠DEF +∠DFE =90°, ∴∠AFB =∠DEF , ∴△F AB ∽△EDF , ∴AF DE=AB DF,∴AF •DF =AB •DE ,∵AF •DF =10,AB =5, ∴DE =2,∴CE =DC ﹣DE =5﹣2=3, ∴EF =3,∴DF =√EF 2−DE 2=√32−22=√5, ∴AF =10√5=2√5, ∴BC =AD =AF +DF =2√5+√5=3√5. (3)过点N 作NG ⊥BF 于点G ,∵NF =AN +FD , ∴NF =12AD =12BC , ∵BC =BF , ∴NF =12BF ,∵∠NFG =∠AFB ,∠NGF =∠BAF =90°, ∴△NFG ∽△BF A , ∴NG AB=FG FA=NF BF=12,设AN =x ,∵BN 平分∠ABF ,AN ⊥AB ,NG ⊥BF , ∴AN =NG =x , 设FG =y ,则AF =2y , ∵AB 2+AF 2=BF 2,∴(2x )2+(2y )2=(2x +y )2, 解得y =43x .∴BF =BG +GF =2x +43x =103x . ∴AB BC=AB BF=2x103x =35.28.(12分)(2020•成都)在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0),B (4,0)两点,与y 轴交于点C (0,﹣2). (1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,连接BD ,记△BDE 的面积为S 1,△ABE 的面积为S 2,求S 1S 2的最大值;(3)如图2,连接AC ,BC ,过点O 作直线l ∥BC ,点P ,Q 分别为直线l 和抛物线上的点.试探究:在第一象限是否存在这样的点P ,Q ,使△PQB ∽△CAB .若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.【解答】解:(1)设抛物线的解析式为y =a (x +1)(x ﹣4). ∵将C (0,﹣2)代入得:4a =2,解得a =12,∴抛物线的解析式为y =12(x +1)(x ﹣4),即y =12x 2−32x ﹣2.(2)过点D 作DG ⊥x 轴于点G ,交BC 于点F ,过点A 作AK ⊥x 轴交BC 的延长线于点K ,∴AK ∥DG , ∴△AKE ∽△DFE , ∴DF AK =DEAE , ∴S 1S 2=S △BDE S △ABE=DE AE=DF AK,设直线BC 的解析式为y =kx +b ,∴{4k +b =0b =−2,解得{k =12b =−2, ∴直线BC 的解析式为y =12x ﹣2, ∵A (﹣1,0), ∴y =−12−2=−52, ∴AK =52,设D (m ,12m 2−32m ﹣2),则F (m ,12m ﹣2),∴DF =12m −2−12m 2+32m +2=−12m 2+2m . ∴S 1S 2=−12m 2+2m52=−15m 2+45m =−15(m −2)2+45.∴当m =2时,S 1S 2有最大值,最大值是45.(3)符合条件的点P 的坐标为(689,349)或(6+2√415,3+√415). ∵l ∥BC ,∴直线l 的解析式为y =12x ,设P (a ,a2),①当点P 在直线BQ 右侧时,如图2,过点P 作PN ⊥x 轴于点N ,过点Q 作QM ⊥直线PN 于点M ,∵A (﹣1,0),C (0,﹣2),B (4,0),∴AC =√5,AB =5,BC =2√5,∵AC 2+BC 2=AB 2,∴∠ACB =90°, ∵△PQB ∽△CAB ,∴PQ PB=AC BC=12,∵∠QMP =∠BNP =90°,∴∠MQP +∠MPQ =90°,∠MPQ +∠PBN =90°, ∴∠MQP =∠PBN ,∴△QPM ∽△PBN , ∴QM PN=PM BN=PQ PB =12,∴QM =a4,PM =12(a ﹣4)=12a ﹣2, ∴MN =a ﹣2,BN ﹣QM =a ﹣4−a4=34a ﹣4, ∴Q (34a ,a ﹣2),将点Q 的坐标代入抛物线的解析式得12×(34a)2−32×34a ﹣2=a ﹣2,解得a =0(舍去)或a =689. ∴P (689,349).②当点P 在直线BQ 左侧时,由①的方法同理可得点Q 的坐标为(54a ,2).此时点P 的坐标为(6+2√415,3+√415).。

2020年成都市中考数学试题、试卷(解析版)

2020年成都市中考数学试题、试卷(解析版)

2020年成都市中考数学试题、试卷(解析版)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)(2020•成都)﹣2的绝对值是( )A .﹣2B .1C .2D .12 2.(3分)(2020•成都)如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是( )A .B .C .D .3.(3分)(2020•成都)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为( )A .3.6×103B .3.6×104C .3.6×105D .36×1044.(3分)(2020•成都)在平面直角坐标系中,将点P (3,2)向下平移2个单位长度得到的点的坐标是( )A .(3,0)B .(1,2)C .(5,2)D .(3,4)5.(3分)(2020•成都)下列计算正确的是( )A .3a +2b =5abB .a 3•a 2=a 6C .(﹣a 3b )2=a 6b 2D .a 2b 3÷a =b 36.(3分)(2020•成都)成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是( )A .5人,7人B .5人,11人C .5人,12人D .7人,11人7.(3分)(2020•成都)如图,在△ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交AC 于点D ,连接BD .若AC =6,AD =2,则BD 的长为( )A .2B .3C .4D .6 8.(3分)(2020•成都)已知x =2是分式方程k x +x−3x−1=1的解,那么实数k 的值为( )A .3B .4C .5D .6 9.(3分)(2020•成都)如图,直线l 1∥l 2∥l 3,直线AC 和DF 被l 1,l 2,l 3所截,AB =5,BC =6,EF =4,则DE 的长为( )A .2B .3C .4D .10310.(3分)(2020•成都)关于二次函数y =x 2+2x ﹣8,下列说法正确的是( )A .图象的对称轴在y 轴的右侧B .图象与y 轴的交点坐标为(0,8)C .图象与x 轴的交点坐标为(﹣2,0)和(4,0)D .y 的最小值为﹣9二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)(2020•成都)分解因式:x 2+3x = .12.(4分)(2020•成都)一次函数y =(2m ﹣1)x +2的值随x 值的增大而增大,则常数m的取值范围为 .13.(4分)(2020•成都)如图,A ,B ,C 是⊙O 上的三个点,∠AOB =50°,∠B =55°,则∠A 的度数为 .14.(4分)(2020•成都)《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系.其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为 .三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(2020•成都)(1)计算:2sin60°+(12)﹣2+|2−√3|−√9; (2)解不等式组:{4(x −1)≥x +2,①2x+13>x −1.②. 16.(6分)(2020•成都)先化简,再求值:(1−1x+3)÷x+2x 2−9,其中x =3+√2. 17.(8分)(2020•成都)2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有 人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为 ;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.18.(8分)(2020•成都)成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台A处的高度,某数学兴趣小组在电视塔附近一建筑物楼项D处测得塔A处的仰角为45°,塔底部B处的俯角为22°.已知建筑物的高CD约为61米,请计算观景台的高AB的值.(结果精确到1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)19.(10分)(2020•成都)在平面直角坐标系xOy中,反比例函数y=mx(x>0)的图象经过点A(3,4),过点A的直线y=kx+b与x轴、y轴分别交于B,C两点.(1)求反比例函数的表达式;(2)若△AOB的面积为△BOC的面积的2倍,求此直线的函数表达式.20.(10分)(2020•成都)如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB于点F.(1)求证:AC是⊙O的切线;(2)若AB =10,tan B =43,求⊙O 的半径;(3)若F 是AB 的中点,试探究BD +CE 与AF 的数量关系并说明理由.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)(2020•成都)已知a =7﹣3b ,则代数式a 2+6ab +9b 2的值为 .22.(4分)(2020•成都)关于x 的一元二次方程2x 2﹣4x +m −32=0有实数根,则实数m 的取值范围是 .23.(4分)(2020•成都)如图,六边形ABCDEF 是正六边形,曲线F A 1B 1C 1D 1E 1F 1…叫做“正六边形的渐开线”,FA 1̂,A 1B 1̂,B 1C 1̂,C 1D 1̂,D 1E 1̂,E 1F 1̂,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线F A 1B 1C 1D 1E 1F 1的长度是 .24.(4分)(2020•成都)在平面直角坐标系xOy 中,已知直线y =mx (m >0)与双曲线y =4x 交于A ,C 两点(点A 在第一象限),直线y =nx (n <0)与双曲线y =−1x 交于B ,D 两点.当这两条直线互相垂直,且四边形ABCD 的周长为10√2时,点A 的坐标为 .25.(4分)(2020•成都)如图,在矩形ABCD 中,AB =4,BC =3,E ,F 分别为AB ,CD边的中点.动点P 从点E 出发沿EA 向点A 运动,同时,动点Q 从点F 出发沿FC 向点C 运动,连接PQ ,过点B 作BH ⊥PQ 于点H ,连接DH .若点P 的速度是点Q 的速度的2倍,在点P 从点E 运动至点A 的过程中,线段PQ 长度的最大值为 ,线段DH 长度的最小值为 .五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)(2020•成都)在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y (单位:件)与线下售价x (单位:元/件,12≤x <24)满足一次函数的关系,部分数据如下表: x (元/件)12 13 14 15 16 y (件) 1200 1100 1000 900 800(1)求y 与x 的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.27.(10分)(2020•成都)在矩形ABCD 的CD 边上取一点E ,将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若BC =2BA ,求∠CBE 的度数;(2)如图2,当AB =5,且AF •FD =10时,求BC 的长;(3)如图3,延长EF ,与∠ABF 的角平分线交于点M ,BM 交AD 于点N ,当NF =AN +FD 时,求AB BC 的值.28.(12分)(2020•成都)在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0),B (4,0)两点,与y 轴交于点C (0,﹣2).(1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,连接BD ,记△BDE 的面积为S 1,△ABE 的面积为S 2,求S 1S 2的最大值; (3)如图2,连接AC ,BC ,过点O 作直线l ∥BC ,点P ,Q 分别为直线l 和抛物线上的点.试探究:在第一象限是否存在这样的点P ,Q ,使△PQB ∽△CAB .若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.2020年四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)(2020•成都)﹣2的绝对值是( )A .﹣2B .1C .2D .12 【解答】解:﹣2的绝对值为2.故选:C .2.(3分)(2020•成都)如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是( )A .B .C .D .【解答】解:从左面看是一列2个正方形.故选:D .3.(3分)(2020•成都)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为( )A .3.6×103B .3.6×104C .3.6×105D .36×104【解答】解:36000=3.6×104,故选:B .4.(3分)(2020•成都)在平面直角坐标系中,将点P (3,2)向下平移2个单位长度得到的点的坐标是( )A .(3,0)B .(1,2)C .(5,2)D .(3,4)【解答】解:将点P (3,2)向下平移2个单位长度所得到的点坐标为(3,2﹣2),即(3,0),故选:A .5.(3分)(2020•成都)下列计算正确的是( )A .3a +2b =5abB .a 3•a 2=a 6C .(﹣a 3b )2=a 6b 2D .a 2b 3÷a =b 3【解答】解:A 、3a 与2b 不是同类项,不能合并,原计算错误,故此选项不符合题意;B 、a 3•a 2=a 5,原计算错误,故此选项不符合题意;C 、(﹣a 3b )2=a 6b 2,原计算正确,故此选项符合题意;D 、a 2b 3÷a =ab 3,原计算错误,故此选项不符合题意.故选:C .6.(3分)(2020•成都)成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是( )A .5人,7人B .5人,11人C .5人,12人D .7人,11人【解答】解:5出现了2次,出现的次数最多,则众数是5人;把这组数据从小到大排列:5,5,7,11,12,最中间的数是7,则中位数是7人. 故选:A .7.(3分)(2020•成都)如图,在△ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交AC 于点D ,连接BD .若AC =6,AD =2,则BD 的长为( )A .2B .3C .4D .6【解答】解:由作图知,MN 是线段BC 的垂直平分线,∴BD =CD ,∵AC =6,AD =2,∴BD =CD =4,故选:C .8.(3分)(2020•成都)已知x =2是分式方程k x +x−3x−1=1的解,那么实数k 的值为( )A .3B .4C .5D .6 【解答】解:把x =2代入分式方程得:k 2−1=1,解得:k =4.故选:B .9.(3分)(2020•成都)如图,直线l 1∥l 2∥l 3,直线AC 和DF 被l 1,l 2,l 3所截,AB =5,BC =6,EF =4,则DE 的长为( )A .2B .3C .4D .103【解答】解:∵直线l 1∥l 2∥l 3,∴AB BC =DE EF ,∵AB =5,BC =6,EF =4,∴56=DE 4,∴DE =103,故选:D .10.(3分)(2020•成都)关于二次函数y =x 2+2x ﹣8,下列说法正确的是( )A .图象的对称轴在y 轴的右侧B .图象与y 轴的交点坐标为(0,8)C .图象与x 轴的交点坐标为(﹣2,0)和(4,0)D .y 的最小值为﹣9【解答】解:∵二次函数y =x 2+2x ﹣8=(x +1)2﹣9=(x +4)(x ﹣2),∴该函数的对称轴是直线x =﹣1,在y 轴的左侧,故选项A 错误;当x =0时,y =﹣8,即该函数与y 轴交于点(0,﹣8),故选项B 错误;当y=0时,x=2或x=﹣4,即图象与x轴的交点坐标为(2,0)和(﹣4,0),故选项C错误;当x=﹣1时,该函数取得最小值y=﹣9,故选项D正确;故选:D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)(2020•成都)分解因式:x2+3x=x(x+3).【解答】解:x2+3x=x(x+3).12.(4分)(2020•成都)一次函数y=(2m﹣1)x+2的值随x值的增大而增大,则常数m的取值范围为m>12.【解答】解:∵一次函数y=(2m﹣1)x+2中,函数值y随自变量x的增大而增大,∴2m﹣1>0,解得m>1 2.故答案为:m>1 2.13.(4分)(2020•成都)如图,A,B,C是⊙O上的三个点,∠AOB=50°,∠B=55°,则∠A的度数为30°.【解答】解:∵OB=OC,∠B=55°,∴∠BOC=180°﹣2∠B=70°,∵∠AOB=50°,∴∠AOC=∠AOB+∠BOC=70°+50°=120°,∵OA=OC,∴∠A=∠OCA=180°−120°2=30°,故答案为:30°.14.(4分)(2020•成都)《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系.其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为 {5x +2y =102x +5y =8 .【解答】解:设1头牛值金x 两,1只羊值金y 两, 由题意可得,{5x +2y =102x +5y =8,故答案为:{5x +2y =102x +5y =8.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上) 15.(12分)(2020•成都)(1)计算:2sin60°+(12)﹣2+|2−√3|−√9;(2)解不等式组:{4(x −1)≥x +2,①2x+13>x −1.②.【解答】解:(1)原式=2×√32+4+2−√3−3 =√3+4+2−√3−3 =3;(2){4(x −1)≥x +2,①2x+13>x −1.②,由①得,x ≥2; 由②得,x <4,故此不等式组的解集为:2≤x <4.16.(6分)(2020•成都)先化简,再求值:(1−1x+3)÷x+2x 2−9,其中x =3+√2. 【解答】解:原式=x+3−1x+3•(x−3)(x+3)x+2=x ﹣3, 当x =3+√2时, 原式=√2.17.(8分)(2020•成都)2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有180人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为126°;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.【解答】解:(1)根据题意得:54÷30%=180(人),答:这次被调查的学生共有180人;故答案为:180;(2)根据题意得:360°×(1﹣20%﹣15%﹣30%)=126°,答:扇形统计图中“篮球”对应的扇形圆心角的度数为126°,故答案为:126°;(3)列表如下:甲乙丙丁甲一(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)一(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)一(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)一∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)=212=16.18.(8分)(2020•成都)成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台A处的高度,某数学兴趣小组在电视塔附近一建筑物楼项D处测得塔A处的仰角为45°,塔底部B处的俯角为22°.已知建筑物的高CD约为61米,请计算观景台的高AB的值.(结果精确到1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)【解答】解:过点D作DE⊥AB于点E,根据题意可得四边形DCBE是矩形,∴DE=BC,BE=DC=61,在Rt△ADE中,∵∠ADE=45°,∴AE=DE,∴AE=DE=BC,在Rt △BDE 中,∠BDE =22°, ∴DE =BEtan22°≈610.40≈152.5,∴AB =AE +BE =DE +CD =152.5+61≈214(米). 答:观景台的高AB 的值约为214米.19.(10分)(2020•成都)在平面直角坐标系xOy 中,反比例函数y =mx (x >0)的图象经过点A (3,4),过点A 的直线y =kx +b 与x 轴、y 轴分别交于B ,C 两点. (1)求反比例函数的表达式;(2)若△AOB 的面积为△BOC 的面积的2倍,求此直线的函数表达式.【解答】解:(1)∵反比例函数y =mx(x >0)的图象经过点A (3,4), ∴k =3×4=12,∴反比例函数的表达式为y =12x ; (2)∵直线y =kx +b 过点A , ∴3k +b =4,∵过点A 的直线y =kx +b 与x 轴、y 轴分别交于B ,C 两点, ∴B (−bk,0),C (0,b ),∵△AOB 的面积为△BOC 的面积的2倍, ∴12×4×|−bk |=2×12×|−bk |×|b |,∴b =±2, 当b =2时,k =23, 当b =﹣2时,k =2,∴直线的函数表达式为:y=23x+2,y=2x﹣2.20.(10分)(2020•成都)如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB于点F.(1)求证:AC是⊙O的切线;(2)若AB=10,tan B=43,求⊙O的半径;(3)若F是AB的中点,试探究BD+CE与AF的数量关系并说明理由.【解答】解:(1)如图,连接OD,∵⊙O与边AB相切于点D,∴OD⊥AB,即∠ADO=90°,∵AO=AO,AC=AD,OC=OD,∴△ACO≌△ADO(SSS),∴∠ADO=∠ACO=90°,又∵OC是半径,∴AC是⊙O的切线;(2)∵tan B=43=ACBC,∴设AC=4x,BC=3x,∵AC2+BC2=AB2,∴16x 2+9x 2=100, ∴x =2, ∴BC =6,∵AC =AD =8,AB =10, ∴BD =2, ∵OB 2=OD 2+BD 2, ∴(6﹣OC )2=OC 2+4, ∴OC =83, 故⊙O 的半径为83;(3)连接OD ,DE ,由(1)可知:△ACO ≌△ADO ,∴∠ACO =∠ADO =90°,∠AOC =∠AOD , 又∵CO =DO ,OE =OE , ∴△COE ≌△DOE (SAS ), ∴∠OCE =∠OED , ∵OC =OE =OD ,∴∠OCE =∠OEC =∠OED =∠ODE ,∴∠DEF =180°﹣∠OEC ﹣∠OED =180°﹣2∠OCE , ∵点F 是AB 中点,∠ACB =90°, ∴CF =BF =AF , ∴∠FCB =∠FBC ,∴∠DFE =180°﹣∠BCF ﹣∠CBF =180°﹣2∠OCE , ∴∠DEF =∠DFE , ∴DE =DF =CE ,∴AF =BF =DF +BD =CE +BD .四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上) 21.(4分)(2020•成都)已知a =7﹣3b ,则代数式a 2+6ab +9b 2的值为 49 . 【解答】解:∵a =7﹣3b , ∴a +3b =7, ∴a 2+6ab +9b 2 =(a +3b )2 =72 =49, 故答案为:49.22.(4分)(2020•成都)关于x 的一元二次方程2x 2﹣4x +m −32=0有实数根,则实数m 的取值范围是 m ≤72.【解答】解:∵关于x 的一元二次方程2x 2﹣4x +m −32=0有实数根, ∴△=(﹣4)2﹣4×2×(m −32)=16﹣8m +12≥0, 解得:m ≤72, 故答案为:m ≤72.23.(4分)(2020•成都)如图,六边形ABCDEF 是正六边形,曲线F A 1B 1C 1D 1E 1F 1…叫做“正六边形的渐开线”,FA 1̂,A 1B 1̂,B 1C 1̂,C 1D 1̂,D 1E 1̂,E 1F 1̂,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线F A 1B 1C 1D 1E 1F 1的长度是 7π .【解答】解:FA1̂的长=60⋅π⋅1180=π3,A 1B 1̂的长=60⋅π⋅2180=2π3, B 1C 1̂的长=60⋅π⋅3180=3π3, C 1D 1̂的长=60⋅π⋅4180=4π3, D 1E 1̂的长=60⋅π⋅5180=5π3, E 1F 1̂的长=60⋅π⋅6180=6π3,∴曲线F A 1B 1C 1D 1E 1F 1的长度=π3+2π3+⋯+6π3=21π3=7π, 故答案为7π.24.(4分)(2020•成都)在平面直角坐标系xOy 中,已知直线y =mx (m >0)与双曲线y =4x交于A ,C 两点(点A 在第一象限),直线y =nx (n <0)与双曲线y =−1x交于B ,D 两点.当这两条直线互相垂直,且四边形ABCD 的周长为10√2时,点A 的坐标为 (√2,2√2)或(2√2,√2) .【解答】解:联立y =mx (m >0)与y =4x 并解得:{x =2√m y =±2√m,故点A 的坐标为(√m,2√m ),联立y =nx (n <0)与y =−1x 同理可得:点D (√−1n ,−√−n ),∵这两条直线互相垂直,则mn =﹣1,故点D (√m ,1√m ),则点B (−√m ,√m), 则AD 2=(√m−√m )2+(2√m √m )2=5m +5m ,同理可得:AB 2=5m +5m =AD 2,则AB =14×10√2,即AB 2=252=5m +5m , 解得:m =2或12,故点A 的坐标为(√2,2√2)或(2√2,√2), 故答案为:(√2,2√2)或(2√2,√2).25.(4分)(2020•成都)如图,在矩形ABCD 中,AB =4,BC =3,E ,F 分别为AB ,CD 边的中点.动点P 从点E 出发沿EA 向点A 运动,同时,动点Q 从点F 出发沿FC 向点C 运动,连接PQ ,过点B 作BH ⊥PQ 于点H ,连接DH .若点P 的速度是点Q 的速度的2倍,在点P从点E运动至点A的过程中,线段PQ长度的最大值为3√2,线段DH长度的最小值为√13−√2.【解答】解:连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O 作ON⊥CD于N.∵四边形ABCD是矩形,DF=CF,AE=EB,∴四边形ADFE是矩形,∴EF=AD=3,∵FQ∥PE,∴△MFQ∽△MEP,∴MFME =FQPE,∵PE=2FQ,∴EM=2MF,∴EM=2,FM=1,当点P与A重合时,PQ的值最大,此时PM=√AE2+ME2=√22+22=2√2,MQ=√FQ2+MF2=√12+12=√2,∴PQ=3√2,∵MF∥ON∥BC,MO=OB,∴FN=CN=1,DN=DF+FN=3,ON=12(FM+BC)=2,∴OD=√DN2+ON2=√32+22=√13,∵BH⊥PQ,∴∠BHM=90°,∵OM=OB,∴OH=12BM=12×√22+22=√2,∵DH≥OD﹣OH,∴DH ≥√13−√2,∴DH 的最小值为√13−√2, 故答案为3√2,√13−√2.五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)(2020•成都)在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y (单位:件)与线下售价x (单位:元/件,12≤x <24)满足一次函数的关系,部分数据如下表: x (元/件) 12 13 14 15 16 y (件)120011001000900800(1)求y 与x 的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润. 【解答】解:(1)∵y 与x 满足一次函数的关系, ∴设y =kx +b ,将x =12,y =1200;x =13,y =1100代入得:{1200=12k +b 1100=13k +b ,解得:{k =−100b =2400,∴y 与x 的函数关系式为:y =﹣100x +2400; (2)设线上和线下月利润总和为m 元,则m =400(x ﹣2﹣10)+y (x ﹣10)=400x ﹣4800+(﹣100x +2400)(x ﹣10)=﹣100(x ﹣19)2+7300,∴当x 为19元/件时,线上和线下月利润总和达到最大,此时的最大利润为7300元. 27.(10分)(2020•成都)在矩形ABCD 的CD 边上取一点E ,将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若BC =2BA ,求∠CBE 的度数;(2)如图2,当AB =5,且AF •FD =10时,求BC 的长;(3)如图3,延长EF ,与∠ABF 的角平分线交于点M ,BM 交AD 于点N ,当NF =AN +FD 时,求AB BC的值.【解答】解:(1)∵将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处, ∴BC =BF ,∠FBE =∠EBC , ∵BC =2AB , ∴BF =2AB , ∴∠AFB =30°, ∵四边形ABCD 是矩形, ∴AD ∥BC ,∴∠AFB =∠CBF =30°, ∴∠CBE =12∠FBC =15°;(2)∵将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处, ∴∠BFE =∠C =90°,CE =EF , 又∵矩形ABCD 中,∠A =∠D =90°,∴∠AFB +∠DFE =90°,∠DEF +∠DFE =90°, ∴∠AFB =∠DEF , ∴△F AB ∽△EDF , ∴AF DE=AB DF,∴AF •DF =AB •DE ,∵AF •DF =10,AB =5, ∴DE =2,∴CE =DC ﹣DE =5﹣2=3, ∴EF =3,∴DF =√EF 2−DE 2=√32−22=√5, ∴AF =10√5=2√5, ∴BC =AD =AF +DF =2√5+√5=3√5. (3)过点N 作NG ⊥BF 于点G ,∵NF =AN +FD , ∴NF =12AD =12BC , ∵BC =BF , ∴NF =12BF ,∵∠NFG =∠AFB ,∠NGF =∠BAF =90°, ∴△NFG ∽△BF A , ∴NG AB=FG FA=NF BF=12,设AN =x ,∵BN 平分∠ABF ,AN ⊥AB ,NG ⊥BF , ∴AN =NG =x , 设FG =y ,则AF =2y , ∵AB 2+AF 2=BF 2,∴(2x )2+(2y )2=(2x +y )2, 解得y =43x .∴BF =BG +GF =2x +43x =103x . ∴AB BC=AB BF=2x103x =35.28.(12分)(2020•成都)在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0),B (4,0)两点,与y 轴交于点C (0,﹣2). (1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,连接BD ,记△BDE 的面积为S 1,△ABE 的面积为S 2,求S 1S 2的最大值;(3)如图2,连接AC ,BC ,过点O 作直线l ∥BC ,点P ,Q 分别为直线l 和抛物线上的点.试探究:在第一象限是否存在这样的点P ,Q ,使△PQB ∽△CAB .若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.【解答】解:(1)设抛物线的解析式为y =a (x +1)(x ﹣4). ∵将C (0,﹣2)代入得:4a =2,解得a =12,∴抛物线的解析式为y =12(x +1)(x ﹣4),即y =12x 2−32x ﹣2.(2)过点D 作DG ⊥x 轴于点G ,交BC 于点F ,过点A 作AK ⊥x 轴交BC 的延长线于点K ,∴AK ∥DG , ∴△AKE ∽△DFE , ∴DF AK =DEAE , ∴S 1S 2=S △BDE S △ABE=DE AE=DF AK,设直线BC 的解析式为y =kx +b ,∴{4k +b =0b =−2,解得{k =12b =−2, ∴直线BC 的解析式为y =12x ﹣2, ∵A (﹣1,0), ∴y =−12−2=−52, ∴AK =52,设D (m ,12m 2−32m ﹣2),则F (m ,12m ﹣2),∴DF =12m −2−12m 2+32m +2=−12m 2+2m . ∴S 1S 2=−12m 2+2m52=−15m 2+45m =−15(m −2)2+45.∴当m =2时,S 1S 2有最大值,最大值是45.(3)符合条件的点P 的坐标为(689,349)或(6+2√415,3+√415). ∵l ∥BC ,∴直线l 的解析式为y =12x ,设P (a ,a2),①当点P 在直线BQ 右侧时,如图2,过点P 作PN ⊥x 轴于点N ,过点Q 作QM ⊥直线PN 于点M ,∵A (﹣1,0),C (0,﹣2),B (4,0),∴AC =√5,AB =5,BC =2√5,∵AC 2+BC 2=AB 2,∴∠ACB =90°, ∵△PQB ∽△CAB ,∴PQ PB=AC BC=12,∵∠QMP =∠BNP =90°,∴∠MQP +∠MPQ =90°,∠MPQ +∠PBN =90°, ∴∠MQP =∠PBN ,∴△QPM ∽△PBN , ∴QM PN=PM BN=PQ PB =12,∴QM =a4,PM =12(a ﹣4)=12a ﹣2, ∴MN =a ﹣2,BN ﹣QM =a ﹣4−a4=34a ﹣4, ∴Q (34a ,a ﹣2),将点Q 的坐标代入抛物线的解析式得12×(34a)2−32×34a ﹣2=a ﹣2,解得a =0(舍去)或a =689. ∴P (689,349).②当点P 在直线BQ 左侧时,由①的方法同理可得点Q 的坐标为(54a ,2).此时点P 的坐标为(6+2√415,3+√415).。

2020年四川省成都市天府新区中考数学二诊试卷 (解析版)

2020年四川省成都市天府新区中考数学二诊试卷 (解析版)

2020年中考数学二诊试卷一、选择题1.﹣3的绝对值是()A.﹣3B.3C.D.2.如图是由5个大小相同的立方体搭成的几何体,其俯视图是()A.B.C.D.3.截至2013年末全国大陆总人口约为1360000000人,数字1360000000用科学记数法表示为()A.136×107B.13.6×108C.1.36×109D.0.136×1010 4.在直角坐标系中,点P(1,3)向下平移6个单位长度后的坐标为()A.(1,1)B.(1,﹣3)C.(1,0)D.(3,1)5.如图,a∥b,一块含45°角的直角三角板如图放置,∠1=83°,则∠2的度数为()A.17°B.27°C.38°D.43°6.下列计算正确的是()A.3x2+x2=4x4B.(x﹣1)2=x﹣1C.(6x4y)÷(2x3)=3x D.(﹣x2y)2=x4y27.解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3B.1﹣2(x﹣1)=3C.1﹣2x﹣2=﹣3D.1﹣2x+2=38.数据0,﹣1,﹣2,2,1,这组数据的中位数是()A.﹣2B.2C.0.5D.09.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水部分的面积是()A.(π﹣4)cm2B.(π﹣8)cm2C.(π﹣4)cm2D.(π﹣2)cm210.如图,二次函数y=ax2+bx+c的图象过点(﹣1,0)和点(3,0),则下列说法正确的是()A.bc<0B.a+b+c>0C.2a+b=0D.4ac>b2二、填空题(本大题共4个小题,每小题4分,共16分)11.若m+1与﹣2互为倒数,则m的值为.12.等腰三角形的两边长分别是4cm和8cm,则它的周长是.13.已知直线y=(k﹣2)x+k经过第一、二、四象限,则k的取值范围是.14.如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF,分别以E,F为圆心,以大于EF的长为半径作弧,两弧在∠ABD内交于点G,作射线BG交AD于点P,若AP=,则点P到BD的距离为.三、解答题(本大题共6个小题,共54分。

2020年四川省成都市四县市中考数学二诊试卷 (解析版)

2020年四川省成都市四县市中考数学二诊试卷 (解析版)

2020年四川省成都市四县市中考数学二诊试卷一、选择题(共10小题).1.在检测排球质量时,将质量超过标准的克数记为正数,不足的克数记为负数,下面是检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是()A.B.C.D.2.如图,是由6个相同的小正方体组成的几何体,那么该几何体的俯视图是()A.B.C.D.3.110年前,中国首条自行设计和建造的铁路,京张铁路落成;110年后,在同样的地方,世界首条智能高铁京张高铁正式运行,中国速度,一直在路上,2019年底,中国高铁里程将突破3.5万公里,全世界超过的高铁轨道铺设在中国.为你骄傲,中国高铁!请将3.5万公里中的数“3.5万”用科学记数法表示为()A.3.5×101B.0.35×105C.35×103D.3.5×1044.如图,已知直线m∥n,将一块含45°角的直角三角板ABC,按如图所示方式放置,其中斜边AC与直线m交于点D.若∠2=25°,则∠1的度数为()A.25°B.45°C.70°D.75°5.下列运算错误的是()A.b2•b3=b5B.(a﹣b)(b+a)=a2﹣b2C.a5+b5=a10D.(﹣a2b)2=b2a46.在平面直角坐标系中,将函数y=﹣2x的图象沿y轴负方向平移4个单位长度,则平移后的图象与x轴的交点坐标为()A.(2,0)B.(﹣2,0)C.(﹣4,0)D.(0,﹣4)7.疫情期间,为调查某校学生体温的情况,张老师随机调查了50名学生,结果如表:体温(单位:℃)36.236.336.536.736.8人数8107x12则这50名学生体温的众数和中位数分别是()℃A.36.7,36.6B.36.8,36.7C.36.8,36.5D.36.7,36.5 8.若关于x的一元二次方程ax2﹣2x+1=0有实数根,则实数a的取值范围是()A.a<1B.a≤1C.a≥1D.a≤1且a≠0 9.如图,四边形ABCD内接于半径为3的⊙O,CD是直径,若∠ABC=110°,则扇形AOD的面积为()A.πB.πC.πD.2π10.二次函数y=﹣x2+ax+b的图象如图所示,对称轴为直线x=2,下列结论不正确的是()A.a=4B.当x>2.5时,y随x的增大而减小C.当x=﹣1时,b>5D.当b=8时,函数最大值为10二、填空题(每小题4分,共16分)11.已知实数a,b互为相反数,且|a+2b|=1,b<0,则b=.12.已知正多边形的一个外角为72°,则该正多边形的内角和为.13.一次函数y1=kx+b的图象与反比例函数y2=﹣的图象相交于A(﹣1,3),B(m,﹣3)两点,请先画出图象,然后根据图象写出当y1<y2时,x的取值范围为.14.如图:已知锐角∠AOC,依次按照以下顺序操作画图:(1)在射线OA上取一点B,以点O为圆心,OB长为半径作,交射线OC于点D,连接BD;(2)分别以点B,D为圆心,BD长为半径作弧,交于点M,N;(3)连接ON,MN.根据以上作图过程及所作图形可知下列结论:①OC平分∠AON;②MN∥BD;③MN=3BD;④若∠AOC=30°,则MN=ON.其中正确结论的序号是.三、解答题(本大题共6小题,共54分,答题应写出文字说明、证明过程或演算步骤)15.(1)计算:(π﹣2020)0﹣+4sin60°﹣|3﹣|;(2)解方程:(x+2)(x﹣3)=(x+2).16.先化简,再求值:÷(x+2﹣),其中x=.17.成都市为了扎实推进精准扶贫工作,出台了民生兜底、医保脱贫、教育救助、产业扶持、养老托管和易地搬迁这六种帮扶措施,每户贫困户都享受了2到5种帮扶措施,现把享受了2种、3种、4种和5种帮扶措施的贫困户分别称为A,B,C,D类贫困户,为检查帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成如图两幅不完整的统计图.请根据图中信息,回答下列问题:(1)本次抽样调查了多少户贫困户?(2)成都市共有9100户贫困户,请估计至少得到4种帮扶措施的大约有多少户?(3)2020年是精准扶贫攻关年,为更好地做好工作,现准备从D类贫困户中的甲、乙、丙、丁四户中随机选取两户进行试点帮扶,请用树状图或列表法求出恰好选中乙和丙的概率.18.小颖“综合与实践”小组学习了三角函数后,开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,如表是不完整测量数据.课题测量旗杆的高度成员组长:小颖,组员:小明,小刚,小英测量工具测量角度的仪器,皮尺等测量示意图说明:线段GH表示学校旗杆,测量角度的仪器的高度AC=BD=1.62m,测点A,B与H在同一水平直线上,A,B之间的距离可以直接测得,且点G,H,A,B,C,D都在同一竖直平面内,点C,D,E在同一条直线上,点E在GH上.测量数据测量项目第一次第二次平均值∠GCE的度数30.6°31.4°31°∠GDE的度数36.8°37.2°37°A,B之间的距离10.1m10.5m m ……(1)任务一:完成表格中两次测点A,B之间的距离的平均值.(2)任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.(精确到0.1m)(参考数据:sin31°≈0.51,cos31°≈0.86,tan31°≈0.60,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)19.如图所示,一次函数y=﹣x﹣6与x轴,y轴分别交于点A,B将直线AB沿y轴正方向平移与反比例函数y=(x>0)的图象分别交于点C,D,连接BC交x轴于点E,连接AC,已知BE=3CE,且S△ABE=27.(1)求直线AC和反比例函数的解析式;(2)连接AD,求△ACD的面积.20.如图,在⊙O的内接△ABC中,∠CAB=90°,AB=2AC,过点A作BC的垂线m交⊙O于另一点D,垂足为H,点E为上异于A,B的一个动点,射线BE交直线m于点F,连接AE,连接DE交BC于点G.(1)求证:△FED∽△AEB;(2)若=,AC=2,连接CE,求AE的长;(3)在点E运动过程中,若BG=CG,求tan∠CBF的值.一、填空题(每小题4分,共20分)21.已知正实数m,n满足m2=5,n3=11,则m n.(填“>”“<”或“=”)22.如图所示,已知线段AC=1,经过点A作AB⊥AC,使AB=AC,连接BC,在BC 上截取BE=AB,在CA上截取CD=CE,则的值是.23.若关于x的分式方程﹣=1的解为正数,且关于y的一元一次不等式组的解集为无解,则符合条件的所有整数a的和为.24.如图,在平面直角坐标系xOy中,直线y=﹣x﹣2与x轴,y轴分别交于点D,C.点G,H是线段CD上的两个动点,且∠GOH=45°,过点G作GA⊥x轴于A,过点H 作HB⊥y轴于B,延长AG,BH交于点E,则过点E的反比例函数y=的解析式为.25.如图,在矩形ABCD中,AB=9,AD=6,点O为对角线AC的中点,点E在DC的延长线上且CE=1.5,连接OE,过点O作OF⊥OE交CB延长线于点F,连接FE并延长交AC的延长线于点G,则=.二、解答题(本大题共3小题,共30分.其中26题8分,27题10分,28题12分)26.大邑县某汽车出租公司有若干辆同一型号的货车对外出租,每辆货车的日租金实行淡季、旺季两种价格标准,旺季每辆货车的日租金比淡季上涨25%.据统计,淡季该公司平均每天有10辆货车未出租,日租金总收入为3200元;旺季所有的货车每天能全部租出,日租金总收入为6000元.(1)求该出租公司这批对外出租的货车共有多少辆?(2)经市场调查发现,在旺季如果每辆货车的日租金每上涨20元,每天租出去的货车就会减少1辆,不考虑其它因素,该出租公司的日租金总收入最高是多少元?当日租金总收入最高时,每天出租货车多少辆?27.如图,已知正方形ABCD的顶点D关于射线CP的对称点G落在正方形内,连接BG 并延长交边AD于点E,交射线CP于点F.连接DF,AF,CG.(1)试判断DF与BF的位置关系,并说明理由;(2)若CF=4,DF=2,求AE的长;(3)若∠ADF=2∠FAD,求tan∠FAD的值.28.如图,一次函数y=x﹣2的图象与x轴交于点A,与y轴交于点B,点D的坐标为(﹣1,0),二次函数y=ax2+bx+c(a≠0)的图象经过A,B,D三点.(1)求二次函数的解析式;(2)如图1,已知点G(1,m)在抛物线上,作射线AG,点H为线段AB上一点,过点H作HE⊥y轴于点E,过点H作HF⊥AG于点F,过点H作HM∥y轴交AG于点P,交抛物线于点M,当HE•HF的值最大时,求HM的长;(3)在(2)的条件下,连接BM,若点N为抛物线上一点,且满足∠BMN=∠BAO,求点N的坐标.参考答案一、选择题(每小题3分,共30分。

2020年中考数学模拟试卷03含解析 (2)

2020年中考数学模拟试卷03含解析 (2)

2020年中考数学模拟试卷第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在实数实数0,−√5,√6,﹣2中,最小的是( ) A .0 B .−√5C .√6D .﹣2【答案】B【解析】∵−√5<﹣2<0<√6, ∴所给的数中,最小的数是−√5. 故选B . 2.函数1x y x+=-的自变量取值范围是( ) A .0x > B .0x <C .0x ≠D .1x ≠-【答案】C【解析】当0x ≠时,分式有意义。

即1x y x+=-的自变量取值范围是0x ≠。

故答案为:C3.下列说法正确的是( )A .调查某班学生的身高情况,适采用抽样训查B .对端午节期间市场上粽子质量情况的调查适合采用全面调查C .小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的率是1D .“若,m n 互为相反数,则0m n +=”,这一事件是必然事件 【答案】D【解析】A 、调查你所在班级同学的身高,采用普查;B 、调查端午节期间市场上粽子质量情况,采用抽样调查;C 、小南抛掷两次硬币都是正面向上,不能说明抛掷硬币正面向上的率是1;D 、若,m n 互为相反数,则有0m n +=成立,故这一事件是必然事件;故选D . 4.点()2,3A -关于原点对称的点的坐标为( ) A .()2,3 B .()3,2-C .()2,3-D .()3,2-【答案】C【解析】点()2,3A -关于原点对称的点的坐标为()2,3- 故选C.5.如图是一个几何体的三视图,则此几何体是( )A .圆柱B .棱柱C .圆锥D .棱台【答案】A【解析】由于主视图和左视图为正方形可得此几何体为柱体,由俯视图为圆形可得为圆柱.故选A .6.九(1)班有2名升旗手,九(2)班、九(3)班各1名,若从4人中随机抽取2人担任下周的升旗手,则抽取的2人恰巧都来自九(1)班的概率是( )A .34B .23C .25D .16【答案】D【解析】画树状图如下:由树状图知,共有12种等可能结果,其中抽取的2人恰巧都来自九(1)班的有2种结果,所以抽取的2人恰巧都来自九(1)班的概率为21= 126,故选D.7.已知关于x,y的方程组24x y mx y m+=⎧⎨-=⎩的解为3x+2y=14的一个解,那么m的值为( )A.1 B.-1 C.2 D.-2 【答案】C【解析】解方程组24x y mx y m+=⎧⎨-=⎩,得3x my m=⎧⎨=-⎩,把3x m=,y m=-代入3214x y+=得:9214m m-=,2m∴=,故选C.8.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有()A.1个B.2个C.3个D.4个【答案】A【解析】①由抛物线可知:a >0,c <0,对称轴x =﹣2ba<0, ∴b >0,∴abc <0,故①正确;②由对称轴可知:﹣2ba=﹣1, ∴b =2a ,∵x =1时,y =a+b+c =0, ∴c+3a =0,∴c+2a =﹣3a+2a =﹣a <0,故②正确; ③(1,0)关于x =﹣1的对称点为(﹣3,0), ∴x =﹣3时,y =9a ﹣3b+c =0,故③正确; ④当x =﹣1时,y 的最小值为a ﹣b+c , ∴x =m 时,y =am 2+bm+c , ∴am 2+bm+c ≥a-b+c ,即a ﹣b ≤m (am+b ),故④错误; ⑤抛物线与x 轴有两个交点, ∴△>0, 即b 2﹣4ac >0,∴4ac ﹣b 2<0,故⑤正确;故选A .9.如图,正方形ABCD 的边长为8,M 在DC 上,且DM 2=,N 是AC 上一动点,则DN MN +的最小值为( )A.6 B.8 C.10 D.12 【答案】C【解析】连接BD交AC于O,∵四边形ABCD是正方形,∴AC⊥BD,OD=OB,即D、B关于AC对称,∴DN=BN,连接BM交AC于N,则此时DN+MN最小,∴DN=BN,∴DN+MN=BN+MN=BM,∵四边形ABCD是正方形,∴∠BCD=90°,BC=8,CM=8-2=6,由勾股定理得:=,∴DN+MN的最小值为10,故选C .10.如图,在半径为6的⊙O 中,正六边形ABCDEF 与正方形AGDH 都内接于⊙O ,则图中阴影部分的面积为( )A .27﹣B .C .54﹣D .54【答案】C【解析】设EF 交AH 于M 、交HD 于N ,连接OF 、OE 、MN ,如图所示: 根据题意得:△EFO 是等边三角形,△HMN 是等腰直角三角形, ∴EF =OF =6,∴△EFO 的高为:OF •sin60°=6×2=MN =2(6﹣12﹣∴FM =12(6﹣12+3,∴阴影部分的面积=4S △AFM =4×12(3)×54﹣ 故选C .二、填空题(本大题共6小题,每小题3分,共18分) 11.因式分解:3x 3﹣12x=_____. 【答案】3x (x+2)(x ﹣2) 【解析】3x 3﹣12x =3x (x 2﹣4) =3x (x+2)(x ﹣2), 故答案为3x (x+2)(x ﹣2).12.在学校举行“中国诗词大会”的比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,这组数据的众数是_____. 【答案】90【解析】这组数据中数据90出现了2次,出现次数最多,所以这组数据的众数为90, 故答案为:90.13.化简2221m m nm n ---的结果是____.【答案】1m n+. 【解析】原式=2()()()()m m n m n m n m n m n +-+-+-=()()m n m n m n -+-=1m n+.故答案为:1m n+14.如图,在▱ABCD中,AB AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为_____.【答案】3【解析】∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=4,∴BE=2,∴3AE===.故答案为3.15.如图,直线y=12x与双曲线y=kx(k>0,x>0)交于点A,将直线y=12x向上平移2个单位长度后,与y轴交于点C,与双曲线交于点B,若OA=3BC,则k的值为____.【答案】98.【解析】如图,∵将直线y=1x2向上平移2个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=12x+2,如图:分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,32 x),),∵OA=3BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=13 OD,∵点B在直线y=12x+2上,∴B(x,12x+2),∵点A、B在双曲线y=kx,∴313222x x x x⎛⎫⋅=⋅+⎪⎝⎭,解得x=12,∴111922228k⎛⎫=⨯⨯+=⎪⎝⎭.故答案为:9 816.如图,∠AOC=90°,P为射线OC上任意一点(点P不与点O重合),分别以AO,AP为边在∠AOC的内部作两个等边△AOE和△APQ,连接QE并延长交OP于点F,则∠OEF的度数是_____.【答案】30°【解析】∵△AOE,△APQ都是等边三角形,∴AE=AO,AQ=AP,∠EAO=∠QAP=60°,∴∠QAE=∠PAO,∴△QAE≌△PAO(SAS),∴∠AEQ=∠AOP,∵∠AOP=90°,∴∠AEQ=∠AEF=90°,∵∠AEO=60°,∴∠OEF=30°,故答案为30°.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)解不等式组:3(2)421152x x x x --⎧⎪-+⎨<⎪⎩…. 【解析】3(2)4(1)211(2)52x x x x --⎧⎪-+⎨<⎪⎩… 不等式()1可化为364x x -+≥,解得1x ≤,不等式()2可化为()()22151x x -<+,4255x x -<+,解得7x >-.把解集表示在数轴上为:∴原不等式组的解集为71x -<≤.18.(本小题满分8分)如图,点B 在DC 上,BE 平分∠ABD ,∠ABE =∠C ,求证:BE ∥AC .【解析】∵BE 平分∠ABD,∴∠DBE=∠ABE;∵∠ABE=∠C,∴∠DBE=∠C,∴BE∥AC.19.(本小题满分8分)某服饰公司为我学校七年级学生提供L码、M码、S码三种大小的校服,我校1000名学生购买校服,随机抽查部分订购三种型号校服的人数,得到如图统计图:(1)一共抽查了人;(2)购买L码人数对应的圆心角的度数是;(3)估计该服饰公司要为我校七年级学生准备多少件M码的校服?【解析】(1)本次调查的总人数为22÷22%=100人,故答案为100;(2)购买L码人数对应的扇形的圆心角的度数是360°×30100=108°,故答案为108°;(3)估计该服饰公司要为我校七年级学生准备M码的校服1000×1003022100--=480(件).20.(本小题满分8分)如图,在下列9×9的网格中,横纵坐标均为整数的点叫做格点,例如:A(1,1)、B(8,3)都是格点,E、F为小正方形边的中点,C为AE、BF的延长线的交点.(1)AE的长等于;(2)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图示所示的网格中,用无刻度的直尺,画出线段PQ,并直接写出P、Q两点的坐标.=;【解析】(1)AE2(2)如图,AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.故答案为:AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.∴P(3,4),Q(6,6).21.(本小题满分8分)如图1,△ABC是等腰三角形,O是底边BC中点,腰AB与⊙O相切于点D(1)求证:AC是⊙O的切线;(2)如图2,连接CD,若BC的长.【解析】(1)证明:连接OD ,OA ,作OF⊥AC 于F ,如图,∵△ABC 为等腰三角形,O 是底边BC 的中点,∴AO⊥BC,AO 平分∠BAC,∵AB 与⊙O 相切于点D ,∴OD⊥AB,而OF⊥AC,∴OF=OD ,∴AC 是⊙O 的切线;(2)过D 作DF⊥BC 于F ,连接OD ,∵tan∠BCD=4,∴4DF CF设DF a ,OF =x ,则CF =4a ,OC =4a ﹣x ,∵O 是底边BC 中点,∴OB=OC =4a ﹣x ,∴BF=OB﹣OF=4a﹣2x,∵OD⊥AB,∴∠BDO=90°,∴∠BDF+∠FDO=90°,∵DF⊥BC,∴∠DFB=∠OFD=90°,∠FDO+∠D OF=90°,∴∠BDF=∠DOF,∴△DFO∽△BFD,∴BF DFDF FO=,x=,解得:x1=x2=a,∵⊙O∵DF2+FO2=DO2,x)2+x2=)2,∴x1=x2=a=1,∴OC=4a﹣x=3,∴BC=2OC=6.22.(本小题满分10分)某校两次购买足球和篮球的支出情况如表:(2)学校准备给帮扶的贫困学校送足球、篮球共计60个,恰逢市场对两种球的价格进行了调整,足球售价提高了10%,篮球售价降低了10%,如果要求一次性购得这批球的总费用不超过4000元,那么最多可以购买多少个足球?【解析】(1)设购买一个足球需要x元,购买一个篮球的花费需要y元,根据题意,得23310 52500x yx y+=⎧⎨+=⎩,解得:8050 xy=⎧⎨=⎩.答:购买一个足球和一个篮球的花费各需要80和50元;(2)设购买a个足球,根据题意,得:(1+10%)×80a+(1﹣10%)×50(60﹣a)≤4000,解得:a≤1300 43,又∵a为正整数,∴a的最大值为30.答:最多可以购买30个足球.23.(本小题满分10分)如图,正方形ABCD的对角线交于点O,点E在边BC上,BE=1n BC,AE交OB于点F,过点B作AE的垂线BG交OC于点G,连接GE.(1)求证:OF=OG.(2)用含有n的代数式表示tan∠OBG的值.(3)若BF=2,OF=1,∠GEC=90°,直接写出n的值.【解析】(1)∵四边形ABCD是正方形,∴AO=BO,AC⊥BD,∴∠AFO+∠FAO=90°,∵AE⊥BG,∴∠BFE+∠FBG=90°,且∠BFE=∠AFO,∴∠FAO=∠FBG,且OA=OB,∠AOF=∠BOG,∴△AOF≌△BOG(ASA),∴OF=OG;(2)以B为原点,BC所在直线为x轴,AB所在直线为y轴建立平面直角坐标系,∵BE=1n BC,∴设BC=n,则BE=1,∴点A(0,n),点E(1,0),点C坐标(n,0),∴直线AC解析式为:y=﹣x+n,直线AE解析式为:y=﹣nx+n,∵BG⊥AE,∴直线BG的解析式为:y=1nx,∴1nx=﹣x+n,∴x=21nn +,∴点G坐标(21nn+,1nn+),∵点A(0,n),点E(1,0),点C坐标(n,0),∴BO=2n,点O坐标(2n,2n),∴OG=() ()1 21nn-+,∴tan∠OBG=11 OG nOB n-=+;(3)∵OB=OF+BF,BF=2,OF=1,∴OB=3,且OF=OG,OC=OB,BO⊥CO,∴OC=3,OG=1,BC=,∴CG=2,∵∠GEC=90°,∠ACB=45°,∴GE=EC∴BE=BC﹣EC=,∴23 BEBC=,∴BE=23BC=1nBC,∴n=32.24.(本小题满分12分)如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由;(3)经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标.【解析】(1)由题意得:()121931bb c⎧-=⎪⨯-⎨⎪-++=-⎩,解得:22bc=⎧⎨=⎩,∴抛物线的解析式为y=-x2+2x+2;(2)∵由y=-x2+2x+2得:当x=0时,y=2,∴B(0,2),由y=-(x-1)2+3得:C(1,3),∵A(3,-1),∴AB,BC,AC∴AB2+BC2=AC2,∴∠ABC=90°,∴△ABC是直角三角形;(3)①如图,当点Q在线段AP上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=1,∴PE=AD=1∵由-x2+2x+2=1得:x=1,∴P(,1)或(,1),②如图,当点Q在PA延长线上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=3AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=3,∴PE=3AD=3∵由-x2+2x+2=-3得:x,∴P(,-3),或(,-3),综上可知:点P的坐标为(,1)、(,1)、(,-3)或(,-3).。

精品模拟2020年四川省成都市中考数学模拟试卷一解析版

精品模拟2020年四川省成都市中考数学模拟试卷一解析版

2020年四川省成都市中考数学模拟试卷一一.选择题(共10小题,满分30分,每小题3分)1.有一透明实物如图,它的主视图是()A.B.C.D.2.抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)3.如图,在△ABC中,∠C=90°,AC=5,若cos∠A=,则BC的长为()A.8B.12C.13D.184.已知反比例函数y=﹣,下列结论中错误的是()A.图象在二,四象限内B.图象必经过(﹣2,4)C.当﹣1<x<0时,y>8D.y随x的增大而减小5.如图,在菱形ABCD中,∠A=130°,连接BD,∠DBC等于()A.25°B.35°C.50°D.65°6.三角形两边长分别为2和4,第三边是方程x2﹣6x+8=0的解,则这个三角形的周长是()A.10B.8或10C.8D.8和107.如图,正方形ABCD的边长为4cm,则它的外接圆的半径长是()A.cm B.2cm C.3cm D.4cm8.某存折的密码是一个六位数字(每位可以是0),由于小王忘记了密码的首位数字,则他能一次说对密码的概率是()A.B.C.D.9.关于x的方程mx2+2x+1=0有实数根,则m的取值范围是()A.m≤1B.m≥1C.m<1D.m≤1且m≠010.在方格图中,称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.如图,在5×5的正方形方格中,每个小正方形的边长都是1,△ABC是格点三角形,sin∠ACB的值为()A.B.C.D.二.填空题(共4小题,满分16分,每小题4分)11.已知,则xy=.12.如图,已知▱ABCD中,点E在CD上,=,BE交对角线AC于点F.则=.13.已知A(﹣2,y1)、B(﹣3,y2)是抛物线y=(x﹣1)2+c上两点,则y1y2.(填“>”、“=”或“<”)14.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为.三.解答题(共2小题,满分18分)15.(12分)(1)计算:()﹣1﹣6cos30°﹣()0+(2)解方程:4x2+x﹣3=0.16.(6分)为积极响应市委,市政府提出的“实现伟大中国梦,建设美丽鄂尔多斯”的号召,康巴什区某校在八,九年级开展征文活动,校学生会对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.(1)扇形统计图中投稿篇数为3所对应的扇形的圆心角的度数是;该校八,九年级各班在这一周内投稿的平均篇数是;并将该条形统计图补充完整.(2)如果要求该校八、九年级的投稿班级个数为30个,估计投稿篇数为5篇的班级个数.(3)在投稿篇数为9篇的4个班级中,八,九年级各有两个班,校学生会准备从这四个班级中选出两个班参加全市的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率.四.解答题(共2小题,满分16分,每小题8分)17.(8分)在一次数学综合实践活动中,小明计划测量城门大楼的高度,在点B处测得楼顶A的仰角为22°,他正对着城楼前进21米到达C处,再登上3米高的楼台D处,并测得此时楼顶A 的仰角为45°.(1)求城门大楼的高度;(2)每逢重大节日,城门大楼管理处都要在A,B之间拉上绳子,并在绳子上挂一些彩旗,请你求出A,B之间所挂彩旗的长度(结果保留整数).(参考数据:sin22°≈,cos22°≈,tan22°≈)18.(8分)如图,正方形ABCD的对角线AC,BD相交于点O,点P是BC延长线上一点,连接AP,分别交BD,CD于点E,F,过点B作BG⊥AP于G,交线段AC于H.(1)若∠P=25°,求∠AHG的大小;(2)求证:AE2=EF•EP.五.解答题(共2小题,满分20分,每小题10分)19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y1=﹣2x的图象与反比例函数y2=的图象交于A(﹣1,n),B两点.(1)求出反比例函数的解析式及点B的坐标;(2)观察图象,请直接写出满足y≤2的取值范围;(3)点P是第四象限内反比例函数的图象上一点,若△POB的面积为1,请直接写出点P的横坐标.20.(10分)已知,AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,连接CP.(1)如图1,若∠PCB=∠A.①求证:直线PC是⊙O的切线;②若CP=CA,OA=2,求CP的长;(2)如图2,若点M是弧AB的中点,CM交AB于点N,MN•MC=9,求BM的值.六.填空题(共5小题,满分20分,每小题4分)21.设m,n是方程x2﹣x﹣2019=0的两实数根,则m3+2020n﹣2019=.22.如图,四边形ABCD内接于⊙O,对角线AC过圆心O,且AC⊥BD,P为BC延长线上一点,PD⊥BD,若AC=10,AD=8,则BP的长为.23.如图,将矩形OABC置于一平面直角坐标系中,顶点A,C分别位于x轴,y轴的正半轴上,点B的坐标为(5,6),双曲线y=(k≠0)在第一象限中的图象经过BC的中点D,与AB交于点E,P为y轴正半轴上一动点,把△OAP沿直线AP翻折,使点O落在点F处,连接FE,若FE∥x轴,则点P的坐标为.24.如图,AC是▱ABCD的对角线,且AC⊥AB,在AD上截取AH=AB,连接BH交AC于点F,过点C作CE平分∠ACB交BH于点G,且GF=,CG=3,则AC=.25.如图,在平面直角坐标系中,菱形OABC的一个顶点在原点O处,且∠AOC=60°,A点的坐标是(0,4),则直线AC的表达式是.七.解答题(共1小题,满分8分,每小题8分)26.(8分)嘉兴某公司抓住“一带一路”的机遇不断创新发展,生产销售某产品,该产品销售量y (万件)与售价x(元件)之间存在图1(一条线段)所示的变化趋势,总成本P(万元)与销售量y(万件)之间存在图2所示的变化趋势,当6≤y≤10时可看成一条线段,当10≤y≤18时可看成抛物线P=﹣y2+8y+m(1)写出y与x之间的函数关系式(2)若销售量不超过10万件时,利润为45万元,求此时的售价为多少元/件?(3)当售价为多少元时,利润最大,最大值是多少万元?(利润=销售总额一总成本)八.解答题(共1小题,满分10分,每小题10分)27.(10分)在平面直角坐标系中,O为原点,点A(﹣,0),点B(0,1)把△ABO绕点O 顺时针旋转,得△A'B'O,点A,B旋转后的对应点为A',B',记旋转角为α(0°<α<360°).(Ⅰ)如图①,当点A′,B,B′共线时,求AA′的长.(Ⅱ)如图②,当α=90°,求直线AB与A′B′的交点C的坐标;(Ⅲ)当点A′在直线AB上时,求BB′与OA′的交点D的坐标(直接写出结果即可)九.解答题(共1小题,满分12分,每小题12分)28.(12分)抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).(1)求抛物线的解析式;(2)如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.(3)如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】细心观察图中几何体摆放的位置和形状,根据主视图是从正面看到的图象判定则可.【解答】解:正面看,它是中间小两头大的一个图形,里面有两条虚线,表示看不到的轮廓线.故选:B.【点评】本题考查了立体图形的三视图,要注意几何体看得见部分的轮廓线画成实线,被其他部分遮挡而看不见的部分的轮廓线化成虚线.2.【分析】由抛物线解析式即可求得答案.【解答】解:∵y=(x﹣1)2+2,∴抛物线顶点坐标为(1,2),故选:A.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,顶点坐标为(h,k),对称轴为x=h.3.【分析】先根据∠C=90°,AC=5,cos∠A=,即可得到AB的长,再根据勾股定理,即可得到BC的长.【解答】解:∵△ABC中,∠C=90°,AC=5,cos∠A=,∴=,∴AB=13,∴BC==12,故选:B.【点评】本题考查的是锐角三角函数的定义,锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cos A.4.【分析】依据反比例函数的性质以及图象进行判断,即可得到错误的选项.【解答】解:∵反比例函数y=﹣中,k=﹣8<0,∴图象在二,四象限内,故A选项正确;∵﹣2×4=﹣8,∴图象必经过(﹣2,4),故B选项正确;由图可得,当﹣1<x<0时,y>8,故C选项正确;∵反比例函数y=﹣中,k=﹣8<0,∴在每个象限内,y随x的增大而增大,故D选项错误;故选:D.【点评】本题主要考查了反比例函数的图象与性质,当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.5.【分析】直接利用菱形的性质得出∠C的度数,再利用等腰三角形的性质得出答案.【解答】解:∵在菱形ABCD中,∠A=130°,∴∠C=130°,BC=DC,∴∠DBC=∠CDB=(180°﹣130°)=25°.故选:A.【点评】此题主要考查了菱形的性质以及等腰三角形的性质,正确应用菱形的性质是解题关键.6.【分析】利用因式分解法求出已知方程的解确定出第三边,即可求出三角形周长.【解答】解:方程x2﹣6x+8=0,分解因式得:(x﹣2)(x﹣4)=0,解得:x=2或x=4,当x=2时,三角形三边为2,2,4,不能构成三角形,舍去;当x=4时,三角形三边为2,4,4,周长为2+4+4=10,故选:A.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.7.【分析】作OE⊥AD于E,连接OD,在Rt△ADE中,根据垂径定理和勾股定理即可求解.【解答】解:作OE⊥AD于E,连接OD,则AE=DE=2cm,OE=2cm.在Rt△ADE中,OD==2cm.故选:B.【点评】本题需仔细分析图形,利用勾股定理即可解决问题.8.【分析】由一共有10种等可能的结果,小王能一次打开该旅行箱的只有1种情况,直接利用概率公式求解即可求得答案.【解答】解:∵一共有10种等可能的结果,小王能一次打开该旅行箱的只有1种情况,∴他能一次说对密码的概率是;故选:D.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9.【分析】分两种情况考虑:当m=0时,方程为一元一次方程,有实数根,符合题意;当m不为0时,方程为一元二次方程,得到根的判别式大于等于0,求出m的范围,综上,得到满足题意m的范围.【解答】解:当m=0时,方程化为2x+1=0,解得:x=﹣,符合题意;当m≠0时,得到△=4﹣4m≥0,解得:m≤1,综上,m的取值范围是m≤1且m≠0.故选:D.【点评】此题考查了根的判别式,以及一元二次方程的定义,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.10.【分析】根据题意,作出合适的辅助线,然后根据等积法可以求得BD的长,然后根据锐角三角函数即可解答本题.【解答】解:作BD⊥AC于点D,作CE⊥AB交AB的延长线于点E,如右图所示,∵每个小正方形的边长都是1,∴AB=2,CE=1,AC=,BC=,∵,∴BD=,∴sin∠ACB==,故选:C.【点评】本题考查解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.二.填空题(共4小题,满分16分,每小题4分)11.【分析】根据两内项之积等于两外项之积解答即可.【解答】解:∵=,∴xy =6.故答案为:6.【点评】本题主要考查比例的性质,可根据比例的基本性质直接求解.12.【分析】根据平行四边形的性质可得出CD ∥AB ,CD =AB ,由=可得出CE =AB ,由CD ∥AB ,可得出△CEF ∽△ABF ,再利用相似三角形的性质即可求出的值. 【解答】解:∵四边形ABCD 为平行四边形,∴CD ∥AB ,CD =AB .∵点E 在CD 上,=,∴CE =CD =AB .∵CD ∥AB ,∴△CEF ∽△ABF∴==.故答案为:.【点评】本题考查了相似三角形的判定与性质以及平行四边形的性质,利用平行四边形的性质找出△CEF ∽△ABF 及CE =AB 是解题的关键.13.【分析】根据二次函数的性质得到x <1时,y 随y 的增大而减小,然后根据自变量的大小得到对应函数值的大小.【解答】解:抛物线的对称轴为直线x =1,而x <1时,y 随y 的增大而减小,所以y 1<y 2.故答案为<.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.14.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC=4可知AB=2BC=8,再由作法可知BC=CD=4,CE是线段BD的垂直平分线,据此可得出BD的长,进而可得出结论.【解答】解:如图,连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8.由题可知BC=CD=4,CE是线段BD的垂直平分线,∴∠CDB=∠CBD=60°,DF=BD,∴AD=CD=BC=4,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=6.故答案为:6.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.三.解答题(共2小题,满分18分)15.【分析】(1)原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可得到结果;(2)方程利用因式分解法求出解即可.【解答】解:(1)原式=2﹣6×﹣1+3=1;(2)分解因式得:(4x﹣3)(x+1)=0,解得:x=或x=﹣1.【点评】此题考查了解一元二次方程﹣因式分解法,以及实数的运算,熟练掌握运算法则是解本题的关键.16.【分析】(1)根据投稿6篇的班级个数是3个,所占的比例是25%,可求总共班级个数,利用投稿篇数为2的比例乘以360°即可求解;根据加权平均数公式可求该校八,九年级各班在这一周内投稿的平均篇数,再用总共班级个数﹣不同投稿情况的班级个数即可求解;(2)由12个班级中5篇所占的比值即可估算出班级个数为30个时,投稿篇数为5篇的班级个数;(3)利用树状图法,然后利用概率的计算公式即可求解.【解答】解:(1)投稿班级的总个数为:3÷25%=12(个),∴×360°=30°.∵投稿5篇的班级有12﹣1﹣2﹣3﹣4=2(个),∴各班在这一周内投稿的平均篇数为×(2+3×2+5×2+6×3+9×4)=×72=6(篇),该条形统计图补充完整为:故答案为:30°,6篇;(2)30××100%=5(个);(3)画树状图如下:总共12画树状图如下:总共12种情况,不在同一年级的有8种情况,所选两个班正好不在同一年级的概率为:=.【点评】本题考查的是条形统计图和扇形统计图以及用树状图法求概率的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.四.解答题(共2小题,满分16分,每小题8分)17.【分析】(1)根据题意作出合适的辅助线,然后根据题意和锐角三角函数可以求得城门大楼的高度;(2)根据(1)中的结果和锐角三角函数可以求得A,B之间所挂彩旗的长度.【解答】解:(1)作AF⊥BC交BC于点F,交DE于点E,如右图所示,由题意可得,CD=EF=3米,∠B=22°,∠ADE=45°,BC=21米,DE=CF,∵∠AED=∠AFB=90°,∴∠DAE=45°,∴∠DAE=∠ADE,∴AE=DE,设AF=a米,则AE=(a﹣3)米,∵tan∠B=,∴tan22°=,即,解得,a=12,答:城门大楼的高度是12米;(2)∵∠B=22°,AF=12米,sin∠B=,∴sin22°=,∴AB=32,即A,B之间所挂彩旗的长度是32米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.18.【分析】(1)由∠ACB=∠P+∠CAP,求出∠CAP即可解决问题;(2)连接EC,证明△ECF∽△EPC即可解决问题;【解答】(1)解:∵四边形ABCD是正方形,∴∠ACB=45°,∵∠ACB=∠P+∠CAP,∴∠CAP=20°,∵BG⊥AP,∴∠AGH=90°,∴AHG=90°﹣20°=70°.(2)证明:∵四边形ABCD是正方形,∴A,C关于BD对称,∠ACB=∠ACD=45°,∴EA=EC,∴∠EAC=∠ECA,∵∠ACB=∠P+∠CAE=45°,∠ECF+∠ECA=45°,∴∠ECF=∠P,∵∠CEF=∠PEC,∴△CEF∽△PEC,∴=,∴EC2=EF•EP,∴EA2=EF•EP.【点评】本题考查正方形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.五.解答题(共2小题,满分20分,每小题10分)19.【分析】(1)把A (﹣1,n )代入y =﹣2x ,可得A (﹣1,2),把A (﹣1,2)代入y =,可得反比例函数的表达式为y =﹣,再根据点B 与点A 关于原点对称,即可得到B 的坐标; (2)观察函数图象即可求解;(3)设P (m ,﹣),根据S 梯形MBPN =S △POB =1,可得方程(2+)(m ﹣1)=1或(2+)(1﹣m )=1,求得m 的值,即可得到点P 的横坐标.【解答】解:(1)把A (﹣1,n )代入y =﹣2x ,可得n =2,∴A (﹣1,2),把A (﹣1,2)代入y =,可得k =﹣2,∴反比例函数的表达式为y =﹣,∵点B 与点A 关于原点对称,∴B (1,﹣2).(2)∵A (﹣1,2),∴y ≤2的取值范围是x <﹣1或x >0;(3)作BM ⊥x 轴于M ,PN ⊥x 轴于N ,∵S 梯形MBPN =S △POB =1,设P (m ,﹣),则(2+)(m ﹣1)=1或(2+)(1﹣m )=1整理得,m 2﹣m ﹣1=0或m 2+m +1=0,解得m =或m =,∴P 点的横坐标为.【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.20.【分析】(1)①欲证明PC是⊙O的切线,只要证明OC⊥PC即可;②想办法证明∠P=30°即可解决问题;(2)如图2中,连接MA.由△AMC∽△NMA,可得,由此即可解决问题;【解答】(1)①证明:如图1中,∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙O的切线.②∵CP=CA,∴∠P=∠A,∴∠COB=2∠A=2∠P,∵∠OCP=90°,∴∠P=30°,∵OC=OA=2,∴OP=2OC=4,∴.(2)解:如图2中,连接MA.∵点M是弧AB的中点,∴=,∴∠ACM=∠BAM,∵∠AMC=∠AMN,∴△AMC∽△NMA,∴,∴AM2=MC•MN,∵MC•MN=9,∴AM=3,∴BM=AM=3.【点评】本题属于圆综合题,考查了切线的判定,解直角三角形,圆周角定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.六.填空题(共5小题,满分20分,每小题4分)21.【分析】先利用一元二次方程的定义得到m2=m+2019,m3=2020m+2019,所以m3+2020n﹣2019=2020(m+n),然后利用根与系数的关系得到m+n=1,最后利用整体代入的方法计算.【解答】解:∵m是方程x2﹣x﹣2019=0的根,∴m2﹣m﹣2019=0,∴m2=m+2019,m3=m2+2019m=m+2019+2019m=2020m+2019,∴m3+2020n﹣2019=2020m+2019+2020n﹣2019=2020(m+n),∵m,n是方程x2﹣x﹣2019=0的两实数根,∴m+n=1,∴m3+2020n﹣2019=2020.故答案为2020.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.22.【分析】根据圆周角定理得到∠ADC=90°,根据勾股定理得到CD==6,推出点C是PB的中点,根据直角三角形的性质即可得到结论.【解答】解:∵AC是⊙O的直径,∴∠ADC=90°,∵AC=10,AD=8,∴CD==6,∵AC⊥BD,∴AC平分BD,∵PD⊥BD,∴AC∥PD,∴点C是PB的中点,∴PB=2CD=12,故答案为:12.【点评】本题考查了圆周角定理,垂径定理,平行线的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.23.【分析】延长EF交CO于G,依据反比例函数图象上点的坐标特征,即可得到点E的横坐标为5,点E的纵坐标为3,再根据勾股定理可得EF的长,设OP=x,则PG=3﹣x,分两种情况讨论,依据Rt△FGP中,FG2+PG2=PF2,即可得到x的值,进而得出点P的坐标.【解答】解:如图所示,延长EF交CO于G,∵EF∥x轴,∴∠FGP=90°=∠AEF,∵双曲线y=(k≠0)经过矩形OABC的边BC的中点D,点B的坐标为(5,6),∴点D(,6),∴k=15,又∵点E的横坐标为5,∴点E的纵坐标为=3,即AE=3,①当点F在AB左侧时,由折叠可得,AF=AO=5,∴Rt△AEF中,EF===4,∴GF=5﹣4=1,设OP=x,则PG=3﹣x,∵Rt△FGP中,FG2+PG2=PF2,∴12+(3﹣x)2=x2,解得x=,∴点P的坐标为(0,);②当点F在AB右侧时,同理可得EF=4,∴GF=5+4=9,设OP=x,则PG=x﹣3,∵Rt△FGP中,FG2+PG2=PF2,∴92+(x﹣3)2=x2,解得x=15,∴点P的坐标为(0,15);故答案为:(0,)或(0,15).【点评】本题考查了反比例函数图象上点的坐标特征,翻折变换、勾股定理等知识的综合运用,解题时,常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.24.【分析】如图,连接AG,作GN⊥AC于N,FM⊥EC于M.想办法证明等G是△ABC的内心,推出∠FGN=∠CAG=45°,解直角三角形即可解决问题.【解答】解:如图,连接AG,作GN⊥AC于N,FM⊥EC于M.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AHB=∠HBC,∵AB=AH,∴∠ABH=∠AHB,∴∠ABH=∠CBH,∵∠ECA=∠ECB,∠ABC+∠ACB=90°,∴∠GBC+∠GCB=45°,∴∠FGC=∠GBC+∠GCB=45°,∵FM⊥CG,GN⊥AC,FG=,∴FM=GM=1,∵CG=3,∴CM=2,∴tan∠FCM===,∴CN=2CG,∴GN=,CN=,∵BG,CG是△ABC的角平分线,∴AG也是△ABC的角平分线,∴∠NAG=45°,∴AN=GN=,∴AC=AN+NC=.故答案为.【点评】本题考查平行四边形的性质,解直角三角形,三角形的内心等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.25.【分析】根据菱形的性质,可得OC的长,根据三角函数,可得OD与CD,根据待定系数法,可得答案.【解答】解:如图,由菱形OABC的一个顶点在原点O处,A点的坐标是(0,4),得OC=OA=4.又∵∠1=60°,∴∠2=30°.sin∠2==,∴CD=2.cos∠2=cos30°==,OD=2,∴C(2,2).设AC的解析式为y=kx+b,将A,C点坐标代入函数解析式,得,解得,直线AC的表达式是y=﹣x+4,故答案为:y=﹣x+4.【点评】本题考查了待定系数法求一次函数解析式,利用锐角三角函数得出C点坐标是解题关键,又利用了菱形的性质及待定系数法求函数解析式.七.解答题(共1小题,满分8分,每小题8分)26.【分析】(1)将点(18,6)、(6,18)代入一次函数表达式:y=kx+b得:,解得:,即可求解;(2)当6≤y≤10时,同理可得:P=10y,由题意得:利润w=yx﹣P=﹣(x﹣10)(x﹣24)=45,即可求解;(3)分6≤y≤10、10≤y≤18两种情况,分别求解即可.【解答】解:(1)将点(18,6)、(6,18)代入一次函数表达式:y=kx+b得:,解得:,函数表达式为:y=﹣x+24;(2)当6≤y≤10时,同理可得:P=10y,由题意得:利润w=yx﹣P=﹣(x﹣10)(x﹣24)=45,解得:x=15或19,即:此时的售价为15或19元;(3)①当6≤y≤10时,w1=yx﹣P=﹣(x﹣10)(x﹣24),当x=17时,w1有最大值为49万元;②10≤y≤18时,把点(10,100)代入二次函数并解得:m=40,w2=yx﹣P=﹣(24﹣x)2+(24﹣x)(x﹣8)﹣40=﹣x2+x﹣,当x=﹣=14时,w2的最大值为40万元,49>40,故:x=17元时,w有最大值为49万元.【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.八.解答题(共1小题,满分10分,每小题10分)27.【分析】(Ⅰ)如图①,只要证明△AOA′是等边三角形即可;(Ⅱ)如图②,当α=90°,点A′在y轴上,作CH⊥OA′于H.解直角三角形求出BH,CH 即可解决问题;(Ⅲ)如图③,设A′B′交x轴于点K.首先证明A′B′⊥x轴,求出OK,A′K即可解决问题;【解答】解:(Ⅰ)如图①,∵A(﹣,0),B(0,1),∴OA=,OB=1,∴tan∠BAO==,∴∠BAO=30°,∠ABO=60°,∵△A′OB′是由△AOB旋转得到,∴∠B′=∠ABO=60°,OB=OB′,OA=OA′,∴∠BOB′=α=∠AOA′=60°,∴△AOA′是等边三角形,∴AA′=OA=.(Ⅱ)如图②,当α=90°,点A′在y轴上,作CH⊥OA′于H.∵∠A′B′O=60°,∠CAB′=30°,∴∠ACB′=90°,∵A′B=OA′﹣OB=﹣1,∠BA′C=30°,∴BC=A′B=,∵∠HBC=60°,∴BH=BC=,CH=BH=,∴OH=1+BH=,∴点C的坐标(,).(Ⅲ)如图③中,设A′B′交x轴于点K.当A′在AB上时,∵OA=OA′,∴∠OAA′=∠AA′O=30°,∵∠OA′B′=30°,∴∠AKA′=90°,∵OA′=,∠OA′K=30°,∴OK=OA′=,A′K=OK=,∴A′(,).【点评】本题属于三角形综合题,考查了解直角三角形,等边三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.九.解答题(共1小题,满分12分,每小题12分)28.【分析】(1)把点A(﹣1,0),C(0,﹣3)代入抛物线表达式求得b,c,即可得出抛物线的解析式;(2)作CH⊥EF于H,设N的坐标为(1,n),证明Rt△NCH∽△MNF,可得m=n2+3n+1,因为﹣4≤n≤0,即可得出m的取值范围;(3)设点P(x1,y1),Q(x2,y2),则点H(﹣x1,y1),设直线HQ表达式为y=ax+t,用x1,t=﹣2,即可得出直线QH过定点(0,﹣2).待定系数法和韦达定理可求得a=x2﹣【解答】解:(1)∵抛物线y=x2+bx+c经过点A、C,把点A(﹣1,0),C(0,﹣3)代入,得:,解得,∴抛物线的解析式为y=x2﹣2x﹣3;(2)如图,作CH⊥EF于H,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标E(1,﹣4),设N的坐标为(1,n),﹣4≤n≤0∵∠MNC=90°,∴∠CNH+∠MNF=90°,又∵∠CNH+∠NCH=90°,∴∠NCH=∠MNF,又∵∠NHC=∠MFN=90°,∴Rt△NCH∽△MNF,∴,即解得:m=n2+3n+1=,∴当时,m最小值为;当n=﹣4时,m有最大值,m的最大值=16﹣12+1=5.∴m的取值范围是.(3)设点P(x1,y1),Q(x2,y2),∵过点P作x轴平行线交抛物线于点H,∴H(﹣x1,y1),∵y=kx+2,y=x2,消去y得,x2﹣kx﹣2=0,x1+x2=k,x1x2=﹣2,设直线HQ表达式为y=ax+t,将点Q(x2,y2),H(﹣x1,y1)代入,得,x1)=ka,∴y2﹣y1=a(x1+x2),即k(x2﹣x1,∴a=x2﹣∵=(x2﹣x1)x2+t,∴t=﹣2,∴直线HQ表达式为y=(x2﹣x1)x﹣2,∴当k发生改变时,直线QH过定点,定点坐标为(0,﹣2).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函数的最值、待定系数法求一次函数的解析式、(2)问通过相似三角形建立m与n的函数关系式是解题的关键.。

人教版2020年中考数学模拟试题及答案(含详解) (4)

人教版2020年中考数学模拟试题及答案(含详解) (4)

中考数学模拟试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>03.(2.00分)方程组的解为()A.B.C.D.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m25.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.47.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC∠DAE.(填“>”,“=”或“<”)10.(2.00分)若在实数范围内有意义,则实数x的取值范围是.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=,b=,c=.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数30≤t≤3535<t≤4040<t≤4545<t≤50合计线路A59151166124500 B5050122278500 C4526516723500早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=,CB=,∴PQ∥l()(填推理的依据).18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|19.(5.00分)解不等式组:20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB 上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.76 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为cm.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.26.(6.00分)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.27.(7.00分)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B 重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.28.(7.00分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.【分析】根据立体图形的定义及其命名规则逐一判断即可.【解答】解:A、此几何体是圆柱体;B、此几何体是圆锥体;C、此几何体是正方体;D、此几何体是四棱锥;故选:A.【点评】本题主要考查立体图形,解题的关键是认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵a<0 c>0∴ac<0∴C不正确;又∵a<﹣3 c<3∴a+c<0∴D不正确;又∵c>0 b<0∴c﹣b>0∴B正确;故选:B.【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负.3.(2.00分)方程组的解为()A.B.C.D.【分析】方程组利用加减消元法求出解即可;【解答】解:,①×3﹣②得:5y=﹣5,即y=﹣1,将y=﹣1代入①得:x=2,则方程组的解为;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m2【分析】先计算FAST的反射面总面积,再根据科学记数法表示出来,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.确定n的值是易错点,由于249900≈250000有6位,所以可以确定n=6﹣1=5.【解答】解:根据题意得:7140×35=249900≈2.5×105(m2)故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°【分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.4【分析】先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继而代入计算可得.【解答】解:原式=(﹣)•=•=,当a﹣b=2时,原式==,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m【分析】将点(0,54.0)、(40,46.2)、(20,57.9)分半代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.【解答】解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.【点评】考查了二次函数的应用,此题也可以将所求得的抛物线解析式利用配方法求得顶点式方程,然后直接得到抛物线顶点坐标,由顶点坐标推知该运动员起跳后飞行到最高点时,水平距离.8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【分析】由天安门和广安门的坐标确定出每格表示的长度,再进一步得出左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(11,﹣11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:C.【点评】本题主要考查坐标确定位置,解题的关键是确定原点位置及各点的横纵坐标.二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC>∠DAE.(填“>”,“=”或“<”)【分析】作辅助线,构建三角形及高线NP,先利用面积法求高线PN=,再分别求∠BAC、∠DAE的正弦,根据正弦值随着角度的增大而增大,作判断.【解答】解:连接NH,BC,过N作NP⊥AD于P,S△ANH=2×2﹣﹣×1×1=AH•NP,=PN,PN=,Rt△ANP中,sin∠NAP====0.6,Rt△ABC中,sin∠BAC===>0.6,∵正弦值随着角度的增大而增大,∴∠BAC>∠DAE,故答案为:>.【点评】本题考查了锐角三角函数的增减性,构建直角三角形求角的三角函数值进行判断,熟练掌握锐角三角函数的增减性是关键.10.(2.00分)若在实数范围内有意义,则实数x的取值范围是x≥0.【分析】根据二次根式有意义的条件可求出x的取值范围.【解答】解:由题意可知:x≥0.故答案为:x≥0.【点评】本题考查二次根式有意义,解题的关键正确理解二次根式有意义的条件,本题属于基础题型.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=1,b=2,c=﹣1.【分析】根据题意选择a、b、c的值即可.【解答】解:当a=1,b=2,c=﹣2时,1<2,而1×(﹣1)>2×(﹣1),∴命题“若a<b,则ac<bc”是错误的,故答案为:1;2;﹣1.【点评】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=70°.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC,进而得出答案.【解答】解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.【点评】本题考查了相似三角形的判定与性质、矩形的性质以及勾股定理,利用相似三角形的性质找出CF=2AF是解题的关键.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤3535<t≤4040<t≤4545<t≤50合计A59151166124500B5050122278500C4526516723500早高峰期间,乘坐C(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.【分析】分别计算出用时不超过45分钟的可能性大小即可得.【解答】解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B线路公交车用时不超过45分钟的可能性为=0.444,C线路公交车用时不超过45分钟的可能性为=0.954,∴C线路上公交车用时不超过45分钟的可能性最大,故答案为:C.【点评】本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为380元.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,当租1艘四人船,1艘6人船,1一艘8人船,100+130+150=380元∴租船费用为150×2+90=390元,而810>490>390>380,∴租3艘六人船或2艘八人船1艘两人船费用最低是380元,故答案为:380.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第3.【分析】两个排名表相互结合即可得到答案.【解答】解:根据中国创新综合排名全球第22,在坐标系中找到对应的中国创新产出排名为第11,再根据中国创新产出排名为第11在另一排名中找到创新效率排名为第3故答案为:3【点评】本题考查平面直角坐标系中点的坐标确定问题,解答时注意根据具体题意确定点的位置和坐标.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理)(填推理的依据).【分析】(1)根据题目要求作出图形即可;(2)利用三角形中位线定理证明即可;【解答】(1)解:直线PQ如图所示;(2)证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理).故答案为:AP,CQ,三角形中位线定理;【点评】本题考查作图﹣复杂作图,平行线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|【分析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质分别化简得出答案.【解答】解:原式=4×+1﹣3+1=﹣+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(5.00分)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<3,∴不等式组的解集为﹣2<x<3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【解答】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【分析】(1)先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【解答】解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.【点评】此题主要考查了等腰三角形的性质,切线的性质,全等三角形的判定和性质,锐角三角函数,正确作出辅助线是解本题的关键.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【分析】(1)把A(4,1)代入y=中可得k的值;(2)直线OA的解析式为:y=x,可知直线l与OA平行,①将b=﹣1时代入可得:直线解析式为y=x﹣1,画图可得整点的个数;②分两种情况:直线l在OA的下方和上方,画图计算边界时点b的值,可得b的取值.【解答】解:(1)把A(4,1)代入y=得k=4×1=4;(2)①当b=﹣1时,直线解析式为y=x﹣1,解方程=x﹣1得x1=2﹣2(舍去),x2=2+2,则B(2+2,),而C(0,﹣1),如图1所示,区域W内的整点有(1,0),(2,0),(3,0),有3个;②如图2,直线l在OA的下方时,当直线l:y=+b过(1,﹣1)时,b=﹣,且经过(5,0),∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.如图3,直线l在OA的上方时,∵点(2,2)在函数y=(x>0)的图象G,当直线l:y=+b过(1,2)时,b=,当直线l:y=+b过(1,3)时,b=,∴区域W内恰有4个整点,b的取值范围是<b≤.综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.【点评】本题考查了新定义和反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x 的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.763 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为3或4.91或5.77cm.【分析】(1)利用圆的半径相等即可解决问题;(2)利用描点法画出图象即可.(3)图中寻找直线y=x与两个函数的交点的横坐标以及y1与y2的交点的横坐标即可;【解答】解:(1)当x=3时,PA=PB=PC=3,∴y1=3,故答案为3.(2)函数图象如图所示:(3)观察图象可知:当x=y,即当PA=PC或PA=AC时,x=3或4.91,当y1=y2时,即PC=AC时,x=5.77,综上所述,满足条件的x的值为3或4.91或5.77.故答案为3或4.91或5.77.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是B(填“A“或“B“),理由是该学生的成绩小于A课程的中位数,而大于B课程的中位数,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.【分析】(1)先确定A课程的中位数落在第4小组,再由此分组具体数据得出第30、31个数据的平均数即可;(2)根据两个课程的中位数定义解答可得;(3)用总人数乘以样本中超过75.8分的人数所占比例可得.【解答】解:(1)∵A课程总人数为2+6+12+14+18+8=60,∴中位数为第30、31个数据的平均数,而第30、31个数据均在70≤x<80这一组,∴中位数在70≤x<80这一组,∵70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5,∴A课程的中位数为=78.75,即m=78.75;(2)∵该学生的成绩小于A课程的中位数,而大于B课程的中位数,∴这名学生成绩排名更靠前的课程是B,故答案为:B、该学生的成绩小于A课程的中位数,而大于B课程的中位数.。

2020年四川省成都市高新区中考数学二诊试卷(含解析)

2020年四川省成都市高新区中考数学二诊试卷(含解析)

2020年四川省成都市高新区中考数学二诊试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.(3分)下列各数中,比﹣1小的数是()A.﹣2B.0C.1D.22.(3分)如图是由5个相同大小的正方体搭成的几何体,则它的俯视图是()A.B.C.D.3.(3分)2019年10月1日上午,庆祝中华人民共和国成立70周年阅兵在北京天安门广场隆重举行,此次阅兵规模空前,这次阅兵编59个方(梯)队和联合军乐团,总规模约15000人.将数据15000用科学记数法表示为()A.0.15×105B.1.5×104C.15×105D.1万5千4.(3分)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a5D.a5÷a3=a2 5.(3分)在平面直角坐标系中,若点A(2,a)在第四象限内,则点B(a,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)分式方程的解为()A.x=2B.x=3C.x=4D.x=﹣47.(3分)4月23日为世界读书日,倡导全民多读书、读好书.成都高新区某学校为了了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们在今年世界读书日所在的这一周的读书时间进行了统计,统计数据如表所示:读书时间(小时)45678学生人数610987则该班学生一周读书时间的中位数和众数分别是()A.6,5B.6,6C.6.5,6D.6.5,58.(3分)如图,把一块含有30°角的直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=50°,那么∠AFE的度数为()A.10°B.20°C.30°D.40°9.(3分)如图,在⊙O中,若∠CDB=60°,⊙O的直径AB等于4,则BC的长为()A.B.2C.2D.410.(3分)已知抛物线y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc>0B.a﹣b+c=2C.4ac﹣b2<0D.当x>﹣1时,y随x增大而增大二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)实数4的算术平方根为.12.(4分)如图,BA⊥AC,CD∥AB,BC=DE,且BC⊥DE,若AB=5,CD=8,则AE =.13.(4分)同一直角坐标系中,一次函数y=k1x+b与正比例函数y=k2x的图象如图所示,则满足k1x+b>k2x的x取值范围是.14.(4分)如图,在菱形ABCD中,按以下步骤作图:①分别以点A和B为圆心,以大于AB的长为半径作弧,两弧相交于点E、F;②作直线EF交BC于点G,连接AG;若AG⊥BC,CG=3,则AD的长为.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:﹣12+()﹣1×﹣|1﹣2cos30°|;(2)解不等式组:.16.(6分)先化简,再求值:÷﹣,x=﹣1.17.(8分)2020年春节联欢晚会传承创新亮点多,收视率较往年大幅增长.成都高新区某学校对部分学生就2020年春晚的关注程度,采用随机抽样调査的方式,并根据收集到的信息进行统计,绘制了如图所示的两幅尚不完整的统计图(其中A表示“非常关注”;B表示“关注”;C表示“关注很少”;D表示“不关注”).请你根据统计图中所提供的信息解答下列问题:(1)直接写出m=;估计该校1800名学生中“不关注”的人数是人;(2)在一次交流活动中,老师决定从本次调查回答“关注”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“关注”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.18.(8分)成都市天府一南站城市立交桥是成都市政府确定的城建标志性建筑,如图是立交桥引申出的部分平面图,测得拉索AB与水平桥面的夹角是37°,拉索DE与水平桥面的夹角是67°,两拉索顶端的距离AD为2m,两拉索底端距离BE为10m,请求出立柱AC的长.(参考数据tan37°≈,sin37°≈,cos37°≈,tan67°≈,sin67°≈,cos67°≈)19.(10分)如图,一次函数y=x+b的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a)、B两点,与x轴交于点C(﹣4,0).(1)求一次函数和反比例函数的表达式;(2)若点D是第四象限内反比例函数图象上的点,且点D到直线AC的距离为5,求点D的横坐标.20.(10分)如图,四边形ABCD内接于⊙O,对角线AC、BD相交于点F,AC是⊙O的直径,延长CB到点E,连接AE,∠BAE=∠ADB,AN⊥BD,CM⊥BD,垂足分别为点N、M.(1)证明:AE是⊙O的切线;(2)试探究DM与BN的数量关系并证明;(3)若BD=BC,MN=2DM,当AE=时,求OF的长.一.填空题(本大题5个小题,每小题4分,共20分)21.(4分)若实数a满足=a﹣1,且0<a<,则a=.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣(2m﹣1)x﹣=0的两个实数根,且x1﹣x2=1,则m=.23.(4分)如图,在等边△ABC内任取一点D,连接CD,BD得到△CDB,如果等边△ABC 内每一点被取到的可能性都相同,则△CBD是钝角三角形的概率是.24.(4分)如图,直线l与反比例函数y=(k≠0)的图象在第二象限交于B、C两点,与x轴交于点A,连接OC,∠ACO的角平分线交x轴于点D.若AB:BC:CO=1:2:2,△COD的面积为6,则k的值为.25.(4分)如图,在等腰Rt△ABC中,AC=BC=6,∠EDF的顶点D是AB的中点,且∠EDF=45°,现将∠EDF绕点D旋转一周,在旋转过程中,当∠EDF的两边DE、DF分别交直线AC于点G、H,把△DGH沿DH折叠,点G落在点M处,连接AM,若=,则AH的长为.二、解答题(本大题共3个小题,共30分)26.(8分)一名大学毕业生响应国家“自主创业”的号召,在成都市高新区租用了一个门店,聘请了两名员工,计划销售一种产品.已知该产品成本价是20元/件,其销售价不低于成本价,且不高于30元/件,员工每人每天的工资为200元.经过市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)求每件产品销售价为多少元时,每天门店的纯利润最大?最大纯利润是多少?(纯利润=销售收入﹣产品成本﹣员工工资)27.(10分)将矩形ABCD沿对角线BD翻折,点A落在点A′处,AD交BC于点E,点F 在CD上,连接EF,且CE=3CF,如图1.(1)试判断△BDE的形状,并说明理由;(2)若∠DEF=45°,求tan∠CDE的值;(3)在(2)的条件下,点G在BD上,且不与B、D两点重合,连接EG并延长到点H,使得EH=BE,连接BH、DH,将△BDH沿DH翻折,点B的对应点B′恰好落在EH 的延长线上,如图2.当BH=8时,求GH的长.28.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c的图象与x轴交于A(﹣3,0)、B(2,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点E(m,2)是直线AC上方的抛物线上一点,连接EA、EB、EC,EB与y轴交于D.①点F是x轴上一动点,连接EF,当以A、E、F为顶点的三角形与△BOD相似时,求出线段EF的长;②点G为y轴左侧抛物线上一点,过点G作直线CE的垂线,垂足为H,若∠GCH=∠EBA,请直接写出点H的坐标.2020年四川省成都市高新区中考数学二诊试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.(3分)下列各数中,比﹣1小的数是()A.﹣2B.0C.1D.2【分析】根据两个负数比较大小,绝对值大的负数反而小,可得答案.【解答】解:A、﹣2<﹣1,故正确;B、0>﹣1,故本选项错误;C、1>﹣1,故本选项错误;D、2>﹣1,故本选项错误;故选:A.2.(3分)如图是由5个相同大小的正方体搭成的几何体,则它的俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看第一列是一个小正方形,第二列是一个小正方形,第三列是两个小正方形,故选:B.3.(3分)2019年10月1日上午,庆祝中华人民共和国成立70周年阅兵在北京天安门广场隆重举行,此次阅兵规模空前,这次阅兵编59个方(梯)队和联合军乐团,总规模约15000人.将数据15000用科学记数法表示为()A.0.15×105B.1.5×104C.15×105D.1万5千【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将15000用科学记数法表示为:1.5×104.故选:B.4.(3分)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a5D.a5÷a3=a2【分析】根据同类项、同底数幂的乘法、幂的乘方和同底数幂的除法计算即可.【解答】解:A、a2与a3不是同类项,不能合并,错误;B、a2•a3=a5,错误;C、(a2)3=a6,错误;D、a5÷a3=a2,正确.故选:D.5.(3分)在平面直角坐标系中,若点A(2,a)在第四象限内,则点B(a,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先根据点A(2,a)在第四象限内得出a<0,据此可得点B所在象限.【解答】解:∵点A(2,a)在第四象限内,∴a<0,则点B(a,2)所在的象限是第二象限,故选:B.6.(3分)分式方程的解为()A.x=2B.x=3C.x=4D.x=﹣4【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣2(x﹣2)=0,去括号得:3x﹣2x+4=0,解得:x=﹣4,经检验x=﹣4是分式方程的解.故选:D.7.(3分)4月23日为世界读书日,倡导全民多读书、读好书.成都高新区某学校为了了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们在今年世界读书日所在的这一周的读书时间进行了统计,统计数据如表所示:读书时间(小时)45678学生人数610987则该班学生一周读书时间的中位数和众数分别是()A.6,5B.6,6C.6.5,6D.6.5,5【分析】根据表格中的数据可知该班有学生40人,从而可以求得中位数和众数,本题得以解决.【解答】解:由表格可得,读书时间为5小时最多,故一周读书时间的众数为5,该班学生一周读书时间的第20个数6和第21个数是6,故该班学生一周读书时间的中位数为=6,故选:A.8.(3分)如图,把一块含有30°角的直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=50°,那么∠AFE的度数为()A.10°B.20°C.30°D.40°【分析】由四边形CDEF为矩形,得到EF与DC平行,利用两直线平行同位角相等求出∠AGE的度数,根据∠AGE为三角形AGF的外角,利用外角性质求出∠AFE的度数即可.【解答】解:∵四边形CDEF为矩形,∴EF∥DC,∴∠AGE=∠1=50°,∵∠AGE为△AGF的外角,且∠A=30°,∴∠AFE=∠AGE﹣∠A=20°.故选:B.9.(3分)如图,在⊙O中,若∠CDB=60°,⊙O的直径AB等于4,则BC的长为()A.B.2C.2D.4【分析】根据圆周角定理得出∠CAB=60°,进而利用含30°的直角三角形的性质解答即可.【解答】解:∵∠CDB=60°,∴∠CAB=∠CDB=60°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CBA=30°,∵,⊙O的直径AB等于4,∴BC=2,故选:C.10.(3分)已知抛物线y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc>0B.a﹣b+c=2C.4ac﹣b2<0D.当x>﹣1时,y随x增大而增大【分析】A、根据抛物线y=ax2+bx+c的图象可得a>0,b>0,c<0,即可判断;B、当x=﹣1时,y<0,即可判断;C、因为抛物线与x轴有两个交点,可得△>0即可判断;D、当x>﹣1时,在对称轴左侧y随x的增大而减小,在对称轴右侧,y随x增大而增大,即可判断.【解答】解:根据抛物线y=ax2+bx+c的图象可知:A、a>0,b>0,c<0,∴abc<0,所以A选项错误;B、当x=﹣1时,y<0,即a﹣b+c<0,所以B选项错误;C、因为抛物线与x轴有两个交点,所以△>0,即b2﹣4ac>0,所以4ac﹣b2<0,所以C选项正确;D、当x>﹣1时,在对称轴左侧y随x的增大而减小,在对称轴右侧,y随x增大而增大,所以D选项错误.故选:C.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)实数4的算术平方根为2.【分析】依据算术平方根根的定义求解即可.【解答】解:∵22=4,∴4的算术平方根是2.故答案为:2.12.(4分)如图,BA⊥AC,CD∥AB,BC=DE,且BC⊥DE,若AB=5,CD=8,则AE =3.【分析】证明△ABC≌△CED(AAS),得出AB=CE=5,AC=CD=8,即可得出答案.【解答】解:∵BA⊥AC,CD∥AB,∴CD⊥AC,∠B=∠DCB,∴∠A=∠DCE=90°,∵BC⊥DE,∴∠DCB+∠CDE=∠DCB+∠ACB=90°,∴∠ACB=∠CDE,在△ABC和△CED中,∵,∴△ABC≌△CED(AAS),∴AB=CE=5,AC=CD=8,∴AE=AC﹣CE=8﹣5=3;故答案为:3.13.(4分)同一直角坐标系中,一次函数y=k1x+b与正比例函数y=k2x的图象如图所示,则满足k1x+b>k2x的x取值范围是x<﹣3.【分析】观察函数图象得到当x≤﹣3时,直线l1:y1=k1x+b都在直线l2:y2=k2x的上方,即y1>y2.【解答】解:当x≤﹣3时,直线l1:y1=k1x+b都在直线l2:y2=k2x的上方,即k1x+b >k2x.∴满足k1x+b>k2x的x取值范围是x<﹣3,故答案为:x<﹣3.14.(4分)如图,在菱形ABCD中,按以下步骤作图:①分别以点A和B为圆心,以大于AB的长为半径作弧,两弧相交于点E、F;②作直线EF交BC于点G,连接AG;若AG⊥BC,CG=3,则AD的长为6+3.【分析】由作法得到EF垂直平分AB,根据线段垂直平分线的性质得到AG=BG,根据等腰直角三角形的性质得到AB=AG,设AG=BG=x,则AB=x,根据菱形的性质健康得到结论,【解答】解:由作法得EF垂直平分AB,∴AG=BG,∵AG⊥BC,∴△ABG是等腰直角三角形,∴AB=AG,设AG=BG=x,则AB=x,∵四边形ABCD是菱形,∴AB=BC=x,∵CG=3,∴BC=x+3=x,解得:x=3(+1),∴AD=AB=6+3,故答案为:6+3.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:﹣12+()﹣1×﹣|1﹣2cos30°|;(2)解不等式组:.【分析】(1)先计算乘方、负整数指数幂、分母有理化、代入三角函数值,再计算乘法和绝对值符号内的运算,继而去绝对值符号,最后计算加减可得;(2)分别求出各不等式的解集,再求出其公共解集.【解答】解:(1)原式=﹣1+3×﹣|1﹣2×|=﹣1+4﹣|1﹣|=﹣1+4﹣(﹣1)=﹣1+4﹣+1=3;(2)解不等式①,得:x≤4,解不等式②,德:x>﹣4,则不等式组的解集为﹣4<x≤4.16.(6分)先化简,再求值:÷﹣,x=﹣1.【分析】把分式的分子、分母分解因式,再把除法化为乘以,约分,然后代入x的值计算即可.【解答】解:原式=÷﹣.=+=1+,=,=,当x=﹣1时,原式===2﹣.17.(8分)2020年春节联欢晚会传承创新亮点多,收视率较往年大幅增长.成都高新区某学校对部分学生就2020年春晚的关注程度,采用随机抽样调査的方式,并根据收集到的信息进行统计,绘制了如图所示的两幅尚不完整的统计图(其中A表示“非常关注”;B 表示“关注”;C表示“关注很少”;D表示“不关注”).请你根据统计图中所提供的信息解答下列问题:(1)直接写出m=25;估计该校1800名学生中“不关注”的人数是330人;(2)在一次交流活动中,老师决定从本次调查回答“关注”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“关注”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.【分析】(1)首先求出总人数,再由A的人数即可求出m的值;求出D的人数即可补全条形统计图;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到1个男生和1个女生的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴m%=×100%=25%,该校1800名学生中“不关注”的人数是1800×=330(人);故答案为:25,330;(2)由题意列树状图:由树状图可知,所有等可能的结果有12 种,选取到两名同学中刚好有这位男同学的结果有6种,∴选取到两名同学中刚好有这位男同学的概率为=.18.(8分)成都市天府一南站城市立交桥是成都市政府确定的城建标志性建筑,如图是立交桥引申出的部分平面图,测得拉索AB与水平桥面的夹角是37°,拉索DE与水平桥面的夹角是67°,两拉索顶端的距离AD为2m,两拉索底端距离BE为10m,请求出立柱AC的长.(参考数据tan37°≈,sin37°≈,cos37°≈,tan67°≈,sin67°≈,cos67°≈)【分析】设CE=xm,则BC=(10+x)m,解直角三角形即可得到结论.【解答】解:设CE=xm,则BC=(10+x)m,在Rt△CDE中,∵∠DEC=67°,∴CD=CE•tan67°=x,在Rt△ABC中,∵∠B=37°,∴AC=BC•tan37°=×(10+x),∴AD=AC﹣CD=×(10+x)﹣x=2,解得:x=,∴AC=AD+CD=2+×=10(m),答:立柱AC的长为10m.19.(10分)如图,一次函数y=x+b的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a)、B两点,与x轴交于点C(﹣4,0).(1)求一次函数和反比例函数的表达式;(2)若点D是第四象限内反比例函数图象上的点,且点D到直线AC的距离为5,求点D的横坐标.【分析】(1)将点C坐标代入y=x+b可得其解析式,将A的坐标代入一次函数和反比例函数解析式可得k的值,从而得出反比例函数解析式;(2)过点D作DE∥AC交x轴于点E,过点E作EF⊥AC于点F,设直线DE的解析式为y=x+m,EF=5,由题意得出CO=GO=4知CE=EF=10,EO=6,从而得E (6,0),将E(6,0)代入y=x+m中得m=﹣6,从而得出y=x﹣6,联立解之可得答案.【解答】解:(1)将C(﹣4,0)代入y=x+b,得b=4,∴一次函数的表达式为y=x+4,将A(﹣1,a)代入y=x+4,y=中,得:a=﹣1+4,a=,∴k=﹣3,∴反比例函数的表达式为y=﹣;(2)过点D作DE∥AC交x轴于点E,过点E作EF⊥AC于点F,∴设直线DE的解析式为y=x+m,EF=5,∵y=x+4,∴G(0,4),又C(﹣4,0),∴CO=GO=4,又∠GOC=90°,∵EF⊥AC,∴CE=EF=10,∴EO=6,∴E(6,0),将E(6,0)代入y=x+m中,得:m=﹣6,∴y=x﹣6,联立,解得x=+3,∴点D的横坐标x=±+3.20.(10分)如图,四边形ABCD内接于⊙O,对角线AC、BD相交于点F,AC是⊙O的直径,延长CB到点E,连接AE,∠BAE=∠ADB,AN⊥BD,CM⊥BD,垂足分别为点N、M.(1)证明:AE是⊙O的切线;(2)试探究DM与BN的数量关系并证明;(3)若BD=BC,MN=2DM,当AE=时,求OF的长.【分析】(1)由圆周角定理得出∠ADC=90°,∠BAC=∠BDC,得出∠ADB+∠BDC=90°,证出∠BAE+∠BAC=90°,得出AE⊥AC,即可得出结论;(2)证△DMC∽△AND,得出=,证△ADC∽△ANB,得出=,即=,进而得出结论;(3)由(2)知DM=BN,则BM=DN,设DM=BN=a,则MN=2a,BM=DN=3a,BD=BC=4a,由勾股定理得出CM=a,证△ADN∽△ACB,得出===,求出AN=a,AB=a,AC=a,由AB=AE×cos∠EAB==a,求出a=,得出AC=,OC=,证△ANF∽△CMF,求出CF=AC=,即可得出答案.【解答】(1)证明:∵AC是⊙O的直径,∴∠ADC=90°,∴∠ADB+∠BDC=90°,∵∠BAC=∠BDC,∠BAE=∠ADB,∴∠BAE+∠BAC=90°,即∠CAE=90°,∴AE⊥AC,AE是⊙O的切线;(2)解:DM=BN,理由如下:∵AN⊥BD,CM⊥BD,∠ADC=90°,∴∠AND=∠ANB=∠DMC=∠ADC=90°,∴∠ADN+∠MDC=∠MCD+∠MDC=90°,∴∠ADN=∠MCD,∴△DMC∽△AND,∴=,∵∠ABN=∠ACD,∠ANB=∠ADC=90°,∴△ADC∽△ANB,∴=,即=,∴=,∴DM=BN;(3)解:由(2)知DM=BN,则BM=DN,设DM=BN=a,∵MN=2DM,BD=BC,∴MN=2a,BM=DN=3a,BD=BC=4a,∵∠BMC=90°,∴CM===a,∵AC是⊙O的直径,AN⊥BD,∴∠ABC=∠AND=90°,∵∠ADB=∠ACB,∴△ADN∽△ACB,∴===,设AN=3b,AB=4b(b>0),∵∠ANB=∠ABC=90°,BN=a,∴AN2+BN2=AB2,即(3b)2+a2=(4b)2,解得:b=a,∴AN=a,AB=a,∵BC=4a,∴AC===a,∴cos∠ACB=cos∠ADB=cos∠EAB===,∵AE=,∴AB=AE×cos∠EAB=×==a,∴a=,∴AC=,∴OC=AC=,∵∠ANF=∠CMF=90°,∠AFM=∠MFC,∴△ANF∽△CMF,∴===,∴CF=AC=,∴OF=CF﹣OC=﹣=.一.填空题(本大题5个小题,每小题4分,共20分)21.(4分)若实数a满足=a﹣1,且0<a<,则a=.【分析】先确定<2,所以由已知得a<2,可化简二次根式=2﹣a,解方程计算即可.【解答】解:∵=a﹣1,且0<a<,∴2﹣a=a﹣1,∴a=,故答案为:.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣(2m﹣1)x﹣=0的两个实数根,且x1﹣x2=1,则m=.【分析】先根据根与系数的关系得出x1+x2=2m﹣1 ①,x1x2=﹣②,结合x1﹣x2=1求出,将其代入②求解可得.【解答】解:根据题意知x1+x2=2m﹣1 ①,x1x2=﹣②,∵x1﹣x2=1 ③,由①③,得:,代入②,得:m(m﹣1)=﹣,解得m=,故答案为:.23.(4分)如图,在等边△ABC内任取一点D,连接CD,BD得到△CDB,如果等边△ABC 内每一点被取到的可能性都相同,则△CBD是钝角三角形的概率是.【分析】由题意通过圆和三角形的知识画出满足条件的图形,分别找出满足条件的点集对应的图形面积及图形的总面积,再根据概率公式即可得出答案.【解答】解:如图,取BC的中点O,以O为圆心,BC为直径画半圆,交AB于E,连接OE,当D在半圆上时,∠BDC=90°,∵△CBD是钝角三角形时,只能∠BDC>90°,∴点D落在如图所示的半圆O内时,△CBD是钝角三角形,设等边三角形的边长为2a,半圆的面积为,等边△ABC的面积是=a2,∴满足∠BDC>90°的概率是=,∴△CBD是钝角三角形的概率;故答案为:.24.(4分)如图,直线l与反比例函数y=(k≠0)的图象在第二象限交于B、C两点,与x轴交于点A,连接OC,∠ACO的角平分线交x轴于点D.若AB:BC:CO=1:2:2,△COD的面积为6,则k的值为﹣.【分析】根据已知的比设AB=x,BC=CO=2x,如图1,过D作DE∥l,交OC于E,根据角平分线的定义和平行线的性质得:∠DCE=∠CDE,所以DE=CE,由△DOE∽△AOC,列比例式,可得6x﹣5a=0,a=x,根据同高三角形面积的比等于对应底边的比可得△AOC的面积为15,如图2,过B作BG⊥x轴于G,过C作CH⊥x轴于H,证明△ABG∽△ACH,得,设BG=b,CH=3b,表示B(,b),C(,3b),根据三角形面积列式可得结论.【解答】解:∵AB:BC:CO=1:2:2,∴设AB=x,BC=CO=2x,如图1,过D作DE∥l,交OC于E,∴∠ACD=∠CDE,∵CD平分∠ACO,∴∠ACD=∠DCE,∴∠DCE=∠CDE,∴DE=CE,设DE=a,则CE=a,OE=2x﹣a,∵DE∥AC,∴△DOE∽△AOC,∴,即,∴x(6x﹣5a)=0,∵x≠0,∴6x﹣5a=0,a=x,∵=,∴=,∵△COD的面积为6,∴△AOC的面积为15,如图2,过B作BG⊥x轴于G,过C作CH⊥x轴于H,∴BG∥CH,∴△ABG∽△ACH,∴,∵AB:BC=1:2,∴,设BG=b,CH=3b,∵直线l与反比例函数y=(k≠0)的图象在第二象限交于B、C两点,∴B(,b),C(,3b),∴GH==﹣,∵,∴AG=GH=﹣,∴OA=AG+OG=﹣=﹣,∵S△ACO=,,k=﹣,故答案为:﹣.25.(4分)如图,在等腰Rt△ABC中,AC=BC=6,∠EDF的顶点D是AB的中点,且∠EDF=45°,现将∠EDF绕点D旋转一周,在旋转过程中,当∠EDF的两边DE、DF分别交直线AC于点G、H,把△DGH沿DH折叠,点G落在点M处,连接AM,若=,则AH的长为或或3.【分析】分三种情形:①如图1中,当点H在线段AC上,点G在AC的延长线上时,连接CD,作DJ⊥AC于J,设AH=3k,AM=4k.②如图2中,当点H在线段AC上,点G在上时,连接CD,作DJ⊥AC于J,设AH=3k,AM=4k.③如图3中,当点H 在线段CA的延长线上,点G在线段AC上时,连接CD,作DJ⊥AC于J,设AH=3k,AM=4k.首先证明AM⊥AC,利用相似三角形的性质以及勾股定理构建方程解决问题即可.【解答】解:①如图1中,当点H在线段AC上,点G在AC的延长线上时,连接CD,作DJ⊥AC于J,设AH=3k,AM=4k.∵CA=CB,∠ACB=90°,AD=DB,∴CD⊥AB,CD=DA=DB,∴∠ACD=∠DCB=45°,∠DCG=135°,∵∠EDF=∠EDM=45°,DG=DM,∴∠ADC=∠MDG,∴∠ADM=∠CDG,∴△ADM≌△CDG(SAS),∴∠DAM=∠DCG=135°,∵∠CAB=45°,∴∠CAM=90°,∴MH=GH===5k,∵∠GDH=∠GAD=45°,∠DGH=∠AGD,∴△DGH∽△AGD,∴=,∴DG2=GH•GA=40k2,∵AC=BC=6,∠ACB=90°,∴AB=AC=12,∴AD=CD=6,∵DJ⊥AC,∴AJ=JC=3,DJ=AJ=IC=3,∴GJ=8K﹣3,在Rt△DJG中,∵DG2=DJ2+GJ2,∴40k2=(8k﹣3)2+(3)2,解得k=或(舍弃),∴AH=3k=.②如图2中,当点H在线段AC上,点G在上时,连接CD,作DJ⊥AC于J,设AH=3k,AM=4k.同法可得:40k2=(8k﹣3)2+(3)2,解得k=(舍弃)或,∴AH=3k=.③如图3中,当点H在线段CA的延长线上,点G在线段AC上时,连接CD,作DJ⊥AC于J,设AH=3k,AM=4k.同法可得:10k2=(3﹣2k)2+(3)2,解得k=或﹣3(舍弃),∴AH=3k=3,综上所述,满足条件的AH的值为或或3.故答案为或或3.二、解答题(本大题共3个小题,共30分)26.(8分)一名大学毕业生响应国家“自主创业”的号召,在成都市高新区租用了一个门店,聘请了两名员工,计划销售一种产品.已知该产品成本价是20元/件,其销售价不低于成本价,且不高于30元/件,员工每人每天的工资为200元.经过市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)求每件产品销售价为多少元时,每天门店的纯利润最大?最大纯利润是多少?(纯利润=销售收入﹣产品成本﹣员工工资)【分析】(1)利用待定系数法求出y与x之间的函数关系式;(2)根据纯利润=销售收入﹣产品成本﹣员工工资列出二次函数解析式,根据二次函数的性质解答即可.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,把(21,290)、(29,210)代入,得,解得,,则y与x之间的函数关系式为y=﹣10x+500(20≤x≤30);(2)每天门店的纯利润W=(﹣10x+500)(x﹣20)﹣400=﹣10x2+700x﹣10400=﹣10(x﹣35)2+1850,∵20≤x≤30,∴当x=30时,每天门店的纯利润W最大,最大为1600元.27.(10分)将矩形ABCD沿对角线BD翻折,点A落在点A′处,AD交BC于点E,点F 在CD上,连接EF,且CE=3CF,如图1.(1)试判断△BDE的形状,并说明理由;(2)若∠DEF=45°,求tan∠CDE的值;(3)在(2)的条件下,点G在BD上,且不与B、D两点重合,连接EG并延长到点H,使得EH=BE,连接BH、DH,将△BDH沿DH翻折,点B的对应点B′恰好落在EH 的延长线上,如图2.当BH=8时,求GH的长.【分析】(1)根据折叠的性质和平行线的性质得:∠DBC=∠BDE,由等角对等边可得△BDE是等腰三角形;(2)如图1,过点F作FM⊥DE于M,根据等腰直角三角形的性质得:EF=FM,设CF=2a,CE=3a,由勾股定理得EF=a,FM=a,设DF=x,根据三角函数定义可得DE=,最后利用勾股定理列方程可得x与a的关系,从而得结论;(3)如图2,作辅助线,构建全等三角形,证明△BNE≌△ECD(AAS),得BN=CE,从而由等腰三角形三线合一的性质得BN=NH=CE=4,证明△DEG∽△BHG,列比例式可得结论.【解答】解:(1)△BDE是等腰三角形,理由是:如图1,∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC,由折叠得:∠ADB=∠BDE,∴∠DBC=∠BDE,∴BE=DE,∴△BDE是等腰三角形;(2)如图1,过点F作FM⊥DE于M,∵∠DEF=45°,∴EF=FM,∵四边形ABCD是矩形,∴∠C=90°,∵CE=3CF,∴设CF=2a,CE=3a,∴EF=a,∵FM=a,∵∠C=90°,FM⊥DE,∴sin∠MDF=,设DF=x,∴,∴DE=,∵∠C=90°,∴DE2=CE2+CD2,即,解得:x=5a或﹣a(舍),∴tan∠CDE===;(3)如图2,过点E作EN⊥BH,由折叠得:∠B'=∠HBD,∠B'DH=∠BDH,∴∠DHE=∠B'+∠B'DH=∠HBD+∠BDH,∵BE=EH=DE,∴∠DHE=∠EDH=∠BDE+∠BDH,∴∠HBD=∠BDE,∴BH∥DE,∴∠HBE=∠DEC,∵∠BNE=∠C=90°,BE=DE,∴△BNE≌△ECD(AAS),∴BN=CE,∵BE=EH,EN⊥BH,BH=8,∴BN=NH=CE=4,由(2)知:CD=2CE,则CD=8,∴DE=EH==4,∵∠HBD=∠BDE,∠HGB=∠DGE,∴△DEG∽△BHG,∴,∴GH=.28.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c的图象与x轴交于A(﹣3,0)、B(2,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点E(m,2)是直线AC上方的抛物线上一点,连接EA、EB、EC,EB与y轴交于D.①点F是x轴上一动点,连接EF,当以A、E、F为顶点的三角形与△BOD相似时,求出线段EF的长;②点G为y轴左侧抛物线上一点,过点G作直线CE的垂线,垂足为H,若∠GCH=∠EBA,请直接写出点H的坐标.【分析】(1)用待定系数法求出函数解析式即可;(2)①得出∠EAB=∠ODB,当△FEA∽△BOD时,当△EF A∽△BOD时,可求出EF的长;②(Ⅰ)求出直线CE的解析式为y=,得出∠APE=∠EBA,则∠GCH=∠APE =∠EBA=∠CHN=∠MGH,得出GC∥PB,由tan∠EBA=tan∠CHN=tan∠MGH=,设CN=MG=m,则HN=2m,MH=m,则MH+HN=2m+m=1,解得,m =,可求出H点的坐标;(Ⅱ)过点H作MN⊥PB,过点C作CN⊥MH于点N,过点G作GM⊥HM于点M,证得∠GCH=∠EBA=∠HCN=∠MHG,由(Ⅰ)知:tan∠EBA=,则tan∠MHG==tan∠GCH=,设MG=a,则MH=2a,证明△HMG∽△CNH,则NH=2a,CN =4a,又C(0,3),得出G(﹣3a,3﹣4a),代入y=﹣中,得CN=,可求出H点坐标.【解答】解:(1)将A(﹣3,0)、B(2,0)、C(0,3)代入y=ax2+bx+c得,,解得:,∴抛物线的解析式为:y=﹣x+3;(2)①将E(m,2)代入y=﹣x+3中,得﹣m+3=0,解得m=﹣2或1(舍去),∴E(﹣2,2),∵A(﹣3,0)、B(2,0),∴AB=5,AE=,BE=2,∴AB2=AE2+BE2,∴∠AEB=∠DOB=90°,∴∠EAB+∠EBA=∠ODB+∠EBA=90°,∴∠EAB=∠ODB,(Ⅰ)当△FEA∽△BOD时,∴∠AEF=∠DOB=90°,∴F与B点重合,∴EF=BE=2,(Ⅱ)当△EF A∽△BOD时,∴∠AFE=∠DOB=90°,∵E(﹣2,2),∴EF=2,故:EF的长为2或2;②点H的坐标为(﹣,)或(﹣,),(Ⅰ)过点H作HN⊥CO于点N,过点G作GM⊥HN于点M,∴∠GMN=∠CNH=90°,又∠GHC=90°,∴∠CHN+∠GHM=∠MGH+∠GHM=90°,∴∠CHN=∠MGH,∵HN⊥CO,∠COP=90°,∴HN∥AB,∴∠CHN=∠APE=∠MGH,∵E(﹣2,2),C(0,3),∴直线CE的解析式为y=x+3,∴P(﹣6,0),∴EP=EB=2,∴∠APE=∠EBA,∵∠GCH=∠EBA,∴∠GCH=∠APE=∠EBA=∠CHN=∠MGH,∴GC∥PB,又C(0,3),∴G点的纵坐标为3,代入y=﹣x+3中,得:x=﹣1或0(舍去),∴MN=1,∵∠AEB=90°,AE=,BE=2,∴tan∠EBA=tan∠CHN=tan∠MGH=,设CN=MG=m,则HN=2m,MH=m,∴MH+HN=2m+m=1,解得,m=,∴H点的橫坐标为﹣,代入y=x+3,得:y=,∴点H的坐标为(﹣,).(Ⅱ)过点H作MN⊥PB,过点C作CN⊥MH于点N,过点G作GM⊥HM于点M,∴CN∥PB,∴∠NCH=∠APE,由(Ⅰ)知:∠APE=∠EBA,则∠NCH=∠EBA,∵∠GMN=∠CNH=90°,又∠GHC=90°,∴∠HCN+∠NHC=∠MHG+∠NHC=90°,∴∠HCN=∠MHG,∵∠GCH=∠EBA,∴∠GCH=∠EBA=∠HCN=∠MHG,由(Ⅰ)知:tan∠EBA=,则tan∠MHG==tan∠GCH=,设MG=a,则MH=2a,∵∠NCH=∠MHG,∠N=∠M,∴△HMG∽△CNH,∴,∴NH=2a,CN=4a,又C(0,3),∴G(﹣3a,3﹣4a),代入y=﹣x+3中,得,a=或0(舍去),∴CN=,∴H点的橫坐标为﹣,代入y=x+3,得,y=.∴点H的坐标为(﹣).综合以上可得点H的坐标为(﹣,)或(﹣).。

2020年中考数学模拟试卷(含答案解析) (2)

2020年中考数学模拟试卷(含答案解析) (2)

中考数学二调试卷一.选择题(共6小题)1.抛物线y=x2﹣1与y轴交点的坐标是()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)2.如果抛物线y=(a+2)x2开口向下,那么a的取值范围为()A.a>2 B.a<2 C.a>﹣2 D.a<﹣23.如图,在Rt△ABC中,∠C=90°,如果AC=5,AB=13,那么cos A的值为()A.B.C.D.4.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米5.如果向量与单位向量的方向相反,且长度为3,那么用向量表示向量为()A.B.C.D.6.如图,在△ABC中,AD平分∠BAC交BC于点D,点E在AD上,如果∠ABE=∠C,AE=2ED,那么△ABE与△ADC的周长比为()A.1:2 B.2:3 C.1:4 D.4:9二.填空题(共12小题)7.如果=,那么的值为.8.计算:=.9.如果抛物线y=ax2+2经过点(1,0),那么a的值为.10.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为.11.如果抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,那么它的顶点坐标为.12.如果点A(﹣5,y1)与点B(﹣2,y2)都在抛物线y=(x+1)2+1上,那么y1y2(填“>”、“<”或“=”)13.在Rt△ABC中,∠C=90°,如果sin A=,BC=4,那么AB=.14.如图,AB∥CD∥EF,点C、D分别在BE、AF上,如果BC=6,CE=9,AF=10,那么DF 的长为.15.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为.16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE=.17.定义:如果△ABC内有一点P,满足∠PAC=∠PCB=∠PBA,那么称点P为△ABC的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果PA =2,那么PC=.18.如图,正方形ABCD的边长为4,点O为对角线AC、BD的交点,点E为边AB的中点,△BED绕着点B旋转至△BD1E1,如果点D、E、D1在同一直线上,那么EE1的长为.三.解答题(共6小题)19.计算:20.已知抛物线y=2x2﹣4x﹣6.(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿x轴向左平移m(m>0)个单位后经过原点,求m的值.21.如图,在Rt△ABC中,∠C=90°,cot A=,BC=6,点D、E分别在边AC、AB上,且DE∥BC,tan∠DBC=.(1)求AD的长;(2)如果=,=,用、表示.22.如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,如图2,从侧面看,立柱DE高1.8米,踏板静止时踏板连杆与DE 上的线段AB重合,BE长为0.2米,当踏板连杆绕着点A旋转到AC处时,测得∠CAB=37°,此时点C距离地面的高度CF为0.45米,求AB和AD的长(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)23.如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B(4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan∠OAB的值.(3)点D在抛物线的对称轴上,如果∠BAD=45°,求点D的坐标.25.如图,在四边形ABCD中AD∥BC,∠A=90°,AB=6,BC=10,点E为边AD上一点,将ABE沿BE翻折,点A落在对角线BD上的点G处,连接EG并延长交射线BC于点F.(1)如果cos∠DBC=,求EF的长;(2)当点F在边BC上时,连接AG,设AD=x,=y,求y关于x的函数关系式并写出x的取值范围;(3)连接CG,如果△FCG是等腰三角形,求AD的长.参考答案与试题解析一.选择题(共6小题)1.抛物线y=x2﹣1与y轴交点的坐标是()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)【分析】通过计算自变量为对应的函数值可得到抛物线y=x2﹣1与y轴交点的坐标.【解答】解:当x=0时,y=x2﹣1=﹣1,所以抛物线y=x2﹣1与y轴交点的坐标为(0,﹣1).故选:C.2.如果抛物线y=(a+2)x2开口向下,那么a的取值范围为()A.a>2 B.a<2 C.a>﹣2 D.a<﹣2【分析】由抛物线的开口向下可得出a+2<0,解之即可得出结论.【解答】解:∵抛物线y=(a+2)x2开口向下,∴a+2<0,∴a<﹣2.故选:D.3.如图,在Rt△ABC中,∠C=90°,如果AC=5,AB=13,那么cos A的值为()A.B.C.D.【分析】锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cos A.【解答】解:∵∠C=90°,AC=5,AB=13,∴cos A==,故选:A.4.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米【分析】作BC⊥地面于点C,根据坡度的概念、勾股定理列式计算即可.【解答】解:作BC⊥地面于点C,设BC=x米,∵传送带和地面所成斜坡AB的坡度为1:2,∴AC=2x米,由勾股定理得,AC2+BC2=AB2,即(2x)2+x2=102,解得,x=2,即BC=2米,故选:C.5.如果向量与单位向量的方向相反,且长度为3,那么用向量表示向量为()A.B.C.D.【分析】根据平面向量的定义即可解决问题.【解答】解:∵向量为单位向量,向量与单位向量的方向相反,∴.故选:B.6.如图,在△ABC中,AD平分∠BAC交BC于点D,点E在AD上,如果∠ABE=∠C,AE=2ED,那么△ABE与△ADC的周长比为()A.1:2 B.2:3 C.1:4 D.4:9【分析】根据已知条件先求得S△ABE:S△BED=2:1,再根据三角形相似求得S△ACD=S△ABE 即可求得.【解答】解:∵AD:ED=3:1,∴AE:AD=2:3,∵∠ABE=∠C,∠BAE=∠CAD,∴△ABE∽△ACD,∴L△ABE:L△ACD=2:3,故选:B.二.填空题(共12小题)7.如果=,那么的值为.【分析】直接利用已知把a,b用同一未知数表示,进而计算得出答案.【解答】解:∵=,∴设a=2x,则b=3x,那么==.故答案为:.8.计算:=.【分析】通过去括号,移项合并同类项即可求得.【解答】解:原式==.故答案是:.9.如果抛物线y=ax2+2经过点(1,0),那么a的值为﹣2 .【分析】把已知点的坐标代入抛物线解析式可求出a的值.【解答】解:把(1,0)代入y=ax2+2得a+2=0,解得a=﹣2.故答案为﹣2.10.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为m>1 .【分析】由于抛物线y=(m﹣1)x2有最低点,这要求抛物线必须开口向上,由此可以确定m的范围.【解答】解:∵抛物线y=(m﹣1)x2有最低点,∴m﹣1>0,即m>1.故答案为m>1.11.如果抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,那么它的顶点坐标为(1,2).【分析】首先根据对称轴是直线x=1,从而求得m的值,然后根据顶点式直接写出顶点坐标;【解答】解:∵抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,∴m=1,∴解析式y=(x﹣1)2+2,∴顶点坐标为:(1,2),故答案为:(1,2).12.如果点A(﹣5,y1)与点B(﹣2,y2)都在抛物线y=(x+1)2+1上,那么y1>y2(填“>”、“<”或“=”)【分析】利用二次函数的性质得到当x<﹣1时,y随x的增大而减小,然后利用自变量的大小关系得到y1与y2的大小关系.【解答】解:抛物线的对称轴为直线x=﹣1,而抛物线开口向上,所以当x<﹣1时,y随x的增大而减小,所以y1>y2.故答案为>.13.在Rt△ABC中,∠C=90°,如果sin A=,BC=4,那么AB= 6 .【分析】由sin A=知AB=,代入计算可得.【解答】解:∵在Rt△ABC中,sin A==,且BC=4,∴AB===6,故答案为:6.14.如图,AB∥CD∥EF,点C、D分别在BE、AF上,如果BC=6,CE=9,AF=10,那么DF 的长为 6 .【分析】根据平行线分线段成比例、比例的基本性质解答即可.【解答】解:∵AB∥CD∥EF,∴=,∴=,∴DF=6,故答案为:6.15.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为8 .【分析】连接BG并延长交AC于H,根据G为ABC的重心,得到=2,根据平行四边形的性质得到CE=DF=4,根据相似三角形的性质即可得到结论【解答】解:连接BG并延长交AC于H,∵G为ABC的重心,∴=2,∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形,∴CE=DF=4,∵GE∥CH,∴△BEG∽△CBH,∴=2,∴BE=8,故答案为:8.16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE= 2 .【分析】根据直角三角形的性质得到AD=CD=BD,根据等腰三角形的性质得到∠ACD=∠CAD,∠DCB=∠B,根据余角的性质得到∠CAE=∠B,于是得到结论.【解答】解:∵∠ACB=90°,CD为AB边上的中线,∴AD=CD=BD,∴∠ACD=∠CAD,∠DCB=∠B,∵AE⊥CD,∴∠CAE+∠ACD=∠B+∠CAD=90°,∴∠CAE=∠B,∴cot∠CAE=cot B===2,故答案为:2.17.定义:如果△ABC内有一点P,满足∠PAC=∠PCB=∠PBA,那么称点P为△ABC的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果PA =2,那么PC=.【分析】根据两角对应相等的两三角形相似得出△ACP∽△CBP,利用相似三角形对应边的比相等即可求出PC.【解答】解:∵AB=AC,∵∠PCB=∠PBA,∴∠ACB﹣∠PCB=∠ABC﹣∠PBA,即∠ACP=∠CBP.在△ACP与△CBP中,,∴△ACP∽△CBP,∴=,∵AC=5,BC=8,PA=2,∴PC==.故答案为.18.如图,正方形ABCD的边长为4,点O为对角线AC、BD的交点,点E为边AB的中点,△BED绕着点B旋转至△BD1E1,如果点D、E、D1在同一直线上,那么EE1的长为.【分析】根据正方形的性质得到AB=AD=4,根据勾股定理得到BD=AB=4,==2,过B作BF⊥DD1于F,根据相似三角形的性质得到EF=,求得DF=2+=,根据旋转的性质得到BD1=BD,∠D1BD=∠E1BE,BE1=BE,根据相似三角形的性质即可得到结论.【解答】解:∵正方形ABCD的边长为4,∴AB=AD=4,∴BD=AB=4,∵点E为边AB的中点,∴AE=AB=2,∴DE==2,过B作BF⊥DD1于F,∴∠DAE=∠EFB=90°,∵∠AED=∠BEF,∴△ADE∽△FEB,∴,∴=,∴EF=,∴DF=2+=,∵△BED绕着点B旋转至△BD1E1,∴BD1=BD,∠D1BD=∠E1BE,BE1=BE,∴DD1=2DF=,△D1BD∽△E1BE,∴=,∴=,∴EE1=,故答案为:.三.解答题(共6小题)19.计算:【分析】直接利用特殊角的三角函数值代入进而得出答案.【解答】解:原式====3+2.20.已知抛物线y=2x2﹣4x﹣6.(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿x轴向左平移m(m>0)个单位后经过原点,求m的值.【分析】(1)直接利用配方法求出二次函数的顶点坐标即可;(2)直接求出图象与x轴的交点,进而得出平移规律.【解答】解:(1)y=2x2﹣4x﹣6=2(x2﹣2x)﹣6=2(x﹣1)2﹣8,故该函数的顶点坐标为:(1,﹣8);(2)当y=0时,0=2(x﹣1)2﹣8,解得:x1=﹣1,x2=3,即图象与x轴的交点坐标为:(﹣1,0),(3,0),故该抛物线沿x轴向左平移3个单位后经过原点,即m=3.21.如图,在Rt△ABC中,∠C=90°,cot A=,BC=6,点D、E分别在边AC、AB上,且DE∥BC,tan∠DBC=.(1)求AD的长;(2)如果=,=,用、表示.【分析】(1)通过解Rt△ABC求得AC=8,解Rt△BCD得到CD=3,易得AD=AC﹣CD=5;(2)由平行线截线段成比例求得DE的长度,利用向量表示即可.【解答】解:(1)∵在Rt△ABC中,∠C=90°,cot A=,BC=6,∴==,则AC=8.又∵在Rt△BCD中,tan∠DBC=,∴==,∴CD=3.∴AD=AC﹣CD=5.(2)∵DE∥BC,∴==.∴DE=BC.∵=,=,∴=﹣=﹣.∴=﹣.22.如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,如图2,从侧面看,立柱DE高1.8米,踏板静止时踏板连杆与DE 上的线段AB重合,BE长为0.2米,当踏板连杆绕着点A旋转到AC处时,测得∠CAB=37°,此时点C距离地面的高度CF为0.45米,求AB和AD的长(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】过点C作CG⊥AB于G,得到四边形CFEG是矩形,根据矩形的性质得到EG=CF =0.45,设AD=x,求得AE=1.8﹣x,AC=AB=AE﹣BE=1.6﹣x,AG=AE﹣CF=1.35﹣x,根据三角函数的定义列方程即可得到结论.【解答】解:过点C作CG⊥AB于G,则四边形CFEG是矩形,∴EG=CF=0.45,设AD=x,∴AE=1.8﹣x,∴AC=AB=AE﹣BE=1.6﹣x,AG=AE﹣CF=1.35﹣x,在Rt△ACG中,∠AGC=90°,∠CAG=37°,cos∠CAG===0.8,解得:x=0.35,∴AD=0.35米,AB=1.25米,答:AB和AD的长分别为1.25米,0.35米.23.如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.【分析】(1)由AB=AC,D是边BC的中点,利用等腰三角形的性质可得出∠ADC=90°,由同角的余角相等可得出∠ADE=∠DCE,结合∠AED=∠DEC=90°可证出△AED∽△DEC,再利用相似三角形的性质可证出DE•CD=AD•CE;(2)利用等腰三角形的性质及中点的定义可得出CD=BC,DE=2DF,结合DE•CD=AD•CE可得出=,结合∠BCE=∠ADF可证出△BCE∽△ADF,再利用相似三角形的性质可证出AF•BC=AD•BE.【解答】证明:(1)∵AB=AC,D是边BC的中点,∴AD⊥BC,∴∠ADC=90°,∴∠ADE+∠CDE=90°.∵DE⊥AC,∴∠CED=90°,∴∠CDE+∠DCE=90°,∴∠ADE=∠DCE.又∵∠AED=∠DEC=90°,∴△AED∽△DEC,∴=,∴DE•CD=AD•CE;(2)∵AB=AC,∴BD=CD=BC.∵F为DE的中点,∴DE=2DF.∵DE•CD=AD•CE,∴2DF•BC=AD•CE,∴=.又∵∠BCE=∠ADF,∴△BCE∽△ADF,∴=,∴AF•BC=AD•BE.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B(4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan∠OAB的值.(3)点D在抛物线的对称轴上,如果∠BAD=45°,求点D的坐标.【分析】(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c,解之,得到b和c 的值,即可得到抛物线的表达式,根据抛物线的对称轴x=﹣,代入求值即可,(2)把点A(3,m)代入y=﹣x2+4x,求出m的值,得到点A的坐标,过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,根据三角形的面积和勾股定理,求出线段BD和AD的长,即可得到答案.(3)把AB绕点B逆时针旋转90°得到BC,如图2,作AE⊥OB于E,CF⊥OB于F,CA 交直线x=2于D点,利用△BAC为等腰直角三角形得到∠CAB=45°,证明△ABE≌△BCF 得到BF=AE=3,BE=CF=1,则C(1,﹣1),根据待定系数法求出直线AC的解析式为y=2x﹣3,然后计算自变量为2对应的一次函数值得到D点坐标.【解答】解:(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c得:,解得:,即抛物线的表达式为:y=﹣x2+4x,它的对称轴为:x=﹣=2;(2)把点A(3,m)代入y=﹣x2+4x得m=﹣32+4×3=3,则点A的坐标为:(3,3),过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,如图1,AE=3,OE=3,BE=4﹣3=1,OA==3,AB==,∵S△OAB=×OB×AE=×OA×BD,∴BD===2,∴AD==,∴tan∠OAB==2;(3)把AB绕点B逆时针旋转90°得到BC,如图2,作AE⊥OB于E,CF⊥OB于F,CA 交直线x=2于D点,∴BA=BC,∠ABC=90°,∴△BAC为等腰直角三角形,∴∠CAB=45°,∵∠ABE=∠BCF,∠AEB=∠BFC=90°,∴△ABE≌△BCF(AAS),∴BF=AE=3,BE=CF=1,∴C(1,﹣1),易得直线AC的解析式为y=2x﹣3,当x=2时,y=2x﹣3=1,∴D点坐标为(2,1).25.如图,在四边形ABCD中AD∥BC,∠A=90°,AB=6,BC=10,点E为边AD上一点,将ABE沿BE翻折,点A落在对角线BD上的点G处,连接EG并延长交射线BC于点F.(1)如果cos∠DBC=,求EF的长;(2)当点F在边BC上时,连接AG,设AD=x,=y,求y关于x的函数关系式并写出x的取值范围;(3)连接CG,如果△FCG是等腰三角形,求AD的长.【考点】LO:四边形综合题.【专题】16:压轴题;32:分类讨论;33:函数思想.【分析】(1)利用S△BEF=BF•AB=EF•BG,即可求解;(2)y====,tanα===,即可求解;(3)分GF=FC、CF=CG两种情况,求解即可.【解答】解:(1)将ABE沿BE翻折,点A落在对角线BD上的点G处,∴BG⊥EF,BG=AB=6,cos∠DBC ===,则:BF=9,S△BEF =BF•AB =EF•BG,即:9×6=6×EF,则EF=9;(2)过点A作AH⊥BG交于点H,连接AG,设:BF=a,在Rt△BGF中,cos∠GBF=cos α==,则tan α=,sin α=,y ====…①,tan α===,解得:a2=36+()2…②,把②式代入①式整理得:y =(x);(3)①当GF=FC时,FC=10﹣a=GF=a sin α=,把②式代入上式并解得:x =,②当CF=CG时,同理可得:x =;故:AD 的长为或.21。

2020年四川省成都市中考数学终极预测试卷(二) (解析版)

2020年四川省成都市中考数学终极预测试卷(二) (解析版)

2020年四川省成都市中考数学终极预测试卷(二)一、选择题(共10小题).1.的平方根是()A.﹣3B.±3C.±9D.﹣92.李明为好友制作一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是()A.B.C.D.3.下列说法中正确的是()A.在统计学中,把组成总体的每一个考察对象叫做样本容量B.为了解全国中学生的心理健康情况,应该采用普查的方式C.一组数据6,8,7,8,8,9,10的众数和中位数都是8D.若甲组数据的方差为s12=0.4,乙组数据的方差为s12=0.05,则甲组数据更稳定4.在六个代数式中,是单项式的个数()A.2个B.3个C.4个D.5个5.已知∠α的两边分别与∠β的两边垂直,且∠α=20°,则∠β的度数为()A.20°B.160°C.20°或160°D.70°6.如图,D、E分别是AC和AB上的点,AD=DC=4,DE=3,DE∥BC,∠C=90°,将△ADE沿着AB边向右平移,当点D落在BC上时,平移的距离为()A.3B.4C.5D.67.无论m为何值,点A(m,5﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在▱ABCD中,E是AD上一点,连接CE并延长交BA的延长线于点F,则下列结论中错误的是()A.=B.=C.D.9.如图,在平面直角坐标系中,⊙O的半径为2,AC,BD是⊙O的两条互相垂直的弦,垂足为M(1,),则四边形ABCD面积最大值为()A.2B.5C.4D.610.已知抛物线y=ax2+bx+c的图象如图所示,则下列结论:①abc>0;②a+b+c=2;③a <;④b>1.其中正确的结论是()A.①②B.②③C.③④D.②④二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.因式分解:6x3y﹣12xy2+3xy=.12.若分式的值为0,则a=.13.平面上,将边长相等的正三角形、正方形、正六边形的一边重合并叠在一起,如图,则∠1+∠2+∠3=.14.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(1)计算:﹣32+|﹣2|+()﹣2﹣;(2)先化简再求值:(﹣x﹣1),其中x是不等式组的一个整数解.16.已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.17.某校倡议八年级学生利用双休日在各自社区参加义务劳动,为了解同学们劳动情况,学校随机抽查了部分学生的劳动时间,并用得到的数据绘制成不完整的统计图表,如图所示:劳动时间(时)频数(人数)频率0.5120.121300.31.5x0.528y合计m1(1)统计表中的m=,x=,y=;(2)被抽样调查的同学劳动时间的众数是,中位数是;(3)请将条形图补充完整;(4)求所有被调查同学的平均劳动时间.18.如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处.一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)19.如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1≥y2,求实数p 的取值范围.20.如图1,AB为⊙O的直径,直线CD切⊙O于点C,AD⊥CD于点D,交⊙O于点E.(1)求证:AC平分∠DAB;(2)若4AB=5AD,求证:AE=3DE;(3)如图2,在(2)的条件下,CF交⊙O于点F,若AB=10,∠ACF=45°,求CF 的长.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.某正方体的每个面上都有一个汉字,如图是它的一个展开图,则在原正方体中,与“想”字所在面相对的面上的汉字是.22.定义一种新运算:n•x n﹣1dx=a n﹣b n,例如:2•xdx=k2﹣h2,若﹣x﹣2dx =﹣2,则m=.23.如图,将一张半径为2的半圆形纸片沿它的一条弦折叠,使得弧与直径相切,若切点分直径为3:1两部分,则折痕长为.24.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1,x2,且x1<1<x2,则c的取值范围是.25.如图,点A1、A3、A5…在反比例函数y=(x>0)的图象上,点A2、A4、A6……在反比例函数y=(x>0)的图象上,∠OA1A2=∠A1A2A3=∠A2A3A4=…=∠α=60°,且OA1=2,则A n(n为正整数)的纵坐标为.(用含n的式子表示)二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围.27.在等腰△ABC中,AC=BC,∠C=90°,点D为AB的中点,以AC为斜边作直角△APC,连接PD.(1)当点P在△ABC的内部时(如图1),求证PD+PC=AP;(2)当点P在△ABC的外部时(如图2),线段PD、PC、AP之间的数量关系是.(3)在(2)的条件下,PD与AC的交点为E,连接CD(如图3),PC:EC=7:5,PD=(AP<PC),求线段PB的长.28.如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=﹣x2+bx+a与x轴相交于点A、点B(点A在点B的左侧),与y轴正半轴相交于点C,直线y=kx﹣3k经过点B、C两点,且△BOC为等腰直角三角形.(1)求抛物线的解析式;(2)如图2,过点C作直线l∥x轴,P为直线l上方抛物线上一点,连接PB,PB与直线l相交于点D,将线段BD绕点B逆时针旋转90°后得到线段BE,过点E作BC的平行线,它与直线l相交于点F,连接PF,设点P的横坐标为t,△PDF的面积为S,求S与t之间的函数关系式,并直接写出自变量t的取值范围;(3)如图3,在(2)的条件下,N为PB中点,Q为线段DF上一点,连接PC、QB、QN,当△PCF的面积与△BCD的面积相等,且QN平分∠BQD时,求点Q的坐标.参考答案一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.的平方根是()A.﹣3B.±3C.±9D.﹣9【分析】求出81的算术平方根,找出结果的平方根即可.解:∵=9,∴的平方根为±3.故选:B.2.李明为好友制作一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是()A.B.C.D.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点,对各选项分析即可作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,A、“预”的对面是“考”,“成”的对面是“祝”,故本选项错误;B、“预”的对面是“功”,“成”的对面是“祝”,故本选项错误;C、“预”的对面是“中”,“成”的对面是“功”,故本选项正确;D、“预”的对面是“中”,“成”的对面是“祝”,故本选项错误.故选:C.3.下列说法中正确的是()A.在统计学中,把组成总体的每一个考察对象叫做样本容量B.为了解全国中学生的心理健康情况,应该采用普查的方式C.一组数据6,8,7,8,8,9,10的众数和中位数都是8D.若甲组数据的方差为s12=0.4,乙组数据的方差为s12=0.05,则甲组数据更稳定【分析】根据统计初步知识进行解答.对样本、样本容量、总体、个体、众数、中位数极差等概念要非常熟悉.解:A、在统计中,把组成总体的每一个考察对象叫做个体,而不是样本容量,故本选项错误;B、为了解全国中学生的心理健康情况,由于人数多,工作量大,应该采取抽查方式,故本选项错误;C、将6,8,7,8,8,9,10按从小到大依次排列,得到6,7,8,8,8,9,10,可见众数和中位数都是8,故本选项正确.D、若甲组数据的方差为s12=0.4,乙组数据的方差为s12=0.05,则乙组数据更稳定,故本选项错误;故选:C.4.在六个代数式中,是单项式的个数()A.2个B.3个C.4个D.5个【分析】根据单项式是数与字母的乘积,单独一个数或一个字母也是单项式,可得答案.解:﹣3,π2﹣1,﹣x2y,﹣是单项式,故选:C.5.已知∠α的两边分别与∠β的两边垂直,且∠α=20°,则∠β的度数为()A.20°B.160°C.20°或160°D.70°【分析】若两个角的边互相垂直,那么这两个角必相等或互补,可据此解答.解:∵β的两边与α的两边分别垂直,∴α+β=180°,故β=160°,在上述情况下,若反向延长∠β的一边,那么∠β的补角的两边也与∠α的两边互相垂直,故此时∠β=180°﹣20°=160°;综上可知:∠β=20°或160°,故选:C.6.如图,D、E分别是AC和AB上的点,AD=DC=4,DE=3,DE∥BC,∠C=90°,将△ADE沿着AB边向右平移,当点D落在BC上时,平移的距离为()A.3B.4C.5D.6【分析】根据勾股定理得到AE==5,由平行线等分线段定理得到AE=BE =5,根据平移的性质即可得到结论.解:∵∠C=90°,AD=DC=4,DE=3,∴AE==5,∵DE∥BC,∴AE=BE=5,∴当点D落在BC上时,平移的距离为BE=5.故选:C.7.无论m为何值,点A(m,5﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).解:当m<0时,5﹣2m>0,点A(m,5﹣2m)在第二象限,当0<m时,点A(m,5﹣2m)在第一象限,当m时,点A(m,5﹣2m)在第四象限.故选:C.8.如图,在▱ABCD中,E是AD上一点,连接CE并延长交BA的延长线于点F,则下列结论中错误的是()A.=B.=C.D.【分析】根据已知及平行线分线段成比例定理进行分析,可得CD∥BF,依据平行线成比例的性质即可得到答案.解:A、根据平行线分线段成比例定理得,此项正确;B、根据平行线分线段成比例定理,得FA:FB=AE:BC,所以此结论错误;C、根据平行线分线段成比例定理得,此项正确;D、根据平行四边形的对边相等,所以此项正确.故选:B.9.如图,在平面直角坐标系中,⊙O的半径为2,AC,BD是⊙O的两条互相垂直的弦,垂足为M(1,),则四边形ABCD面积最大值为()A.2B.5C.4D.6【分析】解答本题要注意当AC、BD相等,且OM平分两弦的相交的角时,此时四边形ABCD的面积最大,求出对角线AC、BD的长度可以求得四边形ABCD的最大面积.解:当AC、BD相等,且OM平分两弦的相交的角时,这时O到弦的距离为:OM×sin45=,由勾股定理及垂径定理知弦长为:,S=××=5;故选:B.10.已知抛物线y=ax2+bx+c的图象如图所示,则下列结论:①abc>0;②a+b+c=2;③a <;④b>1.其中正确的结论是()A.①②B.②③C.③④D.②④【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①∵抛物线的开口向上,∴a>0,∵与y轴的交点为在y轴的负半轴上,∴c<0,∵对称轴为x=<0,∴a、b同号,即b>0,∴abc<0,故本选项错误;②当x=1时,函数值为2,∴a+b+c=2;故本选项正确;③∵对称轴x=>﹣1,解得:<a,∵b>1,∴a>,故本选项错误;④当x=﹣1时,函数值<0,即a﹣b+c<0,(1)又a+b+c=2,将a+c=2﹣b代入(1),2﹣2b<0,∴b>1故本选项正确;综上所述,其中正确的结论是②④;故选:D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.因式分解:6x3y﹣12xy2+3xy=3xy(2x2﹣4y+1).【分析】直接找出公因式3xy,进而提取公因式得出答案.解:6x3y﹣12xy2+3xy=3xy(2x2﹣4y+1).故答案为:3xy(2x2﹣4y+1).12.若分式的值为0,则a=﹣3.【分析】分式的值为零:分子等于零且分母不等于零.解:∵分式的值为0,∴3﹣|a|=0且a2﹣2a﹣3≠0,∴3﹣a=0或3+a=0,且(a﹣3)(a+1)≠0,∴3+a=0,解得a=﹣3,故答案为:﹣3.13.平面上,将边长相等的正三角形、正方形、正六边形的一边重合并叠在一起,如图,则∠1+∠2+∠3=60°.【分析】根据正多边形的内角:,可得正方形的内角、正五边形的内角、正六边形的内角,根据角的和差,可得答案.解:等边三角形的内角是60°正方形的内角是=90°,正五边形的内角=108°,正六边形的内角=120°,∠1=120°﹣108°=12°,∠2=108°﹣90°=18°,∠3=90°﹣60°=30,∠1+∠2+∠3=12°+18°+30°=60°.故答案为:60°.14.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为4.【分析】过点A作x轴的垂线,与CB的延长线交于点E,根据A,B两点的纵坐标分别为3,1,可得出横坐标,即可求得AE,BE,再根据勾股定理得出AB,根据菱形的面积公式:底乘高即可得出答案.解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S菱形ABCD=底×高=2×2=4,故答案为4.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(1)计算:﹣32+|﹣2|+()﹣2﹣;(2)先化简再求值:(﹣x﹣1),其中x是不等式组的一个整数解.【分析】(1)根据乘方、绝对值、负整数指数幂、特殊角的三角函数值和分母有理化进行计算;(2)先把括号内通分和除法运算化为乘法运算,约分得到原式=﹣x2﹣x+2,再解不等式组的解集为﹣1<x≤2,则不等式的整数解为0,1,2,然后根据分式有意义的条件确定x的值,最后代入计算即可.解:(1)原式=﹣9+2﹣+9﹣=2﹣﹣(+1)=1﹣2;(2)原式=•=﹣•=﹣(x+2)(x﹣1)=﹣x2﹣x+2,对于不等式组,解①得x≤2,解②得x>﹣1,∴不等式组的解集为﹣1<x≤2,不等式的整数解为0,1,2,而x﹣1≠0且x﹣2≠0,∴x=0,∴原式=﹣0﹣0+2=2.16.已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.【分析】(1)要证△ADF≌△CBE,因为AE=CF,则两边同时加上EF,得到AF=CE,又因为ABCD是平行四边形,得出AD=CB,∠DAF=∠BCE,从而根据SAS推出两三角形全等;(2)由全等可得到∠DFA=∠BEC,所以得到DF∥EB.【解答】证明:(1)∵AE=CF,∴AE+EF=CF+FE,即AF=CE.又ABCD是平行四边形,∴AD=CB,AD∥BC.∴∠DAF=∠BCE.在△ADF与△CBE中,∴△ADF≌△CBE(SAS).(2)∵△ADF≌△CBE,∴∠DFA=∠BEC.∴DF∥EB.17.某校倡议八年级学生利用双休日在各自社区参加义务劳动,为了解同学们劳动情况,学校随机抽查了部分学生的劳动时间,并用得到的数据绘制成不完整的统计图表,如图所示:劳动时间(时)频数(人数)频率0.5120.121300.31.5x0.528y合计m1(1)统计表中的m=100,x=50,y=0.08;(2)被抽样调查的同学劳动时间的众数是 1.5,中位数是 1.5;(3)请将条形图补充完整;(4)求所有被调查同学的平均劳动时间.【分析】(1)首先根据劳动时间是0.5小时的有12人,频率是0.12即可求得总数,然后根据频率的计算公式求得x、y的值;(2)根据中位数的定义,即大小处于中间位置的数即可作出判断;(3)根据(1)的结果即可完成;(4)利用加权平均数公式即可求解.解:(1)调查的总人数是m=12÷0.12=100(人),则x=100×0.5=50(人),y==0.08;(2)被调查同学劳动时间的众数为1.5小时;中位数是1.5小时;(3);(4)所有被调查同学的平均劳动时间是:=1.27(小时).18.如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处.一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】如图作CH⊥AD于H.设CH=xkm,在Rt△ACH中,可得AH==,在Rt△CEH中,可得CH=EH=x,由CH∥BD,推出=,由AC=CB,推出AH=HD,可得=x+5,求出x即可解决问题.解:如图作CH⊥AD于H.设CH=xkm,在Rt△ACH中,∠A=37°,∵tan37°=,∴AH==,在Rt△CEH中,∵∠CEH=45°,∴CH=EH=x,∵CH⊥AD,BD⊥AD,∴CH∥BD,∴=,∵AC=CB,∴AH=HD,∴=x+5,∴x=≈15,∴AE=AH+HE=+15≈35km,∴E处距离港口A有35km.19.如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1≥y2,求实数p 的取值范围.【分析】(1)把A、B的坐标代入反比例函数解析式求出m=﹣n,过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE、BF交于D,求出梯形BCAD的面积和△BDA的面积,即可得出关于n的方程,求出n的值,得出A、B的坐标,代入反比例函数和一次函数的解析式,即可求出答案;(2)根据A、B的横坐标,结合图象即可得出答案;(3)分为两种情况:当点P在第三象限时和当点P在第一象限时,根据坐标和图象即可得出答案.解:(1)把A(2,m),B(n,﹣2)代入y=得:k2=2m=﹣2n,即m=﹣n,则A(2,﹣n),过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE、BF交于D,∵A(2,﹣n),B(n,﹣2),∴BD=2﹣n,AD=﹣n+2,BC=|﹣2|=2,∵S△ABC=•BC•BD∴×2×(2﹣n)=5,解得:n=﹣3,即A(2,3),B(﹣3,﹣2),把A(2,3)代入y=得:k2=6,即反比例函数的解析式是y=;把A(2,3),B(﹣3,﹣2)代入y=k1x+b得:,解得:k1=1,b=1,即一次函数的解析式是y=x+1;(2)∵A(2,3),B(﹣3,﹣2),∴不等式k1x+b>的解集是﹣3<x<0或x>2;(3)分为两种情况:当点P在第三象限时,要使y1≥y2,实数p的取值范围是p≤﹣2,当点P在第一象限时,要使y1≥y2,实数p的取值范围是p>0,即P的取值范围是p≤﹣2或p>0.20.如图1,AB为⊙O的直径,直线CD切⊙O于点C,AD⊥CD于点D,交⊙O于点E.(1)求证:AC平分∠DAB;(2)若4AB=5AD,求证:AE=3DE;(3)如图2,在(2)的条件下,CF交⊙O于点F,若AB=10,∠ACF=45°,求CF 的长.【分析】(1)连接OC,如图1①,易证OC∥AD,只需结合OA=OC就可解决问题;(2)连接BC、EC、OC,如图1②,设AB=5x,由4AB=5AD可得AD=4x,易证△ADC∽△ACB,根据相似三角形的性质可求出DC2(用x表示),然后运用切割线定理求出DE,即可得到AE,问题得以解决;(3)过点A作AH⊥FC,连接AF,如图2,由条件AB=10可求出x,从而可求出AC、AF,然后只需解△ACF就可解决问题.解:(1)连接OC,如图1①,∵CD为⊙O的切线,∴OC⊥CD.∵AD⊥CD,∴OC∥AD,∴∠CAD=∠ACO.又∵OC=OA,∴∠ACO=∠OAC,∴∠CAD=∠OAC,∴AC平分∠DAB;(2)连接BC、EC、OC,如图1②,设AB=5x,则由4AB=5AD可得AD=4x.∵AB是⊙O的直径,∴∠ACB=90°,∴∠ADC=∠ACB=90°.∵∠DAC=∠CAB,∴△ADC∽△ACB,∴=,∴AC2=AD•AB=20x2,∴DC2=AC2﹣AD2=20x2﹣16x2=4x2.∵直线CD与⊙O相切,∴根据切割线定理可得CD2=DE•DA,∴4x2=DE•4x,∴DE=x,∴AE=3x=3DE;(3)过点A作AH⊥FC,连接AF,如图2,∵AB=5x=10,∴OA=OF=5,x=2,∴AC2=20x2=80,∴AC=4.∵∠ACF=45°,∴AH=AC•sin∠ACH=4×=2,CH=AC•cos∠ACH=4×=2.∵∠AOF=2∠ACF=90°,∴AF==5,∴FH==,∴FC=CH+FH=3,即CF的长为3.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.某正方体的每个面上都有一个汉字,如图是它的一个展开图,则在原正方体中,与“想”字所在面相对的面上的汉字是亮.【分析】利用正方体及其表面展开图的特点解题.解:这是一个正方体的平面展开图,共有六个面,与“想”字所在面相对的面上的汉字是亮.故答案为:亮.22.定义一种新运算:n•x n﹣1dx=a n﹣b n,例如:2•xdx=k2﹣h2,若﹣x﹣2dx =﹣2,则m=.【分析】直接利用已知得出变化规律进而求出答案.解:由题意可得:﹣x﹣2dx=﹣2=m﹣1﹣(5m)﹣1,则﹣=﹣2,解得:m=﹣.故答案为:﹣.23.如图,将一张半径为2的半圆形纸片沿它的一条弦折叠,使得弧与直径相切,若切点分直径为3:1两部分,则折痕长为.【分析】过O作弦BC的垂线OP,垂足为D,分别与弧的交点为A、G,过切点F作PF⊥半径OE交OP于P点,根据垂径定理及其推论得到BD=DC,即OP为BC的中垂线,OP必过弧BGC所在圆的圆心,再根据切线的性质得到PF必过弧BGC所在圆的圆心,则点P为弧BGC所在圆的圆心,根据折叠的性质有⊙P为半径等于⊙O的半径,即PF=PG=OE=2,并且AD=GD,由F点分⊙O的直径为3:1两部分可计算出OF =1,在Rt△OPF中,设OG=x,利用勾股定理可计算出x,则由AG=PG﹣AP计算出AG,可得到DG的长,于是可计算出OD的长,在Rt△OBD中,利用勾股定理计算BD,即可得到BC的长.解:过O作弦BC的垂线OP,垂足为D,分别与弧的交点为A、G,过切点F作PF⊥半径OE交OP于P点,如图,∵OP⊥BC,∴BD=DC,即OP为BC的中垂线,∴OP必过弧BGC所在圆的圆心,又∵OE为弧BGC所在圆的切线,PF⊥OE,∴PF必过弧BGC所在圆的圆心,∴点P为弧BGC所在圆的圆心,∵弧BAC沿BC折叠得到弧BGC,∴⊙P为半径等于⊙O的半径,即PF=PG=OE=2,并且AD=GD,∴OG=AP,而F点分⊙O的直径为3:1两部分,∴OF=1,在Rt△OPF中,设OG=x,则OP=x+2,∴OP2=OF2+PF2,即(x+2)2=12+22,解得x=﹣2,∴AG=2﹣(﹣2)=4﹣,∴DG==2﹣,∴OD=OG+DG=﹣2+2﹣=,在Rt△OBD中,BD2=OB2+OD2,即BD2=22﹣()2,∴BD=,∴BC=2BD=.故折痕长为.故答案为:.24.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1,x2,且x1<1<x2,则c的取值范围是c<﹣2.【分析】由函数的不动点概念得出x1、x2是方程x2+2x+c=x的两个实数根,由x1<1<x2知△>0且x=1时y<0,据此得,解之可得.解:由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2是方程x2+2x+c=x的两个不相等实数根,且x1<1<x2,整理,得:x2+x+c=0,由x2+x+c=0有两个不相等的实数根,且x1<1<x2,知△>0,令y=x2+x+c,画出该二次函数的草图如下:则,解得c<﹣2,故答案为c<﹣2.25.如图,点A1、A3、A5…在反比例函数y=(x>0)的图象上,点A2、A4、A6……在反比例函数y=(x>0)的图象上,∠OA1A2=∠A1A2A3=∠A2A3A4=…=∠α=60°,且OA1=2,则A n(n为正整数)的纵坐标为(﹣1)n+1().(用含n的式子表示)【分析】先证明△OA1E是等边三角形,求出A1的坐标,作高线A1D1,再证明△A2EF 是等边三角形,作高线A2D2,设A2(x,﹣),根据OD2=2+=x,解方程可得等边三角形的边长和A2的纵坐标,同理依次得出结论,并总结规律:发现点A1、A3、A5…在x轴的上方,纵坐标为正数,点A2、A4、A6……在x轴的下方,纵坐标为负数,可以利用(﹣1)n+1来解决这个问题.解:过A1作A1D1⊥x轴于D1,∵OA1=2,∠OA1A2=∠α=60°,∴△OA1E是等边三角形,∴A1(1,),∴k=,∴y=和y=﹣,过A2作A2D2⊥x轴于D2,∵∠A2EF=∠A1A2A3=60°,∴△A2EF是等边三角形,设A2(x,﹣),则A2D2=,Rt△EA2D2中,∠EA2D2=30°,∴ED2=,∵OD2=2+=x,解得:x1=1﹣(舍),x2=1+,∴EF====2(﹣1)=2﹣2,A2D2===,即A2的纵坐标为﹣;过A3作A3D3⊥x轴于D3,同理得:△A3FG是等边三角形,设A3(x,),则A3D3=,Rt△FA3D3中,∠FA3D3=30°,∴FD3=,∵OD3=2+2﹣2+=x,解得:x1=(舍),x2=+;∴GF===2(﹣)=2﹣2,A3D3===(﹣),即A3的纵坐标为(﹣);…∴A n(n为正整数)的纵坐标为:(﹣1)n+1();故答案为:(﹣1)n+1();二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围.【分析】(1)利用h=2.6将点(0,2),代入解析式求出即可;(2)利用当x=9时,y=﹣(x﹣6)2+2.6=2.45,当y=0时,,分别得出即可;(3)根据当球正好过点(18,0)时,抛物线y=a(x﹣6)2+h还过点(0,2),以及当球刚能过网,此时函数解析式过(9,2.43),抛物线y=a(x﹣6)2+h还过点(0,2)时分别得出h的取值范围,或根据不等式即可得出答案.解:(1)∵h=2.6,球从O点正上方2m的A处发出,∴抛物线y=a(x﹣6)2+h过点(0,2),∴2=a(0﹣6)2+2.6,解得:a=﹣,故y与x的关系式为:y=﹣(x﹣6)2+2.6,(2)当x=9时,y=﹣(x﹣6)2+2.6=2.45>2.43,所以球能过球网;当y=0时,,解得:x1=6+2>18,x2=6﹣2(舍去)故会出界;(3)当球正好过点(18,0)时,抛物线y=a(x﹣6)2+h还过点(0,2),代入解析式得:,解得:,此时二次函数解析式为:y=﹣(x﹣6)2+,此时球若不出边界h≥,当球刚能过网,此时函数解析式过(9,2.43),抛物线y=a(x﹣6)2+h还过点(0,2),代入解析式得:,解得:,此时球要过网h>,故若球一定能越过球网,又不出边界,h的取值范围是:h≥.解法二:y=a(x﹣6)2+h过点(0,2)点,代入解析式得:2=36a+h,若球越过球网,则当x=9时,y>2.43,即9a+h>2.43解得h>球若不出边界,则当x=18时,y≤0,解得h≥.故若球一定能越过球网,又不出边界,h的取值范围是:h≥.27.在等腰△ABC中,AC=BC,∠C=90°,点D为AB的中点,以AC为斜边作直角△APC,连接PD.(1)当点P在△ABC的内部时(如图1),求证PD+PC=AP;(2)当点P在△ABC的外部时(如图2),线段PD、PC、AP之间的数量关系是PA+PC =PD.(3)在(2)的条件下,PD与AC的交点为E,连接CD(如图3),PC:EC=7:5,PD=(AP<PC),求线段PB的长.【分析】(1)通过连接CD,在AP上取一点E使AE=CP,利用等腰三角形的性质证明三角形全等可以得出∠1=∠3,DE=DP,可以得到△EDP是等腰直角三角形.从而得出结论.(2)连接CD,延长PA到G,使AG=PC,连接DG,由等腰直角三角形的性质可以得到∠ADC=90°,从而可以得到A、P、C、D四点在以AC为直径的圆上,由∠1=∠2=45°,∠3=∠4,通过证明△PCD≌△GAD,得出∠1=∠G,PD=GD,从而证明△PGD为等腰直角三角形.从而得出答案.PA+PC =PD(3)由(2)的结论可以得出AP+PC=7,通过证明△PAD∽△PEC,利用PC:EC=3:5求出AD,从而求出AC,再利用△PEC∽△AED求出PC,就可以求出PA,得出PA =PD得出△PAB是直角三角形,利用勾股定理就可以求出PB.解:(1)证明:连接CD,在AP上取一点E使AE=CP,∵点D为AB的中点,∠ACB=90°,∴AD=CD,∠CAD=∠ACD=45°,∠ADC=90°,∴∠CAP+∠ACD+∠DCP=90°,∠CAP+∠ACD+∠PAD=90°,∴∠CAP+∠ACD+∠DCP=∠CAP+∠ACD+∠PAD,∴∠DCP=∠PAD,PC=AE,CD=AD,∴△CPD≌△AED,∴DE=DP,∠1=∠3.∵∠1+∠2=90°,∴∠3+∠2=90°,∴△EDP为等腰直角三角形,由勾股定理,得PE=PD.∵AE+EP=AP,∴PC+PD=AP.(2)线段PD、PC、AP之间的数量关系是:PA+PC=PD证明:连接CD,延长PA到G,使AG=PC,连接DG∵∠APC=∠ADC=90°,∴A、D、C、P四点在以AC为直径的圆上.∵AD=CD,∴∠1=∠2=45°,∴∠1=∠2=∠CAD=∠ACD=45°.∵∠5=∠1+∠4,∠PCD=∠3+∠ACD,∠3=∠4,∴∠5=∠PCD,PC=AG,AD=CD,∴△GAD≌△PCD,∴GD=PD,∴∠1=∠G=45°,∴∠PDG=90°,由勾股定理,得PG=PD∵PG=PA+AG,∴PG=PA+PC,∴PA+PC=PD.(3)∵PD=∴PA+PC=7.∵PC:EC=7:5,则设PC=7m,EC=5m,∴PA=7﹣7m.∵△PAD∽△PEC,∴,∴,解得AD=,在Rt△ADC中,由勾股定理,得AC=5,∴在Rt△CAP中,由勾股定理,得(7m)2+(7﹣7m)2=25,解得,m1=,m2=.∵AP<PC,∴m=,∴PC=4,PA=3.作PH⊥AD于点H,有△PHD∽△APC∴,∴解得:PH=.在Rt△PHD中,由勾股定理,得()2+HD2=()2,解得:HD=,HB=,在Rt△PHB中由勾股定理,得PB2=PH2+HB2,∴,解得:PB=.28.如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=﹣x2+bx+a与x轴相交于点A、点B(点A在点B的左侧),与y轴正半轴相交于点C,直线y=kx﹣3k经过点B、C两点,且△BOC为等腰直角三角形.(1)求抛物线的解析式;(2)如图2,过点C作直线l∥x轴,P为直线l上方抛物线上一点,连接PB,PB与直线l相交于点D,将线段BD绕点B逆时针旋转90°后得到线段BE,过点E作BC的平行线,它与直线l相交于点F,连接PF,设点P的横坐标为t,△PDF的面积为S,求S与t之间的函数关系式,并直接写出自变量t的取值范围;(3)如图3,在(2)的条件下,N为PB中点,Q为线段DF上一点,连接PC、QB、QN,当△PCF的面积与△BCD的面积相等,且QN平分∠BQD时,求点Q的坐标.【分析】(1)如图1,只需令y=0,即可得到点B的坐标,再根据条件可得到点C的坐标,然后运用待定系数法就可解决问题;(2)过点B作BG⊥l于G,过点P作PH⊥x轴于H,交DF于K,如图2,易证△BGD ≌△BOE,则有DG=OE,∠EOB=∠DGB=90°,即可得到点E在y轴上,然后只需运用割补法就可解决问题;(3)设PH与BC相交于点R,过点N分别向OB、QB作垂线,垂足分别为W、S,过点Q作AB的垂线,垂足为点J,直线NW与l相交于点Z.连接NR,如图3,由△PCF 的面积与△BCD的面积相等可得到S=S△PCB,从而求出PR(用t表示),然后根据PH =PR+RH求出t,从而可得到点P的坐标,设CQ=m,则BJ=OB+OJ=3+m,在△BQJ 中,∠BJQ=90°,QJ=OC=3,BJ=3+m,只需表示出BQ(用m表示),然后运用勾股定理就可解决问题.解:(1)如图1,令y=0,得kx﹣3k=0,∵k≠0,∴x=3,B(3,0).∵△BOC是等腰直角三角形,∠BOC=90°,∴OB=OC=3,∴C(0,3).∵y=﹣x2+bx+a经过点B、C,∴,∴,∴抛物线的解析式为y=﹣x2+2x+3;(2)过点B作BG⊥l于G,过点P作PH⊥x轴于H,交DF于K,如图2,∵直线l∥x轴,∴PK⊥DF,∠GCO=180°﹣∠COB=90°,∴∠CGB=∠GCO=∠COB=90°,∴四边形COBG是矩形,∴BG=OC=3=OB,∠GBO=90°.∵∠GBO=∠PBE=90°,∴∠DBG=∠OBE.在△BGD和△BOE中,∴△BGD≌△BOE,∴DG=OE,∠EOB=∠DGB═90°,∴点E在y轴上.设DG=OE=k,∵BC∥EF,∴∠CFE=∠FEC=∠BCO=45°,∴CF=CE=3+k,∴DF=CF+CG﹣DG=3+k+3﹣k=6,∴PH=﹣t2+2t+3.∵四边形OCKH为矩形,∴OC=KH=3,∴PK=PH﹣KH=﹣t2+2t.∴S△PDF=DF×PK=﹣3t2+6t,(0<t<2);(3)设PH与BC相交于点R,过点N分别向OB、QB作垂线,垂足分别为W、S,过点Q作AB的垂线,垂足为点J,直线NW与l相交于点Z.连接NR,如图3,S=S△PCF+S△PCD=S△BCD+S△PCD=S△PCB=S△PCR+S△PBR=PR×CK+PR×BH=PR(CK+BH)=PR(OH+BH)=PR×OB,∴﹣3t2+6t=×3PR,∴PR=﹣2t2+4t.在△BHR中,∵∠HRB=180°﹣45°﹣90°=45°,∴BH=HR=3﹣t.∵PH=PR+RH,∴﹣t2+2t+3=﹣2t2+4t+3﹣t,解得:t1=1,t2=0(舍去),∴P点坐标为(1,4).可知RH=2=NW,四边形RHWN为矩形,∠NRH=90°.设CQ=m,则BJ=OB+OJ=OB+QC=3+m.∵∠BWN=∠BHP=∠PRN=90°,∴PH∥NW,∴∠BNW=∠NPR.在△PNR与△BNW中,∴△PRN≌△NWB,∴BW=NR=HW=BH=1,∴OW=OH+HW=2,∴CZ=OW=NW=2.在△NQS与△NQZ中,∴△NSQ≌△NZQ,∴QZ=2+m=SQ,SN=NZ=1=BW.。

2020年四川省成都市中考数学试题(word版,解析版) (2)

2020年四川省成都市中考数学试题(word版,解析版) (2)

2019年成都中考数学试题全卷分A卷和B卷,A卷满分100分,B卷满分50分,考试时间120分钟A卷(共100分)第I卷(选择题,共30分)一.选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.比-3大5的数是()A.-15B.-8C.2D.82.如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是()A. B. C. D.3.2019年4月10日,人类首张黑洞图片问世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球5500万光年.将数据5500万用科学计数法表示为()A.5500×104B.55×106C.5.5×107D.5.5×1084.在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为()A.(2,3)B.(-6,3)C.(-2,7)D.(-2,-1)5.将等腰直角三角形纸片和矩形纸片按如图方式折叠放在一起,若∠1=30°,则∠2的度数为()A.10°B.15°C.20°D.30°6.下列计算正确的是( )A.b b ab 235=-B.242263b a b a =-)( C.1)1(22-=-a a D.2222a b b a =÷ 7.分式方程1215=+--xx x 的解为( ) A.1-=x B.1=x C.2=x D.2-=x8.某校开展了主题为“青春·梦想”的艺术作品征集互动,从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50则这组数据的中位数是( ) A.42件 B.45件 C.46件 D.50件9.如图,正五边形ABCDE 内接于∠O ,P 为»DE 上的一点(点P 不与点D 重合),则∠CPD的度数为( )A.30°B.36°C.60°D.72°10.如图,二次函数c bx ax y ++=2的图象经过点A (1,0),B (5,0),下列说法正确的是( )A.0>cB.042<-ac b C.0<+-c b a D.图象的对称轴是直线3=x第II 卷(非选择题,共70分)二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11.若1+m 与-2互为相反数,则m 的值为 .12.如图,在∠ABC 中,AB=AC ,点D ,E 都在边BC 上,∠BAD=∠CAE ,若BD=9,则CE 的长为 .13.已知一次函数1)3(+-=x k y 的图象经过第一、二、四象限,则k 的取值范围是 14.如图,□ABCD 的对角线AC 与BD 相交于点O ,按以下步骤作图:∠以点A 为圆心,以任意长为半径作弧,分别交AO ,AB 于点M ,N ;∠以点O 为圆心,以AM 长为半径作弧,交OC 于点M ';∠以点M '为圆心,以MN 长为半径作弧,在∠COB 内部交前面的弧于点N ';∠过点N '作射线N O '交BC 于点E ,若AB=8,则线段OE 的长为 .三.解答题.(本大题共6个小题,共54分,解答过程写在答题卡上)15.(本小题满分12分,每题6分)(1)计算:|31|1630cos 2)2(0-+-︒--π.(2)解不等式组:⎪⎩⎪⎨⎧+<--≤-②211425①54)2(3x x x x16.(本小题满分6分)先化简,再求值:62123412++-÷⎪⎭⎫ ⎝⎛+-x x x x ,其中12+=x . 17(本小题满分8分)随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.(2)在线讨论所占圆心角︒=︒⨯=⨯=483609012圆周角调查总人数在线讨论人数18.(本小题满分8分)2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力.如图,在一场马拉松比赛中,某人在大楼A 处,测得起点拱门CD 的顶部C 的俯角为35°,底部D 的俯角为45°,如果A 处离地面的高度AB=20米,求起点拱门CD 的高度.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)19.(本小题满分10分)如图,在平面直角坐标系xOy 中,一次函数521+=x y 和x y 2-=的图象相交于点A ,反比例函数xky =的图象经过点A. (1)求反比例函数的表达式;(2)设一次函数521+=x y 的图象与反比例函数xky = 的图象的另一个交点为B ,连接OB ,求∠ABO 的面积。

2020年四川省成都市中考数学试卷-含详细解析

2020年四川省成都市中考数学试卷-含详细解析

2020年四川省成都市中考数学试卷副标题题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.−2的绝对值是()A. −2B. 1C. 2D. 122.如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是()A. B. C. D.3.2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为()A. 3.6×103B. 3.6×104C. 3.6×105D. 36×1044.在平面直角坐标系中,将点P(3,2)向下平移2个单位长度得到的点的坐标是()A. (3,0)B. (1,2)C. (5,2)D. (3,4)5.下列计算正确的是()A. 3a+2b=5abB. a3⋅a2=a6C. (−a3b)2=a6b2D. a2b3÷a=b36.成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是()A. 5人,7人B. 5人,11人C. 5人,12人D. 7人,11人7.如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于12BC的长为半径作弧,两弧相交于点M和N;②作直线MN交AC于点D,连接BD.若AC=6,AD=2,则BD的长为()A. 2B. 3C. 4D. 68.已知x=2是分式方程kx +x−3x−1=1的解,那么实数k的值为()A. 3B. 4C. 5D. 69.如图,直线l1//l2//l3,直线AC和DF被l1,l2,l3所截,AB=5,BC=6,EF=4,则DE的长为()A. 2B. 3C. 4D. 10310. 关于二次函数y =x 2+2x −8,下列说法正确的是( )A. 图象的对称轴在y 轴的右侧B. 图象与y 轴的交点坐标为(0,8)C. 图象与x 轴的交点坐标为(−2,0)和(4,0)D. y 的最小值为−9二、填空题(本大题共9小题,共36.0分) 11. 分解因式:x 2+3x =______.12. 一次函数y =(2m −1)x +2的值随x 值的增大而增大,则常数m 的取值范围为______.13. 如图,A ,B ,C 是⊙O 上的三个点,∠AOB =50°,∠B =55°,则∠A 的度数为______. 14. 《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系.其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为______.15. 已知a =7−3b ,则代数式a 2+6ab +9b 2的值为______.16. 关于x 的一元二次方程2x 2−4x +m −32=0有实数根,则实数m 的取值范围是______.17. 如图,六边形ABCDEF 是正六边形,曲线FA 1B 1C 1D 1E 1F 1…叫做“正六边形的渐开线”,FA⏜1,A 1B 1⏜,B 1C 1⏜,C 1D 1⏜,D 1E 1⏜,E 1F 1⏜,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线FA 1B 1C 1D 1E 1F 1的长度是______.18. 在平面直角坐标系xOy 中,已知直线y =mx(m >0)与双曲线y =4x 交于A ,C 两点(点A 在第一象限),直线y =nx(n <0)与双曲线y =−1x 交于B ,D 两点.当这两条直线互相垂直,且四边形ABCD 的周长为10√2时,点A 的坐标为______.19.如图,在矩形ABCD中,AB=4,BC=3,E,F分别为AB,CD边的中点.动点P从点E出发沿EA向点A运动,同时,动点Q从点F出发沿FC向点C运动,连接PQ,过点B作BH⊥PQ于点H,连接DH.若点P的速度是点Q的速度的2倍,在点P从点E运动至点A的过程中,线段PQ长度的最大值为______,线段DH长度的最小值为______.三、计算题(本大题共1小题,共8.0分)20.成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台A处的高度,某数学兴趣小组在电视塔附近一建筑物楼项D处测得塔A处的仰角为45°,塔底部B处的俯角为22°.已知建筑物的高CD约为61米,请计算观景台的高AB的值.(结果精确到1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)四、解答题(本大题共8小题,共76.0分)21.(1)计算:2sin60°+(12)−2+|2−√3|−√9;(2)解不等式组:{4(x−1)≥x+2, ①2x+13>x−1. ②.22. 先化简,再求值:(1−1x+3)÷x+2x 2−9,其中x =3+√2.23. 2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有______人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为______;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.24. 在平面直角坐标系xOy 中,反比例函数y =m x(x >0)的图象经过点A(3,4),过点A的直线y =kx +b 与x 轴、y 轴分别交于B ,C 两点. (1)求反比例函数的表达式;(2)若△AOB 的面积为△BOC 的面积的2倍,求此直线的函数表达式.25.如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB 于点F.(1)求证:AC是⊙O的切线;(2)若AB=10,tanB=4,求⊙O的半径;3(3)若F是AB的中点,试探究BD+CE与AF的数量关系并说明理由.26.在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y(单位:件)与线下售价x(单位:元/件,12≤x<24)满足一次函数的关系,部分数据如下表:x(元/件)1213141516y(件)120011001000900800(1)求y与x的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.27.在矩形ABCD的CD边上取一点E,将△BCE沿BE翻折,使点C恰好落在AD边上点F处.(1)如图1,若BC=2BA,求∠CBE的度数;(2)如图2,当AB=5,且AF⋅FD=10时,求BC的长;(3)如图3,延长EF,与∠ABF的角平分线交于点M,BM交AD于点N,当NF=AN+FD时,求AB的值.BC28.在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x轴交于A(−1,0),B(4,0)两点,与y轴交于点C(0,−2).(1)求抛物线的函数表达式;(2)如图1,点D为第四象限抛物线上一点,连接AD,BC交于点E,连接BD,记△BDE的面积为S1,△ABE的面积为S2,求S1的最大值;S2(3)如图2,连接AC,BC,过点O作直线l//BC,点P,Q分别为直线l和抛物线上的点.试探究:在第一象限是否存在这样的点P,Q,使△PQB∽△CAB.若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:−2的绝对值为2.故选:C.利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.【答案】D【解析】解:从左面看是一列2个正方形.故选:D.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.【答案】B【解析】解:36000=3.6×104,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:将点P(3,2)向下平移2个单位长度所得到的点坐标为(3,2−2),即(3,0),故选:A.纵坐标,上移加,下移减,横坐标不变可得点的坐标为(3,0).此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.5.【答案】C【解析】解:A、3a与2b不是同类项,不能合并,原计算错误,故此选项不符合题意;B、a3⋅a2=a5,原计算错误,故此选项不符合题意;C、(−a3b)2=a6b2,原计算正确,故此选项符合题意;D、a2b3÷a=ab3,原计算错误,故此选项不符合题意.故选:C.根据合并同类项、同底数幂的乘法和除法、积的乘方进行计算即可.本题综合考查了整式运算的多个考点,包括合并同类项、同底数幂的乘法和除法,积的乘方,需熟练掌握且区分清楚,才不容易出错.6.【答案】A【解析】解:5出现了2次,出现的次数最多,则众数是5人;把这组数据从小到大排列:5,5,7,11,12,最中间的数是7,则中位数是7人.故选:A.根据众数的定义即众数是一组数据中出现次数最多的数和中位数的定义即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),即可得出答案.此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).7.【答案】C【解析】解:由作图知,MN是线段BC的垂直平分线,∴BD=CD,∵AC=6,AD=2,∴BD=CD=4,故选:C.根据线段垂直平分线的性质即可得到结论.本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).8.【答案】B【解析】解:把x=2代入分式方程得:k2−1=1,解得:k=4.故选:B.把x=2代入分式方程计算即可求出k的值.此题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.【答案】D【解析】解:∵直线l1//l2//l3,∴ABBC =DEEF,∵AB=5,BC=6,EF=4,∴56=DE4,∴DE=103,故选:D.根据平行线分线段成比例定理得出比例式,代入求出即可.本题考查了平行线分线段成比例定理,能根据平行线分线段成比例定理得出正确的比例式是解此题的关键.10.【答案】D【解析】解:∵二次函数y=x2+2x−8=(x+1)2−9=(x+4)(x−2),∴该函数的对称轴是直线x=−1,在y轴的左侧,故选项A错误;当x=0时,y=−8,即该函数与y轴交于点(0,−8),故选项B错误;当y=0时,x=2或x=−4,即图象与x轴的交点坐标为(2,0)和(−4,0),故选项C错误;当x=−1时,该函数取得最小值y=−9,故选项D正确;故选:D.根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.本题考查抛物线与x轴的交点、二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.11.【答案】x(x+3)【解析】解:x 2+3x =x(x +3).观察原式,发现公因式为x ;提出后,即可得出答案. 主要考查提公因式法分解因式,此题属于基础题.12.【答案】m >12【解析】解:∵一次函数y =(2m −1)x +2中,函数值y 随自变量x 的增大而增大, ∴2m −1>0,解得m >12. 故答案为:m >12.先根据一次函数的性质得出关于m 的不等式2m −1>0,再解不等式即可求出m 的取值范围.本题考查的是一次函数的图象与系数的关系,熟知一次函数的增减性是解答此题的关键. 13.【答案】30°【解析】解:∵OB =OC ,∠B =55°, ∴∠BOC =180°−2∠B =70°, ∵∠AOB =50°,∴∠AOC =∠AOB +∠BOC =70°+50°=120°, ∵OA =OC , ∴∠A =∠OCA =180°−120°2=30°,故答案为:30°.首先根据∠B 的度数求得∠BOC 的度数,然后求得∠AOC 的度数,从而求得等腰三角形的底角即可.考查了圆周角定理及等腰三角形的性质,解题的关键是求得∠AOC 的度数,难度不大.14.【答案】{5x +2y =102x +5y =8【解析】解:设1头牛值金x 两,1只羊值金y 两, 由题意可得,{5x +2y =102x +5y =8,故答案为:{5x +2y =102x +5y =8.根据“5头牛、2只羊共值金10两.2头牛、5只羊共值金8两”,得到2个等量关系,即可列出方程组.本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.15.【答案】49【解析】解:∵a =7−3b , ∴a +3b =7, ∴a 2+6ab +9b 2 =(a +3b)2 =72 =49,故答案为:49.先根据完全平方公式变形,再代入,即可求出答案. 本题考查了完全平方公式,能熟记完全平方公式是解此题的关键,注意:(a +b)2=a 2+2ab +b 2.16.【答案】m ≤72【解析】解:∵关于x 的一元二次方程2x 2−4x +m −32=0有实数根, ∴△=(−4)2−4×2×(m −32)=16−8m +12≥0, 解得:m ≤72, 故答案为:m ≤72.根据根的判别式得出不等式,求出不等式的解集即可. 本题考查了根的判别式和解一元一次不等式,能熟记根的判别式得出关于m 的不等式是解此题的关键,注意:一元二次方程ax 2−bx +c =0(a 、b 、c 为常数,a ≠0),当△=b 2−4ac >0时,方程有两个不相等的实数根,当△=b 2−4ac =0时,方程有两个相等的实数根,当△=b 2−4ac <0时,方程没有实数根. 17.【答案】7π【解析】解:FA ⏜1的长=60⋅π⋅1180=π3,A 1B 1⏜的长=60⋅π⋅2180=2π3,B 1C 1⏜的长=60⋅π⋅3180=3π3, C 1D 1⏜的长=60⋅π⋅4180=4π3,D 1E 1⏜的长=60⋅π⋅5180=5π3, E 1F 1⏜的长=60⋅π⋅6180=6π3,∴曲线FA 1B 1C 1D 1E 1F 1的长度=π3+2π3+⋯+6π3=21π3=7π,故答案为7π.利用弧长公式计算即可解决问题.本题考查正多边形与圆,弧长公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题.18.【答案】(√2,2√2)或(2√2,√2)【解析】解:联立y =mx(m >0)与y =4x 并解得:{x =√m y =±2√m,故点A 的坐标为(√m 2√m), 联立y =nx(n <0)与y =−1x 同理可得:点D(√−1n,−√−n),则AD2=(√m −√m)2+(2√m+√m)2=5m+5m,同理可得:AB2=5m+5m=AD2,则AB=14×10√2,即AB2=252=5m+5m,解得:m=2或12,故点A的坐标为(√2,2√2)或(2√2,√2),故答案为:(√2,2√2)或(2√2,√2).求出点A、D、B的坐标,则AD2=AB2=252=5m+5m,进而求解.本题考查的是反比例函数与一次函数的交点问题,解题的关键是求出A、B、D的坐标,确定AB=AD,进而求解.19.【答案】3√2√13−√2【解析】解:连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O 作ON⊥CD于N.∵四边形ABCD是矩形,DF=CF,AE=EB,∴四边形ADFE是矩形,∴EF=AD=3,∵FQ//PE,∴△MFQ∽△MEP,∴MFME =FQPE,∵PE=2FQ,∴EM=2MF,∴EM=2,FM=1,当点P与A重合时,PQ的值最大,此时PM=√AE2+ME2=√22+22=2√2,MQ=√FQ2+MF2=√12+12=√2,∴PQ=3√2,∵MF//ON//BC,MO=OB,∴FN=CN=1,DN=DF+FN=3,ON=12(FM+BC)=2,∴OD=√DN2+ON2=√32+22=√13,∵BH⊥PQ,∴∠BHM=90°,∵OM=OB,∴OH=12BM=12×√22+22=√2,∵DH≥OD−OH,∴DH≥√13−√2,∴DH的最小值为√13−√2,故答案为3√2,√13−√2.连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O作ON⊥CD于本题考查矩形的性质,解直角三角形,梯形的中位线的性质,直角三角形斜边中线的性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.20.【答案】解:过点D 作DE ⊥AB 于点E ,根据题意可得四边形DCBE 是矩形, ∴DE =BC ,BE =DC =61, 在Rt △ADE 中, ∵∠ADE =45°, ∴AE =DE ,∴AE =DE =BC ,在Rt △BDE 中,∠BDE =22°, ∴DE =BEtan22∘≈610.40≈152.5,∴AB =AE +BE =DE +CD =152.5+61≈214(米). 答:观景台的高AB 的值约为214米.【解析】过点D 作DE ⊥AB 于点E ,根据题意可得四边形DCBE 是矩形,DE =BC ,BE =DC =61,再根据锐角三角函数可得DE 的长,进而可得AB 的值.本题考查了解直角三角形的应用−仰角俯角问题,解决本题的关键是掌握仰角俯角定义.21.【答案】解:(1)原式=2×√32+4+2−√3−3 =√3+4+2−√3−3=3;(2){4(x −1)≥x +2, ①2x+13>x −1. ②,由①得,x ≥2; 由②得,x <4,故此不等式组的解集为:2≤x <4.【解析】(1)根据特殊角的三角形函数,负整数指数幂,绝对值的意义和二次根式的性质进行计算即可;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大22.【答案】解:原式=x+3−1x+3⋅(x−3)(x+3)x+2=x−3,当x=3+√2时,原式=√2.【解析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案.此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.23.【答案】180 126°【解析】解:(1)根据题意得:54÷30%=180(人),答:这次被调查的学生共有180人;故答案为:180;(2)根据题意得:360°×(1−20%−15%−30%)=126°,答:扇形统计图中“篮球”对应的扇形圆心角的度数为126°,故答案为:126°;2种,∴P(选中甲、乙)=212=16.(1)根据跳水的人数和跳水所占的百分比即可求出这次被调查的学生数;(2)用360°乘以篮球的学生所占的百分比即可;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式即可求得答案.此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】解:(1)∵反比例函数y=mx(x>0)的图象经过点A(3,4),∴k=3×4=12,∴反比例函数的表达式为y=12x;(2)∵直线y=kx+b过点A,∴3k+b=4,∵过点A的直线y=kx+b与x轴、y轴分别交于B,C两点,∴B(−bk,0),C(0,b),∴12×4×|−bk|=2×12×|−bk|×|b|,∴b=±2,当b=2时,k=23,当b=−2时,k=2,∴直线的函数表达式为:y=23x+2,y=2x−2.【解析】(1)把A(3,4)代入y=mx(x>0)即可得到结论;(2)根据题意得到B(−bk,0),C(0,b),根据三角形的面积公式列方程即可得到结论.本题考查了待定系数法求反比例函数和一次函数的解析式,三角形的面积公式,正确的理解题意是解题的关键.25.【答案】解:(1)如图,连接OD,∵⊙O与边AB相切于点D,∴OD⊥AB,即∠ADO=90°,∵AO=AO,AC=AD,OC=OD,∴△ACO≌△ADO(SSS),∴∠ADO=∠ACO=90°,又∵OC是半径,∴AC是⊙O的切线;(2)∵tanB=43=ACBC,∴设AC=4x,BC=3x,∵AC2+BC2=AB2,∴16x2+9x2=100,∴x=2,∴BC=6,∵AC=AD=8,AB=10,∴BD=2,∵OB2=OD2+BD2,∴(6−OC)2=OC2+4,∴OC=83,故⊙O的半径为8;由(1)可知:△ACO≌△ADO ,∴∠ACO =∠ADO =90°,∠AOC =∠AOD , 又∵CO =DO ,OE =OE , ∴△COE≌△DOE(SAS), ∴∠OCE =∠OED , ∵OC =OE =OD ,∴∠OCE =∠OEC =∠OED =∠ODE ,∴∠DEF =180°−∠OEC −∠OED =180°−2∠OCE , ∵点F 是AB 中点,∠ACB =90°, ∴CF =BF =AF , ∴∠FCB =∠FBC ,∴∠DFE =180°−∠BCF −∠CBF =180°−2∠OCE , ∴∠DEF =∠DFE , ∴DE =DF =CE ,∴AF =BF =DF +BD =CE +BD .【解析】(1)连接OD ,由切线的性质可得∠ADO =90°,由“SSS ”可证△ACO≌△ADO ,可得∠ADO =∠ACO =90°,可得结论;(2)由锐角三角函数可设AC =4x ,BC =3x ,由勾股定理可求BC =6,再由勾股定理可求解;(3)连接OD ,DE ,由“SAS ”可知△COE≌△DOE ,可得∠OCE =∠OED ,由三角形内角和定理可得∠DEF =180°−∠OEC −∠OED =180°−2∠OCE ,∠DFE =180°−∠BCF −∠CBF =180°−2∠OCE ,可得∠DEF =∠DFE ,可证DE =DF =CE ,可得结论. 本题是圆的综合题,考查了圆的有关知识,切线的判定和性质,全等三角形的判定和性质,勾股定理,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键. 26.【答案】解:(1)∵y 与x 满足一次函数的关系, ∴设y =kx +b ,将x =12,y =1200;x =13,y =1100代入得:{1200=12k +b1100=13k +b ,解得:{k =−100b =2400,∴y 与x 的函数关系式为:y =−100x +2400; (2)设线上和线下月利润总和为m 元,则m =400(x −2−10)+y(x −10)=400x −4800+(−100x +2400)(x −10)=−100(x −19)2+7300,∴当x 为19元/件时,线上和线下月利润总和达到最大,此时的最大利润为7300元.【解析】(1)由待定系数法求出y 与x 的函数关系式即可;出答案.本题考查了二次函数的性质、待定系数法求一次函数的解析式等知识;熟练掌握二次函数的性质是解题的关键.27.【答案】解:(1)∵将△BCE沿BE翻折,使点C恰好落在AD边上点F处,∴BC=BF,∠FBE=∠EBC,∵BC=2AB,∴BF=2AB,∴∠AFB=30°,∵四边形ABCD是矩形,∴AD//BC,∴∠AFB=∠CBF=30°,∴∠CBE=12∠FBC=15°;(2)∵将△BCE沿BE翻折,使点C恰好落在AD边上点F处,∴∠BFE=∠C=90°,CE=EF,又∵矩形ABCD中,∠A=∠D=90°,∴∠AFB+∠DFE=90°,∠DEF+∠DFE=90°,∴∠AFB=∠DEF,∴△FAB∽△EDF,∴AFDE =ABDF,∴AF⋅DF=AB⋅DE,∵AF⋅DF=10,AB=5,∴DE=2,∴CE=DC−DE=5−2=3,∴EF=3,∴DF=√EF2−DE2=√32−22=√5,∴AF=√5=2√5,∴BC=AD=AF+DF=2√5+√5=3√5.(3)过点N作NG⊥BF于点G,∵NF=AN+FD,∴NF=12AD=12BC,∵BC=BF,∴NF=12BF,∴NGAB =FGFA=NFBF=12,设AN=x,∵BN平分∠ABF,AN⊥AB,NG⊥BF,∴AN=NG=x,设FG=y,则AF=2y,∵AB2+AF2=BF2,∴(2x)2+(2y)2=(2x+y)2,解得y=43x.∴BF=BG+GF=2x+43x=103x.∴ABBC =ABBF=2x103x=35.【解析】(1)由折叠的性质得出BC=BF,∠FBE=∠EBC,根据直角三角形的性质得出∠AFB=30°,可求出答案;(2)证明△FAB∽△EDF,由相似三角形的性质得出AFDE =ABDF,可求出DE=2,求出EF=3,由勾股定理求出DF=√5,则可求出AF,即可求出BC的长;(3)过点N作NG⊥BF于点G,证明△NFG∽△BFA,NGAB =FGFA=NFBF=12,设AN=x,设FG=y,则AF=2y,由勾股定理得出(2x)2+(2y)2=(2x+y)2,解出y=43x,则可求出答案.本题是四边形综合题,考查了矩形的性质,直角三角形的性质,折叠的性质,角平分线的性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握折叠的性质及矩形的性质是解题的关键.28.【答案】解:(1)设抛物线的解析式为y=a(x+1)(x−4).∵将C(0,−2)代入得:4a=2,解得a=12,∴抛物线的解析式为y=12(x+1)(x−4),即y=12x2−32x−2.(2)过点D作DG⊥x轴于点G,交BC于点F,过点A作AK⊥x轴交BC的延长线于点K,∴AK//DG,∴DFAK =DEAE,∴S1S2=S△BDES△ABE=DEAE=DFAK,设直线BC的解析式为y=kx+b,∴{4k+b=0b=−2,解得{k=12b=−2,∴直线BC的解析式为y=12x−2,∵A(−1,0),∴y=−12−2=−52,∴AK=52,设D(m,12m2−32m−2),则F(m,12m−2),∴DF=12m−2−12m2+32m+2=−12m2+2m.∴S1S2=−12m2+2m52=−15m2+45m=−15(m−2)2+45.∴当m=2时,S1S2有最大值,最大值是45.(3)符合条件的点P的坐标为(689,349)或(6+2√415,3+√415).∵l//BC,∴直线l的解析式为y=12x,设P(a,a2),①当点P在直线BQ右侧时,如图2,过点P作PN⊥x轴于点N,过点Q作QM⊥直线PN于点M,∵A(−1,0),C(0,−2),B(4,0),∴AC=√5,AB=5,BC=2√5,∵AC2+BC2=AB2,∴∠ACB=90°,∴PQPB =ACBC=12,∵∠QMP=∠BNP=90°,∴∠MQP+∠MPQ=90°,∠MPQ+∠PBN=90°,∴∠MQP=∠PBN,∴△QPM∽△PBN,∴QMPN =PMBN=PQPB=12,∴QM=a4,PM=12(a−4)=12a−2,∴MN=a−2,BN−QM=a−4−a4=34a−4,∴Q(34a,a−2),将点Q的坐标代入抛物线的解析式得12×(34a)2−32×34a−2=a−2,解得a=0(舍去)或a=689.∴P(689,349).②当点P在直线BQ左侧时,由①的方法同理可得点Q的坐标为(54a,2).此时点P的坐标为(6+2√415,3+√415).【解析】(1)设抛物线的解析式为为y=a(x−1)(x−4),将点C的坐标代可求得a的值,从而得到抛物线的解析式;(2)过点D作DG⊥x轴于点G,交BC于点F,过点A作AK⊥x轴交BC的延长线于点K,证明△AKE∽△DFE,得出DFAK =DEAE,则S1S2=S△BDES△ABE=DEAE=DFAK,求出直线BC的解析式为y=12x−2,设D(m,12m2−32m−2),则F(m,12m−2),可得出S1S2的关系式,由二次函数的性质可得出结论;(3)设P(a,a2),①当点P在直线BQ右侧时,如图2,过点P作PN⊥x轴于点N,过点Q作QM⊥直线PN于点M,得出Q(34a,a−2),将点Q的坐标代入抛物线的解析式求得a的值即可,②当点P在直线BQ左侧时,由①的方法同理可得点Q的坐标为(54a,2),代入抛物线的解析可得出答案.本题是二次函数综合题,考查了待定系数法求一次函数和二次函数的解析式,相似三角形的性质和判定,勾股定理的应用,二次函数的性质,三角形的面积等知识,熟练掌握相似三角形的判定与性质是解题的关键.。

四川省成都市新都区2020年中考数学三诊试卷(含解析)

四川省成都市新都区2020年中考数学三诊试卷(含解析)

四川省成都市新都区2020年中考数学三诊试卷一、选择题(本大题共10个小题,每小题3分,共30分;在每个小题给出的四个选项中,有且只有一个答案是符合题目要求的,井将自己所选答案的字母涂在答题卡上)1.(3分)实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A.a B.b C.c D.d2.(3分)钓鱼岛是中国的固有领土,其渔业资源十分丰富,年捕鱼量达16万吨,数据16万用科学记数法表示为()A.1.6×104B.1.6×105C.16×104D.16×1053.(3分)如图所示的几何体的左视图为()A.B.C.D.4.(3分)平面直角坐标中,已知点P(a,3)在第二象限,则点P关于直线m(直线m上各点的横坐标都是2)对称的点的坐标是()A.(﹣a,3)B.(a,﹣3)C.(﹣a+2,3)D.(﹣a+4,3)5.(3分)下列计算正确的是()A.2x2•3x3=6x6B.x3÷x3=0C.(2xy)3=6x3y3D.(x3)m÷x2m=x m6.(3分)如图,已知AB=CD,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.MB=ND C.AM=CN D.AM∥CN7.(3分)如图,是某市一周内最高气温的折线统计图,关于这7天的日气温的说法,错误的是()A.最高气温是30℃B.最低气温是20℃C.众数是28℃D.平均数是26℃8.(3分)下列结论正确的是()A.=是分式方程B.方程﹣=1无解C.方程=的根为x=0D.解分式方程时,一定会出现增根9.(3分)如图,在平行四边形ABCD中,AB=4,AD=5,∠B=60°,以点B为圆心,BA为半径作圆,交BC边于点E,连接ED,则图中阴影部分的面积为()A.9﹣B.9﹣C.9D.9﹣10.(3分)关于二次函数y=x2﹣kx+k﹣1,以下结论:①抛物线交x轴有两个不同的交点;②不论k取何值,抛物线总是经过一个定点;③设抛物线交x轴于A、B两点,若AB=1,则k=4;④抛物线的顶点在y=﹣(x﹣1)2图象上;⑤抛物线交y轴于C点,若△ABC是等腰三角形,则k=﹣,0,1.其中正确的序号是()A.①②⑤B.②③④C.①④⑤D.②④二、填空題(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)一个等腰三角形的两条边分别是6厘米和8厘米,那么它的周长是 厘米.12.(4分)把只有颜色不同的2个红球和1个白球装入一个不透明的口袋里搅匀,从中随机地一次摸出2个球,得1个红球1个白球的概率为 .13.(4分)已知线段a 、b 、c ,如果a :b :c =1:2:3,那么“”的值是.14.(4分)如图,在圆内接四边形ABCD 中,∠C =110°,则∠BOD 的度数为( )A .140°B .70°C .80°D .60°三、解答题(本大题共6小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:﹣22+﹣2cos30°+|1﹣|; (2)化简:(﹣1)÷.16.(6分)已知关于x 的一元二次方程kx 2﹣4x +2=0有两个不相等的实数根,求k 的取值范围.17.(8分)某校随机抽查了部分九年级女生进行1分钟仰卧起坐测试,并将测试的结果绘制成了如图的不完整的统计表和频数分布直方图(注:在频数分布直方图中,每组含左端点,但不含右端点):仰卧起坐次数的范围(次)15~20 20~25 25~30 30~35频数3 10 12 频率(1)30~35的频数是 、25~30的频率是 .并把统计图补充完整;(2)被抽查的所有女同学仰卧起坐次数的中位数是多少?18.(8分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量出AB=180m,CD=60m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).19.(10分)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象相交于A,B两点,过点A作AD⊥x轴于点D,AO=5,OD:AD=3:4,B点的坐标为(﹣6,n)(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)P是y轴上一点,且△AOP是等腰三角形,请直接写出所有符合条件的P点坐标.20.(10分)如图,AB是⊙O的直径,∠DAB的角平分线AC交⊙O于点C,过点C作CD⊥AD于D,AB的延长线与DC的延长线相交于点P,∠ACB的角平分线CE交AB于点F、交⊙O于E.(1)求证:PC与 ⊙O相切;(2)求证:PC=PF;(3)若AC=8,tan∠ABC=,求线段BE的长.一、填空题:(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)已知关于x、y的方程组中,x、y满足关系式2x﹣y=5,则代数式a﹣a2的值为.22.(4分)四个全等的直角三角形按图示方式围成正方行ABCD,过各较长直角边的中点作垂线,围成面积为4的小正方形EFGH,已知AM为Rt△ABM的较长直角边,AM=EF,则正方形ABCD的面积为.23.(4分)阅读下列材料,然后回答问题:已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,….当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1.直接写出S2020=(用含a的代数式表示);计算:S1+S2+S3+…+S2022=.24.(4分)如图所示,△ABC为等腰直角三角形,∠ACB=90°,点M为AB边的中点,点N为射线AC上一点,连接BN,过点C作CD⊥BN于点D,连接MD,作∠BNE=∠BNA,边EN交射线MD于点E,若AB=20,MD=14,则NE的长为.25.(4分)如图平面直角坐标系中放置Rt△PEF,∠E=90°,EP=EF,△PEF绕点P(﹣1,﹣3)转动,PE、PF 所在直线分别交y轴,x轴正半轴于点B(0,b),A(a,0),作矩形AOBC,双曲线y=(k>0)经过C点,当a,b均为正整数时,k=.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)一家蔬菜公司计划到某绿色蔬菜基地收购A,B两种蔬菜共140吨,预计两种蔬菜销售后获利的情况如表所示:销售品种A种蔬菜B种蔬菜每吨获利(元)1200 1000 其中A种蔬菜的5%、B种蔬菜的3%须运往C市场销售,但C市场的销售总量不超过5.8吨.设销售利润为W元(不计损耗),购进A种蔬菜x吨.(1)求W与x之间的函数关系式;(2)将这140吨蔬菜全部销售完,最多可获得多少利润?27.(10分)如图,菱形ABCD的边长为20cm,∠ABC=120°.动点P、Q同时从点A出发,其中P以4cm/s的速度,沿A→B→C的路线向点C运动;Q先以2cm/s的速度沿A→O的路线向点O运动,然后再以2cm/s的速度沿O →D的路线向点D运动,当P、Q到达终点时,整个运动随之结束,设运动时间为t秒.(1)在点P在AB上运动时,判断PQ与对角线AC的位置关系,并说明理由;(2)若点Q关于菱形ABCD的对角线交点O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N.①直接写出当△PQM是直角三角形时t的取值范围;②是否存在这样的t,使△PMN是以PN为一直角边的直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.28.(12分)已知:在平面直角坐标系中,抛物线y=ax2﹣2ax+4(a<0)交x轴于点A、B,与y轴交于点C,AB =6.(1)如图1,求抛物线的解析式;(2)如图2,点R为第一象限的抛物线上一点,分别连接RB、RC,设△RBC的面积为s,点R的横坐标为t,求s与t的函数关系式;(3)在(2)的条件下,如图3,点D在x轴的负半轴上,点F在y轴的正半轴上,点E为OB上一点,点P为第一象限内一点,连接PD、EF,PD交OC于点G,DG=EF,PD⊥EF,连接PE,∠PEF=2∠PDE,连接PB、PC,过点R作RT⊥OB于点T,交PC于点S,若点P在BT的垂直平分线上,OB﹣TS=,求点R的坐标.2020年四川省成都市新都区中考数学三诊试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分;在每个小题给出的四个选项中,有且只有一个答案是符合题目要求的,井将自己所选答案的字母涂在答题卡上)1.【解答】解:根据图示,可得3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3,所以这四个数中,绝对值最大的是a.故选:A.2.【解答】解:16万=160000=1.6×105,故选:B.3.【解答】解:从左面看易得左视图为:.故选:D.4.【解答】解:∵直线m上各点的横坐标都是2,∴直线为:x=2,∵点P(a,3)在第二象限,∴a到2的距离为:2﹣a,∴点P关于直线m对称的点的横坐标是:2﹣a+2=4﹣a,故P点对称的点的坐标是:(﹣a+4,3).故选:D.5.【解答】解:A、2x2•3x3=6x5,原式计算错误,故本选项错误;B、x3÷x3=1,原式计算错误,故本选项错误;C、(2xy)3=8x3y3,原式计算错误,故本选项错误;D、(x3)m÷x2m=x m,原式计算正确,故本选项正确;故选:D.6.【解答】解:A、可根据AAS判定△ABM≌△CDN,故此选项不合题意;B、可根据SAS判定△ABM≌△CDN,故此选项不合题意;C、不能判定△ABM≌△CDN,故此选项不合题意;D、由AM∥CN可得∠A=∠NCD,可根据ASA判定△ABM≌△CDN,故此选项不合题意;故选:C.7.【解答】解:A.由折线统计图知最高气温是周六的气温,为30℃,此选项正确;B.由折线统计图知最低气温是周一的气温,为20℃,此选项正确;C.出现频率最高的是28℃,出现2次,此选项正确;D.平均数是(20+28+28+24+26+30+22)=(℃),此选项错误;故选:D.8.【解答】解:A.原方程中分母不含未知数,不是分式方程,所以A选项不符合题意;B.解方程,得x=﹣2,经检验x=﹣2是原方程的增根,所以原方程无解,所以B选项符合题意;C.解方程,得x=0,经检验x=0是原方程的增根,所以原方程无解,所以C选项不符合题意;D.解分式方程时,不一定会出现增根,只有使分式方程分母的值为0的根是增根,所以D选项不符合题意.故选:B.9.【解答】解:过A作AF⊥BC于F,则∠AFB=90°,∵AB=4,∠B=60°,∴AF=AB×sin∠B=2,∵四边形ABCD是平行四边形,AB=4,AD=5,∴BC=AD=5,∵AB=BE,∴CE=5﹣4=1,∴阴影部分的面积S=S平行四边形ABCD﹣S扇形ABE﹣S△CDE=5×﹣﹣=9﹣π,故选:A.10.【解答】解:令y=x2﹣kx+k﹣1=0,△=k2﹣4k+4=(k﹣2)2≥0,即抛物线交x轴有两个的交点,①错误;当x=1时,y=1﹣k+k﹣1=0,即抛物线总是经过一个定点(1,0),②正确;当k=4时,y=x2﹣4x+3,令y=x2﹣4x+3=0,解得x=3或1,则AB=3﹣1=2,③错误;y=x2﹣kx+k﹣1=0顶点坐标为(,),当x=时,y=﹣(x﹣1)2=﹣,即抛物线的顶点在y=﹣(x﹣1)2图象上,④正确;当k=1时,y=x2﹣x,此时△ABC不是等腰三角形,⑤错误;正确的有②④,故选:D.二、填空題(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:当6厘米为腰时,周长=6+6+8=20(cm),当8厘米为腰时,周长=6+8+8=22(cm),故答案为20或22.12.【解答】解:画树状图如图所示,共有9种情况,两次1个红球1个白球的有4种情况,所以概率为,故答案为:.13.【解答】解:∵a:b:c=1:2:3,∴设a=x,b=2x,c=3x,∴==.故答案为:.14.【解答】解:由圆内接四边形的性质可知,∠A+∠C=180°,∴∠A=180°﹣∠C=70°,由圆周角定理得,∠BOD=2∠A=140°,故选:A.三、解答题(本大题共6小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=﹣4﹣3﹣2×+﹣1=﹣4﹣3﹣﹣1=﹣8;(2)原式==1﹣x.16.【解答】解:根据题意知△=(﹣4)2﹣4×k×2>0,解得:k<2,由k≠0,∴k的取值范围是k<2且k≠0.17.【解答】解:(1)总人数是:3÷=30(人),则次数在30~35次的人数是:30×=5(人),则次数是25~30次的频率是:=;补全统计图如下:故答案为:5,;(2)把这些数从小到大排列,因为共抽取了30名同学,处于中间位置的是第15、16个数的平均数,所以中位数是=27.5(次).18.【解答】解:过D作DE⊥AB,可得四边形CHED为矩形,∴HE=CD=60m,设CH=DE=xm,在Rt△BDE中,∠DBA=60°,∴BE=xm,在Rt△ACH中,∠BAC=30°,∴AH=xm,由AH+HE+EB=AB=180m,得到x+60+x=180,解得:x=30,即CH=30m,则该段运河的河宽为30m.19.【解答】解:(1)AO=5,OD:AD=3:4,设:OD=3a,AD=4a,则AD=5a=5,解得:a=1,故点A(3,4),则m=3×4=12,故反比例函数的表达式为:y=,故B(﹣6,﹣2),将点A、B的坐标代入一次函数表达式y=kx+b得:,解得:,故一次函数的表达式为:y=x+2;(2)设一次函数交y轴于点M(0,2),△AOB的面积S=×OM×(x A﹣x B)=2×(3+6)=9;(3)设点P(0,m),而点A、O的坐标分别为:(3,4)、(0,0),AP2=9+(m﹣4)2,AO2=25,PO2=m2,当AP=AO时,9+(m﹣4)2=25,解得:m=8或0(舍去0);当AO=PO时,同理可得:m=±5;当AP=PO时,同理可得:m=;综上,P点坐标为:(0,8)或(0,5)或(0,﹣5)或(0,).20.【解答】解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC是∠DAB的角平分线,∴∠DAC=∠OAC,∴∠OCA=∠DAC,∴OC∥AD,∵AD⊥CD,∴OC⊥CD,∴PC与 ⊙O相切;(2)∵CF是∠ACB的角平分线,∴∠ACF=∠BCF,∵∠CAF=∠PCB,∴∠ACF+∠CAF=∠BCF+∠PCB,∴∠PFC=∠PCF,∴PC=PF.(3)∵AB是⊙O的直径,∴∠ACB=90°,∵AC=8,tan∠ABC==,∴BC=6,∴AB==10,∴OB=OE=5,∵∠ACE=∠BCE,∴=,∴EO⊥AB,∴BE==5.一、填空题:(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.【解答】解:,②×2﹣①得:7y=10﹣a,解得:y=,把y=代入②得:x=,代入2x﹣y=5得:﹣=5,去分母得:30+4a﹣10a=35,解得:a=﹣,则原式=﹣﹣=﹣.故答案为:﹣.22.【解答】解:设AM=2a,BM=b,则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵正方形EFGH的面积为4,∴b2=4,∵AM=EF,∴2a=b,∴a=b,∴正方形ABCD的面积=4a2+b2=8b2=32,故答案为:32.23.【解答】解:∵S1=,S2=﹣S1﹣1=,S3==,S4=﹣S3﹣1=,S5==﹣a﹣1,S6=﹣S5﹣1=a,S7==,….当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1.发现规律:每6个结果为一个循环,所以2020÷6=336…4,所以S2020=;因为2022÷6=337,所以S1+S2+S3+…+S2022=337(+++﹣a﹣1+a)=337(﹣1﹣1﹣1)=﹣1011.故答案为:,﹣1011.24.【解答】解:连接CM.∵△ACB是等腰直角三角形且∠ACB=90°,∴AC=BC=AB=20,∠CAB=∠CBA=45°,∵M为AB中点,∴CM=AM=BM=AB=10,∠CMB=90°,∠ACM=∠BCM=45°,∵CD⊥BN于D,∴∠CDB=∠CDN=90°,∴C、M、B、D四点共圆,延长DB至F,使BF=CD,连接MF,则∠MCD=∠MBF,在△MCD和△MBF中:∴△MCD≌△MBF(SAS)∴MD=MF,∠CMD=∠BMF,∴∠DMF=∠CMB=90°,∴CD+BD=DB+BF=DF=MD=28,又∵CD2+BD2=BC2=400,解得:CD=12,BD=16或CD=16,BD=12.∵∠NCD+∠BCD=∠NCD+∠ANB=90°,∴∠ANB=∠BCD=∠BMD,∵∠ANB=∠BNE,∴△BMD∼△END,∴===,∴NE=ND.当CD=12,BD=16时,由射影定理有:ND===9,∴NE=.当CD=16,BD=12时,同理可得ND=,所以NE=.综上所述,NE的长为或.25.【解答】解:如图,将线段PA绕点P逆时针旋转90°得到线段PM.连接AM,点N是AM的中点.∵P(﹣1,﹣3),A(a,0),∴M(﹣4,a﹣2),∵MN=NA,∴N(,),∴直线PN的解析式为:y=x+,∵PA=PM,MN=NA,∴∠NPA=45°,∴点B在射线PN上,∵B(0,b),∴b==﹣2+,∵a,b所示正整数,∴a=3,b=4或a=4,b=1,∴C(3,4)或(4,1),∵点C在y=上,∴k=12或4,故答案为12或4.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.【解答】解:(1)根据题意得:W=1200x+1000(140﹣x)=200x+140000.(2)根据题意得,5%x+3%(140﹣x)≤5.8,解得x≤80.∴0<x≤80.又∵在一次函数W=200 x+140000中,k=200>0,∴W随x的增大而增大,∴当x=80时,W最大=200×80+140000=156000.∴将这140吨蔬菜全部销售完,最多可获得利润156000元.27.【解答】解:(1)由题意AP=4t,AQ=2t.则==,又∵AO=10,AB=20,∴==.∴=,∴△APQ∽△ABO.∴∠AQP=∠AOB=90°,即PQ⊥AC.(2)①由(1)可知,当0<t<5时,如图1中,∠PQM=90°,△PQM是直角三角形,当5<t<10时,如图2中,当BP=PC时,∠PMQ=90°,此时t=7.5,综上所述,当0<t<5或t=7.5时,△PQM是直角三角形②存在这样的t,使△PMN是以PN为一直角边的直角三角形.设l交AC于H.如图1,当点N在AD上时,若PN⊥MN,则∠NMH=30°.∴MH=2NH.得20﹣4t﹣t=2×,解得t=2.如图3,当点N在CD上时,若PM⊥PN,则PM∥CD,∴∠BPM=∠BCD=60°,∠BMP=∠BDC=60°,∵∠PBM=60°,∴△PBM是等边三角形,∵PB=BM,∴4t﹣20=[20﹣2×2(t﹣5)],解得t=.故当t=2或时,存在以PN为一直角边的直角三角形.28.【解答】解:(1)∵抛物线的对称轴为x=1,AB=6,∴A(﹣2,0),B(4,0),将点A代入y=ax2﹣2ax+4,则有0=4a+4a+4,∴a=﹣,∴y=﹣x2+x+4;(2)设R(t,﹣t2+t+4),过点R作x、y轴的垂线,垂足分别为R',R'',则∠RR'O=∠RR''O=∠R'OR''=90°,∴四边形RR'OR''是矩形,∴RR''=OR'=t,OR''=RR'=﹣t2+t+4,∴S△OCR=OC•RR''=×4t=2t,S△ORB=OB•RR'=×4(﹣t2+t+4)=﹣t2+2t+8,∴S△RBC=S△ORB+S△OCR﹣S△OBC=﹣t2+2t+8+2t﹣×4×4=﹣t2+4t;(3)设EF、PD交于点G',连EG,连接OP交GE于点Q,∵PD⊥EF,∴∠FG'G=∠DG'E=90°=∠DOG,∴∠OFE=∠GDO,∵∠DOG=∠FOE=90°,EF=DG,∴△DGO≌△FEO(AAS),∴GO=OE,∵∠OGP=90°+∠OFE,∠OEP=90°﹣∠OFE+∠PEF,又∵∠PEF=2∠OFE,∴∠OEP=90°﹣∠OFE+2∠OFE=90°+∠OFE,∵∠OGE=∠OEG=45°,∴∠PGQ=∠PEQ,∴PG=PE,∴△PGO≌△PEO(SAS),∴OP是EG的垂直平分线,∴OP平分∠COB,过P作KP⊥x轴于K,PW⊥y轴于W,交RT于点H,则PW=PK,∠PWO=∠PKO=∠WOK=90°,∴四边形PWOK是正方形,∴WO=OK,∵OC=OB=4,∴CW=KB,∵P在BT垂直平分线上,∴PT=PB,∴TK=KB=CW,设OT=2a,则TK=KB=CW=2﹣a,HT=OK=PW=2+a,∵OB﹣TS=,∴HS=TS﹣HT=﹣(2+a)=﹣a,∵tan∠HPS==,∴=,∴a=1或a=,当a=1时,R(2,4),当a=时,R(,),综上所述:R点坐标为(2,4)或R(,).。

2020年四川省成都市中考数学一诊试卷解析版

2020年四川省成都市中考数学一诊试卷解析版

2020年四川省成都市中考数学一诊试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)(﹣2)×=()A.﹣2B.1C.﹣1D.2.(3分)用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1B.(x+2)2=7C.(x+2)2=13D.(x+2)2=19 3.(3分)下列几何体的主视图是三角形的是()A.B.C.D.4.(3分)一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A.B.C.D.5.(3分)下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直6.(3分)如图,在△ABC中,AC=1,BC=2,AB=,则sin B的值是()A.B.C.2D.7.(3分)如图,A、B、C是半径为3的⊙O上的三点,已知∠C=30°,则弦AB的长为()A.3B.6C.3.5D.1.58.(3分)若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3 9.(3分)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315B.560(1﹣x)2=315C.560(1﹣2x)2=315D.560(1﹣x2)=31510.(3分)如图,已知∠DAB=∠CAE,那么添加下列一个条件后,仍然无法判定△ABC ∽△ADE的是()A.=B.=C.∠B=∠D D.∠C=∠AED二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)在△ABC中,若∠C=90°,cos∠A=,则∠A等于.12.(4分)方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.13.(4分)如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为.14.(4分)二次函数y=ax2+bx+c的图象如图,则点(,)在第象限.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:﹣4sin45°+(2019﹣π)0﹣32(2)解方程:(x+5)(x+1)=2116.(6分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于点F.(1)求证:∠DCP=∠DAP;(2)如果PE=3,EF=5,求线段PC的长.17.(8分)为了解市民对全市创卫工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数.(2)求此次调查中结果为非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.18.(8分)如图,一航船在A处测到北偏东60°的方向有一灯塔B,航船向东以每小时20海里的速度航行2小时到达C处,又测到灯塔B在北偏东15°的方向上.求此时航船与灯塔相距多少海里?(结果保留根号)19.(10分)如图,已知一次函数y1=kx+b的图象与x轴相交于点A,与反比例函数y2=相交于B(﹣1,5),C(,d)两点.(1)利用图中条件,求反比例和一次函数的解析式;(2)连接OB,OC,求△BOC的面积.20.(10分)如图,在Rt△ABC中,AB⊥BC,以AB为直径的圆交AC于点D,E是BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)设⊙O的半径为r,证明r2=AD•OE;(3)若DE=4,sin C=,求AD之长.一、填空题(本大题5个小题,每小题4分,共20分)B卷(共50分)21.(4分)点P(a,b)是直线y=x﹣2上一点,则代数式a2﹣2ab+b2﹣1的值为.22.(4分)有五张正面分别标有数﹣7,0,1,2,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将卡片上的数记为a,则使关于x 的方程﹣2=有正整数解的概率为.23.(4分)如图,直线AB交双曲线y=于A、B两点,交x轴于点C,且B恰为线段AC 的中点,连结OA.若S△OAC=,则k的值为.24.(4分)在平面直角坐标系中,A(1,0),B(0,),过点B作直线BC∥x轴,点P 是直线BC上的一个动点,以AP为边在AP右侧作Rt△APQ,使∠APQ=90°,且AP:PQ=1:,连结AB、BQ,则△ABQ周长的最小值为.25.(4分)如图,在矩形ABCD中,AB=4,BC=6,点E为对角线BD的中点,点F在CB的延长线上,且BF=1,连接EF,过点E作EG⊥EF交BA的延长线于点G,连接GF并延长交DB的延长线于点H,则=.三、解答題(本大題共3个小題,共30分.解答题应写出必要的文字说明,证明过程或演算步骤)26.(8分)某厂按用户需求生产一种产品,成本每件20万元,规定每件售价不低于成本,且不高于40万元.经市场调查,每年的销售量y(件)与每件售价x(万元)满足一次函数关系,部分数据如下表:售价x(万元/件)253035销售量y(件)504030(1)求y与x之间的函数表达式;(2)设商品每年的总利润为W(万元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少万元时获得最大利涧,最大利润是多少?27.(10分)(1)如图1,△ABC为等边三角形,点D、E分别为边AB、AC上的一点,将图形沿线段DE所在的直线翻折,使点A落在BC边上的点F处.求证:BF•CF=BD•CE.(2)如图2,按图1的翻折方式,若等边△ABC的边长为4,当DF:EF=3:2时,求sin∠DFB的值;(3)如图3,在Rt△ABC中,∠A=90°,∠ABC=30°,AC=2,点D是AB边上的中点,在BC的下方作射线BE,使得∠CBE=30°,点P是射线BE上一个动点,当∠DPC=60°时,求BP的长;28.(12分)如图,一次函数y=x+2的图象与坐标轴交于A、B两点,点C的坐标为(﹣1,0),二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)求二次函数的解析式;(2)如图1,已知点D(1,n)在抛物线上,作射线BD,点Q为线段AB上一点,过点Q作QM⊥y轴于点M,作QN⊥BD于点M,过Q作QP∥y轴交抛物线于点P,当QM 与QN的积最大时,求点P的坐标;(3)在(2)的条件下,连接AP,若点E为抛物线上一点,且满足∠APE=∠ABO,求点E的坐标.参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)(﹣2)×=()A.﹣2B.1C.﹣1D.【分析】根据有理数乘法的法则进行计算即可.【解答】解:(﹣2)×=﹣1,故选:C.2.(3分)用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1B.(x+2)2=7C.(x+2)2=13D.(x+2)2=19【分析】把方程两边加上7,然后把方程左边写成完全平方式即可.【解答】解:x2+4x=3,x2+4x+4=7,(x+2)2=7.故选:B.3.(3分)下列几何体的主视图是三角形的是()A.B.C.D.【分析】主视图是从物体正面看,所得到的图形.【解答】解:A、圆柱的主视图是矩形,故此选项错误;B、圆锥的主视图是三角形,故此选项正确;C、球的主视图是圆,故此选项错误;D、正方体的主视图是正方形,故此选项错误;故选:B.4.(3分)一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取到的是一个红球、一个白球的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况,∴取到的是一个红球、一个白球的概率为:=.故选:C.5.(3分)下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直【分析】菱形的性质有:四边形相等,两组对边分别平行,对角相等,邻角互补,对角线互相垂直且平分,且每一组对角线平分一组对角.矩形的性质有:两组对边分别相等,两组对边分别平行,四个内角都是直角,对角线相等且平分.【解答】解:(A)对角线相等是矩形具有的性质,菱形不一定具有;(B)对角线互相平分是菱形和矩形共有的性质;(C)对角线互相垂直是菱形具有的性质,矩形不一定具有;(D)邻边互相垂直是矩形具有的性质,菱形不一定具有.故选:C.6.(3分)如图,在△ABC中,AC=1,BC=2,AB=,则sin B的值是()A.B.C.2D.【分析】利用正弦函数的定义计算即可.【解答】解:∵在△ABC中,∠ACB=90°,AC=1,BC=2,AB=,∴sin B=.故选:B.7.(3分)如图,A、B、C是半径为3的⊙O上的三点,已知∠C=30°,则弦AB的长为()A.3B.6C.3.5D.1.5【分析】根据圆周角定理求出∠AOB,根据等边三角形的判定求出△AOB是等边三角形,再根据等边三角形的性质得出即可.【解答】解:∵∠C=30°,∴根据圆周角定理得:∠AOB=2∠C=60°,∵OA=OB=3,∴△AOB是等边三角形,∴AB=OA=3,故选:A.8.(3分)若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3【分析】直接利用反比例函数图象的分布,结合增减性得出答案.【解答】解:∵点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,∴A,B点在第三象限,C点在第一象限,每个图象上y随x的增大减小,∴y3一定最大,y1>y2,∴y2<y1<y3.故选:D.9.(3分)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315B.560(1﹣x)2=315C.560(1﹣2x)2=315D.560(1﹣x2)=315【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是560(1﹣x),第二次后的价格是560(1﹣x)2,据此即可列方程求解.【解答】解:设每次降价的百分率为x,由题意得:560(1﹣x)2=315,故选:B.10.(3分)如图,已知∠DAB=∠CAE,那么添加下列一个条件后,仍然无法判定△ABC ∽△ADE的是()A.=B.=C.∠B=∠D D.∠C=∠AED 【分析】利用相似三角形的判定依次判断可求解;【解答】解:∵∠DAB=∠CAE,∴∠DAE=∠BAC,A、若,且∠DAE=∠BAC,无法判定△ABC∽△ADE,故选项A符合题意;B、若,且∠DAE=∠BAC,可判定△ABC∽△ADE,故选项B不符合题意;C、若∠B=∠D,且∠DAE=∠BAC,可判定△ABC∽△ADE,故选项C不符合题意;D、若∠C=∠AED,且∠DAE=∠BAC,可判定△ABC∽△ADE,故选项D不符合题意;故选:A.二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)在△ABC中,若∠C=90°,cos∠A=,则∠A等于60°.【分析】直接利用特殊角的三角函数值求出即可.【解答】解:∵在△ABC中,∠C=90°,cos∠A=,∴∠A=60°,故答案为:60°.12.(4分)方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为﹣3.【分析】先求出方程2x﹣4=0的解,再把x的值代入方程x2+mx+2=0,求出m的值即可.【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.13.(4分)如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为2.【分析】如图,作CE⊥AB于E,在Rt△BCE中利用30度性质即可求出BE,再根据垂径定理可以求出BD.【解答】解:如图,作CE⊥AB于E.∵∠B=180°﹣∠A﹣∠ACB=180°﹣20°﹣130°=30°,在Rt△BCE中,∵∠CEB=90°,∠B=30°,BC=2,∴CE=BC=1,BE=CE=,∵CE⊥BD,∴DE=EB,∴BD=2EB=2.故答案为2.14.(4分)二次函数y=ax2+bx+c的图象如图,则点(,)在第三象限.【分析】根据抛物线的开口向上可得:a>0,根据抛物线的对称轴在y轴左边可得:a,b同号,所以b>0.根据抛物线与y轴的交点在负半轴可得:c<0.所以bc<0,所以点(,)在第三象限.【解答】解:∵抛物线的开口向上,∴a>0,∵对称轴在y轴左边,∴a,b同号,即b>0,∵抛物线与y轴的交点在负半轴,∴c<0,∴<0,<0,∴点(,)在第三象限.故答案是:三.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:﹣4sin45°+(2019﹣π)0﹣32(2)解方程:(x+5)(x+1)=21【分析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)先整理成一般式,再利用因式分解法求解可得.【解答】解:(1)原式=2﹣4×+1﹣9=2﹣2﹣8=﹣8;(2)方程整理,得:x2+6x﹣16=0,∵(x﹣2)(x+8)=0,∴x﹣2=0或x+8=0,解得x=2或x=﹣8.16.(6分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于点F.(1)求证:∠DCP=∠DAP;(2)如果PE=3,EF=5,求线段PC的长.【分析】(1)由菱形的性质可得AD=CD,∠ADB=∠CDB,CD∥AB,由“SAS”可证△ADP≌△CDP,可得结论;(2)通过证明△APE∽△FP A,可得,可求AP的长,即可求解.【解答】证明:(1)∵四边形ABCD是菱形,∴AD=CD,∠ADB=∠CDB,CD∥AB,∵AD=CD,∠ADB=∠CDB,且DP=DP,∴△ADP≌△CDP(SAS)∴AP=PC,∠DCP=∠DAP;(2)∵CD∥AB,∴∠DCP=∠F,且∠DCP=∠DAP,∴∠F=∠DAP,且∠APE=∠APF,∴△APE∽△FP A,∴,∴,∴AP=2,∴PC=2.17.(8分)为了解市民对全市创卫工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数.(2)求此次调查中结果为非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.【分析】(1)由满意的有20人,占40%,即可求得此次调查中接受调查的人数.(2)由(1),即可求得此次调查中结果为非常满意的人数.(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选择的市民均来自甲区的情况,再利用概率公式即可求得答案.【解答】解:(1)∵满意的有20人,占40%,∴此次调查中接受调查的人数:20÷40%=50(人);(2)此次调查中结果为非常满意的人数为:50﹣4﹣8﹣20=18(人);(3)画树状图得:∵共有12种等可能的结果,选择的市民均来自甲区的有2种情况,∴选择的市民均来自甲区的概率为:=.18.(8分)如图,一航船在A处测到北偏东60°的方向有一灯塔B,航船向东以每小时20海里的速度航行2小时到达C处,又测到灯塔B在北偏东15°的方向上.求此时航船与灯塔相距多少海里?(结果保留根号)【分析】过C作CD⊥AB,垂足为D,在直角△ACD中,根据三角函数求得CD的长,再在直角△BCD中运用三角函数即可求解.【解答】解:作CD⊥AB,垂足为点D.根据题意可得∠BAC=30°,∠ACB=105°,∴∠B=45°,∵AC=20×2=40(海里),∴DC=AC•sin30°=40×=20(海里),∴BC=DC÷sin45°=20÷=20(海里).答:此时航船与灯塔相距20海里.19.(10分)如图,已知一次函数y1=kx+b的图象与x轴相交于点A,与反比例函数y2=相交于B(﹣1,5),C(,d)两点.(1)利用图中条件,求反比例和一次函数的解析式;(2)连接OB,OC,求△BOC的面积.【分析】(1)将点B的坐标代入反比例函数解析式求出c,从而得解,再将点C的坐标代入反比例函数解析式求出d,从而得到点C的坐标,然后利用待定系数法求一次函数解析式求解;(2)根据一次函数解析式求出点A的坐标,再根据S△BOC=S△AOB+S△AOC列式计算即可得解.【解答】解:(1)将B(﹣1,5)代入y2=得,=5,解得c=﹣5,所以,反比例函数解析式为y=﹣,将点C(,d)代入y=﹣得d=﹣=﹣2,所以,点C的坐标为(,﹣2),将点B(﹣1,5),C(,﹣2)代入一次函数y1=kx+b得,,解得,所以,一次函数y1=﹣2x+3;(2)令y=0,则﹣2x+3=0,解得x=,所以,点A的坐标为(,0),所以,OA=,S△BOC=S△AOB+S△AOC,=××5+××2,=.20.(10分)如图,在Rt△ABC中,AB⊥BC,以AB为直径的圆交AC于点D,E是BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)设⊙O的半径为r,证明r2=AD•OE;(3)若DE=4,sin C=,求AD之长.【分析】(1)连接OD、BD,根据圆周角定理求出∠BDA=∠BDC=90°,根据直角三角形的性质和等腰三角形的性质求出∠ECD=∠EDC,∠EBD=∠EDB即可.(2)连接OE,构造相似三角形△ADB∽△ODE,由该相似三角形的对应边成比例证得结论;(3)根据圆周角定理得到∠ADB=∠BDC=90°,根据直角三角形的性质得到BC=8;然后由sin C=求出AC的长,再根据切割线定理求出AD的长即可.【解答】(1)证明:连接OD、BD,∵AB为圆O的直径,∴∠BDA=90°,∴∠BDC=180°﹣90°=90°,∵E为BC的中点,∴DE=BC=BE,∴∠EBD=∠EDB,∵OD=OB,∴∠OBD=∠ODB,∵∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°,∴∠ODE=90°,∴DE是圆O的切线.(2)证明:如图,连接BD.由(1)知,∠ODE=∠ADB=90°,BD⊥AC.∵E是BC的中点,O是AB的中点,∴OE是△ABC的中位线,∴OE∥AC,∴OE⊥BD.∴OE∥AC,∴∠1=∠2.又∵∠1=∠A,∴∠A=∠2.即在△ADB与△ODE中,∠ADB=∠ODE,∠A=∠2,∴△ADB∽△ODE.∴=,即=.∴r2=AD•OE;(3)∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,∵点E为BC的中点,∴BC=2DE=8,∵sin C=,∴设AB=3x,AC=5x,根据勾股定理得:(3x)2+82=(5x)2,解得x=2.则AC=10.由切割线定理可知:82=(10﹣AD)×10,解得,AD=3.6.一、填空题(本大题5个小题,每小题4分,共20分)B卷(共50分)21.(4分)点P(a,b)是直线y=x﹣2上一点,则代数式a2﹣2ab+b2﹣1的值为3.【分析】先把点(a,b)代入一次函数y=x﹣2求出a﹣b的值,再代入代数式进行计算即可.【解答】解:∵点(a,b)在一次函数y=x﹣2上,∴b=a﹣2,即a﹣b=2,∴原式=(a﹣b)2﹣1=22﹣1=4﹣1=3.故答案为:3.22.(4分)有五张正面分别标有数﹣7,0,1,2,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将卡片上的数记为a,则使关于x 的方程﹣2=有正整数解的概率为.【分析】易得分式方程的解,看所给5个数中,能使分式方程有整数解的情况数占总情况数的多少即可.【解答】解:﹣2=,解得:x=,∵分式方程的解为正整数,∴a+1>0,又∵x≠1,∴a≠5,∴a=0或a=1或a=2,∴使关于x的分式方程有正整数解的概率为.故答案为:.23.(4分)如图,直线AB交双曲线y=于A、B两点,交x轴于点C,且B恰为线段AC 的中点,连结OA.若S△OAC=,则k的值为.【分析】设A点坐标为(a,),C点坐标为(b,0),根据线段中点坐标公式得到B点坐标为(,),利用反比例函数图象上点的坐标特征得到•=k,得到b=3a,然后根据三角形面积公式得到•3a•=,于是可计算出k=.【解答】解:设A点坐标为(a,),C点坐标为(b,0),∵B恰为线段AC的中点,∴B点坐标为(,),∵B点在反比例函数图象上,∴•=k,∴b=3a,∵S△OAC=,∴b•=,∴•3a•=,∴k=.故答案为.24.(4分)在平面直角坐标系中,A(1,0),B(0,),过点B作直线BC∥x轴,点P 是直线BC上的一个动点,以AP为边在AP右侧作Rt△APQ,使∠APQ=90°,且AP:PQ=1:,连结AB、BQ,则△ABQ周长的最小值为2+2.【分析】设P(m,).作AM⊥BC于M,QN⊥BC于N.利用新三角形的性质求出点Q的坐标推出,点Q的运动轨迹是直线y=﹣x+5,作点A关于直线y=﹣x+5的对称点A′,连接BA′交直线于Q′,连接AQ′,此时△ABQ′的周长最小.【解答】解:设P(m,).作AM⊥BC于M,QN⊥BC于N.∵∠AMP=∠APQ=∠QNP=90°,∴∠APM+∠NPQ=90°,∠NPQ+∠PQN=90°,∴∠APM=∠PQN,∴△AMP∽△PNQ,∴===,∴==,∴PN=3,NQ=(m﹣1),∴Q(m+3,2﹣m),∴点Q的运动轨迹是y=﹣x+5,作点A关于直线y=﹣x+5的对称点A′,连接BA′交直线于Q′,连接AQ′,此时△ABQ′的周长最小.∵A′(7,2),B(0,),A(1,0),∴A′B==2,AB==2,∴△ABQ的周长的最小值=AQ′+BQ′+AB=A′Q′+BQ′+AB=A′B+AB=2+2,故答案为2+2.25.(4分)如图,在矩形ABCD中,AB=4,BC=6,点E为对角线BD的中点,点F在CB的延长线上,且BF=1,连接EF,过点E作EG⊥EF交BA的延长线于点G,连接GF并延长交DB的延长线于点H,则=.【分析】过点E作EM⊥BC于点M,过点E作EN⊥AB于点N,则EM=2,EN=BM=3,求出EF的长和GN的长,则GB的长可求出,证明△FEH∽△BGH,可得得出结论.【解答】解:过点E作EM⊥BC于点M,过点E作EN⊥AB于点N,∴四边形ENBM是矩形,∵E是BD的中点,∴EM==2,EN=BM==3,∴MF=BF+BM=1+3=4,∴==2,∵EG⊥EF,∴∠GEF=90°,∴∠EGB=∠BFE,∴tan∠EGB=tan∠BFE,∴,∴GN=6,∴GB=GN+BN=6+2=8∵∠GEF=∠GBF=90°∴G,E,B,F四点共圆,∴∠BGF=∠BEF,∵∠EHF=∠GHB,∴△FEH∽△BGH,∴,∴.故答案为:.三、解答題(本大題共3个小題,共30分.解答题应写出必要的文字说明,证明过程或演算步骤)26.(8分)某厂按用户需求生产一种产品,成本每件20万元,规定每件售价不低于成本,且不高于40万元.经市场调查,每年的销售量y(件)与每件售价x(万元)满足一次函数关系,部分数据如下表:售价x(万元/件)253035销售量y(件)504030(1)求y与x之间的函数表达式;(2)设商品每年的总利润为W(万元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少万元时获得最大利涧,最大利润是多少?【分析】(1)根据题意可以设出y与x之间的函数表达式,然后根据表格中的数据即可求得y与x之间的函数表达式;(2)根据题意可以写出W与x之间的函数表达式;(3)根据(2)中的函数解析式,将其化为顶点式,然后根据成本每千克20元,规定每千克售价不低于成本,且不高于40元,即可得到利润W随售价x的变化而变化的情况,以及售价为多少元时获得最大利润,最大利润是多少.【解答】解:(1)设y与x之间的函数解析式为y=kx+b(k≠0),,解得,即y与x之间的函数表达式是y=﹣2x+100;(2)由题意可得,W=(x﹣20)(﹣2x+100)=﹣2x2+140x﹣2000,即W与x之间的函数表达式是W=﹣2x2+140x﹣2000;(3)∵W=﹣2x2+140x﹣2000=﹣2(x﹣35)2+450,20≤x≤40,∴当20≤x≤35时,W随x的增大而增大,当35≤x≤40时,W随x的增大而减小,当x=35时,W取得最大值,此时W=450,答:当20≤x≤35时,W随x的增大而增大,当35≤x≤40时,W随x的增大而减小,售价为35元时获得最大利润,最大利润是450元.27.(10分)(1)如图1,△ABC为等边三角形,点D、E分别为边AB、AC上的一点,将图形沿线段DE所在的直线翻折,使点A落在BC边上的点F处.求证:BF•CF=BD•CE.(2)如图2,按图1的翻折方式,若等边△ABC的边长为4,当DF:EF=3:2时,求sin∠DFB的值;(3)如图3,在Rt△ABC中,∠A=90°,∠ABC=30°,AC=2,点D是AB边上的中点,在BC的下方作射线BE,使得∠CBE=30°,点P是射线BE上一个动点,当∠DPC=60°时,求BP的长;【分析】(1)先利用等式的性质判断出∠BDF=∠CFE,进而得出△BDF∽△CFE,即可得出结论;(2)先表示出BH=x,DH=x,再由(1)△BDF∽△CFE,进而表示出CF=2x,BF=BC﹣CF=4﹣2x,HF=BF﹣BH=4﹣2x﹣x=4﹣x,再利用勾股定理建立方程求出x的值,即可得出结论.【解答】(1)证明:∵△ABC是等边三角形,∠A=∠B=∠C=60°,∴∠BDF+∠BFD=180°﹣∠B=120°,由折叠知,∠DFE=∠A=60°,∴∠CFE+∠BFD=120°,∴∠BDF=∠CFE,∵∠B=∠C=60°,∴△BDF∽△CFE,∴,∴BF•CF=BD•CE;(2)解:如图2,设BD=3x(x>0),则AD=AB﹣BD=4﹣3x,由折叠知,DF=AD=4﹣3x,过点D作DH⊥BC于H,∴∠DHB=∠DHF=90°,∵∠B=60°,∴BH=x,DH=x,由(1)知,△BDF∽△CFE,∴=,∵DF:EF=3:2,∴=,CF=2x,∴BF=BC﹣CF=4﹣2x,∴HF=BF﹣BH=4﹣2x﹣x=4﹣x,在Rt△DHF中,DH2+HF2=DF2,∴(x)2+(4﹣x)2=(4﹣3x)2,∴x=0(舍)或x=,∴DH=,DF=4﹣3×=,∴sin∠DFB===;(3)如图3,在Rt△ABC中,AC=2,∠ABC=30°,∴BC=2AC=4,AB=AC=6,∵点D是AB的中点,∴BD=AB=3,过点C作BC的垂线交BP的延长线于Q,∴∠BCQ=90°,在Rt△BCQ中,∠CBE=30°,∴CQ==4,∴BQ=2CQ=8,∴∠BCQ=90°,∵∠CBE=30°,∴∠Q=90°﹣∠CBE=60°,∴∠DBP=∠ABC+∠CBE=60°=∠Q,∴∠CPQ+∠PCQ=120°,∵∠DPC=60°,∴∠BPD+∠CPQ=120°,∴∠BPD=∠PCQ,∴△BDP∽△QPC,∴=,∴,∴BP=2或BP=6.28.(12分)如图,一次函数y=x+2的图象与坐标轴交于A、B两点,点C的坐标为(﹣1,0),二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)求二次函数的解析式;(2)如图1,已知点D(1,n)在抛物线上,作射线BD,点Q为线段AB上一点,过点Q作QM⊥y轴于点M,作QN⊥BD于点M,过Q作QP∥y轴交抛物线于点P,当QM 与QN的积最大时,求点P的坐标;(3)在(2)的条件下,连接AP,若点E为抛物线上一点,且满足∠APE=∠ABO,求点E的坐标.【分析】(1)一次函数y=x+2的图象与坐标轴交于A、B两点,则点A、B的坐标分别为:(0,2)、(4,0),即可求解;(2)即直线BD的倾斜角为45°,则∠QGN=45°,QN=QG,QM•QN=m×(﹣m+4+m﹣2)=(﹣m2+2m),即可求解;(3)分PE在AP下方、PE在AP上方两种情况,利用解直角三角形的方法,分别求解即可.【解答】解:(1)一次函数y=x+2的图象与坐标轴交于A、B两点,则点A、B的坐标分别为:(0,2)、(4,0),则抛物线的表达式为:y=a(x﹣4)(x+1)=a(x2﹣3x﹣4),即﹣4a=2,解得:a=﹣,则抛物线的表达式为:y=﹣x2+x+2…①;(2)点D(1,3),点B(4,0),则BD所在的函数表达式为:y=﹣x+4;即直线BD的倾斜角为45°,则∠QGN=45°,QN=QG,设点Q(m,﹣m+2),则点G(m,﹣m+4),QM•QN=m×(﹣m+4+m﹣2)=(﹣m2+2m),当m=2时,QM与QN的积最大,则点P(2,3);(3)设:∠APE=∠ABO=∠α,则tan;①当PE在AP下方时,如图,由点A(0,2)、P(2,3)知,AP=,设AP与y轴的夹角为β,则tanβ=2,过点H作MH⊥P A交P A的延长线于点M,设:MA=x,则MH=2x,tan∠APH===tanα=,解得:x=,则AH=x=,则点H(0,),由点H、P的坐标得,直线PH的表达式为:y=x+…②,联立①②并解得:x=2(舍去)或﹣,故点E(﹣,﹣);②当PE在AP上方时,同理可得:点E(1,3);综上,点E的坐标为:(﹣,﹣)或E(1,3).。

2020年四川省成都市中考数学零诊试卷答案版

2020年四川省成都市中考数学零诊试卷答案版

中考数学零诊试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.在下列实数中,有理数是( )A.-3 B. C. 1 D. π2.自2018年起,我国将每年秋分日设立为“中国农民丰收节”.据预测,2018年我国粮食生产将稳定在12000亿斤以上.将数据“12000亿”用科学记数法可表示为( )A. 12×1011B. 12×1012C. 1.2×1011D. 1.2×10123.使分式有意义的x的取值范是( )A. x≠3B. x=3C. x≠0D. x=04.如图,由六个完全相同的小正方体搭成一个几何体,在这个几何体的“三视图”中是轴对称图形的是( )A. 主视图B. 左视图C. 俯视图D. 主视图和俯视图5.在下列各式中,运算结果正确的是( )A. x2+x2=x4B. x-2x=-xC. x2•x3=x6D. (x-1)2=x2-16.如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有( )A. 1个B. 2个C. 3个D. 4个7.下列方程中,没有实数根的是()A. 2x+3=0B.C.D.8.两个全等的直角三角形不能拼成的图形是( )A. 平行四边形B. 矩形C. 菱形D. 等腰三角形9.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为( )A. 3.2米B. 4.8米C. 5.2米D. 5.6米10.下列两个图形,一定相似的是( )A. 两个等腰三角形B. 两个直角三角形C. 两个等边三角形D. 两个矩形二、填空题(本大题共9小题,共36.0分)11.不等式3x-1>-4的最小整数解是______.12.已知在平面直角坐标系中,点P在第二象限,且到x轴的距离为3,到y轴的距离为4,则点P的坐标为______.13.一组数据3,4,x,6,8的平均数是5,则这组数据的中位数是______.14.如图,直线y=ax+b过点A(0,2)和点B(-3,0),则方程ax+b=0的解是______.15.若a+b=4,a-b=1,则(a+1)2-(b-1)2的值为______.16.把边长相等的正五边形ABCD和正方形ABFG,按照如图所示的方式叠合在一起,连结AD,则∠DAG= ______ .17.已知关于x的一元二次方程x2-4x+m-1=0的实数根x1,x2,满足3x1x2-x1-x2>2,则m的取值范围是______.18.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为______.19.如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是________.三、解答题(本大题共9小题,共84.0分)20.解答下列各题:(1)计算:30--|-2|×2-1.(2)用配方法解方程:x2-4x-2=0.21.如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是______个平方单位.22.先化简,再求值:(x-)•()-y,其中x=,y=.23.下列表格是某学校女子排球队队员年龄统计表:年龄(岁)13141516人数(人)1245(1)该排球队队员年龄的众数是______岁;(2)事件“从该排球队随机选择一名队员,其年龄为13岁”发生的概率为______;(3)教练決定从年龄为13岁和14岁的A、B、C三名队员中,随机选取两名队员进行“接发球”训练,求队员A、B同时被选中的概率.(树状图或列表法)24.如图,直线:y=-+4与x轴、y轴分别別交于点M、点N,等边△ABC的高为3,边BC在x轴上,将△ABC沿着x轴的正方向平移,在平移过程中,得到△A1B1C1,当点B1与原点O重合时,解答下列问题:(1)点A1的坐标为______.(2)求△A1B1C1的边A1C1所在直线的解析式;(3)若以P、A1、C1、M为顶点的四边形是平行四边形,请直接写出P点坐标.25.如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D在BC边上(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)若BD=n(0<n<2),求线段AE的长;(用含n的代数式表示)(3)当△ADE是等腰三角形时,请直接写出AE的长.26.小敏的爸爸是一家水果店的经理.一天,他去水果批发市场,用100元购进甲种水果,用100元购进乙种水果,已知乙种水果比甲种水果多10千克,乙种水果的批发价比甲种水果的批发价低0.5元.(1)求甲、乙两种水果各购进了多少千克?(2)如果当天甲、乙两种水果都按2.80元出售,乙种水果很快售完,而甲种水果先售出,剩余的按售价打5折售完.请你通过计算,说明这一天的水果买卖是否赚钱?如果赚钱,赚了多少元?如果不赚钱,那么赔了多少元?27.如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF、BF、EF,过点F作GF⊥AF 交AD于点G,设AD:AE=n.(1)线段AE和线段EG的数量关系是:______;(2)如图②,当点F落在AC上时,用含n的代数式表示AD:AB的值;(3)若AD=4AB,且△FCG为直角三角形,求n的值.(直接写出结果).28.定义:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2(x1<x2),分别以x1,x2为横坐标和纵坐标得到点M(x1,x2),则称点M为该一元二次方程的衍生点.(1)若方程为x2-2x=0,写出该方程的衍生点M的坐标.(2)若关于x的一元二次方程x2,-(2m+1)x+2m=0(m<0)的衍生点为M,过点M向x轴和y轴作垂线,两条垂线与坐标轴恰好围成一个正方形,求m的值.(3)是否存在b,c,使得不论k(k≠0)为何值,关于x的方程x2+bx+c=0的衍生点M始终在直线y=kx-2(k-2)的图象上,若有请直接写出b,c的值,若没有说明理由.答案和解析1.【答案】A【解析】解:-3是有理数,,-1,π是无理数.故选:A.依据有理数和无理数的概念进行判断即可.本题主要考查的是实数的分类,熟练掌握实数的分类方法是解题的关键.2.【答案】D【解析】解:将数据“12000亿”用科学记数法可表示为12000×108=1.2×1012.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】A【解析】解:分式有意义,则3-x≠0,解得:x≠3.故选:A.直接利用分式有意义的条件进而得出答案.此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.4.【答案】B【解析】解:如图所示:在这个几何体的“三视图”中是轴对称图形的是左视图.故选:B.先得到该几何体的三视图,再根据轴对称图形的定义即可求解.考查了简单组合体的三视图,轴对称图形,关键是得到该几何体的三视图.5.【答案】B【解析】解:A、x2+x2=2x2,故本选项错误;B、x-2x=-x,故本选项正确;C、x2•x3=x5,故本选项错误;D、(x-1)2=x2-2x+1,故本选项错误.故选:B.根据合并同类项、完全平方公式及同底数幂的乘法法则进行各选项的判断即可.本题考查了合并同类项、完全平方公式及积的乘方运算,属于基础题,解答本题的关键是掌握各部分的运算法则.6.【答案】D【解析】解:∵l1∥l2,l3∥l4,∴∠1+∠2=180°,2=∠4,∵∠4=∠5,∠2=∠3,∴图中与∠1互补的角有:∠2,∠3,∠4,∠5共4个.故选:D.直接利用平行线的性质得出相等的角以及互补的角进而得出答案.此题主要考查了平行线的性质,注意不要漏角是解题关键.7.【答案】D【解析】解:A、2x+3=0,解得:x=-,∴A中方程有一个实数根;B、在x2-1=0中,△=02-4×1×(-1)=4>0,∴B中方程有两个不相等的实数根;C、=1,即x+1=2,解得:x=1,经检验,x=1是分式方程=1的解,∴C中方程有一个实数根;D、在x2+x+1=0中,△=12-4×1×1=-3<0,∴D中方程没有实数根.故选:D.A、解一元一次方程可得出一个解,从而得知A中方程有一个实数根;B、根据根的判别式△=4>0,可得出B中方程有两个不等实数根;C、解分式方程得出x的值,通过验证得知该解成立,由此得出C中方程有一个实数根;D、根据根的判别式△=-3<0,可得出D中方程没有实数根.由此即可得出结论.本题考查了根的判别式、解一元一次方程以及解分式方程,解题的关键是逐项分析四个选项中方程解的个数.属于基础题,难度不大,解决该题型题目时,根据根的判别式的符号判断方程根的个数是关键.8.【答案】C【解析】解:如果让直角三角形的直角边重合,可能拼成等腰三角形或平行四边形;如果让直角三角形的斜边重合,可能拼成矩形.∵拼成的四边形的两组对边分别是两条直角边或一条直角边和斜边,∴不可能拼成菱形.故选:C.根据直角三角形的性质,拼成的图形可能是等腰三角形、平行四边形、矩形;因为拼成的四边形的两组对边分别是两条直角边或一条直角边和斜边,不能得出四边相等,所以不可能拼成菱形.考查了学生拼图的能力,拼的时候,注意分别让直角边或斜边重合,然后分析图形的形状.9.【答案】B【解析】解:设旗杆的高为x,有,可得x=4.8米.故答案选B.由成比例关系,列出关系式,代入数据即可求出结果.以实际生活为例,考查学生对实际问题的处理和对数学问题的灵活运用.10.【答案】C【解析】解:∵两个等边三角形的内角都是60°,∴两个等边三角形一定相似,故选:C.根据相似三角形的判定方法一一判断即可;本题考查相似三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.11.【答案】0【解析】解:3x-1>-4,3x>-3,x>-1,所以不等式3x-1>-3的最小整数解是0,故答案为:0.先求出不等式的解集,再求出不等式的最小整数解即可.本题考查了解一元一次不等式和不等式的整数解,能求出不等式的解集是解此题的关键.12.【答案】(-4,3)【解析】解:∵点P在第二象限,且到x轴的距离为3,到y轴的距离为4,∴点P的横坐标为-4,纵坐标为3,∴点P的坐标为(-4,3).故答案为:(-4,3).根据第二象限点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.13.【答案】4【解析】解:∵3,4,x,6,8的平均数是5,∴3+4+x+6+8=5×5,解得x=4,则该组数据为3,4,4,6,8.中位数为4.故答案为:4.根据数据3,4,x,6,8的平均数是5,求出x的值,再将该组数据从小到大依次排列即可找到该组数据的中位数.本题主要考查了中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.14.【答案】x=-3【解析】解:方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(-3,0),∴方程ax+b=0的解是x=-3,故答案为:x=-3.所求方程的解,即为函数y=ax+b图象与x轴交点横坐标,确定出解即可.此题考查了一次函数与一元一次方程,任何一元一次方程都可以转化为ax+b=0 (a,b 为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b,确定它与x轴的交点的横坐标的值.15.【答案】12【解析】解:∵a+b=4,a-b=1,∴(a+1)2-(b-1)2=(a+1+b-1)(a+1-b+1)=(a+b)(a-b+2)=4×(1+2)=12.故答案是:12.对所求代数式运用平方差公式进行因式分解,然后整体代入求值.本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构即可解答.16.【答案】18°【解析】解:如图连接BD.∵ABCDE是正五边形,∵∠E=∠EAB=108°,ED=EA,∴∠EAD=∠EDA=36°,∴∠DAB=108°-36°=72°,∵四边形ABFG是正方形,∴∠GAB=90°,∴∠GAD=∠GAB-∠DAB=90°-72°=18°.故答案为18°.如图连接BD.根据正五边形.正方形的性质求出∠DAB,∠GAB,由∠GAD=∠GAB-∠DAB 计算即可.本题考查正方形的性质、正五边形的性质、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于基础题,中考常考题型.17.【答案】3<m≤5【解析】解:依题意得:,解得3<m≤5.故答案是:3<m≤5.根据根的判别式△>0、根与系数的关系列出关于m的不等式组,通过解该不等式组,求得m的取值范围.本题考查了一元二次方程的根的判别式的应用,解此题的关键是得出关于m的不等式,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2-4ac>0时,一元二次方程有两个不相等的实数根,②当b2-4ac=0时,一元二次方程有两个相等的实数根,③当b2-4ac<0时,一元二次方程没有实数根.18.【答案】(-,)【解析】解:过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠3,则△A1OM∽△OC1N,∵OA=5,OC=3,∴OA1=5,A1M=3,∴OM=4,∴设NO=3x,则NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x=±(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(-,).故答案为:(-,).直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.19.【答案】3≤AP<4【解析】【分析】本题主要考查了相似三角形的性质,相似三角形的对应角相等,对应边的比相等.分四种情况讨论,依据相似三角形的对应边成比例,即可得到AP的长的取值范围.【解答】解:如图所示,过P作PD∥AB交BC于D或PE∥BC交AB于E,则△PCD∽△ACB或△APE∽△ACB,此时0<AP<4;如图所示,过P作∠APF=∠B交AB于F,则△APF∽△ABC,此时0<AP≤4;如图所示,过P作∠CPG=∠CBA交BC于G,则△CPG∽△CBA,此时,△CPG∽△CBA,当点G与点B重合时,CB2=CP×CA,即22=CP×4,∴CP=1,AP=3,∴此时,3≤AP<4;综上所述,AP长的取值范围是3≤AP<4.故答案为:3≤AP<4.20.【答案】解:(1)原式=1-2-2×=-2;(2)∵x2-4x-2=0,∴x2-4x+4=6,∴(x-2)2=6,∴x=2±【解析】(1)根据零指数幂的意义以及负整数指数幂的意义即可求出答案;(2)根据配方法即可求出答案.本题考查学生的运算,解题的关键是熟练运用运算法则,本题属于基础题型.21.【答案】解:(1)如图所示,线段A1B1即为所求;(2)如图所示,线段A2B1即为所求;(3)20.【解析】【分析】此题主要考查了位似变换以及旋转的性质以及勾股定理等知识的运用,利用相似变换的性质得出对应点的位置是解题关键.(1)以点O为位似中心,将线段AB放大为原来的2倍,即可画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,即可画出线段A2B1;(3)连接AA2,即可得到四边形AA1B1A2为正方形,进而得出其面积.【解答】解:(1)见答案(2)见答案(3)由图可得,四边形AA1B1A2为正方形,∴四边形AA1B1A2的面积是()2=()2=20.故答案为20.22.【答案】解:原式=•-y=-=-,当x=,y=时,原式=-=-.【解析】先根据分式的混合运算顺序和运算法则化简原式,再将x、y的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.23.【答案】16【解析】解:(1)该排球队队员年龄的众数是16岁;(2)事件“从该排球队随机选择一名队员,其年龄为13岁”发生的概率==;故答案为16,;(3)画树状图为:共有6种等可能的结果数,其中队员A、B同时被选中的结果数为2,所以队员A、B同时被选中的概率==.(1)根据众数的定义求解;(2)根据概率公式求解;(3)画树状图展示所有6种等可能的结果数,找出队员A、B同时被选中的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了众数的定义.24.【答案】(,4)【解析】解:(1)直线:y=-+4与x轴、y轴分别別交于点M、点N,则点M(4,0),当点B1与原点O重合时,过点A1作A1D⊥x轴于点D,则A1D=3,则B1D=A1D tan30°=3×=,当x=时,y=-+4=3=A1D,故点A1在直线上,点A1(,4),故答案为:(,4);(2)将点C1(2,0)、A1的坐标代入一次函数表达式:y=kx+b并解得:直线A1C1的表达式为:y=-x+6;(3)设点P(m,n)①当A1C1是平行四边形的边时,则4=m,0-3=n或4=m,0+3=n,解得:m=3或5,n=3或-3,故点P的坐标为:(3,3)或(5,-3);②当A1C1是平行四边形的对角线时,由中点公式得:2=m+4,3=n,解得:m=-,n=3,故点P(-,3);综上点P的坐标为:(3,3)或(5,-3)或(-,3).(1)当点B1与原点O重合时,过点A1作A1D⊥x轴于点D,则A1D=3,则B1D=A1D tan30°=3×=,当x=时,y=-+4=3=A1D,故点A1在直线上,点A1(,4);(2)将点C1(2,0)、A1的坐标代入一次函数表达式:y=kx+b,即可求解;(3)分A1C1是平行四边形的边、A1C1是平行四边形的对角线两种情况,分别求解即可.本题考查的是一次函数综合运用,涉及到解直角三角形、平行四边形性质等,其中(3),要注意分类求解,避免遗漏.25.【答案】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2-n,EC=2-AE,∵△ABD∽△DCE,∴=,∴=,解得:AE=n2-n+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD≌△DCE,则AB=CD,即2=2-n,n=2-2,代入AE=n2-n+2,解得:AE=4-2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即AE=(2-AE),解得:AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4-2或.【解析】(1)根据相似三角形的判定定理即可得到结论;(2)如图1,作高AF,根据直角三角形30°的性质求AF的长,根据勾股定理求BF的长,则可得BC的长,根据(1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ABD≌△DCE,则AB=CD,即2=2-x;②当AE=ED时,如图3,则ED=EC,即y=(2-y);③当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在.本题是相似形的综合题,考查了三角形相似的性质和判定、等腰三角形的性质、直角三角形30°角的性质,本题的几个问题全部围绕△ABD∽△DCE,解决问题;难度适中.26.【答案】解:(1)设甲种水果的批发价为x元,购进了y千克,则乙种水果的批发价为(x-0.5)元,购进了(y+10)千克.则有,解得:x=2.5,x-0.5=2;y=40,y+10=50.故甲、乙两种水果各购进了40千克和50千克.(2)这一天的利润=50×(2.8-2)+40×(2.8-2.5)+40×(1.4-2.5)=40+7.2-17.6=29.6>0,这一天的水果买卖赚钱,赚了29.6元.【解析】(1)先设出甲种水果的批发价为x元,购进了y千克,则乙种水果的批发价为(x-0.5)元,购进了(y+10)千克.根据100=水果批发价×购进数量,列方程组求解;(2)根据利润=总销售额-购买水果的本钱求解.本题考查了二元一次方程组的实际应用,难度不大,读懂题意列出方程组是关键.27.【答案】AE=EG【解析】解:设AE=a,则AD=na,(1)由对称知,AE=FE,∴∠EAF=∠EFA,∵GF⊥AF,∴∠EAF+∠FGA=∠EFA+∠EFG=90°,∴∠FGA=∠EFG,∴EG=EF,∴AE=EG,故答案为:AE=EG;(2)如图1,当点F落在AC上时,由对称知,BE⊥AF,∴∠ABE+∠BAC=90°,∵∠DAC+∠BAC=90°,∴∠ABE=∠DAC,∵∠BAE=∠D=90°,∴△ABE∽△DAC,∴=,∵AB=DC,∴AB2=AD•AE=na2,∵AB>0,∴AB=a,∴==;(3)若AD=4AB,则AB=a,如图2,当点F落在线段BC上时,EF=AE=AB=a,此时a=a,∴n=4,∴当点F落在矩形内部时,n>4,∵∠CGF=90°,如图3,∴∠CGD+∠AGF=90°,∵∠FAG+∠AGF=90°,∴∠CGD=∠FAG=∠ABE,∵∠BAE=∠D=90°,∴△ABE∽△DGC,∴=,∴AB•DC=DG•AE,∵DG=AD-AE-EG=na-2a=(n-2)a,∴(a)2=(n-2)a•a,∴n=8+4或n=8-4(由于n>4,所以舍),即:n=8+4(1)直接利用等角的余角相等得出∠FGA=∠EFG,即可得出EG=EF,代换即可;(2)先判断出△ABE∽△DAC,得出比例式用AB=DC代换化简即可得出结论;(3)先判断出只有∠CFG=90°或∠CGF=90°,分两种情况建立方程求解即可.此题是相似形综合题,主要考查了矩形的性质,等腰三角形的判定,相似三角形的判定和性质,解(1)的关键是判断出EG=EF,解(2)的关键是判断出△ABE∽△DAC,解(3)的关键是分类讨论,用方程的思想解决问题.28.【答案】解:(1)∵x2-2x=0,∴x(x-2)=0,解得:x1=0,x2=2故方程x2-2x=0的衍生点为M(0,2).(2)x2-(2m+1)x+2m=0(m<0)∵m<0∴2m<0解得:x1=2m,x2=1,方程x2-(2m+1)x+2m=0(m<0)的衍生点为M(2m,1).点M在第二象限内且纵坐标为1,由于过点M向两坐标轴做垂线,两条垂线与x轴y 轴恰好围城一个正方形,所以2m=-1,解得.(3)存在.直线y=kx-2(k-2)=k(x-2)+4,过定点M(2,4),∴x2+bx+c=0两个根为x1=2,x2=4,∴2+4=-b,2×4=c,∴b=-6,c=8.【解析】(1)求出方程的两根,根据一元二次方程的衍生点即可解决问题;(2)求出方程的两根,根据一元二次方程的衍生点的定义,再利用正方形的性质构建方程即可解决问题;(3)求出定点,利用根与系数的关系解决问题即可;本题考查一次函数综合题、一元二次方程的根与系数的关系、正方形的性质等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考压轴题.。

苏教版2020年中考数学模拟卷(含答案解析)

苏教版2020年中考数学模拟卷(含答案解析)

2020年中考数学模拟试卷一.选择题(共8小题)1.下列各数中最小的数为()A.﹣3 B.﹣1 C.0 D.12.下列运算正确的是()A.3x2•4x2=12x2B.x3+x5=x8C.x4÷x=x3D.(x5)2=x73.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示为()A.0.3×105B.3×105C.0.3×106D.3×1064.下图几何体的主视图是()A.B.C.D.5.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 3 2A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.56.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450 B.300(1+2x)=450C.300(1+x)2=450 D.450(1﹣x)2=3007.某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图象如图所示,则超过500元的部分可以享受的优惠是()A.打六折B.打七折C.打八折D.打九折8.如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k<0)图象经过点C和AB边的中点D,若∠B=α,则k的值为()A.﹣4tanαB.﹣2sinαC.﹣4cosαD.﹣2tanα二.填空题(共8小题)9.=.10.分解因式:x3﹣x=.11.已知一个多边形的内角和为540°,则这个多边形是边形.12.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是.13.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是cm2.14.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为.15.抛物线y=﹣x2+2x+8与x轴交于B、C两点,点D平分BC,且点A为抛物线上的点,且∠BAC为锐角,则AD的值范围为.16.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为.三.解答题(共10小题)17.计算或化简:(1)(2)18.解方程:+=1.19.图书馆是一个很好的学习平台,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有万人次到图书馆阅读,其中商人占百分比为%.(2)将条形统计图补充完整.(3)5月份到图书馆的读者共有24000人次,根据以上调查结果,估计24000人次中是职工的人次.20.如图,E是AC上一点,AB=CE,AB∥CD,AC=CD.求证:BC=ED.21.有四张仅一面分别标有1,2,3,4的不透明纸片,除所标数字不同外,其余都完全相同.(1)将四张纸片分成两组,标有1、3的为第一组,标有2、4的为第二组,背面向上,放在桌上,从两组中各随机抽取一张,求两次抽取数字和为5的概率;(2)将四张纸片洗匀后背面向上,放在桌上,一次性从中随机抽取两张,用树形图法或列表法,求所抽取数字和为5的概率.22.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.23.如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.(1)求DE与水平桌面(AB所在直线)所成的角;(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)24.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.25.如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.26.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.参考答案与试题解析一.选择题(共8小题)1.下列各数中最小的数为()A.﹣3 B.﹣1 C.0 D.1【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣3<﹣1<0<1,∴各数中最小的数是﹣3.故选:A.2.下列运算正确的是()A.3x2•4x2=12x2B.x3+x5=x8C.x4÷x=x3D.(x5)2=x7【分析】A、利用单项式乘单项式法则计算得到结果,即可做出判断;B、原式不能合并,本选项错误;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、3x2•4x2=12x4,本选项错误;B、原式不能合并,错误;C、x4÷x=x3,本选项正确;D、(x5)2=x10,本选项错误,故选:C.3.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示为()A.0.3×105B.3×105C.0.3×106D.3×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将300 000用科学记数法表示为:3×105.故选:B.4.下图几何体的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到的几何体的左边有3个正方形,中间只有2个正方形,右边有1个正方形.故选:C.5.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 3 2A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.5【分析】根据众数和中位数的概念求解.【解答】解:这组数据中4出现的次数最多,众数为4,∵共有7个人,∴第4个人的劳动时间为中位数,所以中位数为4,故选:A.6.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450 B.300(1+2x)=450C.300(1+x)2=450 D.450(1﹣x)2=300【分析】设快递量平均每年增长率为x,根据我国2016年及2018年的快递业务量,即可得出关于x的一元二次方程,此题得解.【解答】解:设快递量平均每年增长率为x,依题意,得:300(1+x)2=450.故选:C.7.某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图象如图所示,则超过500元的部分可以享受的优惠是()A.打六折B.打七折C.打八折D.打九折【分析】根据题意和函数图象中的数据可以列出相应的方程,从而可以求得超过500元的部分可以享受的优惠,本题得以解决.【解答】解:设超过500元的部分可以享受的优惠是x折,(1000﹣500)×+500=900,解得,x=8,故选:C.8.如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k<0)图象经过点C和AB边的中点D,若∠B=α,则k的值为()A.﹣4tanαB.﹣2sinαC.﹣4cosαD.﹣2tanα【分析】过点C作CE⊥OA于E,过点D作DF⊥x轴于F,根据平行四边形的对边相等可得OC=AB,然后求出OC=2AD,再求出OE=2AF,设AF=a,表示出点C、D的坐标,然后根据CE、DF的关系列方程求出a的值,再求出OE、CE,然后利用∠COA的正切值列式整理即可得解.【解答】解:如图,过点C作CE⊥OA于E,过点D作DF⊥x轴于F,在▱OABC中,OC=AB,∵D为边AB的中点,∴OC=AB=2AD,CE=2DF,∴OE=2AF,设AF=a,∵点C、D都在反比例函数上,∴点C(﹣2a,﹣),∵A(3,0),∴D(﹣a﹣3,),∴=2×,解得a=1,∴OE=2,CE=﹣,∵∠COA=∠α,∴tan∠COA=tan∠α=,即tanα=﹣,k=﹣4tanα.故选:A.二.填空题(共8小题)9.= 2 .【分析】如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.【解答】解:∵22=4,∴=2.故答案为:210.分解因式:x3﹣x=x(x+1)(x﹣1).【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).11.已知一个多边形的内角和为540°,则这个多边形是五边形.【分析】利用n边形的内角和可以表示成(n﹣2)•180°,结合方程即可求出答案.【解答】解:根据多边形的内角和可得:(n﹣2)180°=540°,解得:n=5.则这个多边形是五边形.故答案为:五.12.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是.【分析】先写出3种等可能的结果数,然后根据三角形三边的关系确定三条线段能构成三角形的结果数,再根据概率公式求解.【解答】解:共有3种等可能的结果数,它们是:2、3、3,2、3、4,2、3、5,其中三条线段能构成三角形的结果数为2种,所以能构成三角形的概率=.故答案为:.13.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是35πcm2.【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr即可求解.【解答】解:底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm2.故答案是:35π.14.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为.【分析】分别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,先根据全等三角形的判定定理得出△BCE≌△ACF,故可得出CF及CE的长,在Rt△ACF中根据勾股定理求出AC的长,再由相似三角形的判定得出△CDG∽△CAF,故可得出CD的长,在Rt△BCD中根据勾股定理即可求出BD的长.【解答】解:别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,∵△ABC是等腰直角三角形,∴AC=BC,∵∠EBC+∠BCE=90°,∠BCE+∠ACF=90°,∠ACF+∠CAF=90°,∴∠EBC=∠ACF,∠BCE=∠CAF,在△BCE与△ACF中,∴△BCE≌△ACF(ASA)∴CF=BE,CE=AF,∵l1与l2的距离为1,l2与l3的距离为3,∴CF=BE=3,CE=AF=3+1=4,在Rt△ACF中,∵AF=4,CF=3,∴AC=5,∵AF⊥l3,DG⊥l3,∴△CDG∽△CAF,∴,∴∴在Rt△BCD中,∵CD=,BC=5,所以BD==.故答案为:.15.抛物线y=﹣x2+2x+8与x轴交于B、C两点,点D平分BC,且点A为抛物线上的点,且∠BAC为锐角,则AD的值范围为3<x≤9 .【分析】由“∠BAC为锐角”可知点A在以定线段BC为直径的圆外,又点A在x轴上侧,从而可确定动点A的范围.【解答】解:如图,∵抛物线y=﹣x2+2x+8,∴抛物线的顶点为A0(1,9),对称轴为x=1,与x轴交于两点B(﹣2,0)、C(4,0),分别以BC、DA为直径作⊙D、⊙E,则两圆与抛物线均交于两点P(1﹣2,1)、Q(1+2,1).可知,点A在不含端点的抛物线内时,∠BAC<90°,且有3=DP=DQ<AD≤DA0=9,即AD的取值范围是3<AD≤9.则A的横坐标取值范围是3<x≤9.故答案为:3<x≤9.16.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为15 .【分析】将△ABD绕着点A逆时针旋转90°,得△AFQ,延长FQ,BC,交于点E,连接CQ,判定△BAC≌△QAC(SAS),得到BC=CQ=BD+CD=5,再设AD=x,在Rt△CQE中,运用勾股定理列出关于x的方程,求得x的值,最后根据△ABC的面积=×BC×AD,进行计算即可【解答】解:如图,将△ABD绕着点A逆时针旋转90°,得△AFQ,延长FQ,BC,交于点E,连接CQ,由旋转可得,△ABD≌△AQF,∴AB=AQ,∠BAD=∠FAQ,BD=QF=3,∠F=∠ADC=∠DAF=90°=∠E,∵∠BAC=45°,∴∠BAD+∠DAC=45°,∴∠DAC+∠FAQ=45°,又∵∠DAF=90°,∴∠CAQ=45°,∴∠BAC=∠CAQ.且AB=AQ,AC=AC∴△BAC≌△QAC(SAS),∴BC=CQ=BD+CD=5,设AD=x,则QE=x﹣3,CE=x﹣2.在Rt△CQE中,CE2+QE2=CQ2∴(x﹣2)2+(x﹣3)2=52解得:x1=6,x2=﹣1(舍去),∴AD=6,∴△ABC的面积为=×BC×AD=15故答案为:15三.解答题(共10小题)17.计算或化简:(1)(2)【分析】(1)直接利用特殊角的三角函数值以及零指数幂的性质、二次根式的性质分别化简得出答案;(2)首先利用分式的混合运算法则进而化简得出答案.【解答】解:(1)原式=﹣2+2×+1=﹣2++1=1;(2)原式=1﹣×=1﹣=﹣.18.解方程:+=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:(x+1)(x+1)﹣4=x2﹣1,解得:x=1,经检验x=1是分式方程的增根,∴原分式方程无解.19.图书馆是一个很好的学习平台,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有16 万人次到图书馆阅读,其中商人占百分比为12.5 %.(2)将条形统计图补充完整.(3)5月份到图书馆的读者共有24000人次,根据以上调查结果,估计24000人次中是职工的人次.【分析】(1)利用到图书馆阅读的人数=学生的人数÷学生的百分比求解,商人占百分比=商人数÷总人数求解即可,(2)求出职工到图书馆阅读的人数,作图即可,(3)利用总人数乘读者是职工的人数所占的百分比求解即可.【解答】解:(1)在统计的这段时间内,到图书馆阅读的人数为4÷25%=16(万人),其中商人占百分比为×100%=12.5%;故答案为:16;12.5;(2)职工:16﹣4﹣2﹣4=6(万人),如图所示:(3)估计24000人次中是职工的人次为24000×=9000(人次).20.如图,E是AC上一点,AB=CE,AB∥CD,AC=CD.求证:BC=ED.【分析】要证明BC=ED,只要证明△ABC≌△CED即可,根据题意目中的条件和平行线的性质可以得到证明两个三角形全等的条件,本题得以解决.【解答】证明:∵AB∥CD,∴∠A=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴BC=ED.21.有四张仅一面分别标有1,2,3,4的不透明纸片,除所标数字不同外,其余都完全相同.(1)将四张纸片分成两组,标有1、3的为第一组,标有2、4的为第二组,背面向上,放在桌上,从两组中各随机抽取一张,求两次抽取数字和为5的概率;(2)将四张纸片洗匀后背面向上,放在桌上,一次性从中随机抽取两张,用树形图法或列表法,求所抽取数字和为5的概率.【分析】(1)应用列表法,求出两次抽取数字和为5的概率是多少即可.(2)应用列表法,求出所抽取数字和为5的概率是多少即可.【解答】解:(1)1 32 (1,2)(3,2)4 (1,4)(3,4)∵共有4种可能性,且每种可能性都相同,数字和为5有两种可能性,∴两次抽取数字和为5的概率为:=.(2)1 2 3 41 ﹣﹣(2,1)(3,1)(4,1)2 (1,2)﹣﹣(3,2)(4,2)3 (1,3)(2,3)﹣﹣(4,3)4 (1,4)(2,4)(3,4)﹣﹣∵共有12种可能性,且每种可能性都相同,数字和为5的有4种可能性,∴抽取数字和为5概率为:=.22.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.【分析】(1)连接OE,BE,因为DE=EF,所以=,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,从而可求出r的值.【解答】解:(1)连接OE,BE,∵DE=EF,∴=,∴∠OBE=∠DBE,∵OE=OB,∴∠OEB=∠OBE,∴∠OEB=∠DBE,∴OE∥BC,∵⊙O与边AC相切于点E,∴OE⊥AC,∴BC⊥AC,∴∠C=90°;(2)在△ABC,∠C=90°,BC=3,sin A=,∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,∴r=,∴AF=5﹣2×=.23.如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.(1)求DE与水平桌面(AB所在直线)所成的角;(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)【分析】(1)直接作出平行线和垂线进而得出∠EDF的值;(2)利用锐角三角函数关系得出DN以及EF的值,进而得出答案.【解答】解:(1)如图所示:过点D作DF∥AB,过点D作DN⊥AB于点N,EF⊥AB于点M,由题意可得,四边形DNMF是矩形,则∠NDF=90°,∵∠A=60°,∠AND=90°,∴∠ADN=30°,∴∠EDF=135°﹣90°﹣30°=15°,即DE与水平桌面(AB所在直线)所成的角为15°;(2)如图所示:∵∠ACB=90°,∠A=60°,AB=16cm,∴∠ABC=30°,则AC=AB=8cm,∵灯杆CD长为40cm,∴AD=48cm,∴DN=AD•cos30°≈41.76cm,则FM=41.76cm,∵灯管DE长为15cm,∴sin15°===0.26,解得:EF=3.9,故台灯的高为:3.9+41.76≈45.7(cm).24.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.【分析】(1)设今年年初猪肉价格为每千克x元;根据题意列出一元一次不等式,解不等式即可;(2)设5月20日两种猪肉总销量为1;根据题意列出方程,解方程即可.【解答】解:(1)设今年年初猪肉价格为每千克x元;根据题意得:2.5×(1+60%)x≥100,解得:x≥25.答:今年年初猪肉的最低价格为每千克25元;(2)设5月20日两种猪肉总销量为1;根据题意得:40(1﹣a%)×(1+a%)+40×(1+a%)=40(1+a%),令a%=y,原方程化为:40(1﹣y)×(1+y)+40×(1+y)=40(1+y),整理得:5y2﹣y=0,解得:y=0.2,或y=0(舍去),则a%=0.2,∴a=20;答:a的值为20.25.如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.【分析】(1)利用tan∠ABC=3,得出C点坐标,再利用待定系数法求出二次函数解析式;(2)①当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,则P的运动路程为△ABC的中位线HK,再利用勾股定理得出答案;②首先利用等腰三角形的性质得出∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,进而求出∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即可得出答案;(3)首先得出C△PEF=AD+EF,进而得出EG=PE,EF=PE=AD,利用C△PEF=AD+EF =(1+)AD=AD,得出最小值即可.【解答】解:(1)∵函数y=ax2+bx+c与x轴交于A、B两点,且一元二次方程ax2+bx+c =0两根为:﹣8,2,∴A(﹣8,0)、B(2,0),即OB=2,又∵tan∠ABC=3,∴OC=6,即C(0,﹣6),将A(﹣8,0)、B(2,0)代入y=ax2+bx﹣6中,得:,解得:,∴二次函数的解析式为:y=x2+x﹣6;(2)①如图1,当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,∴P的运动路程为△ABC的中位线HK,∴HK=BC,在Rt△BOC中,OB=2,OC=6,∴BC=2,∴HK=,即P的运动路程为:;②∠EPF的大小不会改变,理由如下:如图2,∵DE⊥AB,∴在Rt△AED中,P为斜边AD的中点,∴PE=AD=PA,∴∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,∴∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即∠EPF=2∠EAF,又∵∠EAF大小不变,∴∠EPF的大小不会改变;(3)设△PEF的周长为C,则C△PEF=PE+PF+EF,∵PE=AD,PF=AD,∴C△PEF=AD+EF,在等腰三角形PEF中,如图2,过点P作PG⊥EF于点G,∴∠EPG=∠EPF=∠BAC,∵tan∠BAC==,∴tan∠EPG==,∴EG=PE,EF=PE=AD,∴C△PEF=AD+EF=(1+)AD=AD,又当AD⊥BC时,AD最小,此时C△PEF最小,又S△ABC=30,∴BC×AD=30,∴AD=3,∴C△PEF最小值为:AD=.26.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为 1 ;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC ∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.。

2020年四川成都中考数学试卷(解析版)

2020年四川成都中考数学试卷(解析版)




4
19. 在平面直角坐标系 中,反比例函数 与 轴、 轴分别交于 , 两点.
的图象经过点
,过点 的直线
y
x
O
( 1 ) 求反比例函数的表达式.
(2) 若
的面积为
的面积的 倍,求此直线的函数表达式.
20. 如图,在
的边 上取一点 ,以 为圆心, 为半径画⊙ ,⊙ 与边

,连接 交⊙ 于点 ,连接 ,并延长交线段 于点 .


,则 的
2
A. B. C. D.
10. 关于二次函数 A. 图象的对称轴在 轴的右侧 B. 图象与 轴的交点坐标为 C. 图象与 轴的交点坐标为 D. 的最小值为
,下列说法正确的是( ). 和
二、填空题(本大题共4小题,每小题4分,共16分)
11. 分解因式:

12. 一次函数
的值随 值的增大而增大,则常数 的取值范围为








∴点 的坐标为
. , , .
∵点 在抛物线的图象上,


整理得:
解得:

∴点 的坐标为
, (舍去),

②当点 在直线 左侧时,如图,
轴交 于点 .
26
同理,

又∵
故答案为:

的值随 值的增大而增大, .
13. 解析:
10








故答案为: .
, .
, ,
14.
解析:
设 头牛值金 两, 只羊值金 两,

成都市中考数学模拟试题(3)(解析版)

成都市中考数学模拟试题(3)(解析版)

成都市中考数学模拟试题(3)A卷(共100分)第Ⅰ卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)在有理数2,0,﹣1,﹣3中,任意取两个数相加,和最小是()A.2 B.﹣1 C.﹣3 D.﹣4【答案】D【解析】(﹣1)+(﹣3)=﹣4.故选:D.2.(3分)八个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.【答案】C【解析】从正面看,共有三列,每列的小正方形个数分别为2、1、2,故选:C.3.(3分)据央视网消息,全国广大共产党员积极响应党中央号召,踊跃捐款,表达对新冠肺炎疫情防控工作的支持.据统计,截至2020年3月26日,全国已有7901万多名党员自愿捐款,共捐款82.6亿元.82.6亿用科学记数法可表示为()A.0.826×1010B.8.26×109C.8.26×108D.82.6×108【答案】B【解析】82.6亿=8 260 000 000=8.26×109,故选:B.4.(3分)将点P(2,1)沿x轴方向向左平移3个单位,再沿y轴方向向上平移2个单位,所得的点的坐标是()A.(﹣1,﹣1)B.(﹣1,3)C.(5,﹣1)D.(5,3)【答案】B【解析】将点P(2,1)沿x轴方向向左平移3个单位,再沿y轴方向向上平移2个单位,所得的点的坐标是(﹣1,3).故选:B.5.(3分)一块含有45°的直角三角板和直尺如图放置,若∠1=55°,则∠2的度数是()A.30°B.35°C.40°D.45°【答案】B【解析】如图,延长ME,交CD于点F,∵AB∥CD,∠1=55°,∴∠MFC=∠1=55°,在Rt△NEF中,∠NEF=90°,∴∠3=90°﹣∠MFC=35°,∴∠2=∠3=35°,故选:B.6.(3分)下列计算正确的是()A.(a﹣b)(﹣a﹣b)=a2﹣b2B.2a3+3a3=5a6C.6x3y2÷3x=2x2y2D.(﹣2x2)3=﹣6x6【答案】C【解析】(a﹣b)(﹣a﹣b)=b2﹣a2,故选项A错误;2a3+3a3=5a3,故选项B错误;6x3y2÷3x=2x2y2,故选项C正确;(﹣2x2)3=﹣8x6,故选项D错误;故选:C.7.(3分)方程=的解为()A.﹣2 B.﹣1 C.1 D.2【答案】A【解析】方程两边都乘以2x(x﹣2),得:2x=x﹣2,移项,得:2x﹣x=﹣2,合并同类项,得:x=﹣2.经检验,x=﹣2是原方程的根.所以,原方程的根为x=﹣2.故选:A.8.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如图所示,则这些运动员成绩的中位数为()A.160 B.165 C.170 D.175【答案】B【解析】把这些数从小到大排列,中位数是第8个数,则这些运动员成绩的中位数为165cm.故选:B.9.(3分)如图,⊙O是正六边形ABCDEF的外接圆,P是弧AB上一点,则∠CPD的度数是()A.30°B.40°C.45°D.60°【答案】A【解析】连接OC,OD,∵六边形ABCDEF是正六边形,∴∠COD==60°,∴∠CPD=COD=30°,故选:A.10.(3分)抛物线y=ax2+bx+c经过点(﹣2,0),且对称轴为直线x=1,其部分图象如图所示.对于此抛物线有如下四个结论:①b=2a;②4a+2b+c>0;③若n>m>0,则x=1+m时的函数值小于x=1﹣n时的函数值;④点(,0)一定在此抛物线上.其中正确结论的个数是()A.4个B.3个C.2个D.1个【答案】C【解析】∵抛物线的对称轴为直线x=1,∴﹣=1,∴b=﹣2a,故①错误;∵抛物线的对称轴为直线x=1,而点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∵抛物线开口向下,∴当x=2时,y>0,∴4a+2b+c>0,故②正确;∵抛物线开口向下,对称轴为直线x=1,∴横坐标是1﹣n的点的对称点的横坐标为1+n,∵若n>m>0,∴1+n>1+m,∴x=1+m时的函数值大于x=1﹣n时的函数值,故③错误;∵b=﹣2a,∴抛物线为y=ax2﹣2ax+c,∵抛物线y=ax2+bx+c经过点(﹣2,0),∴4a+4a+c=0,即8a+c=0,∴c=﹣8a,∴﹣=4,∵点(﹣2,0)的对称点是(4,0),∴点(﹣,0)一定在此抛物线上,故④正确,故选:C.二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x﹣3和1﹣4x互为相反数,则x的值是________.【答案】﹣1.【解析】∵2x﹣3和1﹣4x互为相反数,∴2x﹣3+1﹣4x=0,解得:x=﹣1.12.(4分)一个等腰三角形一腰上的高与另一腰的夹角为36°,则此三角形顶角度数为________.【答案】54°或126°【解析】当△ABC是锐角三角形时,∠ACD=36°,∠ADC=90°,∴∠A=54°,当△ABC是钝角三角形时,∴∠ACD=36°,∠ADC=90°,∴∠BAC=∠ADC+∠ACD=126°13.(4分)已知直线y=(k﹣2)x+k经过第一、二、四象限,则k的取值范围是________.【答案】0<k<2.【解析】∵一次函数y=(k﹣2)x+k的图象经过第一、二、四象限,∴k﹣2<0且k>0;∴0<k<2,14.(4分)如图,在▱ABCD中,CD=2,∠B=60°,BE:EC=2:1,依据尺规作图的痕迹,则▱ABCD的面积为________.【答案】3.【解析】如图,过点A作AH⊥BC于H,由作图可知,EF垂直平分线段AB∴EA=EB,∵∠B=60°,∴△ABE是等边三角形,∴AB=BE=AE,∵四边形ABCD是平行四边形,∴AB=CD=2,∴BE=AB=2,∵AH⊥BE,∴BH=EH=1,∴AH===,∵BE:EC=2:1,∴EC=1,BC=BE+EC=3,∴平行四边形ABCD的面积=BC•AH=3,三.解答题(共6小题,满分54分)15.(12分)(1)计算:+(1+π)0﹣2cos45°+|1﹣|.(2)解不等式组:.【答案】见解析【解析】(1)原式=2+1﹣2×+﹣1=2+1﹣+﹣1=2;(2)由①得:x>2.5,由②得:x≤4,则不等式组的解集为2.5<x≤4.16.(6分)先化简,再求值:(+)÷,其中m=9.【答案】见解析【解析】原式=×=,当m=9时,原式==.17.(8分)新学期,某校开设了“防疫宣传”“心理疏导”等课程,为了解学生对新开设课程的掌握情况,从八年级学生中随机抽取了部分学生进行了一次综合测试.测试结果分为四个等级:A级为优秀,B 级为良好,C级为及格,D级为不及格.将测试结果绘制了两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是________名;(2)扇形统计图中表示A级的扇形圆心角α的度数是________,并把条形统计图补充完整;(3)该校八年级共有学生400名,如果全部参加这次测试,估计优秀的人数为多少?【答案】见解析【解析】(1)本次抽样测试的学生人数是:12÷30%=40(名),故答案为:40;(2)扇形统计图中表示A级的扇形圆心角α的度数是:360°×=54°,故答案为:54°,C级的人数为:40×35%=14,补充完整的条形统计图如右图所示;(3)400×=60(人),即优秀的有60人.18.(8分)如图,某办公楼AB的右边有一建筑物CD,在建设物CD离地面2米高的点E处观测办公楼顶A点,测得的仰角∠AEM=22°,在离建设物CD25米远的F点观测办公楼顶A点,测得的仰角∠AFB=45°(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:)【答案】见解析【解析】(1)如图,过点E作EM⊥AB于点M,设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,,则,解得:x=20.即办公楼的高20m;(2)由(1)可得ME=BC=x+25=20+25=45.在Rt△AME中,cos22°=.∴AE===48,即A、E之间的距离约为48m.19.(10分)如图,一次函数y1=ax+b与反比例函数y2=的图象相交于A(2,8),B(8,2)两点,连接AO,BO,延长AO交反比例函数图象于点C.(1)求一次函数y1的表达式与反比例函数y2的表达式;(2)当y1<y2,时,直接写出自变量x的取值范围为________;(3)点P是x轴上一点,当S△P AC=S△AOB时,请直接写出点P的坐标为________.【答案】见解析【解析】(1)将A(2,8),B(8,2)代入y=ax+b得,解得,∴一次函数为y=﹣x+10,将A(2,8)代入y2=得8=,解得k=16,∴反比例函数的解析式为y=;(2)由图象可知,当y1<y2时,自变量x的取值范围为:x>8或0<x<2, 故答案为x>8或0<x<2;(3)由题意可知OA=OC,∴S△APC=2S△AOP,把y=0代入y1=﹣x+10得,0=﹣x+10,解得x=10,∴D(10,0),∴S△AOB=S△AOD﹣S△BOD=﹣=30,∵S△P AC=S△AOB=×30=24,∴2S△AOP=24,∴2××y A=24,即2×OP×8=24,∴OP=3,∴P(3,0)或P(﹣3,0),故答案为P(3,0)或P(﹣3,0).20.(10分)如图,过点P作P A,PB,分别与以OA为半径的半圆切于A,B,延长AO交切线PB于点C,交半圆与于点D.(1)若PC=5,AC=4,求BC的长;(2)设DC:AD=1:2,求的值.【答案】见解析【解析】(1)∵P A,PB是⊙O的切线∴P A=PB,∠P AC=90°∴AP==3∴PB=AP=3∴BC=PC﹣PB=2(2)连接OB,∵CD:AD=1:2,AD=2OD∴CD=OD=OB∴CO=2OB∵PB是⊙O切线∴OB⊥PC∴∠OBC=90°=∠P AC,且∠C=∠C∴△OBC∽△P AC∴∴PC=2P A,∴=B卷(共50分)一.填空题(共5小题,满分20分,每小题4分)21.(4分)估算:≈________.(结果精确到1)【答案】7.【解析】≈7;22.(4分)设x1、x2是方程x2+mx﹣5=0的两个根,且x1+x2﹣x1x2=1,则m=________.【答案】4.【解析】∵x1、x2是方程x2+mx﹣5=0的两个根,∴x1+x2=﹣m,x1x2=﹣5.∵x1+x2﹣x1x2=1,即﹣m﹣(﹣5)=1,∴m=4.23.(4分)一个密码箱的密码,每个位数上的数都是从0到9的自然数,若要使不知道密码的一次就拨对密码的概率小于,则密码的位数至少需要________位.【答案】3.【解析】因为取一位数时一次就拨对密码的概率为,取两位数时一次就拨对密码的概率为,取三位数时一次就拨对密码的概率为,故密码的位数至少需要3位.24.(4分)如图,在边长为2的菱形ABCD中,∠ABC=60°,将△BCD沿直线BD平移得到△B′C′D′,连接AC′、AD′,则AC′+AD′的最小值为________.【答案】2.【解析】如图,连接BC',连接直线CC',∵四边形ABCD是菱形,∴AB∥CD,AB=CD,∵将△BCD沿直线BD平移得到△B′C′D′,∴AB∥C'D',AB=C'D',∴四边形ABC'D'是平行四边形,∴AD'=BC',∴AC′+AD′=AC'+BC',∵点C′在过点C且平行于BD的定直线CC'上,∴作点B关于定直线CC'的对称点E,连接AE,连接BE交CC'于H,则AE的长度即为AC′+AD′的最小值,在Rt△BHC中,∠BCH=∠DBC=30°,AD=2,∴∠CBH=60°,BH=EH=BC=1,∴BE=2,∴BE=AB,∵∠ABE=∠EBB′+∠DBA=90°+30°=120°,∴∠E=∠BAE=30°,∴AE=2×AB=2.25.(4分)如图,在平面直角坐标系中,A(3,0),B(0,4),C(2,0),D(0,1),连接AD、BC交于点E,则三角形ABE的面积为________.【答案】.【解析】连接OE,如图,∵A(3,0),B(0,4),C(2,0),D(0,1),∴AO=3,OB=4,OC=2,OD=1,设E(m,n),∵S△OAD=,∴S△OAD=S△OED+S△OAE=;∵S△OCB==4,∴S△OEB+S△OEC=2m+n=4;解方程组得,,∴S△BEA=S△BCA﹣S△AEC==.二.解答题(共3小题,满分30分)26.(8分)某汽车清洗店,清洗一辆汽车定价20元时每天能清洗45辆,定价25元时每天能清洗30辆,假设清洗汽车辆数y(辆)与定价x(元)(x取整数)是一次函数关系(清洗每辆汽车成本忽略不计).(1)求y与x之间的函数表达式;(2)若清洗一辆汽车定价不低于15元且不超过50元,且该汽车清洗店每天需支付电费、水和员工工资共计200元,问:定价为多少时,该汽车清洗店每天获利最大?最大获利多少?【答案】见解析【解析】(1)设y与x的一次函数式为y=kx+b,由题意可知:,解得:,∴y与x之间的函数表达式为y=﹣3x+105;(2)设汽车美容店每天获利润为w元,由题意得:w=xy﹣200=x(﹣3x+105)﹣200=﹣3(x﹣17.5)2+718.75,∵15≤x≤50,且x为整数,∴当x=17或18时,w最大=718(元).∴定价为17元或18元时,该汽车清洗店每天获利最大,最大获利是718元.27.(10分)【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明:如图①,在矩形ABCD中,EF⊥GH,EF分别交AD、BC于点E、F,GH分别交AB、DC于点G、H,求证:=;【结论应用】(2)如图②,将矩形ABCD沿EF折叠,使得点B和点D重合,若AB=2,BC=3.求折痕EF的长;【拓展运用】(3)如图③,将矩形ABCD沿EF折叠.使得点D落在AB边上的点G处,点C落在点P处,得到四边形EFPG,若AB=2,BC=3,EF=,请求BP的长.【答案】见解析【解析】(1):如图①,过点A作AP∥EF,交BC于P,过点B作BQ∥GH,交CD于Q,BQ交AP于T.∵四边形ABCD是矩形,∴AB∥DC,AD∥BC.∴四边形AEFP、四边形BGHQ都是平行四边形, ∴AP=EF,GH=BQ.又∵GH⊥EF,∴AP⊥BQ,∴∠BAT+∠ABT=90°.∵四边形ABCD是矩形,∴∠ABP=∠C=90°,AD=BC,∴∠ABT+∠CBQ=90°,∴∠BAP=∠CBQ,∴△ABP∽△BCQ,∴=,∴=.(2)如图②中,连接BD.∵四边形ABCD是矩形,∴∠C=90°,AB=CD=2,∴BD===,∵D,B关于EF对称,∴BD⊥EF,∴=,∴=,∴EF=.(3)如图③中,过点F作FH⊥EG于H,过点P作PJ⊥BF于J.∵四边形ABCD是矩形,∴AB=CD=2,AD=BC=3,∠A=90°,∴=,∴DG=,∴AG===1,由翻折可知:ED=EG,设ED=EG=x,在Rt△AEG中,∵EG2=AE2+AG2,∴x2=AG2+AE2,∴x2=(3﹣x)2+1,∴x=,∴DE=EG=,∵FH⊥EG,∴∠FHG=∠HGP=∠GPF=90°,∴四边形HGPF是矩形,∴FH=PG=CD=2,∴EH===,∴GH=FP=CF=EG﹣EH=﹣=1,∵PF∥EG,EA∥FB,∴∠AEG=∠IPF,∵∠A=∠FJP=90°,∴△AEG∽△JFP,∴==,∴==,∴FJ=,PJ=,∴BJ=BC﹣FJ﹣CF=3﹣﹣1=,在Rt△BJP中,BP===.解法二:作PH垂直AB于H,证△AEG∽△HGP,求出GH,HP,然后在直角三角形BPH,勾股定理求出BP.28.(12分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)直接写出抛物线的解析式为:________;(2)点D为第一象限内抛物线上的一动点,作DE⊥x轴于点E,交BC于点F,过点F作BC的垂线与抛物线的对称轴和y轴分别交于点G,H,设点D的横坐标为m.①求DF+HF的最大值;②连接EG,若∠GEH=45°,求m的值.【答案】见解析【解析】(1)将点A(﹣1,0),B(3,0)代入抛物线y=﹣x2+bx+c得:,解得:,∴抛物线的解析式为:y=﹣x2+2x+3.故答案为:y=﹣x2+2x+3;(2)①当x=0时,y=﹣x2+2x+3=3,∴点C(0,3),又∵B(3,0),∴直线BC的解析式为:y=﹣x+3,∵OB=OC=3,∴∠OBC=∠OCB=45°,作FK⊥y轴于点K,又∵FH⊥BC,∴∠KFH=∠KHF=45°,∴FH=KF=OE,∴DF+HF=DE﹣EF+OE=(﹣m2+2m+3)﹣(﹣m+3)+m=﹣m2+(3+)m,由题意有0<m<3,且0<﹣=<3,﹣1<0,∴当m=时,DF+HF取最大值,DF+HF的最大值为:﹣+(3+)×=;②作GM⊥y轴于点M,记直线FH与x轴交于点N,∵FK⊥y轴,DE⊥x轴,∠KFH=45°,∴∠EFH=∠ENF=45°,∴EF=EN,∵∠KHF=∠ONH=45°,∴OH=ON,∵y=﹣x2+2x+3的对称轴为直线x=1,∴MG=1,∵HG=MG=,∵∠GEH=45°,∴∠GEH=∠EFH,又∠EHF=∠GHE,∴△EHG∽△FHE,∴HE:HG=HF:HE, ∴HE2=HG•HF=×m=2m,在Rt△OEH中,OH=ON=|OE﹣EN|=|OE﹣EF|=|m﹣(﹣m+3)|=|2m﹣3|,OE=m,∴HE2=OE2+OH2=m2+(2m﹣3)2=5m2﹣12m+9,∴5m2﹣12m+9=2m, 解得:m=1或.。

2020年四川省成都市武侯区中考数学一诊试卷(含解析)

2020年四川省成都市武侯区中考数学一诊试卷(含解析)

2020年四川省成都市武侯区中考数学一诊试卷一、选择题(本大題共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)在如下放置的立体图形中,其主视图与左视图不相同的是( )A.圆锥B.正方体C.圆柱D.球2.(3分)已知点P(3,2)在反比例函数y=(k≠0)的图象上,则下列各点中在此反比例函数图象上的是( )A.(﹣3,﹣2)B.(3,﹣2)C.(﹣2,3)D.(2,﹣3)3.(3分)如图,在平面直角坐标系中,点A的坐标为(3,4),那么cosα的值是( )A.B.C.D.4.(3分)若关于x的一元二次方程(k+2)x2﹣2x﹣1=0有实数根,则实数k的取值范围是( )A.k>3B.k≥﹣3C.k>﹣3且k≠﹣2D.k≥﹣3且k≠﹣2 5.(3分)如图,在△ABC中,D,E分别是AB和AC上的点,且DE∥BC,若AE=1,CE =AD=2,则AB的长是( )A.6B.5C.4D.26.(3分)下列说法正确的是( )A.对角线相等且互相垂直的四边形是正方形B.坡面的水平宽度与铅直高度的比称为坡度C.两个相似图形也是位似图形D.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧7.(3分)如图,⊙O为△ABC的外接圆,∠BAC=55°,则∠OBC的度数为( )A.25°B.35°C.55°D.70°8.(3分)在一个不透明的袋子里装有20个红球和若干个蓝球,这些球除颜色外都相同将袋子中的球搅拌均匀,每次从袋子里随机摸出一个球,记录下它的颜色后再放回袋子中,不断重复这一过程,发现摸到蓝球的频率稳定在0.6左右,请你估计袋子中装有蓝球的个数是( )A.12个B.20个C.30个D.35个9.(3分)在2020年元旦期间,某商场销售某种冰箱,每台进货价为2500元,调查发现:当销售价为2900元时,平均毎天能销售出8台;而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?设每台冰箱定价x元,根据题意,可列方程为( )A.(x﹣2500)(8+4×)=5000B.(x﹣2500)(8+4×)=5000C.(2900﹣x﹣2500)(8+4×)=5000D.(2900﹣x)(8+4×)=500010.(3分)已知二次函数y=ax2+bx+c(其中a,b,c为常数)的图象如图所示,有以下结论:①abc>0;②a+b+c=0;③2a﹣b=0;④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.其中正确结论的番号是( )A.①②④B.①③④C.①④D.③④二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)已知=,则的值为 .12.(4分)如图,在△ABC中,P为边AB上一点,且∠ACP=∠B,若AP=6,BP=4,则AC的长为 .13.(4分)已知关于x的元二次方程x2﹣2kx﹣8=0的一个根是2,则此方程的另一个根是 .14.(4分)如图,现将四根木条钉成的矩形框ABCD变形为平行四边形木框A'BCD′,且A′D′与CD相交于CD边的中点E,若AB=4,则△ECD′的面积是 .三、解答題(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:﹣22+(π﹣3.14)0﹣|﹣4|﹣4sin60°(2)解方程:4x2+4x﹣3=016.(6分)2019年9月10日是我国第35个教师节,某中学德育处发起了感恩小学恩师的活动,德育处要求每位同学从以下三种方式中选择一种方式表达感恩:A.信件感恩,B.信息感恩,C.当面感恩.为了解同学们选择以上三种感恩方式的情况,德育处随机对本校部分学生进行了调查,并根据调查结果绘制成了如下两幅不完整的统计图.根据图中信息解答下列问题:(1)扇形统计图中C部分所对应的扇形圆心角的度数为 ,并补全条形统计图;(2)本次调查在选择A方式的学生中有两名男生和两名女生来自于同一所小学,德育处打算从他们四个人中选择两位在主题升旗仪式上发言,请用画树状图或列表的方法求恰好选到一男一女的概率.17.(8分)2019年10月1日,中华人民共和国成立70周年,成都市天府广场举行了盛大的升旗仪式,我市部分学生有幸见证了这一激动人心的时刻,并在现场作了如下测量工作:身高1.8米的某同学(图中AE部分)在护旗手开始走正步的点A处测得旗杆顶部D 的仰角为22°,在护旗手结束走正步的点B处测得旗杆顶部D的仰角为45°,又测量得到A,B两点间的距离是30米,求旗杆DC的高度.(结果精确到0.1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40.)18.(8分)如图,在正方形ABCD中,点E,F在对角线BD上,AE∥CF,连接AF,CE.(1)求证:△ABE≌△CDF;(2)试判断四边形AECF的形状,并说明理由.19.(10分)如图,在平面直角坐标系xOy中,一次函数y=﹣x+5的图象与反比例函数y=(k>0)的图象相交于A,B两点,与x轴相交于点C,连接OB,且△BOC的面积为.(1)求反比例函数的表达式;(2)将直线AB向下平移,若平移后的直线与反比例函数的图象只有一个交点,试说明直线AB向下平移了几个单位长度?20.(10分)如图,⊙O是△ABC的外接圆,AB为⊙O的直径,在△ABC外侧作∠CAD=∠CAB,过点C作CD⊥AD于点D,交AB延长线于点P.(1)求证:PC是⊙O的切线;(2)若tan∠BCP=,AD•BC=4m2(m>0),求⊙O的半径;(用含m的代数式表示)(3)如图2,在(2)的条件下,作弦CF平分∠ACB,交AB于点E,连接BF,且BF=5,求线段PE的长.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上B卷(共50分)21.(4分)已知方程x2﹣x﹣7=0的两个实数根分别为m,n,则m2+n的值为 .22.(4分)“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表述为:“如图,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,求直径CD的长”.(1尺=10寸)则CD= .23.(4分)我们知道黄金比例是,利用这个比例,我们规定一种“黄金算法”即:a b=a+b,比如12=1+×2=.若x(24)=5,则x的值为 .24.(4分)如图,点P为双曲线y=(x<0)上一动点,连接OP并延长到点A,使PA=PO,过点A作x轴的垂线,垂足为B,交双曲线于点C.当AC=AP时,连接PC,将△APC沿直线PC进行翻折,则翻折后的△A′PC与四边形BOPC的重叠部分(图中阴影部分)的面积是 .25.(4分)如图,在矩形ABCD中,已知AB=3,BC=4,点P是边BC上一动点(点P 不与点B,C重合),连接AP,作点B关于直线AP的对称点M,连接MP,作∠MPC的角平分线交边CD于点N.则线段MN的最小值为 .二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)据报道,从2018年8月以来,“非洲猪瘟”给生猪养殖户带来了不可估量的损失.某养殖户为了预防“非洲猪瘟”的侵袭,每天对猪场进行药熏消毒,已知一瓶药物释放过程中,一个圈舍内每立方米空气中含药量y(毫克)与时间x(分钟)之间满足正比例函数关系;药物释放完后,y与x之间满足反比例函数关系,如图所示,结合图中提供的信息解答下列问题:(1)分别求当0≤x≤10和x>10时,y与x之间满足的函数关系式;(2)据测定,当空气中每立方米的含药量不低于6毫克时,消毒才有效,那么这次熏药的有效消毒时间是多少分钟.27.(10分)如图,已知AC为正方形ABCD的对角线,点P是平面内不与点A,B重合的任意一点,连接AP,将线段AP绕点P顺时针旋转90°得到线段PE,连接AE,BP,CE.(1)求证:△APE∽△ABC;(2)当线段BP与CE相交时,设交点为M,求的值以及∠BMC的度数;(3)若正方形ABCD的边长为3,AP=1,当点P,C,E在同一直线上时,求线段BP 的长.28.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+x+c与x轴交于A,B两点(点A在点B的左侧),交y轴于点C,经过B,C两点的直线为y=.(1)求抛物线的函数表达式;(2)点P为抛物线上的动点,过点P作x轴的垂线,交直线BC于点M,连接PC,若△PCM为直角三角形,求点P的坐标;(3)当P满足(2)的条件,且点P在直线BC上方的抛物线上时,如图2,将抛物线沿射线BC方向平移,平移后B,P两点的对应点分别为B′,P′,取AB的中点E,连接EB′,EP′,试探究EB'+EP'是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.2020年四川省成都市武侯区中考数学一诊试卷参考答案与试题解析一、选择题(本大題共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)在如下放置的立体图形中,其主视图与左视图不相同的是( )A.圆锥B.正方体C.圆柱D.球【解答】解:A、圆锥的主视图和左视图均为全等的等腰三角形,不符合题意;B、正方体的主视图和左视图均为全等的正方形,不符合题意;C、主视图是长方形,左视图是圆,符合题意;D、球的主视图和左视图均为圆,不符合题意;故选:C.2.(3分)已知点P(3,2)在反比例函数y=(k≠0)的图象上,则下列各点中在此反比例函数图象上的是( )A.(﹣3,﹣2)B.(3,﹣2)C.(﹣2,3)D.(2,﹣3)【解答】解:∵点P(3,2)在反比例函数y=(k≠0)的图象上,∴k=3×2=6,A、∵﹣3×(﹣2)=6,∴此点在该函数图象上,故本选项正确;B、∵3×(﹣2)=﹣6,∴此点不在该函数图象上,故本选项错误;C、∵﹣2×3=﹣6,∴此点不在该函数图象上,故本选项错误;D、∵2×(﹣3)=﹣6,∴此点不在该函数图象上,故本选项错误.故选:A.3.(3分)如图,在平面直角坐标系中,点A的坐标为(3,4),那么cosα的值是( )A.B.C.D.【解答】解:作AB⊥x轴于B,如图,∵点A的坐标为(3,4),∴OB=3,AB=4,∴OA==5,在Rt△AOB中,cosα==.故选:C.4.(3分)若关于x的一元二次方程(k+2)x2﹣2x﹣1=0有实数根,则实数k的取值范围是( )A.k>3B.k≥﹣3C.k>﹣3且k≠﹣2D.k≥﹣3且k≠﹣2【解答】解:由题意可知:△=4+4(k+2)≥0,∴解得:k≥﹣3,∵k+2≠0,∴k≥﹣3且k≠﹣2,故选:D.5.(3分)如图,在△ABC中,D,E分别是AB和AC上的点,且DE∥BC,若AE=1,CE =AD=2,则AB的长是( )A.6B.5C.4D.2【解答】解:∵DE∥BC,∴=,∴=,∴AB=6,故选:A.6.(3分)下列说法正确的是( )A.对角线相等且互相垂直的四边形是正方形B.坡面的水平宽度与铅直高度的比称为坡度C.两个相似图形也是位似图形D.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧【解答】解:A、对角线相等且互相垂直的平行四边形是正方形,故此选项错误;B、坡面的铅直高度与水平宽度的比称为坡度,故此选项错误;C、两个相似图形不一定位似图形,故此选项错误;D、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,正确.故选:D.7.(3分)如图,⊙O为△ABC的外接圆,∠BAC=55°,则∠OBC的度数为( )A.25°B.35°C.55°D.70°【解答】解:∵⊙O为△ABC的外接圆,∠BAC=55°,∴∠BOC=2∠BAC=2×55°=110°,∵OB=OC,∴∠OBC===35°.故选:B.8.(3分)在一个不透明的袋子里装有20个红球和若干个蓝球,这些球除颜色外都相同将袋子中的球搅拌均匀,每次从袋子里随机摸出一个球,记录下它的颜色后再放回袋子中,不断重复这一过程,发现摸到蓝球的频率稳定在0.6左右,请你估计袋子中装有蓝球的个数是( )A.12个B.20个C.30个D.35个【解答】解:设袋中蓝球有x个,根据题意得:=0.6,解得:x=30,经检验:x=30是分式方程的解,故袋中蓝球有30个.故选:C.9.(3分)在2020年元旦期间,某商场销售某种冰箱,每台进货价为2500元,调查发现:当销售价为2900元时,平均毎天能销售出8台;而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?设每台冰箱定价x元,根据题意,可列方程为( )A.(x﹣2500)(8+4×)=5000B.(x﹣2500)(8+4×)=5000C.(2900﹣x﹣2500)(8+4×)=5000D.(2900﹣x)(8+4×)=5000【解答】解:设每台冰箱定价x元时,种冰箱的销售利润平均每天达到5000元,由题意得:(x﹣2500)(8+4×)=5000,故选:B.10.(3分)已知二次函数y=ax2+bx+c(其中a,b,c为常数)的图象如图所示,有以下结论:①abc>0;②a+b+c=0;③2a﹣b=0;④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.其中正确结论的番号是( )A.①②④B.①③④C.①④D.③④【解答】解:抛物线开口向上,a>0,对称轴在y轴的右侧,a、b异号,因此b<0,与y轴的交点在负半轴,因此c<0,所以abc>0,故结论①正确;当x=1时,y=a+b+c<0,因此选项②是不正确的;对称轴为x=1,即﹣=1,也就是2a+b=0,因此选项③不正确;抛物线与x轴有两个不同的交点,因此方程ax2+bx+c=0有两个不相等的实数根.选项④正确;故选:C.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)已知=,则的值为 .【解答】解:=,则=,故答案为:.12.(4分)如图,在△ABC中,P为边AB上一点,且∠ACP=∠B,若AP=6,BP=4,则AC的长为 2 .【解答】解:∵AP=6,BP=4,∴AB=10,∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,∴,∴AC2=6×10,∴AC=2,故答案为:2.13.(4分)已知关于x的元二次方程x2﹣2kx﹣8=0的一个根是2,则此方程的另一个根是 ﹣4 .【解答】解:设该方程的另外一个根为x,由根与系数的关系可知:2x=﹣8,∴x=﹣4,故答案为:﹣414.(4分)如图,现将四根木条钉成的矩形框ABCD变形为平行四边形木框A'BCD′,且A′D′与CD相交于CD边的中点E,若AB=4,则△ECD′的面积是 2 .【解答】解:作A'F⊥BC于F,如图所示:则∠A'FB=90°,根据题意得:平行四边形A′BCD′的面积=BC•A'F=BC•AB,∴A'F=AB=2,∴∠D'=∠A'BC=30°,∴BF=A'F=2,∵四边形ABCD是矩形,四边形A′BCD′是平行四边形,∴BC=AD=A'D',A'D'∥AD∥BC,CD⊥BC,∴CD⊥A'D',∴A'F∥CD,∴四边形A'ECF是矩形,∴CE=A'F=2,A'E=CF,∴DE=BF=2,∴△ECD的面积=DE×CE=×2×2=2;故答案为2.三、解答題(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:﹣22+(π﹣3.14)0﹣|﹣4|﹣4sin60°(2)解方程:4x2+4x﹣3=0【解答】解:(1)原式=﹣4+1﹣(4﹣2)﹣4×=﹣3﹣4+2﹣2=﹣7;(2)∵4x2+4x﹣3=0,∴(2x+3)(2x﹣1)=0,则2x+3=0或2x﹣1=0,解得x=﹣或x=.16.(6分)2019年9月10日是我国第35个教师节,某中学德育处发起了感恩小学恩师的活动,德育处要求每位同学从以下三种方式中选择一种方式表达感恩:A.信件感恩,B.信息感恩,C.当面感恩.为了解同学们选择以上三种感恩方式的情况,德育处随机对本校部分学生进行了调查,并根据调查结果绘制成了如下两幅不完整的统计图.根据图中信息解答下列问题:(1)扇形统计图中C部分所对应的扇形圆心角的度数为 120° ,并补全条形统计图;(2)本次调查在选择A方式的学生中有两名男生和两名女生来自于同一所小学,德育处打算从他们四个人中选择两位在主题升旗仪式上发言,请用画树状图或列表的方法求恰好选到一男一女的概率.【解答】解:(1)被调查的总人数为15÷25%=60(人),C类的总人数=60﹣25﹣15=20(人)所以扇形统计图中C部分所对应的扇形圆心角的度数为360°×=120°,补全条形统计图如图所示:故答案为:120°;(2)画树状图如下:共有12种可能的结果,恰好选到一男一女的结果有8个,∴P(选到一男一女)==.17.(8分)2019年10月1日,中华人民共和国成立70周年,成都市天府广场举行了盛大的升旗仪式,我市部分学生有幸见证了这一激动人心的时刻,并在现场作了如下测量工作:身高1.8米的某同学(图中AE部分)在护旗手开始走正步的点A处测得旗杆顶部D 的仰角为22°,在护旗手结束走正步的点B处测得旗杆顶部D的仰角为45°,又测量得到A,B两点间的距离是30米,求旗杆DC的高度.(结果精确到0.1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40.)【解答】解:延长EF交CD于G,∵∠DEF=22°,∠DFG=45°,∴在Rt△DGF中,DG=GF,在Rt△DGE中,tan22°=,即EG=≈2.5DG,∵2.5DG﹣DG=30,解得DG=20,则DC=DG+CG=20+1.8=21.8(米).答:旗杆DC的高度大约是21.8米.18.(8分)如图,在正方形ABCD中,点E,F在对角线BD上,AE∥CF,连接AF,CE.(1)求证:△ABE≌△CDF;(2)试判断四边形AECF的形状,并说明理由.【解答】解:(1)证明:∵在正方形ABCD中,AB=CD,∠ABE=∠CDF=45°,又∵AE∥CF,∴∠AEF=∠CFE(两直线平行,内错角相等),∴∠AEB=∠CFD(等角的补角相等),∴△ABE≌△CDF(AAS);(2)四边形AECF是菱形.理由如下:如图,连接AC,与BD交于点O,∵△ABE≌△CDF,∴BE=DF,又∵OB=OD,∴OB﹣BE=OD﹣DF,即OE=OF,又∵AC⊥EF,OA=OC,∴四边形AECF是菱形.19.(10分)如图,在平面直角坐标系xOy中,一次函数y=﹣x+5的图象与反比例函数y=(k>0)的图象相交于A,B两点,与x轴相交于点C,连接OB,且△BOC的面积为.(1)求反比例函数的表达式;(2)将直线AB向下平移,若平移后的直线与反比例函数的图象只有一个交点,试说明直线AB向下平移了几个单位长度?【解答】解:(1)一次函数y=﹣x+5中,令y=0,解得x=5,∴C(5,0),∴OC=5,作BD⊥OC于D,∵△BOC的面积为,∴OC•BD=,即BD=,∴BD=1,∴点B的纵坐标为1,代入y=﹣x+5中,求得x=4,∴B(4,1),∵反比例函数y=(k>0)的图象经过B点,∴k=4×1=4,∴反比例函数的解析式为y=;(2)将直线AB向下平移m(m>0)个单位长度得直线解析式为y=﹣x+5﹣m,∵直线AB向下平移m(m>0)个单位长度后与反比例函数的图象只有一个公共交点,∴=﹣x+5﹣m,整理得x2+(m﹣5)x+4=0,△=(m﹣5)2﹣4×1×4=0,解得m=9或m=1,即m的值为1或9.20.(10分)如图,⊙O是△ABC的外接圆,AB为⊙O的直径,在△ABC外侧作∠CAD=∠CAB,过点C作CD⊥AD于点D,交AB延长线于点P.(1)求证:PC是⊙O的切线;(2)若tan∠BCP=,AD•BC=4m2(m>0),求⊙O的半径;(用含m的代数式表示)(3)如图2,在(2)的条件下,作弦CF平分∠ACB,交AB于点E,连接BF,且BF=5,求线段PE的长.【解答】解:(1)如图1,连接OC,则OA=OC,则∠OAC=∠OCA=α,而∠CAD=∠CAB=α,故∠DAC=∠OCA=α,∴AD∥CO,而CD⊥AD,∴CO⊥PD,故PC是⊙O的切线;(2)PC是⊙O的切线,则∠BCP=∠CAB=α,即tan,则sin,cos,∵∠DAC=∠CAB=α,∴△ADC∽△ABC,设圆的半径为R,则AC=AB cosα=2R×=,CD=AC sinα=,故AD•BC=AC•CD==4m2,故R=m;(3)连接OF、OC,CF平分∠ACB,则FO⊥AB,∵∠ECP=90°﹣∠OCE,∠CEP=90°﹣∠OFC,而∠OCE=∠OFC,∴∠ECP=∠CEP,∴PC=PE,BF=5=R,则R=5,AD=AC cosα=×=8,同理CD=4,∵CO∥AD,∴,即,解得:PC==PE.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上B卷(共50分)21.(4分)已知方程x2﹣x﹣7=0的两个实数根分别为m,n,则m2+n的值为 8 .【解答】解:由题意可知:m2﹣m﹣7=0,∴m2=m+7,∵m+n=1,∴原式=m+7+n=8,故答案为:8.22.(4分)“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表述为:“如图,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,求直径CD的长”.(1尺=10寸)则CD= 26寸 .【解答】解:连接OA,如图所示,设直径CD的长为2x寸,则半径OC=x寸,∵CD为⊙O的直径,弦AB⊥CD于E,AB=10寸,∴AE=BE=AB=×10=5寸,连接OA,则OA=x寸,根据勾股定理得x2=52+(x﹣1)2,解得x=13,CD=2x=2×13=26(寸).故答案为:26寸.23.(4分)我们知道黄金比例是,利用这个比例,我们规定一种“黄金算法”即:a b=a+b,比如12=1+×2=.若x(24)=5,则x的值为 .【解答】解:∵24=2+×4=2,∴x2=x+×2=x+5﹣∴x+5﹣=5,∴x=.故答案为.24.(4分)如图,点P为双曲线y=(x<0)上一动点,连接OP并延长到点A,使PA=PO,过点A作x轴的垂线,垂足为B,交双曲线于点C.当AC=AP时,连接PC,将△APC沿直线PC进行翻折,则翻折后的△A′PC与四边形BOPC的重叠部分(图中阴影部分)的面积是 .【解答】解:连接OC,BP,则,∴,∵AP=AC,将△APC沿直线PC进行翻折得△A′PC,∴AP=AC=A'C=A'P,∴四边形ACA'P为菱形,∴PA'∥AB,A'C∥OA,∵AB⊥x轴,∴PA'⊥x轴,∴=4,∴,∴OB•BC=OD•PD,∵AP=OP,PD∥AB,∴OD=BD,∴PD=,OD=OB,∵CE∥OA,∴∠CEB=∠POD,∵∠CBE=∠PDO=90°,∴△BCE∽△DPO,∴,∵OB•BC=OD•PD,OD=OB,∴BC=PD=AB,∴,,∴,∴,∵DP∥AB,∴△OPD∽△OAB,∴,∴,∵OP=AP,∴,∴,∴.25.(4分)如图,在矩形ABCD中,已知AB=3,BC=4,点P是边BC上一动点(点P 不与点B,C重合),连接AP,作点B关于直线AP的对称点M,连接MP,作∠MPC的角平分线交边CD于点N.则线段MN的最小值为 .【解答】解:连接AM、AN,如图所示:∵点B关于直线AP的对称点M,∴AM=AB=3,∵MN≥AN﹣AM,当A、M、N三点共线时,MN取最小值,此时,MN=AN﹣AM=AN﹣3,∴当AN取最小值时,MN最小,∵AN=,AD=BC=4,是定值,∴当DN最小时,AN最小,∵点B关于直线AP的对称点M,∴∠APB=∠APM,∵PN平分∠MPC,∴∠MPN=∠CPN,∴∠APN=(∠BPM+∠CPM)=×180°=90°,∵∠ABP=∠PCN=90°,∴∠APB+∠NPC=∠APB+∠BAP,∴∠NPC=∠BAP,∴△ABP∽△PCN,∴=,设BP=x,PC=4﹣x,∴=,∴CN=﹣(x2﹣4x)=﹣(x﹣2)2+,∴当x=2时,CN最大为:,∴DN最小值为:CD﹣CN=3﹣=,∴AN最小值===,∴线段MN的最小值为:﹣3=,故答案为:.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)据报道,从2018年8月以来,“非洲猪瘟”给生猪养殖户带来了不可估量的损失.某养殖户为了预防“非洲猪瘟”的侵袭,每天对猪场进行药熏消毒,已知一瓶药物释放过程中,一个圈舍内每立方米空气中含药量y(毫克)与时间x(分钟)之间满足正比例函数关系;药物释放完后,y与x之间满足反比例函数关系,如图所示,结合图中提供的信息解答下列问题:(1)分别求当0≤x≤10和x>10时,y与x之间满足的函数关系式;(2)据测定,当空气中每立方米的含药量不低于6毫克时,消毒才有效,那么这次熏药的有效消毒时间是多少分钟.【解答】解:(1)当0≤x≤10,设y与x之间满足的函数关系式为y=kx,∵过点(10,30),∴30=10k,解得:k=3,∴y=3x(0≤x≤10),x>10时,设y与x之间满足的函数关系式为y=,∵过点(10,30),∴30=,k=300,∴y=(x>10);(2)y=3x(0≤x≤10)中,当y≥6时,x≥2,y=(x>10)中,当y≥6时,x≤50,∴2≤x≤50,∴这次熏药的有效消毒时间是:50﹣2=48(分钟)答:这次熏药的有效消毒时间是48分钟.27.(10分)如图,已知AC为正方形ABCD的对角线,点P是平面内不与点A,B重合的任意一点,连接AP,将线段AP绕点P顺时针旋转90°得到线段PE,连接AE,BP,CE.(1)求证:△APE∽△ABC;(2)当线段BP与CE相交时,设交点为M,求的值以及∠BMC的度数;(3)若正方形ABCD的边长为3,AP=1,当点P,C,E在同一直线上时,求线段BP 的长.【解答】解:(1)∵AC是正方形ABCD的对角线,∴∠ABC=90°,∠BAC=∠BCA=45°,由旋转知,PA=PE,∠APE=90°=∠ABC,∴∠PAE=∠PEA=45°=∠BAC,∴△APE∽△ABC;(2)在Rt△ABC中,AB=CB,∴AC=AB,由(1)知,△APE∽△ABC,∴,∵∠BAC=∠PAE=45°,∴∠PAB=∠EAC,∴△PAB∽△EAC,∴==,∵△PAB∽△EAC,∴∠ABP=∠ACE,∴∠BCE+∠CBM=∠BCE+∠ABP+∠ABC=∠BCE+∠ACE+∠ABC=∠ACB+∠ABC=45°+90°=135°,∴∠BMC=180°﹣(∠BCE+∠CBM)=45°;(3)如图,在Rt△ABC中,AB=BC=3,∴AC=3,∵点P,C,E在同一条线上,且∠APE=90°,∴CP==,∴CE=CP﹣PE=﹣1或CE'=CP'+P'E=+1,由(2)知,=,∴BP=CE=(﹣1)=或BP'=CE'=;即:BP的长为或.28.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+x+c与x轴交于A,B两点(点A在点B的左侧),交y轴于点C,经过B,C两点的直线为y=.(1)求抛物线的函数表达式;(2)点P为抛物线上的动点,过点P作x轴的垂线,交直线BC于点M,连接PC,若△PCM为直角三角形,求点P的坐标;(3)当P满足(2)的条件,且点P在直线BC上方的抛物线上时,如图2,将抛物线沿射线BC方向平移,平移后B,P两点的对应点分别为B′,P′,取AB的中点E,连接EB′,EP′,试探究EB'+EP'是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.【解答】解:(1)y=,过点B,C,则点B、C的坐标分别为:(3,0)、(0,),则c=,将点B的坐标代入抛物线表达式并解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+;(2)①当∠PCM=90°时,由点A、B、C的坐标知,△ABC为直角三角形,故AC⊥BC,当△PCM为直角三角形时,点P与点A重合,∴点P(﹣1,0);②当∠CPM=90°时,则点C、P关于函数对称轴对称,此时点P(2,),故点P的坐标为(﹣1,0)或(2,);(3)存在,理由:点P(2,),设图象沿BC方向向左平移3m个单位,则向上平移m个单位,则平移后点B′、P′的坐标分别为:(3﹣3m,m)、(2﹣3m,m+),点E(1,0),分别过点A、E作直线BC的平行线n、m,过点B′作直线m的对称点B″,则EB′=EB″,当B″、E、P′三点共线时,EB'+EP'=EB″+EP′=B″P′最小;点E是AB的中点,则直线m与直线n、直线m与直线BC等距离,则点B″在直线n上,直线BC的倾斜角为30°,则直线B′B″的倾斜角为60°,则设直线B′B″的表达式为:y=x+b,将点B′的坐标代入上式并解得:直线B′B″表达式为:y=x+(4m﹣3)…①,第31页(共31页)设过点A 的直线n 的表达式为:y =﹣x +b ′,将点A 的坐标代入上式并解得:直线n 的表达式为:y =﹣(x +1)…②,联立①②并解得:x =2﹣3m ,故点B ″(2﹣3m ,m ﹣),而P ′(2﹣3m ,m +),故EB '+EP '的最小值B ″P ′=2.。

2020年四川省成都市中考数学训练试卷(四) 解析版

2020年四川省成都市中考数学训练试卷(四)  解析版

2020年四川省成都市中考数学训练试卷(四)一.选择题(共10小题)1.的倒数是()A.B.C.D.2.下列几何体,俯视图是正方形的是()A.正方体B.球C.圆锥D.圆柱体3.若分式有意义,则x的取值范围是()A.x>﹣2B.x≠﹣2C.x<﹣2D.x≠24.在△ABC中,∠B=∠C,AC=5,则AB的长为()A.2B.3C.4D.55.2016年参加成都市中考的人数为11.7万人,将11.7万用科学记数法表示为()A.1.17×105B.11.7×104C.0.017×106D.1.17×1066.下列计算正确的是()A.×(﹣5)=2B.4﹣8=﹣4C.2﹣3=8D.(﹣2017)0=0 7.在平面直角坐标系中,下列函数图象经过原点的是()A.y=﹣2x+3B.y=C.y=x(x﹣2 )D.y=x﹣18.二次函数y=(x﹣1)2﹣2的顶点坐标是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(1,2)9.如图,△ABC内接于⊙O,∠OBC=25°,则∠A的度数为()A.70°B.65°C.60°D.50°10.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7B.9C.10D.11二.填空题11.不等式3x﹣1>﹣4的解集为.12.直角三角形一直角边的长是3,斜边长是5,则此直角三角形的面积为.13.某商场有一自动扶梯,其倾斜角为30°,高为4m,则扶梯的长度是m.14.在某公益活动中,某社区对本社区的捐款情况进行了统计,如图是该社区捐款情况的条形统计图,则本次捐款金额的中位数是元.三.解答题(15.(1)计算:(﹣1)2+2sin30°﹣+(π﹣2017)0(2)解方程组:.16.化简:(﹣)•.17.如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是45°,若坡角∠F AE=30°,求大树的高度(结果保留根号)18.如图所示,小明和小亮用转盘做游戏,小明转动的A盘被等分成4个扇形,小亮转动的B盘被等分成3个扇形,两人分别转动转盘一次.(1)用列表法或画树状图求恰好“配成紫色”的概率(红色与蓝色配成紫色);(2)若“配成紫色”小明胜,否则小亮胜,这个游戏对双方公平吗?说说你的理由.19.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(1,3),B(﹣3,n)两点,与y轴相交于点C.(1)求反比例函数与一次函数的表达式;(2)在x轴上找一点P,使|P A﹣PB|的值最大,求满足条件的点P的坐标及△P AB的面积.20.如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E 作直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.B卷一.填空题21.若x﹣y=﹣1,则代数式5﹣2x+2y的值是.22.已知关于x的分式方程﹣=1的解为正数,则m的取值范围是.23.如图,将长为2,宽为a的矩形纸片(1<a<2)按照以下方法裁剪:①剪去一个边长等于矩形宽度的正方形(称为第一次操作);②把剩下的矩形剪去一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第三次操作后,剩下的图形恰好是正方形,则a的值为.24.如图,菱形ABCD中,∠ABC=60°,AB=2,E、F分别是边BC和对角线BD上的动点,且BE=DF,则AE+AF的最小值为.25.如图,AB为⊙O的直径,AC为⊙O的弦,∠BAC的平分线交⊙O于D,DE⊥AC交AC的延长线于E,连接OE交AD于F,若cos∠BAC=,AF=8,则DF的长为.二.解答题26.科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程:①在科研所到宿舍楼之间修一条笔直的道路;②对宿舍楼进行防辐射处理,已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为y=a+b(0≤x≤9).当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿舍楼的距离为9km或大于9km时,辐射影响忽略不计,不进行防辐射处理.设每公里修路的费用为m万元,配套工程费w=防辐射费+修路费.(1)当科研所到宿舍楼的距离x=9km时,防辐射费y=万元,a=,b =;(2)若每公里修路的费用为90万元,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?(3)如果配套工程费不超过675万元,且科研所到宿舍楼的距离小于9km,求每公里修路费用m万元的最大值.27.如图,BM、DN分别平分正方形ABCD的两个外角,且∠MAN=45°,连接MN.(1)猜想以线段BM、DN、MN为三边组成的三角形的形状,并证明你的结论;(2)若△AMN为等腰直角三角形,探究线段BM、DN之间的数量关系;(3)当MN∥AD时,直接写出的值.28.如图,抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=x﹣a 分别与x轴、y轴相交于B、C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示点M、A的坐标;(2)将△NAC沿y轴翻折,若点N的对称点N′恰好落在抛物线上,AN′与抛物线的对称轴相交于点D,连接CD,求a的值及△N′CD的面积;(3)在抛物线上是否存在点P,使得以P、A、C、N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.的倒数是()A.B.C.D.【分析】根据乘积是1的两个数互为倒数解答.【解答】解:∵(﹣)×(﹣)=1,∴﹣的倒数是﹣.故选:C.2.下列几何体,俯视图是正方形的是()A.正方体B.球C.圆锥D.圆柱体【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:A.正方体的俯视图是正方形,故本选项符合题意;B.球的俯视图是圆,故本选项不合题意;C.正立放置的圆锥的俯视图是圆,故本选项不合题意;D.正立放置的圆柱体的俯视图是圆,故本选项不合题意.故选:A.3.若分式有意义,则x的取值范围是()A.x>﹣2B.x≠﹣2C.x<﹣2D.x≠2【分析】直接利用分式有意义的条件得出答案.【解答】解:若分式有意义,则x+2≠0,解得:x≠﹣2.故选:B.4.在△ABC中,∠B=∠C,AC=5,则AB的长为()A.2B.3C.4D.5【分析】根据等腰三角形的性质直接写出答案即可.【解答】解:∵△ABC中,∠B=∠C,∴AB=AC,∵AC=5,∴AB=5,故选:D.5.2016年参加成都市中考的人数为11.7万人,将11.7万用科学记数法表示为()A.1.17×105B.11.7×104C.0.017×106D.1.17×106【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:11.7万=117000=1.17×105.故选:A.6.下列计算正确的是()A.×(﹣5)=2B.4﹣8=﹣4C.2﹣3=8D.(﹣2017)0=0【分析】直接利用有理数的乘法运算法则以及负整数指数幂的性质和零指数幂的性质分别化简得出答案.【解答】解:A、×(﹣5)=﹣2,故此选项错误;B、4﹣8=﹣4,正确;C、2﹣3=,故此选项错误;D、(﹣2017)0=1,故此选项错误.故选:B.7.在平面直角坐标系中,下列函数图象经过原点的是()A.y=﹣2x+3B.y=C.y=x(x﹣2 )D.y=x﹣1【分析】将(0,0)代入各选项进行判断即可.【解答】解:A、当x=0时,y=3,不经过原点,故本选项错误;B、当x=0时,y=无意义,不经过原点,故本选项错误;C、当x=0时,y=0,经过原点,故本选项正确;D、当x=0时,y=﹣1,不经过原点,故本选项错误.故选:C.8.二次函数y=(x﹣1)2﹣2的顶点坐标是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(1,2)【分析】已知解析式为抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【解答】解:因为y=(x﹣1)2﹣2是抛物线的顶点式,根据顶点式的坐标特点,顶点坐标为(1,﹣2).故选:C.9.如图,△ABC内接于⊙O,∠OBC=25°,则∠A的度数为()A.70°B.65°C.60°D.50°【分析】由OB=OC,得∠OCB=∠OBC,而∠OBC=25°,得到∠OCB=∠OBC=25°,因此∠COB=180°﹣25°﹣25°=130°,由圆周角定理得到∠A=∠COB.【解答】解:∵OB=OC,∠OBC=25°,∴∠OCB=∠OBC=25°,∴∠COB=180°﹣25°﹣25°=130°,∴∠A=∠COB=×130°=65°.故选:B.10.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7B.9C.10D.11【分析】根据勾股定理求出BC的长,根据三角形的中位线定理得到HG=BC=EF,EH=FG=AD,求出EF、HG、EH、FG的长,代入即可求出四边形EFGH的周长.【解答】解:∵BD⊥DC,BD=4,CD=3,由勾股定理得:BC==5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴HG=BC=EF,EH=FG=AD,∵AD=6,∴EF=HG=2.5,EH=GF=3,∴四边形EFGH的周长是EF+FG+HG+EH=2×(2.5+3)=11.故选:D.二.填空题\11.不等式3x﹣1>﹣4的解集为x>﹣1.【分析】直接利用一元一次不等式的解法进而分析得出答案.【解答】解:3x﹣1>﹣4,则3x>﹣3,解得:x>﹣1.故答案为:x>﹣1.12.直角三角形一直角边的长是3,斜边长是5,则此直角三角形的面积为6.【分析】根据勾股定理可以求得另一条直角边的长,然后即可求得此直角三角形的面积.【解答】解:∵直角三角形一直角边的长是3,斜边长是5,∴另一条直角边为=4,∴此直角三角形的面积为:=6,故答案为:6.13.某商场有一自动扶梯,其倾斜角为30°,高为4m,则扶梯的长度是8m.【分析】根据含30°的直角三角形的性质解答即可.【解答】解:∵自动扶梯,其倾斜角为30°,高为4m,则扶梯的长度是2×4=8m,故答案为:8.14.在某公益活动中,某社区对本社区的捐款情况进行了统计,如图是该社区捐款情况的条形统计图,则本次捐款金额的中位数是200元.【分析】由统计图可知,捐款金额为50元的有5人,100元的有18人,200元的有17人,200元以上的有8人,共有48人参加捐款,中位数是将捐款金额从小到大排列后处在第24、25位都是200元,因此捐款金额的中位数是200元.【解答】解:共有5+18+17+8=48人参加捐款,将捐款金额从小到大排列,处在第24、25位的两个数都是200元,因此中位数是200元,故答案为:200.三.解答题15.(1)计算:(﹣1)2+2sin30°﹣+(π﹣2017)0(2)解方程组:.【分析】(1)本题涉及零指数幂、平方、特殊角的三角函数值、三次根式化简4个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.(2)根据加减消元法解方程即可得解.【解答】解:(1)(﹣1)2+2sin30°﹣+(π﹣2017)0=1+2×﹣2+1=1+1﹣2+1=1;(2),②﹣①得3y=3,解得y=1;把y=1代入①得x﹣1=2,解得x=3.故原方程组的解是.16.化简:(﹣)•.【分析】先计算括号内减法,然后计算乘法.【解答】解(﹣)•=•=x+2.17.如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是45°,若坡角∠F AE=30°,求大树的高度(结果保留根号)【分析】过点D作DG⊥BC于G,DH⊥CE于H,设BC为x米,根据矩形的性质得出DG=CH,CG=DH,再利用锐角三角函数的性质求x的值即可.【解答】解:如图,过点D作DG⊥BC于G,DH⊥CE于H,则四边形DHCG为矩形.故DG=CH,CG=DH,在直角三角形AHD中,∵∠DAH=30°,AD=6米,∴DH=3米,AH=3米,∴CG=3米,设BC为x米,在直角三角形ABC中,AC==x米,∴DG=(3+x)米,BG=(x﹣3)米,在直角三角形BDG中,∵BG=DG•tan30°,∴x﹣3=(3+x)×,解得:x=9,∴BC=(9)米.答:大树的高度为(9)米.18.如图所示,小明和小亮用转盘做游戏,小明转动的A盘被等分成4个扇形,小亮转动的B盘被等分成3个扇形,两人分别转动转盘一次.(1)用列表法或画树状图求恰好“配成紫色”的概率(红色与蓝色配成紫色);(2)若“配成紫色”小明胜,否则小亮胜,这个游戏对双方公平吗?说说你的理由.【分析】(1)根据题意,用列表法将所有可能出现的结果,根据概率公式即可得答案;(2)由(1)的表格,分析可能得到紫色的概率,继而可得小亮获胜,得到结论不公平.【解答】解:(1)用列表法将所有可能出现的结果表示如下:所有可能出现的结果共有12种.红蓝黄蓝(红,蓝)(蓝,蓝)(黄,蓝)红(红,红)(蓝,红)(黄,红)黄(红,黄)(蓝,黄)(黄,黄)红(红,红)(蓝,红)(黄,红)则两人转动转盘得到的两种颜色能配成紫色的概率为=;(2)不公平.上面等可能出现的12种结果中,有3种情况可能得到紫色,故配成紫色的概率是,即小明获胜的概率是;小亮获胜的概率为1﹣=,而>,即小亮获胜的概率大,∴这个“配色”游戏对双方是不公平的.19.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(1,3),B(﹣3,n)两点,与y轴相交于点C.(1)求反比例函数与一次函数的表达式;(2)在x轴上找一点P,使|P A﹣PB|的值最大,求满足条件的点P的坐标及△P AB的面积.【分析】(1)通过反比例函数过点A,求出反比例函数的表达式,进而求出点B的坐标,进而求解;(2)证明|P A﹣PB|=|P A′﹣PB|=A′B为最大,即可求出点P的坐标,利用△P AB的面积S=S△AA′P﹣S△AA′B=×AA′(x B﹣x P),即可求解.【解答】解:(1)反比例函数过点A,则m=1×3=3,故反比例函数的表达式为:y=,将点B的坐标代入上式并解得:n=﹣1,故点B(﹣3,﹣1),将点A、B的坐标代入一次函数表达式得,解得,故直线AB的表达式为:y=x+2;(2)过点A作x轴的对称轴A′(1,﹣3),连接A′B交x轴于点P,|P A﹣PB|=|P A′﹣PB|=A′B为最大,由点A′、B的坐标,同理可得直线A′P的表达式为:y=﹣x﹣,令y=0,则x=﹣5,故点P(﹣5,0),△P AB的面积S=S△AA′P﹣S△AA′B=×AA′(x B﹣x P)=×(3+3)×(﹣3+5)=6.20.如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E 作直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.【分析】(1)连接OE.由题意可证明,于是得到∠BOE=∠COE,由等腰三角形三线合一的性质可证明OE⊥BC,于是可证明OE⊥l,故此可证明直线l与⊙O相切;(2)先由角平分线的定义可知∠ABF=∠CBF,然后再证明∠CBE=∠BAF,于是可得到∠EBF=∠EFB,最后依据等角对等边证明BE=EF即可;(3)先求得BE的长,然后证明△BED∽△AEB,由相似三角形的性质可求得AE的长,于是可得到AF的长.【解答】解:(1)直线l与⊙O相切.理由:如图1所示:连接OE.∵AE平分∠BAC,∴∠BAE=∠CAE.∴.∴OE⊥BC.∵l∥BC,∴OE⊥l.∴直线l与⊙O相切.(2)∵BF平分∠ABC,∴∠ABF=∠CBF.又∵∠CBE=∠CAE=∠BAE,∴∠CBE+∠CBF=∠BAE+∠ABF.又∵∠EFB=∠BAE+∠ABF,∴∠EBF=∠EFB.∴BE=EF.(3)由(2)得BE=EF=DE+DF=7.∵∠DBE=∠BAE,∠DEB=∠BEA,∴△BED∽△AEB.∴,即,解得;AE=.∴AF=AE﹣EF=﹣7=.21.若x﹣y=﹣1,则代数式5﹣2x+2y的值是7.【分析】所求式子后两项提取﹣2变形后,将x﹣y的值代入计算即可求出值.【解答】解:∵x﹣y=﹣1,∴5﹣2x+2y=5﹣2(x﹣y)=5+2=7.故答案为:7.22.已知关于x的分式方程﹣=1的解为正数,则m的取值范围是﹣≤m<﹣1.【分析】去分母将分式方程转化为整式方程x2﹣x﹣2﹣2m=0,根据关于x的分式方程﹣=1的解为正数,得出1﹣4(﹣2﹣2m)≥0,且﹣2﹣2m>0,求出m的范围,再将(x+2)(x﹣2)=0的m的值去掉即可.【解答】解:去分母得m(x+2)﹣(x+m)(x﹣2)=(x+2)(x﹣2),整理,得x2﹣x﹣2﹣2m=0,∵关于x的分式方程﹣=1的解为正数,∴方程x2﹣x﹣2﹣2m=0的解为正数,∴1﹣4(﹣2﹣2m)≥0,﹣2﹣2m>0,∴﹣≤m<﹣1,∵x=2时,m=0;x=﹣2时,m=2,∴﹣≤m<﹣1,故答案为:﹣≤m<﹣1.23.如图,将长为2,宽为a的矩形纸片(1<a<2)按照以下方法裁剪:①剪去一个边长等于矩形宽度的正方形(称为第一次操作);②把剩下的矩形剪去一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第三次操作后,剩下的图形恰好是正方形,则a的值为或.【分析】根据a的求值范围不同进行讨论,求出满足题意的a值即可.【解答】解:第一次操作后剩下的矩形长为:2﹣a,第二次操作后剩下的矩形的边长分别为:2﹣a,2a﹣2,当2﹣a>2a﹣2,a<时,2﹣a=2(2a﹣2),解得:a=;当2﹣a<2a﹣2,a>时,2(2﹣a)=2a﹣2,解得:a=;综上所述,a的值为或;故答案为:或.24.如图,菱形ABCD中,∠ABC=60°,AB=2,E、F分别是边BC和对角线BD上的动点,且BE=DF,则AE+AF的最小值为2.【分析】如图,BC的下方作∠CBT=30°,在BT上截取BT,使得BT=AD,连接ET,AT.证明△ADF≌△TBE(SAS),推出AF=ET,AE+AF=AE+ET,根据AE+ET≥AT求解即可.【解答】解:如图,BC的下方作∠CBT=30°,在BT上截取BT,使得BT=AD,连接ET,AT.∵四边形ABCD是菱形,∠ABC=60°,∴∠ADC=∠ABC=60°,∠ADF=∠ADC=30°,∵AD=BT,∠ADF=∠TBE=30°,DF=BE,∴△ADF≌△TBE(SAS),∴AF=ET,∵∠ABT=∠ABC+∠CBT=60°+30°=90°,AB=AD=BT=2,∴AT===2,∴AE+AF=AE+ET,∵AE+ET≥AT,∴AE+AF≥2,∴AE+AF的最小值为2,故答案为2.255.如图,AB为⊙O的直径,AC为⊙O的弦,∠BAC的平分线交⊙O于D,DE⊥AC交AC的延长线于E,连接OE交AD于F,若cos∠BAC=,AF=8,则DF的长为5.【分析】连接BD,过D作DH⊥AB于H,根据cos∠DOH=cos∠CAB═=,设OD=5x,则AB=10x,OH=3x,DH=4x.由勾股定理得:AD2=80x2,证△EAD∽△DAB求出AD2=AE•AB=AE•10x,得出AE=8x,根据△ODF∽△EAF即可得到结论.【解答】解:过D作DH⊥AB于H,连接BD、OD,则∠CAB=∠DOH,∵cos∠DOH=cos∠CAB==,设OD=5x,则AB=10x,OH=3x,DH=4x.在Rt△ADH中,由勾股定理得:AD2=(4x)2+(5x+3x)2=80x2,∵DE⊥AC,AB是⊙O直径,∴∠AED=∠ADB=90°,∵∠EAD=∠BAD(角平分线定义),∴△EAD∽△DAB,∴=,∴AD2=AE•AB=AE•10x,∴AE=8x,∵OD∥AE,∴△ODF∽△EAF,∴===,∵AF=8,∴DF=5.故答案为:5.26.科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程:①在科研所到宿舍楼之间修一条笔直的道路;②对宿舍楼进行防辐射处理,已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为y=a+b(0≤x≤9).当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿舍楼的距离为9km或大于9km时,辐射影响忽略不计,不进行防辐射处理.设每公里修路的费用为m万元,配套工程费w=防辐射费+修路费.(1)当科研所到宿舍楼的距离x=9km时,防辐射费y=0万元,a=﹣360,b =1080;(2)若每公里修路的费用为90万元,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?(3)如果配套工程费不超过675万元,且科研所到宿舍楼的距离小于9km,求每公里修路费用m万元的最大值.【分析】(1)当科研所到宿舍楼的距离为9km或大于9km时,辐射影响忽略不计,不进行防辐射处理,所以当科研所到宿舍楼的距离x=9km时,防辐射费y=0万元,根据题意得方程组,即可求出a,b的值;(2)科研所到宿舍楼的距离为xkm,配套工程费为w元,分两种情况:①当x<9时,w=﹣360+1080+90x=90+720,②当x≥9时,w=90x,分别求出最小值,即可解答;(3)根据配套工程费不超过675万元,且科研所到宿舍楼的距离小于9km,列出不等式组,即可解答.【解答】解:(1)∵当科研所到宿舍楼的距离为9km或大于9km时,辐射影响忽略不计,不进行防辐射处理,∴当科研所到宿舍楼的距离x=9km时,防辐射费y=0万元,根据题意得:,解得:,故答案为:0,﹣360,1080.(2)科研所到宿舍楼的距离为xkm,配套工程费为w元,①当x<9时,w=﹣360+1080+90x=90+720,当=0时,即x=4,w有最小值,最小值为720万元;②当x≥9时,w=810,当x=9时,w有最小值,最小值为810万元,∴当x=4时,w有最小值,最小值为720万元;即当科研所到宿舍楼的距离4km时,配套工程费最少.(3)由题意得:,由①得:,由②得:,∴,w=,∴60<m≤80,∴每公里修路费用m万元的最大值为80.27.如图,BM、DN分别平分正方形ABCD的两个外角,且∠MAN=45°,连接MN.(1)猜想以线段BM、DN、MN为三边组成的三角形的形状,并证明你的结论;(2)若△AMN为等腰直角三角形,探究线段BM、DN之间的数量关系;(3)当MN∥AD时,直接写出的值.【分析】(1)过点A作AF⊥AN并截取AF=AN,连接BF、FM,根据同角的余角相等求出∠1=∠3,然后利用“边角边”证明△ABF和△ADN全等,根据全等三角形对应边相等可得BF=DN,∠FBA=∠NDA=135°,再求出∠F AM=∠MAN=45°,然后利用“边角边”证明△AFM和△ANM全等,根据全等三角形对应边相等可得FM=NM,再求出△FBM是直角三角形,然后利用勾股定理判断即可;(2)根据角平分线的定义求出∠CBM=∠CDN=45°,再求出∠ABM=∠ADN=135°,然后根据正方形的每一个角都是90°求出∠BAM+∠NAD=45°,三角形的一个外角等于与它不相邻的两个内角的和∠BAM+∠AMB=45°,从而得到∠NAD=∠AMB,再求出△ABM和△NDA相似,利用相似三角形对应边成比例列式求解即可;(3)连接BD并延长交MN延长线于点G,易证△DGN和△BGM均为等腰直角三角形,从而得出GN=DN、GM=BM,设BM=x、DN=y,由DN2+BM2=MN2知MN=(y﹣x),从而有x2+y2=[(y﹣x)]2,解之可得x=(2﹣)y,从而得出答案.【解答】解:(1)以BM,DN,MN为三边围成的三角形为直角三角形.证明如下:如图,过点A作AF⊥AN并截取AF=AN,连接BF、FM,∵∠1+∠BAN=90°,∠3+∠BAN=90°,∴∠1=∠3,在△ABF和△ADN中,,∴△ABF≌△ADN(SAS),∴BF=DN,∠FBA=∠NDA=135°,∵∠F AN=90°,∠MAN=45°,∴∠1+∠2=∠F AM=∠MAN=45°,在△AFM和△ANM中,,∴△AFM≌△ANM(SAS),∴FM=NM,∴∠FBP=180°﹣∠FBA=180°﹣135°=45°,∴∠FBP+∠PBM=45°+45°=90°,∴△FBM是直角三角形,∵FB=DN,FM=MN,∴以BM,DN,MN为三边围成的三角形为直角三角形;(2)∵BM、DN分别平分正方形的两个外角,∴∠CBM=∠CDN=45°,∴∠ABM=∠ADN=135°,∵∠MAN=45°,∴∠BAM+∠NAD=45°,在△ABM中,∠BAM+∠AMB=∠MBP=45°,∴∠NAD=∠AMB,在△ABM和△NDA中,,∴△ABM∽△NDA,∵△AMN是等腰直角三角形,∴;(3)连接BD并延长交MN延长线于点G,如图2,由题意知∠GDN=∠GBM=90°,∠ADN=135°,∵MN∥AD,∴∠GND=45°,∴∠G=90°﹣∠GND=45°,∴△DGN和△BGM均为等腰直角三角形,∴GN=DN,GM=BM,由(1)知,DN2+BM2=MN2,∴设BM=x,DN=y,则GM=x,GN=y,∴MN=(y﹣x),∴x2+y2=[(y﹣x)]2,∴x1=(2+)y(舍),x2=(2﹣)y,∴.28.如图,抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=x﹣a 分别与x轴、y轴相交于B、C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示点M、A的坐标;(2)将△NAC沿y轴翻折,若点N的对称点N′恰好落在抛物线上,AN′与抛物线的对称轴相交于点D,连接CD,求a的值及△N′CD的面积;(3)在抛物线上是否存在点P,使得以P、A、C、N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)先联立抛物线与直线的解析式得出关于x的方程,再由直线BC和抛物线有两个不同交点可知△>0,求出a的取值范围,令x=0求出y的值即可得出A点坐标,把抛物线的解析式化为顶点式的形式即可得出M点的坐标;(2)利用待定系数法求出直线MA的解析式,联立两直线的解析式可得出N点坐标,进而可得出N'点坐标,根据S△N'CD=S△N'AC﹣S△ADC可得出结论;(3)分点P在y轴左侧与右侧两种情况:先用a表示出点N,P的坐标,代入抛物线解析式中,即可得出结论.【解答】解:(1)由题意得,,整理得2x2+5x﹣4a=0,∵△=25+32a>0,解得a>﹣,∵a≠0,∴a>﹣且a≠0,令x=0,得y=a,∴A(0,a),∵y=﹣x2﹣2x+a=﹣(x+1)2+1+a,∴M(﹣1,1+a).(2)设直线MA的解析式为y=kx+b(k≠0),∵A(0,a),M(﹣1,1+a),∴,解得,∴直线MA的解析式为y=﹣x+a,联立得,,解得,∴N(,﹣),∵点N'是点N关于y轴的对称点,∴N'(﹣,﹣),将点N'的坐标代入y=﹣x2﹣2x+a得,﹣=﹣a2+a+a,解得a=或a=0(舍去),∴A(0,),C(0,﹣),M(﹣1,),|AC|=,∴S△N'CD=S△N'AC﹣S△ADC=|AC|•|x N'|﹣|AC|•|x0|=••(3﹣1)=;(3)如图,①当点P在y轴左侧时,∵四边形APCN是平行四边形,∴AC与PN互相平分,N(,﹣),∴P(﹣,);将点P的坐标代入y=﹣x2﹣2x+a得,=﹣a2+a+a,解得a=或a=0(舍),∴P(﹣,);②当点P在y轴右侧时,∵四边形ACPN是平行四边形,∴NP∥AC且NP=AC,∵N(,﹣),A(0,a),C(0,﹣a),∴P'(,﹣);将点P'的坐标代入y=﹣x2﹣2x+a得,﹣=﹣a2﹣a+a,解得a=或a=0(舍),∴P'(,﹣);综上所述,当点P(﹣,)和P'(,﹣)时,A、C、P、N能构成平行四边形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年四川省成都市中考数学模拟卷(十)A 卷(共100分)第Ⅰ卷(共30分)一、选择题(每小题3分,共30分)1.(2019·河北中考模拟)﹣2的倒数为( )A .12B .-12C .﹣2D .2【答案】B【解析】解:﹣2的倒数是﹣12. 故选:B .【点睛】本题考查了倒数的定义,熟练掌握倒数的定义是解题的关键.2.(2019·安徽中考模拟)下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C【解析】A. ()244x x x x -+=-- ,故A 选项错误;B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.3.(2019·广东中考模拟)据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为( )A.5.3×103B.5.3×104C.5.3×107D.5.3×108【答案】C【解析】解:5300万=53000000=7⨯.5.310故选C.【点睛】在把一个绝对值较大的数用科学记数法表示为10na⨯的形式时,我们要注意两点:①a必须满足:≤<;②n比原来的数的整数位数少1(也可以通过小数点移位来确定n).110a4.(2019·江西中考模拟)如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.【答案】B【解析】从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.5.(2019·浙江中考模拟)如图,直线a∥b,将含有45°的三角板ABC的直角顶点C放在直线b上,若∠1=27°,则∠2的度数是()A.10°B.15°C.18°D.20°【答案】C【解析】解:过B作BE∥直线a,∵直线a∥b,∴∠2=∠ABE,∠1=∠CBE=27°,∵∠ABC=45°,∴∠2=∠ABE=45°﹣27°=18°,故选C.【点睛】本题考查了平行线性质的应用,解此题的关键是正确作出辅助线.6.(2019·广西中考模拟)下列各曲线中表示y是x的函数的是()A.B.C.D.【答案】D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.7.(2019·安徽中考模拟)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.11910813x yy x x y=⎧⎨+-+=⎩()()B.10891311y x x yx y+=+⎧⎨+=⎩C.91181013x yx y y x()()=⎧⎨+-+=⎩D.91110813x yy x x y=⎧⎨+-+=⎩()()【答案】D【解析】设每枚黄金重x两,每枚白银重y两,由题意得:91110813x yy x x y=⎧⎨+-+=⎩()(),故选:D.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系. 8.(2019·浙江中考模拟)对某校600名学生的体重(单位:kg )进行统计,得到如图所示的频率分布直方图,学生体重在60kg 以上的人数为( )A .120B .150C .180D .330【答案】B【解析】 解:学生体重在60kg 以上的人数为600×(0.20+0.05)=150(人),故选:B .【点睛】本题主要考查频数(率)分布直方图,解题的关键是掌握频率=频数÷总数及样本估计总体思想的运用. 9.(2019·四川中考模拟)有一条弧的长为2πcm ,半径为2cm ,则这条弧所对的圆心角的度数是( ) A .90°B .120°C .180°D .135° 【答案】C【解析】解:由题意得,2π=2180n π⨯, 解得:n =180.即这条弧所对的圆心角的度数是180°.故选C .【点睛】本题考查了弧长的计算,解答本题关键是熟练掌握弧长的计算公式,及公式字母表示的含义. 10.(2019·四川中考模拟)设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >>【答案】A【解析】 ∵函数的解析式是2(1)y x a =-++,如图,∴对称轴是1x =-,∴点A 关于对称轴的点A′是1(0)y ,,那么点A′、B 、C 都在对称轴的右边,而对称轴右边y 随x 的增大而减小,∴于是123y y y >>,故选A.第Ⅱ卷(共70分)二、填空题(每题4分,满分16分,将答案填在答题纸上)11.(2019·江苏中考模拟)函数12x y x -=-中,自变量x 的取值范围是_____. 【答案】1x ≥且2x ≠【解析】【详解】由题意得x-1≥0且x-2≠0,解得1x ≥且2x ≠,故答案为1x ≥且2x ≠.12.(2019·山东中考模拟)如图,∠1,∠2,∠3是多边形的三个外角,边CD ,AE 的延长线交于点F ,如果∠1+∠2+∠3=225°,那么∠DFE 的度数是______.【答案】45°【解析】解:∵多边形的外角和为360°,∴∠1+∠2+∠3+∠DEF+∠EDF=360°,又∵∠1+∠2+∠3=225°,∴∠DEF+∠EDF=135°,∵∠DEF+∠EDF+∠DFE=180°,∴∠DFE=180°-135°=45°.故答案是为45°.【点睛】本题考查了多边形的外角和和三角形的内角和定理.13.(2019·江苏中考模拟)若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为_____.【答案】3【解析】根据题意得x1+x2=2,x1x2=﹣1,所以x1+x2﹣x1x2=2﹣(﹣1)=3.故答案为3.14.(2019·北京中考模拟)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点D作DE⊥AB 于点E,若CD=2,BD=4,则AE的长是_____.【答案】23【解析】解:∵AD平分∠BAC交BC于点D,DC⊥AC,DE⊥AB,∴CD=ED.又AD=AD,∴Rt△ADE≌Rt△ADC(HL)在Rt △BDE 中,BE=22BD DE -=23.设AE=x ,则AC=x ,AB=23+x ,在Rt △ABC 中,利用勾股定理得(23+x )2=62+x 2,解得x=23.所以AE 长为23.故答案为23.【点睛】本题主要考查了勾股定理、角平分线的性质、全等三角形的判定和性质,解题的关键是借助勾股定理构造方程求解.三、解答题 (本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤.)15.(1)(2019·辽宁中考模拟)计算:1019|3|5( 3.14)2π-⎛⎫---⨯-- ⎪⎝⎭【答案】﹣15【解析】解:原式=3﹣2﹣3×5﹣1 =﹣15.【点睛】此题主要考查了实数运算,正确化简各数是解题关键(1).(2019·广东中考模拟)解方程:2890x x +-=.【答案】11x =-,29x =【解析】方程2890x x +-=,289x x +=,281625x x ++=,即()2425x +=∴11x =-,29x =【点睛】本题考查了解一元二次方程,要根据方程的特点选择合适的方法解方程,本题选用配方法比较简便.16.(2019·广西中考模拟)先化简,再求值(1﹣31x +)÷22441x x x -+-,其中x =4. 【答案】32【解析】 原式=(1311x x x +-++)÷22441x x x -+- =22(1)(1)1(2)x x x x x -+-⋅+- =12x x --, 当x =4时,原式=413422-=- 【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(2019·江西中考模拟)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m 人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m = ,n = ;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?【答案】(1)100,35;(2)补全图形,如图;(3)800人解:(1)∵被调查总人数为m=10÷10%=100人,∴用支付宝人数所占百分比n%=30100%30% 100⨯=,∴m=100,n=35.(2)网购人数为100×15%=15人,微信人数所占百分比为40100%40% 100⨯=,补全图形如图:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人.【点睛】本题考查条形统计图和扇形统计图的信息关联问题,样本估计总体问题,从不同的统计图得到必要的信息是解决问题的关键.18.(2019·江西中考模拟)如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA 分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,3 1.73≈).【答案】该台灯照亮水平面的宽度BC大约是67.3cm.【解析】在直角三角形ACO中,sin75°=40OC OCOA=≈0.97,解得OC≈38.8,在直角三角形BCO中,tan30°=OCBC=38.8BC≈1.733,解得BC≈67.3.答:该台灯照亮水平面的宽度BC大约是67.3cm.考点:解直角三角形的应用.19.(2019·山东中考模拟)如图,双曲线y=kx(x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(2,3),BE⊥x轴,垂足为E.(1)确定k的值;(2)若点D(3,m)在双曲线上,求直线AD的解析式;(3)计算△OAB的面积.【答案】(1)k=6 (2) y=﹣x+5 (3) 9【解析】(1)将点A(2,3)代入解析式y=kx,得:k=6;(2)将D(3,m)代入反比例解析式y=6x,得:m=63=2,∴点D坐标为(3,2),设直线AD解析式为y=kx+b,将A(2,3)与D(3,2)代入得:23 32 k bk b+⎧⎨+⎩==,解得:15 kb-⎧⎨⎩==则直线AD解析式为y=-x+5;(3)过点C作CN⊥y轴,垂足为N,延长BA,交y轴于点M,∵AB∥x轴,∴BM⊥y轴,∴MB∥CN,∴△OCN∽△OBM,∵C为OB的中点,即12 OCOB=,∴212OCNOBMSS=VV(),∵A,C都在双曲线y=6x上,∴S△OCN=S△AOM=3,由3134AOBS=+V,得:S△AOB=9,则△AOB面积为9.20.(2019·湖北中考模拟)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F(1)求证:AC是⊙O的切线;(2)若CF=2,CE=4,求⊙O的半径.【答案】(1)见解析;(2)⊙O的半径为5.【解析】(1)证明:连接OE.∵OE=OB,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠EBC,∴∠EBC=∠OEB,∴OE∥BC,∴∠OEA=∠C,∵∠ACB=90°,∴∠OEA=90°,∴AC是⊙O的切线;(2)解:设⊙O的半径为r.过点O作OH⊥BF交BF于H,由题意可知四边形OECH为矩形,∴OH=CE=4,CH=OE=r,∴BH=FH=CH-CF=r-2,在Rt△BHO中,∵OH2+BH2=OB2,∴42+(r-2)2=r2,解得r=5.∴⊙O的半径为5.【点睛】本题考查了圆的切线的判定、角平分线和平行线的性质、勾股定理、垂径定理等知识,在圆中常利用勾股定理计算圆中的线段.B卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)21.(2019·丹东市第十四中学中考模拟)关于x的分式方程3111mx x+=--的解为正数,则m的取值范围是___________.【答案】2?m >且3m ≠.【解析】方程两边同乘以x-1,得,m-3=x-1,解得x=m-2,∵分式方程3111m x x+=--的解为正数, ∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0,∴m >2且m≠3,故答案为m >2且m≠3.22.(2019·广东中考模拟)如图,在平行四边形ABCD 中,AB <AD ,∠D=30°,CD=4,以AB 为直径的⊙O 交BC 于点E ,则阴影部分的面积为_____.【答案】433π-【解析】如图,连接OE 、AE ,∵AB 是⊙O 的直径,∴∠AEB=90°,∵四边形ABCD 是平行四边形,∴AB=CD=4,∠B=∠D=30°,∴AE=12AB=2,BE=2242-=23, ∵OA=OB=OE ,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S 阴影=S 扇形OBE ﹣S △BOE=2120211·36022AE BE π⨯-⨯ =4142233343ππ-⨯⨯=-, 故答案为433π-.【点睛】本题考查了扇形的面积计算、平行四边形的性质,含30度角的直角三角形的性质等,求出扇形OBE 的面积和△ABE 的面积是解本题的关键.23.(2019·江苏中考模拟)如图5,在反比例函数2y x=-的图象上有一动点A ,连接AO 并延长交图象的另一支于点B ,在第一象限内有一点C ,满足AC BC =,当点A 运动时,点C 始终在函数k y x =的图象上运动,若tan 2CAB ∠=,则k 的值为【答案】8【解析】连接OC ,过点A 作AE ⊥y 轴与点E ,过点B 作BF ⊥x 轴与点F ,如下图所示:由直线AB 与反比例函数2y x =-的对称性可知点A 和点B 关于点O 对称, AO BO ∴=AC BC =Q 又 CO AB ∴⊥ 90,90AOE EOC EOC COF ︒︒∠+∠=∠+∠=QAOE COF ∴∠=∠又90,90AEO CFO ︒︒∠=∠=Q~AOE COF ∴V VAE EO AO CF FO CO∴== tan 2OC CAB AO ∠==Q 2,2CF AE OF OE ∴==又|2|2,AE OE CF OF k ⋅=-=⋅=Q8k ∴=±∵点C 在第一象限,∴k=8,故答案为8【点睛】本题主要考查三角函数和相似三角形的性质,利用数形结合的思想将函数图像与几何函数相结合是求解本题的关键.24.(2019·浙江中考模拟)在矩形ABCD 中,AB =3,BC =4,点E 、F 分别在BC 与CD 上,且∠EAF =45°.如图甲,若EA =EF ,则EF =_____;如图乙,若CE =CF ,则EF =_____.【答案】10 7243-.【解析】解:(1)如图甲所示:∵EA =EF ,∴△AEF 是等腰直角三角形,∠EAF =∠EFA ,∵∠EAF =45°,∴∠EFA =45°,又∵在△AEF 中,∠EAF+∠EFA+∠AEF =180°,∴∠AEF =180°﹣45°﹣45°=90°,又∵∠AEB+∠AEF+∠FEC =180°,∴∠AEB+∠FEC =90°,又∵△ABE 中,∠B+∠BAE+∠AEB =180°,∠B =90°,∴∠BAE+∠AEB =90°,∴∠BAE =∠CEF ,在△ABE 和△ECF 中90BAE CEF B C AE FE ∠=∠⎧⎪∠=∠=⎨⎪=⎩o ,∴△ABE ≌△ECF (AAS )∴AB =EC ,BE =CF ,又∵AB =3,BC =4,∴EC =3,CF =1,在Rt △CEF 中,由勾股定理得:22223110EF EC FC =+=+= 故答案为10.(2)如图乙所示:作DM =DF ,BN =BE ,分别交AD ,AB 于点M 和点N ,设MD =x ,∵四边形ABCD 是矩形,∴∠B =∠D =90°,∴∠BNE =45°,∠DMF =90°,又∵∠BNE+∠ENA =180°,∠FMD+∠FMA =180°,∴∠ENA =135°,∠FMA =135°,又∵∠EAF =45°,∠BAD =∠BAE+∠EAF+∠FAD =90°,∴∠BAE+∠FAD =45°,∵∠BAE+∠NEA =45°,在△ANE 和△FMA 中135NEA MAF ENA FMA o ∠=∠⎧⎨∠=∠=⎩, ∴△ANE ∽△FMA ∴MF AM AN NE=; 又∵MD =x ,∴DF =x ,∵CE =CF ,AB =3,BC =4,∴FC =EC =3﹣x ,BE=BC-CE=4-(3-x)=x+1,AN =2﹣x , ∴()24221x x x x -=-+, 解得:x=26﹣4或x=﹣26﹣4(舍去),∴FC =3﹣(26﹣4)=7﹣26,∴EF =2FC =2(7﹣26)=72﹣43.故答案为72﹣43.【点睛】本题考查了矩形的性质、全等三角形的判定与性质,相似三角形的判定与性质以及勾股定理的运用等相关知识,正确添加辅助线构造相似三角形是解题的关键.25.(2019·广东中考模拟)如图,在菱形ABCD 中,AB =BD ,点E 、F 分别是线段AB 、AD 上的动点(不与端点重合),且AE =DF ,BF 与DE 相交于点G .给出如下几个结论:①△AED ≌△DFB ;②∠BGE 大小会发生变化;③CG 平分∠BGD ;④若AF =2DF ,则BG =6GF ;23BCDG S CG 四边形⑤.其中正确的结论有_____(填序号).【答案】①③④.【解析】解:①∵ABCD 为菱形,∴AB =AD ,∵AB =BD ,∴△ABD 为等边三角形,∴∠A =∠BDF =60°,又∵AE =DF ,AD =BD ,∴△AED ≌△DFB (SAS ),故本选项①正确;②∵∠BGE =∠BDG +∠DBF =∠BDG +∠GDF =60°,为定值,故本选项②错误;③过点C 作CM ⊥GB 于M ,CN ⊥GD 于N (如图1),则△CBM ≌△CDN (AAS ),∴CN=CM,∵CG=CG,∴Rt△CNG≌Rt△CMG(HL),∴∠DGC=∠BGC,∴CG平分∠BGD;故本选项③正确;④过点F作FP∥AE交DE于P点(如图2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:2AE=1:6,∵FP∥AE,∴PF∥BE,∴FG:BG=FP:BE=1:6,即BG=6GF,故本选项④正确;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N(如图1),则△CBM≌△CDN(AAS),∴S=S四边形CMGN,四边形BCDGS四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM =12CG ,CM =32CG , ∴S 四边形CMGN =2S △CMG =2×12×CG ×32CG =32CG 2,故本选项⑤错误; 综上所述,正确的结论有①③④,共3个,故答案为①③④.【点睛】此题综合考查了菱形的性质,等边三角形的判定与性质,全等三角形的判定和性质,解题的关键是作出辅助线构造出全等三角形,学会把不规则图形的面积转化为两个全等三角形的面积解决问题.二、解答题 (本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.) 26.(2019·辽宁中考模拟)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x 天的售价为y 元/千克,y 关于x 的函数解析式为()76(120)2030mx m x x n x x -≤<⎧⎪⎨≤≤⎪⎩,为整数,为整数 且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成木是18元/千克,每天的利润是W 元(利润=销售收入﹣成本).(1)m= ,n= ;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?(3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?【答案】(1)m=﹣12,n=25;(2)18,W 最大=968;(3)12天. 【解析】(1)当第12天的售价为32元/件,代入y=mx ﹣76m 得32=12m ﹣76m ,解得m=12-, 当第26天的售价为25元/千克时,代入y=n ,则n=25,故答案为:m=12-,n=25;(2)由(1)第x天的销售量为20+4(x﹣1)=4x+16,当1≤x<20时,W=(4x+16)(12x+38﹣18)=﹣2x2+72x+320=﹣2(x﹣18)2+968,∴当x=18时,W最大=968,当20≤x≤30时,W=(4x+16)(25﹣18)=28x+112,∵28>0,∴W随x的增大而增大,∴当x=30时,W最大=952,∵968>952,∴当x=18时,W最大=968;(3)当1≤x<20时,令﹣2x2+72x+320=870,解得x1=25,x2=11,∵抛物线W=﹣2x2+72x+320的开口向下,∴11≤x≤25时,W≥870,∴11≤x<20,∵x为正整数,∴有9天利润不低于870元,当20≤x≤30时,令28x+112≥870,解得x≥271 14,∴27114≤x≤30∵x为正整数,∴有3天利润不低于870元,∴综上所述,当天利润不低于870元的天数共有12天.【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准题中的数量关系,运用分类讨论思想是解题的关键.27.(2019·湖北中考模拟)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC 的中点,连接DE. 将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现① 当0α︒=时,AE BD = ;② 当时,AE BD= (2)拓展探究 试判断:当0°≤α<360°时,AE DB的大小有无变化?请仅就图2的情况给出证明. (3)问题解决 当△EDC 旋转至A 、D 、E 三点共线时,直接写出线段BD 的长.【答案】(1)①52,②52.(2)无变化;理由参见解析.(3)45,1255. 【解析】 (1)①当α=0°时,∵Rt △ABC 中,∠B=90°,∴AC=2222(82)845AB BC +=÷+=,∵点D 、E 分别是边BC 、AC 的中点,∴45252AE ==,BD=8÷2=4, ∴25542AE BD ==. ②如图1,,当α=180°时,可得AB ∥DE ,∵AC BC AE BD=,∴45582 AE ACBD BC===(2)如图2,,当0°≤α<360°时,AEBD的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵52 EC ACDC BC==,∴△ECA∽△DCB,∴52 AE ECBD DC==.(3)①如图3,,∵AC=45,CD=4,CD⊥AD,∴AD=2222(45)480168AC CD-=-=-=∵AD=BC,AB=DC,∠B=90°,∴四边形ABCD是矩形,∴BD=AC=45.②如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,,∵AC=45,CD=4,CD ⊥AD ,∴AD=2222(45)480168AC CD -=-=-=,∵点D 、E 分别是边BC 、AC 的中点,∴DE=111(82)4222AB =⨯÷=⨯=2, ∴AE=AD-DE=8-2=6,由(2),可得52AE BD =, ∴BD=6125552=.综上所述,BD 的长为45或1255. 28.(2019·江西中考模拟)如图,矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线249y x bx c =-++经过A 、C 两点,与AB 边交于点D . (1)求抛物线的函数表达式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ=CP ,连接PQ ,设CP=m ,△CPQ 的面积为S .①求S 关于m 的函数表达式,并求出m 为何值时,S 取得最大值;②当S 最大时,在抛物线249y x bx c =-++的对称轴l 上若存在点F ,使△FDQ 为直角三角形,请直接写出所有符合条件的F 的坐标;若不存在,请说明理由.【答案】(1)244893y x x =-++;(2)①2315(5)102S m =-+,当m=5时,S 取最大值;②满足条件的点F 共有四个,坐标分别为13(,8)2F ,23(,4)2F ,33(,627)2F +,43(,627)2F -, 【解析】解:(1)将A 、C 两点坐标代入抛物线,得84366b+c=09c =⎧⎪⎨-⨯+⎪⎩ , 解得:438b c ⎧=⎪⎨⎪=⎩ ,∴抛物线的解析式为y=﹣49x 2+43x+8; (2)①∵OA=8,OC=6,∴AC=22OA OC + =10,过点Q 作QE ⊥BC 与E 点,则sin ∠ACB = QE QC = AB AC =35, ∴10QE m - =35, ∴QE=35(10﹣m ), ∴S=12•CP•QE=12m 35×(10﹣m )=﹣310m 2+3m ; ②∵S=12•CP•QE=12m×35(10﹣m )=﹣310m 2+3m=﹣310(m ﹣5)2+152, ∴当m=5时,S 取最大值;在抛物线对称轴l 上存在点F ,使△FDQ 为直角三角形,∵抛物线的解析式为y=﹣49x2+43x+8的对称轴为x=32,D的坐标为(3,8),Q(3,4),当∠FDQ=90°时,F1(32,8),当∠FQD=90°时,则F2(32,4),当∠DFQ=90°时,设F(32,n),则FD2+FQ2=DQ2,即49+(8﹣n)2+49+(n﹣4)2=16,解得:n=6±72,∴F3(32,6+72),F4(32,6﹣72),满足条件的点F共有四个,坐标分别为F1(32,8),F2(32,4),F3(32,6+72),F4(32,6﹣72).【点睛】本题考查二次函数的综合应用能力,其中涉及到的知识点有抛物线的解析式的求法抛物线的最值等知识点,是各地中考的热点和难点,解题时注意数形结合数学思想的运用,同学们要加强训练,属于中档题.。

相关文档
最新文档