5.1.2垂线(第2课时)

合集下载

人教版七年级数学下册最新习题课件:5.1.2_第2课时_垂线段

人教版七年级数学下册最新习题课件:5.1.2_第2课时_垂线段
答案:4 3 2.4
基础过关
1.中学生体育测试项目——立定跳远,立定跳远成绩的测
定,利用数学原理的是
( B)
A.两点之间线段最短 B.点到定义
2.【2019·江苏常州中考】如图,在线段PA、PB、PC、
PD中,长度最小的是
(B )
A.PA C.PC
B.PB D.PD
解:如题图所示,AE、BF就是村庄A、村庄B修筑水渠的最 短路线图.
7.如图,AC⊥BC,AC=9,BC=12,AB=15. (1)试说出点A到直线BC的距离,点B到直线AC的距离; (2)点C到直线AB的距离是多少?你是怎样求得的?
解:(1)点 A 到直线 BC 的距离是 9,点 B 到直线 AC 的距离是 12. (2)过点 C 作 CD⊥AB,垂足为点 D,则 S△ABC=12BC·AC=12AB·CD,即12×12×9 =12×15CD,所以 CD=356.故点 C 到直线 AB 的距离为356.
(1)该汽车行驶到公路AB上的某一位置C′时距离村庄 C最近,行驶到D′位置时,距离村庄D最近,请在公 路AB上作出C′、D′的位置(保留作图痕迹);
(2)当汽车从A出发向B行驶时,在哪一段路上距离村 庄C越来越远,而离村庄D越来越近?(只叙述结论, 不必说明理由)
解:(1)如图所示. (2)在C′D′段路上距离村庄C越来越远,而离村庄D越来越近.
(1)表示点到直线(或线段)距离的线段共有___2__条,它们分别是 ____A__C_、__B_C____; (2)AC___<___AB(填“>”“<”或“=”),依据是 ___垂__线__段__最__短___.
6.如图,村庄A、村庄B分别要从河流L引水入 村庄,各需修筑一水渠,请你画出修筑水渠的 最短路线图.

5.1.2垂线

5.1.2垂线
5.1 相交线
第2课时 垂线
如图,直线AB、CD相交于点O. 若∠AOC+∠BOD=100°,
求各角的度数.
解:因为∠AOC+∠BOD =100°且两角互 A 为对顶角, 所以依据对顶角相等的性质可得, ∠AOC =∠BOD = 50°, 所以∠AOD =∠BOC = 130°.
C O D B
引入新知
解:因为 AB⊥OE (已知), 所以∠EOB=90°(垂直的定义). 因为 ∠BOD =∠1=55° (对顶角相等), 所以 ∠EOD =∠EOB +∠BOD =90°+55° =145°.
A
C
E
1
O D B
在灌溉时,要把河水中的水引到农田P处,如何挖掘能使渠
道最短? 画图并用尺量一下,
看看哪一条线段最短?
2.靠
O
l
3.画线
这样画l的垂线可以画几条?
0 1 2 3 4 5 6 7
8
9
无数条
10
11 Cm
如图,已知直线 l和l上的一点A ,过点A作l 的垂线.
B
A
l
0
1
2
3
则所画直线AB是过点A的直线l的垂线.
4 5 6 7 8 9 10 11 Cm
如图,已知直线 l 和l外的一点A,过点A作l的垂线.
B
C
巩固练习
1.如图,分别过A、B、C作BC、AC、AB的垂线.
F A D C
B
E
课堂小结
1.垂线:在同一平面内,过一点有且只有一条直线与已知直
线垂直. 2.垂线段:连接直线外一点与直线上各点的所有线段中,垂
线段最短. 3.直线外一点到这条直线的垂线段的长度,叫做点到直线的 距离.

5.1.2 垂线(第2课时)

5.1.2 垂线(第2课时)

如图,怎样测量 点A 到 直线m 的距离?
A
10m
B
20m
动手实践
1.过点A画出直线m的垂线AB,垂足为B; 2.用直尺量出垂线段AB的长.
0m
m
例、如图,量出(1)村庄A与货场B的 距离,(2)货场B到铁道的距离。 20m
30m
A
25m
0m
8m
C B
10m
试一试 如图,点M、N分别在直线AB、CD上, 用三角板画图, 1)过M点画CD的垂线交CD于F点, MN 的长, 2)M点和N点的距离是线段____ MF 的长。 3)M点到CD的距离是线段____ M A B ∴直线MF为所 求垂线。 D F C N
情境问题
有人不慎掉入有鳄鱼的湖中。如图,他在P点, 应选择什么样的路线尽快游到岸边m呢?
m
P
探究新知
P
A
B
C
D
m
连接直线外一点与直线上各点的所有 线段中,垂线段最短。 垂线段最短 简单说成:垂线段最短. (垂线的第二条性质)
P
我的长度
A
B
C
D
m
连接直线外一点与直线上各点的所有 线段中,垂线段最短。 垂线段最短 简单说成:垂线段最短. (垂线的第二条性质) 垂线段的长度 直线外一点到这条直线的垂线段的长度, 叫做点到直线的距离。
小常识
立定跳远中,体育老师是如何测量 运动员的成绩的?
起 跳 线
体育老师实际上测量 的是点到直线的距离
落脚点
能力提升
1、已知点A,与点A的距离是5cm的直线可画( D ) A. 1条 B. 2条 C. 3条 D. 无数条
2.如图,分别过A、B、C作BC、AC、AB 的垂线。

七年级数学下册:第五章相交线与平行线5.1相交线5.1.2垂线第2课时垂线段教学课件(新版新人教版)

七年级数学下册:第五章相交线与平行线5.1相交线5.1.2垂线第2课时垂线段教学课件(新版新人教版)
图5-1-33
解:如答图所示, (1)沿 AB 走,两点之间线段最短; (2)沿 AC 走,垂线段最短; (3)沿 BD 走,垂线段最短.
7.如图 5-1-34,为了解决 A,B,C,D 四个小区的缺水问题,市政府准备 投资修建一个水厂.
(1)不考虑其他因素,请你画图确定水厂 H 的位置,使之与四个小区的距离 之和最小;
知识管理
1.垂线段的概念及性质 定 义:从直线外一点引一条直线的 垂 线,这点和 垂足 之间的线
段叫做垂线段. 性 质:连接直线外一点与直线上各点的所有线段中,垂线段最短,简 单说成:垂线段最短.
2.点到直线的距离 定 义:直线外一点到这条直线的 垂线段 的长度,叫做点到直线的距离.
注 意:垂线、垂线段和点到直线的距离是三个不同的概念,不能混淆.垂 线是直线;垂线段是一条线段;点到直线的距离是垂线段的长度,是一个数 量,不能说垂线段是点到直线的距离.
7、人往往有时候为了争夺名利,有时驱车去争,有时驱马去夺,想方设法,不遗余力。压力挑战,这一切消极的东西都是我进取成功的催化剂。 8、真想干总会有办法,不想干总会有理由;面对困难,智者想尽千方百计,愚者说尽千言万语;老实人不一定可靠,但可靠的必定是老实人;时间,抓起来是黄金,抓不起来是流水。14、成长是一场和自己的比赛,不要担心别人会做得比你好,你只需要每天都做得比前一天好就可以了。
9、成功的道路上,肯定会有失败;对于失败,我们要正确地看待和对待,不怕失败者,则必成功;怕失败者,则一无是处,会更5、别着急要结果,先问自己够不够格,付出要配得上结果,工夫到位了,结果自然就出来了。 6、你没那么多观众,别那么累。做一个简单的人,踏实而务实。不沉溺幻想,更不庸人自扰。
7、别人对你好,你要争气,图日后有能力有所报答,别人对你不好,你更要争气望有朝一日,能够扬眉吐气。 8、奋斗的路上,时间总是过得很快,目前的困难和麻烦是很多,但是只要不忘初心,脚踏实地一步一步的朝着目标前进,最后的结局交给时间来定夺。 9、运气是努力的附属品。没有经过实力的原始积累,给你运气你也抓不住。上天给予每个人的都一样,但每个人的准备却不一样。不要羡慕那些总能撞大运的人,你必须很努力,才能遇上好运气。

5.1.2垂线(2)导学案

5.1.2垂线(2)导学案
A C O B D
C
A
B
D
A
B C D
E F
(4) (5) (6) 3、如图 6,在线段 AB、AC、AD、AE、AF 中 AD 最短.小明说垂线段最短, 因此线段 AD 的长是点 A 到 BF 的距离,对小明的说法,你认为_________________.
4:如图,直线 L 表示一条公路,直线 L 上的点 B 表示车站,直线 L 外的点 A 表示村庄。 (1)从村庄 A 到车站 B 筑一条公路,应按怎样的路线筑路,才能使路程最短? (2)从村庄 A 到公路 L 筑一条公路,应按怎样的路线筑路,才能使路程最短?
2、2、如图∠ACB=90° B (1)分别指出点 A 到直线 BC,点 B 到直线 AC 的距离是哪些线段的长; (2)AC____AB(填“﹥” “﹤”或“=”,依据是___________。 ) (3)AC+BC____AB(填“﹥” “﹤”或“=”,依据是__________。 ) C (4)三条边 AB、AC、BC 中哪条边最长?为什么? 三、课堂检测 1.下 说 正 的 ( 列 法 确 有 )
·A
二、课堂探究(24 分钟)

(一) 仔细观察测量比较上题中点 A 分别到直线l上三点 C、 E 的距离, D、 你还有什么收获? 请将你的收获记录下来: _______________________________________________。 简单说成:_________________。 (二)点到直线的距离: 定义:直线外一点到这条直线的 ,叫做点到直线的距离。 注意:垂线是_______,垂线段是一条________,点到直线的距离是一个数量,不能说“垂线段” 是距离,定义中说的是“垂线段的长度” 。因为,距离是一个数量,而“垂 .. ,而不是“垂线段” 线段”是指一个具体的几何图形。 【范例讲解】 1、 如图:要把水渠中的水引到水池C 中,在渠岸的什么地方开沟,水沟的长度才能最短? 请画出图来,并说明理由。

5.1.2垂线

5.1.2垂线

三、动手操作,归纳性质
问题3 如何用三角尺或量角器画已知直线l 的垂线?
(1)用三角尺或量角器画已知直线l的垂线,这样的 垂线能画出几条?
(2)经过一点画已知直线l的垂线,这样的垂线能画 出几条? 点与直线有几种位置关系?
操作
(1)经过直线l上一点 画已知的垂线.
(2)经过直线l外一点 画已知的垂线.
二、变换角度,认识垂直
垂直是相交的一种特殊情形,两条直线互相垂直, 其中的一条直线叫做另一条直线的垂线,它们的交点 叫做垂足.
垂直的图形.
如图,AB⊥CD,垂足为O.
垂直的符号 表示.
推理形式
问题2 如何用符号语言表示垂直的定义呢?
之,因为 AB⊥CD, 所以 ∠AOC=90°.
如果图中的比例尺为1:100000,水渠大约要挖 多长?
练习
如图,AC⊥BC,且BC=5,AC=12,AB=13,则 点A到BC的距离是___1_2____,点B到AC的距离是 ___5____,点B到点A的距离是____1_3_____.
五、归纳小结
1.什么是垂直?垂直和相交有什么关系?我们 是如何刻画两条直线垂直的位置关系的?
2.垂线有哪些性质? 3.本节课的学习,你在数学思想方法方面还有 哪些收获?
六、布置作业
教科书 习题5.1 第3、4、5、6、7题
5.1 相交线(第2课时) 5.1.2 垂线
一、创设情境,导入新知
问题1 取两根木条a、b,将它们钉在一起,固定木 条a,转动木条b.
(1)在木条b的转动过程中,什么量 也随之发生改变?
a与b所成的角 也随之发生改变
(2)∠ = 90º时,木条b与a所成另外
三个角的度数是多少?

5.1.2 垂线

5.1.2      垂线

5.1.2 垂线1. 概述垂线是指与给定的直线或线段相交且与之垂直的线段或直线。

在几何学中,垂线常常用来研究图形的性质和关系。

本文将介绍垂线的定义、性质以及应用。

2. 垂线的定义垂线通常是指与给定的直线或线段相交成直角的线段或直线。

更准确地说,如果一条直线与另一条直线或线段相交,且交点处的角度为90度,则这条线段或直线被称为垂线。

3. 垂线的性质垂线具有一些重要的性质,包括:(1) 垂线的长度垂线的长度可以根据勾股定理计算得出。

如果已知垂线两个端点的坐标为(x1, y1)和(x2, y2),则垂线长度为:长度= √((x2 - x1)² + (y2 - y1)²)(2) 垂线的斜率垂线的斜率是它与所垂直的直线或线段之间斜率的相反数。

例如,如果直线的斜率为m,垂线的斜率为-1/m。

(3) 垂线的交点如果一条直线与另一条直线或线段相交成直角,则交点为垂线的一个端点,另一个端点位于另一条直线或线段上。

这个交点可以用来确定两条直线或线段的相对位置关系。

(4) 垂线的平行性如果两条直线或线段之间相互垂直,则它们是平行的。

垂线的平行性可以用来判断两条直线或线段是否相互垂直。

(5) 垂线的唯一性对于给定的直线或线段,与之相交且垂直的线段或直线是唯一的。

也就是说,只有一条线段或直线与给定的直线或线段相交成直角。

4. 垂线的应用垂线在几何学中有广泛的应用,包括:(1) 构造垂线垂线可以用来构造正方形、矩形和其他各种形状。

通过构造垂线,我们可以得到相等的直角边,从而构造出各种几何形状。

(2) 判断垂直性垂线可以用来判断两条直线或线段之间的垂直性。

如果两条直线或线段的斜率互为相反数,则它们是垂直的。

(3) 求垂心在三角形中,垂线的交点被称为垂心。

垂心是一个重要的点,它与三角形的其他关键点(如重心、外心和内心)之间有着密切的联系。

(4) 解决几何问题垂线也可以用来解决一些与直角三角形、平行线和垂直线有关的几何问题。

5.1.2 垂 线教案

5.1.2 垂 线教案

5.1.2 垂线(第2课时)教学目标一、基本目标【知识与技能】1.了解垂直的概念.2.理解垂线的性质:经过一点,能画出已知直线的一条垂线,并且只能画出一条垂线.3.会用三角尺或量角器过一点画一条直线的垂线.【过程与方法】通过探索、猜测,进一步体会推理的必要性,发展学生初步推理能力.【情感态度与价值观】通过观察、实验、归纳、类比、推断,体验数学活动的趣味性,感受推理过程的严谨以及结论的确定性.二、重难点目标【教学重点】垂直的概念、性质和画法.【教学难点】两条直线互相垂直的性质和画法.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P3~P6的内容,完成下面练习.【3 min反馈】(一)垂线1.当两条直线相交所成的四个角中,有一个角是直角(90°)时,这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足.垂直用“⊥”表示,如a、b互相垂直,则记为:a⊥b或b⊥a.2.下面四种判定两条直线垂直的方法,正确的有①②③④.①两条直线相交所成的四个角中有一个角是直角,则这两条直线互相垂直;②两条直线相交,只要有一组邻补角相等,则这两条直线互相垂直;③两条直线相交,所成的四个角相等,则这两条直线互相垂直;④两条直线相交,有一组对顶角互补,则这两条直线互相垂直.3.在同一平面内,过一点有且只有一条直线与已知直线垂直.(二)垂线段4.连结直线外一点与直线上各点的所有线段中,垂线段最短.即:垂线段最短.5.直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.6.如图所示,点A到直线l的距离是(A)A.线段AD的长度B.线段AE的长度C.线段AB的长度D.线段AC的长度环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】(1)如图1,过点P画AB的垂线;(2)如图2,过点P分别画OA、OB的垂线;(3)如图3,过点A画BC的垂线.【互动探索】(引发学生思考)理解画垂线的步骤,根据画垂线的步骤求解.【解答】如图所示.【互动总结】(学生总结,老师点评)垂线的画法需要三步完成:一落:让三角板的一条直角边落在已知直线上,使其与已知直线重合;二移:沿直线移动三角板,使其另一直角边经过所给的点;三画:沿此直角边画直线,则这条直线就是已知直线的垂线.【例2】如图所示是一条河的示意图,C是河边AB外一点.现欲用水管从河边AB将水引到C处,请在图上画出应该如何铺设水管能让路线最短,并说明理由.【互动探索】(引发学生思考)根据垂线的性质可得,即过点C作CE⊥AB,再根据“垂线段最短”可得CE最短.【解答】如图所示,沿CE铺设水管能让路线最短.因为垂线段最短.【互动总结】(学生总结,老师点评)在利用垂线的性质解决生活中最近、最短距离的问题时,要依据“两点之间,线段最短”和“垂线段最短”来解决.活动2巩固练习(学生独学)1.如图,直线a、b相交于点A,点B在直线a上,过点B作直线b的垂线,垂足为点C,若∠1=50°,则∠2的度数为(A)A.40°B.50°C.60°D.140°2.体育课上,老师测量跳远成绩的依据是(C)A.平行线间的距离相等B.两点之间,线段最短C.垂线段最短D.两点确定一条直线3.如图,点A为直线BC外一点,AC⊥BC,垂足为点C,AC=3,点P是直线BC上的动点,则线段AP的长不可能是(A)A.2B.3C.4D.54.如图,∠ACB=90°,CD⊥AB于点D,能表示点到直线的距离的线段有5条.活动3拓展延伸(学生对学)【例3】如图,已知直线AB、CD相交于点O,且OE⊥AB.(1)过点O画直线MN⊥CD;(2)若点F是(1)中所画直线MN上任意一点(O点除外),若∠AOC=35°,求∠EOF的度数.【互动探索】(1)根据题意画出直线MN即可;(2)当点F在射线OM上时,根据垂直定义求出∠EOF=∠BOD,根据对顶角求出∠BOD=∠AOC,即可求出答案;当点F在射线ON上时,求出∠AOM的度数,根据对顶角求出∠BON的度数,求出∠EOB+∠BON即可.【解答】(1)如图所示.(2)①当点F在射线OM上时.因为OE⊥AB,MN⊥CD,所以∠EOB=∠MOD=90°,所以∠MOE+∠EOD=90°,∠EOD+∠BOD=90°,所以∠EOF=∠BOD=∠AOC=35°.②当点F在射线ON上时,如图中点F′.因为MN⊥CD,所以∠MOC=90°=∠AOC+∠AOM,所以∠AOM =90°-∠AOC =55°, 所以∠BON =∠AOM =55°,所以∠EOF ′=∠EOB +∠BON =90°+55°=145°, 即∠EOF 的度数是35°或145°.【互动总结】(学生总结,老师点评)本题考查了垂线的作法、角的计算、对顶角、垂线等知识点的应用,关键是根据这些性质求出∠EOM 和∠AOM 的度数,题目较好,难度不大,注意分类讨论思想的运用.环节3 课堂小结,当堂达标 (学生总结,老师点评)垂线⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫定义作法⎩⎪⎨⎪⎧一落二移三画性质:垂线段最短求最短距离 练习设计请完成本课时对应练习!。

第2课时垂线

第2课时垂线

数学阳艳军作业设计二1.如图,已知∠ACB =90°,即AC ___BC ,若BC =8cm ,AC =6cm ,AB =10cm ,那么B 到AC 的距离是_______;A 到BC 的距离是_______;A ,B 两点间的距离是_________.2.点P 为直线l 外一点,点A ,B ,C 在直线l 上,若P A =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离是() A.4cm B.小于4cm C.不大于4cm D.5cm3.如图,已知ON ⊥a ,OM ⊥a,所以OM 与ON 重合的理由是()A.过两点确定一条直线B.在同一平面内,经过一点有且只有一条直线垂直于已知直线C.过两点能作一条垂线D.两点之间线段最短 4.如图,已知OB ⊥OA ,直线CD 过点O ,且∠AOC =35°,则∠BOD=_____;5.如图,∠AOB =110°,OA ⊥OC ,OB ⊥OD,则∠COD =________; 6.如图,EO ⊥AB ,垂足为O ,CD 是过O EOD :∠EOB =1:3,求∠AOC 的度数.7.如图,已知点P ,Q 分别在∠AOB 的边OA ,OB (1)过点P 作射线OB 的垂线段;(2)过点Q 作垂直于射线OA 的直线. 8.如图,O 为直线AB 上一点,∠AOC =13∠BOC ,OC 是∠AOD 的平分线. (1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.9.如图,将一副三角板的两个直角顶点O 重合在一起,如图○1,图○2放置. (1)如图1,若∠BOC =60°,猜想∠AOD 的度数;(2)如图2,若∠BOC =70°,猜想∠AOD 的度数;(3)如图1,猜想∠AOD 与∠BOC 的关系,并说明理由;(4)如图2,若∠BOC :∠AOD =7 :29,求∠COB 和∠AOD 的度数.21OO D C BA D CB A O DC B A BE O D C B A O D C B A O C B D A a 1086C B A。

人教版七年级数学下册 5-1-2 垂线(第二课时) 教案

人教版七年级数学下册 5-1-2  垂线(第二课时) 教案

5.1 相交线5.1.2 垂线(第二课时)教学反思教学目标1.理解垂线段的概念.2.掌握垂线段最短的性质.3.体会点到直线的距离的意义,并会度量或计算点到直线的距离.4.学会用本节知识理解生活中的一些现象及解决生活中的一些实际问题.教学重难点重点:“垂线段最短”的性质,点到直线的距离的概念及其简单应用.难点:对点到直线的距离的概念的理解,垂线段的画法.课前准备多媒体课件、模型教学过程导入新课教师:同学们上节课,我们研究了垂直、垂线、垂线的性质,请分别回答它们各自的定义或内容是什么?学生积极回答,教师给予肯定和表扬.教师:今天这节课我们继续深入学习,研究垂线的性质及点到直线的距离.(板书课题:5.1.2垂线(第二课时))探究新知探究点一:垂线段最短教师:同学们来看下面一个问题,出示教材图5.1-8(如图1所示),提出问题:要把河中的水引到农田P处,如何挖渠使渠道最短?图1教师:要完美地解决这个问题,我们首先来看第一个问题:如果把上述实际问题抽象成几何图形的话,你们能否画出来?教师引导,学生上台板演,结果如图2所示.图2教师:我们来看第二个问题:在直线上有无数个点,试着取几个点与点P相连(如图3所示),猜想在P点与直线l上的点连接的线段中,哪条线段最短?这时直线l上的点的位置在什么地方?图3学生发言,指出当点P与直线l上的点的连线与直线l垂直时,点P到直线l的距离最短.也就是,过点P作l的垂线,点P与垂足之间的线段即为最短路线.教师:如果我们规定:当PO⊥直线l时,线段PO是直线l的垂线段,你们能用一句话总结你们观察得出的结论吗?学生展示,教师引导学生总结.设计意图首先引领学生回忆旧知识,加深学生对上节课所学知识的理解,为新知识的学习奠定基础.探究点二:垂线的性质2连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.教师:“垂线段最短”在日常生活中广泛应用,你们还能举出几个例子吗?学生回答,教师给予肯定和表扬.教师:我们学习了垂线段,认识了垂线,这两种图形的区别与联系是什么?学生独立思考后,小组交流,代表发言.垂线段是一条线段,而垂线是一条直线;垂线段是垂线上的一部分.设计意图通过设计分层问题,将实际问题转化成数学问题,结合图形直观演示.使学生对垂线的性质2有初步的认识,从而得出“垂线段最短”这一性质.探究点三:点到直线的距离教师:在以前我们学习了两个点之间的距离,你们知道怎样才能得到两个点之间的距离吗?学生:测量连接两个点的线段的长度.教师:两个点之间的距离是测量两点之间线段的长度,那确定一个点到一条直线的距离,应该测量什么?学生独立思考,小组讨论,展示答案,教师引导得出结论:确定点到直线的距离,应该测量点到直线垂线段的长度.教师:现在你们知道什么是点到直线的距离了吗?学生回答,教师板书:点到直线的距离是指直线外一点到这条直线的垂线段的长度.教师强调:点到直线的距离是长度,而非垂线段.设计意图类比两点间的距离给出点到直线的距离,点到直线的距离是点到直线的垂线段的长度,是一个数量,在教学中注意强调距离是数量,而不能说成垂线段是距离.新知应用例1 如图4所示,∠C=90°.(1)分别指出点A到直线BC,点B到直线AC的距离是哪些线段的长度.(2)AC AB(填“>”“<”或“=”),依据是.(3)AC+BC=AB(填“>”“<”或“=”),依据是.解:(1)AC,BC.(2)<垂线段最短.(3)>两点之间,线段最短.例2 (1)如图5所示,小刚准备从C处牵牛到河边AB处饮水,作出小刚(2)如图6所示,小刚从C处牵牛到河边AB处饮水,并且必须先到点D处观察河水水质情况,然后再去牵牛饮水,作出小刚行走的最短路线(不考虑其他因素),并作出必要说明.师生活动学生先独立思考,教师组织学生交流并适度进行引导评价.7所示.(2)如图8所示,由C处到D处和由D处到C处,依据:两点之间线段最短;由C处到河边,依据:垂线段最短.设计意图通过例题进一步了解垂线段最短和两点之间线段最短的区别.例3 如图9所示,∠BCA=90°,BC=3,AC=4,AB=5,点P是线段AB上一个动点,点P在运动过程中,PC长度随之发生变化.你能确定PC长度的最大值与最小值吗?师生活动学生先独立分析,再小组交流,教师巡视指导. 解:如图10所示.(1)当点P 运动到与点A 重合时,PC =AC =4,∴ PC 长度的最大值为4. (2)当点P 运动到CP ⊥AB 时,PC 的长度最小. ∵ S △ABC =12AC ·BC =12AB ·CP , ∴ AC ·BC =AB ·CP ,∴ 3×4=5·CP , ∴ PC =125,∴ PC 长度的最小值为125.设计意图通过解决生活中的实际问题,加深学生对垂线段最短的理解.借助“动点”运动问题(课本习题的变式),不仅加深学生对知识的理解,而且渗透了“等积法”这一解题方法.课堂练习(见导学案“当堂达标”)参考答案1.C2.B3.C4.B5.4.8 66.4 10 6.(1)略 (2)略 (3)PM (4)PM <OP. 理由:垂线段最短.7.解:(1)如图11所示,连接AC ,BD 交于点H ,则H 为蓄水池的位置.(2)作HG ⊥EF ,如图11所示,沿线段HG 把河水引入蓄水池,开渠最短.理由:过直线外一点与直线上的各点的所有线段中,垂线段最短.(见导学案“课后提升”)参考答案1.A2.解:∵ AC ⊥BC ,∴ AC <m. ∵ AD ⊥CD ,∴ AC >n ,∴n<AC<m.课堂小结1.本节课主要学习了垂线的性质“垂线段最短”和点到直线的距离.2.注意垂线段、垂线概念之间的区别和联系.布置作业教材第8,9页习题5.1第6,10题板书设计。

人教版 5.1.2垂线(2)

人教版 5.1.2垂线(2)
( ) A.1个 B. 2个 C.3个 D. 4个
B D C
例题
例 .如图,直线AB,CD相交于点O, OE CD, OF AB, DOF 65, 求
BOE和AOC的度数。
F D
A O C E
B
小 结:
作 业:
回顾与思考
作图:已知点P为直线a外一点,过点P 做直线a的垂线,垂足为O。
P
a
O
探究
过直线外一点作已知直线的垂线,连接 这个点与垂足之间的线段叫做垂线段。
如图,线段PO为点P到直线a的垂线段。 P
a O
注意:垂线段为线段,它是垂线的一部分。
探究
如图,连接直线a外一点P与直线a上各 点O,A1,A2,……,B1,B2,……,其中 PO⊥a(线段PO为点P到直线a的垂线段), 比较各线段的长短,哪一条最短? P a …… A3 A2 A1 O B1 B2 ……
连接直线外一点与直线上各点的所有线段中, 垂线段最短。 (简单说成垂线段最短。)
练习
P
探究
直线外一点到这条直线的垂线段的长度, 叫做点到直线的距离。 P a O
如图所示,垂线段PO的长度,叫做点P到直 线a的距离。 注意: 距离是垂线段PO的长度,而不是垂线段 PO。
例题
BAC 为钝角。 1、如图,已知D ABC中,
(1)过A点画BC的垂线;
.
C
(2)画出点C到AB的垂线段
A
(3)画点B到AC的垂线段
B
练习
如图,BAC 90, AD BC, 垂足为D, 则下列结论:
(1)AB与AC互相垂直; (2)AD与BD互相垂直; (3)点C到AB的垂线段是线段AB; (4)点A到BC的距离是线段AD; (5)线段AB的长度是点B到AC的距离; (6)线段AC是点C到AB的距离。

5.1.2垂线

5.1.2垂线

5.1.2垂线备课教师:张剑楠课型:新授课授课时间:2.27课时第2课时总课时:第2课学习目标1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线;2.掌握点到直线的距离的概念,并会度量点到直线的距离;3.掌握垂线的性质,并会利用所学知识进行简单的推理.重点1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线;2.掌握点到直线的距离的概念,并会度量点到直线的距离.难点掌握垂线的性质,并会利用所学知识进行简单的推理.教学过程问题、预设时间评价活动活动1观察下面图片,你能找出其中相交的直线吗?它们有什么特殊的位置关系?活动2出示学习目标活动3知识点一:垂直、垂线、垂足的概念取两根木条a、b,将它们钉在一起,固定木条a,转动木条b,a、b所成的夹角α .学生观看图像,利用课本找到答案教师出示学习目标教师做示范,学生观察教师拨动木架,转动木条的同时观察其夹角的变化.教师提出问题。

学生思考回答。

学生齐读通过动手操作与观察,学生构建相交线的几何模型,转动木条时,两根木条之间的夹角不断变合作探究:探究1(1) 当∠α分别为35°、90°时,其余的角分别是多少?(2) 当∠α为90°的位置关系有几个?此时,木条a和木条b所在的直线有什么样的位置关系?定义总结两条直线互相垂直,其中的一条直线叫做另外一条直线的垂线.记法:AB⊥CD,垂足为O.符号语言:因为∠AOC = 90°,所以AB⊥CD.知识点二:垂线的画法及基本事实探究2(1) 画已知直线l的垂线能画几条?(2) 过直线l上的一点A画l的垂线,这样的垂线能画几条(3) 过直线l外的一点B画l的垂线,这样的垂线能画几条(1) 如图,已知直线l,画l的垂线.学生抢答并说明变形依据,明确算理教师关注学生的参与情况学生先观察木条位置关系,经过独立思考和小组讨论,选派代表解答问题(2),预设:当∠α为90°的位置关系只有一个;学生在教师的引导下共同总结此时两根木条的位置关系——a与b垂直,记作a⊥b.学生独立思考后,学习垂线的画法(把直尺放在直线l的位置,再把直角三角尺的一条直角边靠在直尺上,最后沿着直角三角尺的另一条边画出直线),作图后回答问题化,两条相交线形成的角也在不断变化;通过观察发现特殊的位置关系,引出垂直的概念学生独立思考解答问题(1);学生先独立思考,然后请学生代表回答,教师引导学生说出判断的理由,并给予恰当评析,帮助他们形成正确认知在教师的引导下学习垂线的画法追问1 问题:这样画l的垂线可以画几条?预设:无数条.(2) 如图,已知直线l和l上的一点A,过点A 画l的垂线.追问2 问题:这样画l的垂线可以画几条?预设:一条.(3) 如图,已知直线l和l外的一点M,过点M 画l的垂线.活动4在灌溉时,要把河中的水引到农田P处,如何挖掘能使渠道最短?请转化成数学问题并找出最短的位置.预设1:运用直尺测量发现,线段PO的长度最短.预设2:这样的线段PO只有一条.活动5能说出本节课的收获。

平泉县二中七年级数学下册第五章相交线与平行线5.1相交线5.1.2垂线(2)教案新版新人教版3

平泉县二中七年级数学下册第五章相交线与平行线5.1相交线5.1.2垂线(2)教案新版新人教版3

5.1.2 垂线(2)1.了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义.2.学会度量点到直线的距离.重点垂线段最短的性质,点到直线的距离的概念及其简单应用.难点对点到直线的距离的概念的理解.一、创设情境,引入新课教师展示课本图5.1-8,提出问题:要把河中的水引到农田P处,如何挖渠能使渠道最短?学生看图、思考.教师以问题的形式,启发学生思考.问题1:上学期我们曾经学过什么最短的知识,还记得吗?问题2:如果把渠道看成是线段,它的一个端点自然是P,那么另一个端点的位置呢?把江河看成直线l,那么原问题就是怎么连线的数学问题.学生说出:两点之间,线段最短.二、尝试活动,探索新知学生能在教师的引导下用数学眼光思考:在连接直线l外一点P与直线l上各点的线段中,哪一条最短?教师演示教具,给学生直观的感受.如图:在硬纸板上固定木条l,l外有一点P,转动的木条a一端固定在点P.使木条l与a相交,左右摆动木条a,l与a的交点A随之变化,线段PA的长度也随之变化.PA最短时,a与l的位置关系如何?用三角尺检验.教师引导学生画图操作:学生看图总结,得出结论:(1)画出直线l及l外的一点P;(2)过P点作PO⊥l,垂足为O;(3)点A1、A2、A3……在l上,连接PA1、PA2、PA3……(4)用叠合法或度量法比较PO、PA1、PA2、PA3……的长短.教师请同学们与组内的同学进行充分的配合,讨论相应的结论,并选派代表发言.教师引导学生交流,得出垂线的另一个性质.教师板书:连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.三、尝试反馈,理解新知关于垂线段,教师引导学生思考:(1)垂线段与垂线的区别与联系;(2)垂线段与线段的区别与联系.结合课本图形(图5.1-9),深入认识垂线段PO: PO⊥l,∠POA1=90°,O为垂足,垂线段PO与其他线段PA1、PA2……相比,长度是最短的.教师根据两点间的距离的意义给出点到直线的距离命名.教师板书:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.教师强调,在图5.1-9中,PO的长度是点P到直线l的距离,PA1、PA2……的长度都不是点P到直线l的距离.四、提升练习判断下列说法是否正确,如果正确,请说明理由;如果错误,请订正.(1)直线外一点与直线上一点间的线段的长度是这一点到这条直线的距离;(2)如图,线段AE的长是点A到直线BC的距离;(3)如图,线段CD是点C到直线AB的距离.【答案】(1)错误,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;(2)正确;(3)错误,线段CD的长是点D到直线BC的距离.五、课堂小结本节课学习了哪些新的知识,对于垂线段的理解有没有什么收获?是不是学会了如何作出垂线段?你还有哪些没有解决的问题呢?大部分学生经历观察、操作、想象、归纳、交流等活动,进一步发展空间观念,培养用几何语言准确表达的能力并且了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义,但是度量点到直线的距离的方法掌握得还不够好.1.4 有理数的加法和减法第1课时有理数的加法【知识与技能】1.经历探索有理数加法法则的过程,理解有理数的加法法则.2.运用有理数加法法则熟练地进行加法运算.【过程与方法】在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力.【情感态度】通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质.【教学重点】理解和运用有理数的加法法则.【教学难点】理解有理数加法法则,尤其是理解异号两数相加的法则.一、情景导入,初步认知1.下列各组数中,哪一个较大?-3与-2;3与-3;-3与0;-2与+1;-4与-3.2.一位同学在一条东西方向的跑道上,先向东走了20米,又向西走了30米,能否确定他现在的位置位于出发点的哪个方向,与原来出发的位置相距多少米?若向东记为正,向西记为负,该问题用算式表示为 .【教学说明】我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围.这里先让学生回顾在具体问题中感受正数和负数的加法运算.二、思考探究,获取新知1.动脑筋:如下图,在一条东西向的笔直的马路上,任取一个点O,若把向东走1km 记为1,则向西走1km记为-1.小丽从点O出发,先向西走了2km,然后继续向西走了3km,两次行走后,小丽从O点向哪个方向走了多少千米?2.根据你所列出的等式,观察等号两边的两个加数的符号、绝对值与结果的符号、绝对值之间有什么关系.你能归纳两个负数相加的运算法则吗?【归纳结论】两个负数相加,结果是负数,并且把它们的绝对值相加.3.计算:(1)(-8)+(-12)(2)(-3.75)+(-0.25)4.探究:在一条东西向的笔直的马路上,任取一个点O,若把向东走1km记为1,则向西走1km 记为-1.(1)小亮从点O出发,先向东走了4km,然后掉头向西走了1km,小亮两次走的效果等于从点O向哪个方向走了多少千米?(2)小刚从点O出发,先向东走了1km,然后掉头向西走了3km,小刚两次走的效果等于从点O向哪个方向走了多少千米?(3)根据具体的情境列出算式,并利用数轴写出这两个算式的结果.5.上面我们列出了两个有理数相加的算式,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这2个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?【归纳结论】异号两数相加,当两数的绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.6.说一说:(1)互为相反数的两个数相加,和为多少?(2)一个数与0相加,和为多少?【归纳结论】互为相反数的两个数相加得0;一个数与0相加,得这个数.7.你能根据有理数的加法推出相反数的另一种说法吗?【归纳结论】如果两个数的和等于0,那么这两个数互为相反数.【教学说明】引导学生借助数轴分析,教师关注学生在活动中的表现,可以根据学生的实际情况给予适当点拨和引导,鼓励学生大胆发表自己的意见,最后形成统一的认识.三、运用新知,深化理解1.教材P21例2.2.下列说法正确的是(B)A.两数之和必大于任何一个加数B.同号两数相加,符号不变,并把绝对值相加C.两负数相加和为负数,并把绝对值相减D.异号两数相加,取绝对值较大的加数的符号,并把绝对值相加3.如果│a+b│=│a│+│b│成立,那么(D)A.a,b同号B.a,b为一切有理数C.a,b异号D.a,b同号或a,b中至少有一个为零4.计算:(1)15+(-22)(2)(-13)+(-8)(3)(-0.9)+1.51 (4)12 23⎛+-⎫⎪⎝⎭解:-7,-21,0.61,-1 67.数轴上的一点由原点出发,向左移动2个单位长度后又向左移动了4个单位,两次共向左移动了几个单位?解:(-2)+(-4)=-6.答:这个点共向左移动了6个单位.9.用算式表示:温度由-5℃上升8℃后所达到的温度.解:-5+8=3(℃)10.已知|2a-1|+|5b-4|=0,计算下题:(1)a的相反数与b的倒数的相反数的和;(2)a的绝对值与b的绝对值的和.解:略.【教学说明】通过这组练习,让学生进一步巩固有理数加法的法则,达到熟练程度.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.4”中第1、2题.在课上学生基本能掌握有理数加法法则并能运用,但是做题时很不理想,主要表现在:1.个别学生的书写很乱.2.符号不确定.3.对绝对值的相加减不是很清楚.4.对绝对值和相反数会混为一谈.5.个别学生的计算结果错误.针对这种原因的措施:首先在讲解时特别强调计算步骤,首先要确定最终得数的符号,其次再算绝对值(同号相加,异号相减),并且确定好的符号一定要带到最后,做题时一定要细心,其次在学生的书写上下功夫,再次在课上让学生多上黑板展示,讲解,尽量让学生在课上就把所学知识掌握,课后再加练习,出现做题问题及时纠正引导,加深学生对有理数加法法则的理解,课后练习中出现的问题做个别指导.第2章有理数【基本目标】引导学生自己回顾本章内容,以独立思考和小组讨论的学习方式,以便学生自己梳理知识,形成知识的联系,使新旧知识成为一个有机的整体.【过程与方法】通过小结与复习加深对正负数、相反数、绝对值概念的理解,通过练习,进一步提高学生的计算能力和解决简单实际问题的能力.【情感态度】培养学生反思意识,进一步体会数学来源于生活,应用于生活.【教学重点】1.相关概念、法则、运算律的理解与掌握;2.有理数混合运算的法则的应用及有理数的混合运算技巧.【教学难点】1.应用有理数的运算解决实际问题.2.解题技巧的灵活性和解题思路的全面性和多样性.一、知识框图,整体把握【教学说明】以框图的形式对本章内容做一个形象的解读,便于学生对本章的知识脉络有一个形象的了解,对各知识点之间的关系有一个形象的把握.二、释疑解惑,加深理解通过提问的方式回顾本章的主要内容,采用独立思考与同伴讨论的学习方式,让学生通过思考回答问题,加深对本章知识的理解.根据学生实际情况,教师给予适当的引导、归纳.1.为什么要引入负数?举出实例说明正数和负数在表示相反意义的量时的作用.现实生活中存在很多个有相反意义的量,如:向东5米与向西5米,零上2℃与零下2℃,收入100元与支出100元,低于海平面150米与高出海平面800米……用正数表示其中一种量,负数表示和它相反意义的量,这样既简单又明白.例如吐鲁番盆地的海拔高度为-155m,表示吐鲁番盆地的海拔高度是低于海平面155m.2.数的范围从正整数、零和正分数扩充到有理数后,增加了哪些数?减法中哪些原来不能进行的运算可以进行了?增加了负整数、负分数,解决了原来“小数不能减去大数”的问题,现在任何有理数都可以进行减法运算.3.怎样用数轴表示有理数?数轴与普通直线有什么不同?怎样用数轴解释绝对值和相反数?任何一个有理数都可以用数轴上的一个点表示,但数轴上的点不是都表示有理数,这一点,以后我们将要学习.数轴是一条特殊的直线,是规定了正方向、原点和单位长度的直线.原点、正方向、单位长度也称数轴的三要素,缺一不可.数轴上与原点的距离相等的两个点所表示的数是互为相反数.4.怎样比较有理数的大小?有理数的大小比较方法有两种;一是利用数轴,在数轴上较左边的点比右边的点所表示的数小;二是用绝对值,两个负数,绝对值大的反而小.正数大于零,负数小于零.5.有理数的加法与减法有什么关系?乘法与除法呢?有理数的减法可以转化为加法,转化的桥梁是相反数,减去一个数等于加上这个数的相反数,同样,除法可以转化为乘法,转化的桥梁是倒数,除以一个数(不为0),等于乘以这个数的倒数.有理数的混合运算都可以转化为加法与乘法.6.有理数满足哪些运算律?交换律:a+b=b+a,ab=ba结合律:(a+b)+c=a+(b+c)(a·b)·c=a(bc)分配律:(a+b)·c=ac+bc其中a、b、c表示任意有理数.合理使用运算律,可以使计算更简便.三、典例精析,温故知新例1 填空:(1)在知识竞赛中,如果+10分表示加10分,那么扣20分可表示成;(2)某人转动转盘,如果沿逆时针转5圈记作+5圈,那么沿顺时针转12圈可表示成;(3)某次乒乓球质量检测中,一只乒乓球超出标准0.02g记作+0.02g,那么-0.03g 可表示成 .分析:本题主要是考查同学们运用正负数表示相反意义的量的能力.点评:怎样利用生活中的常见量表示正负数,理解正负数,练习本题时还需要再做一次认真的总结.例2 填空:(1)若m,n互为相反数,则m+ n =;(2)-2006的倒数是;(3)-(-3)= ;(4)-|-2|的倒数是 .分析:相反数、倒数的概念,注意符号.点评:初学代数,首先必须确保性质符号的准确.例3 如图,数轴上两点所表示的两数()A.和为正数B.和为负数C.积为正数D.积为负数分析:本题重在考查能否应用数形结合思想及数轴上的点所提供的信息进行判别.点评:本题考查的是数轴的知识及运算符号的确定.例4 下列四个运算中,结果最小的是()A.1+(-2)B.1-(-2)C.1×(-2)D.1÷(-2)分析:注意在计算时要先确定符号,再按法则进行计算.点评:本题考查的是有理数的加减乘除运算法则以及有理数大小的比较.例5 如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A.a>b>-b>-aB.a>-a>b>-bC.b>a>-b>-aD.-a>b>-b>a分析:本题可利用特殊值法,根据条件可令a和b等于某数.点评:本题也可以运用画数轴的方法,利用数形结合的思想来解决问题. 例6 计算下列各题:(1)-1+5×(-2)-(-4)2÷(-8);(2)34-83-81+21-14.分析:对于有理数的混合运算,要注意运算顺序和运算法则.点评:在进行混合运算时,能用运算律简便运算的一定要用运算律来进行运算.例7计算下列各题:分析:本题主要考查有理数乘法的交换律、结合律、分配律的运用.应用运算律可以简化运算,同时也可提高做题的速度,减少计算量.点评:对于乘法分配律a(b+c)=ab+ac有两种运用方法,一种是顺用公式,如上题中的(1),另一种是逆用公式,如上题中的(2),在做题时,应具体问题具体分析.例8神舟六号飞船,在平安飞行115小时23分后重返神州. 用科学记数法表示神舟六号飞船飞行的时间是秒(精确到千位).分析:a×10x中a的取值范围是1≤a<10,底数10的指数n等于所表示的整数位数减去1.点评:本题考查的是科学记数法及其运算,由于数字较大,计算时很容易出错,因此一定要特别当心,没有特别说明的话,建议此题用计算器来解决.例9(-8)2014+(-8)2013能被下列数整除的是()A.3B.5C.7D.9分析:本题重在考查转化思想,因为直接计算显然不大可能,因此可把原式转化为82014-82013,运用了乘方的意义及乘法分配律.点评:从(-8)2014+(-8)2013到7×82013的运算,只要掌握了乘方的概念,我们就会发现这是一道看似超纲的,其实却没超纲的好题.四、拓展训练,巩固提高1.如果x<0,y>0,且x2=4,y2=9,则x+y= .2.大于-4而小于+3的整数是 .3.a为最小的正整数,b为a的相反数的倒数,c为相反数等于本身的数,则(a+b)×5+4c= .4.已知|a-1|+|2-b|=0,则a100-5b .5.认真算一算:6.已知有理数a,b,c 在数轴上的位置如图所示且|a|=|b|.(1)求a+b 与b a 值; (2)判断b+c,a-c,bc,ac 及c b c a --的符号; (3)化简|a|-|a+b|-|c-a|+|c-b|.【教学说明】学生独立完成练习,体会知识点的运用变化,提高思维和解题能力,提高综合解题能力.完成本课时对应的练习.全章复习的目的是使学生进一步系统掌握基础知识、基本技能和基本方法,进一步提高综合运用数学知识灵活地分析和解决问题的能力.因此,在选择教学内容时我们注意了下面两个方面:第一,既加强基础,又提高能力和发展智力;第二,既全面复习,又突出重点.本节课是有理数全章的复习课,所以教学中抓住了有理数的概念和有理数的运算这两个主要内容.这是有理数的基础知识,也是复习的重点.此外,还通过典型例题的分析,让学生熟练地利用数轴来解题,以提高他们对数形结合思想的认识,以及分析问题、解决问题的能力.。

5.1.2垂线(第二课时)

5.1.2垂线(第二课时)

5.1.2垂线(第2课时)教学目标:1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力。

2.了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义,并会度量点到直线的距离.教学重点:“垂线段最短”的性质,点到直线的距离的概念及其简单应用.教学难点:对点到直线的距离的概念的理解.教学过程:一、情境引入1.教师展示课本图5.1-8,提出问题:要把河中的水引到农田P处, 如何挖渠能使渠道最短? (学生看图、思考)2.教师以问题串形式,启发学生思考.(1)问题1,上学期我们曾经学过什么最短的知识,还记得吗?(学生说出:两点间线段最短)(2)问题2,如果把渠道看成是线段,它的一个端点自然是P,那么另一个端点的位置呢?把江河看成直线L,那么原问题就是怎么的数学问题.问题2使学生能用数学眼光思考:在连接直线L外一点P与直线L 上各点的线段中,哪一条最短?二、探究新知1、教师演示教具,给学生直观的感受.教具如图:在硬纸板上固定木条L,L外一点P,转动的木条a一端固定在点P.PlAa使木条L与a相交,左右摆动木条a,L与a的交点A随之变化,线段PA 长度也随之变化.PA最短时,a与L的位置关系如何?用三角尺检验.2、.学生画图操作,得出结论.(1)画出直线L,L外一点P;(2)过P点出PO⊥L,垂足为O;(3)点A1,A2,A3……在L上,连接PA、PA2、PA3……;(4)用叠合法或度量法比较PO、PA1、PA2、P A3……长短.3、师生交流,得出垂线的另一条性质.教师板书:连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.关于垂线段教师可让学生思考:E D C B A (1)垂线段与垂线的区别联系.(2)垂线段与线段的区别与联系.二、点到直线的距离1.师生根据两点间的距离的意义给出点到直线的距离命名.结合课本图形(图5.1-9),深入认识垂线段PO:PO⊥L,∠POA=90°,O 为垂足,垂线段PO 的长度比其他线段PA1、PA2……中是最短的.按照两点间的距离给点到直线的距离命名,教师板书:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.在图5.1-9中,PO 的长度是点P 到直线L 的距离,其余结论PA 、PA2……长度都不是点P 到L 的距离.三、运用新知练习1:已知直线a 、b,过点a 上一点A 作AB⊥a,交b 于点B,过B 作BC⊥b 交a 上于点C.请说出哪一条线段的长是哪一点到哪一条直线的距离? 并且用刻度尺测量这个距离.ba CB A练习2:课本中水渠该怎么挖?在图上画出来.如果图中比例尺为1:100000, 水渠大约要挖多长?练习3:判断正确与错误,如果正确,请说明理由,若错误,请订正.(1)直线外一点与直线上的一点间的线段的长度是这一点到这条直线的距离.(2)如图,线段AE 是点A 到直线BC 的距离.(3)如图,线段CD 的长是点C 到直线AB 的距离. 学生独立完成,教师组织学生交流、评价. 四、课堂小结1、谈谈你本节课的收获。

5.1.2 垂线(授课典案)

5.1.2  垂线(授课典案)

5.1.2 垂线第1课时垂线第2课时垂线段课题第1课时垂线第2课时垂线段授课人教学目标知识技能1.使学生掌握垂线、垂线段、点到直线的距离等概念,理解垂线的性质,掌握在同一平面内,过一点有且只有一条直线与已知直线垂直的结论;2.会用三角尺或量角器过一点画一条直线的垂线.数学思考经历观察、操作、分析、概括、交流等学习过程,进一步提高学生的作图能力以及运用数学符号进行逻辑推理的能力.问题解决通过探索垂线的性质,能解决相关的垂线问题,并能够进行适当的说理.情感态度1.通过动手观察、操作、推断、交流等数学活动,进一步发展学生交流、合作的能力及有条理地表达自己思想的能力;2.通过创设情境,利用变式训练等多种教学手段来激发学生的学习兴趣,给学生创造成功的机会,使他们爱学、会学且学会,从而体验成功的快乐.教学重点垂线的概念、画法和垂线的两个性质.教学难点垂线的画法;对点到直线的距离的概念的理解.授课类型新授课课时教具量角器、三角尺、直尺、相交线模型教学活动教学步骤师生活动设计意图活动一: 创设情境导入新课【课堂引入】图5-1-28被钉死在十字架上的人是谁?十字架有什么意义?十字架原是罗马帝国处以死刑的刑具,反映了帝国的残暴本性,原为耻辱的记号.上帝之子耶稣为了拯救人类,被人钉于十字架,舍命,流血,牺牲,第三天从死里复活.使一切信他的人,罪得赦免,与神和好,获得永生.从此,活动一: 创设情境导入新课十字架具有了荣耀、得胜的含义,成了耶稣救人的标志、基督教的标志和爱的标志,也被用来作为医疗的标志.该图隐含怎样的几何图形?生活中还有哪些这种图形呢?(书本相邻的两条边、窗户框相邻的两边等)今天我们就来研究这种特殊情况!图5-1-29教师出示相交线的模型(如图5-1-29),演示模型,学生观察思考:固定木条a,转动木条b,当b的位置变化时,a,b所成的角∠α是如何变化的?通过耶稣被钉在十字架上引入相交线的模型,并揭示了“十字架”的多重含义.其中渗透了对学生的德育教育,让学生热爱生命,形成博爱的观念,并且十字架中隐含相交线的特殊情况——垂直.活动二: 实践探究交流新知【探究1】垂线的概念1.垂线的定义(1)【课堂引入】中的图5-1-29,木条a不动,当木条b转到什么位置时,两根木条互相垂直?(2)转动木条b时,它和不动的木条a互相垂直的位置有几个?活动二: 实践探究交流新知(3)当a,b相交形成的角中有一个角是直角时,其他三个角的度数是多少?通过模型展示及学生交流应使学生明白:当b的位置变化时,∠α从锐角变为钝角,其中∠α是直角是特殊情况.其特殊之处还在于:当∠α是直角时,它的邻补角、对顶角都是直角,即直线a,b相交所形成的四个角都是直角,都相等.引导学生概括垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.辨析:“互相垂直”与“垂线”.“互相垂直”指两条直线的位置关系;“垂线”是指其中一条直线相对另一条直线的命名.如果说两条直线“互相垂直”时,其中一条必定是另一条的“垂线”,如果一条直线是另一条直线的“垂线”,则它们必定“互相垂直”.图5-1-302.垂直的符号表示垂直用符号“⊥”来表示,“⊥”读作“垂直于”.如图5-1-30,直线AB垂直于直线CD,垂足为O,则记为AB⊥CD,垂足为O,一般在图中任意一个直角处作上直角记号.3.用垂线的定义进行推理(1)如图5-1-30,你能说出由什么条件就知道AB与CD互相垂直吗?因为∠BOC=90°(已知),所以AB⊥CD(垂直的定义).(2)如果AB⊥CD,那么可得到什么结论?(填空)因为AB⊥CD于点O(已知),所以∠BOC=90°(或∠AOC=90°或∠AOD=90°或∠BOD=90°)(垂直的定义).1.通过探究,让学生独立思考,动手操作,经历探索过程,发现结论.培养学生归纳探究的能力及逻辑推理能力.活动二: 实践探究交流新知【探究2】垂线的性质1图5-1-31让学生用三角尺或量角器画已知直线的垂线.(1)如图5-1-31,现有一条已知直线AB,分别过直线外一点C和直线上一点D,作直线AB的垂线,你有几种方法?(2)通过上述方法画出的垂线有几条?从中你能发现什么结论?学生独立思考,动手操作,自主探索.经过思考、操作,发现对于问题(1)可以有下列两种方法来画垂线:①用量角器;②用三角尺,如图5-1-32.图5-1-32教师在学生动手操作后演示课件“用三角尺作垂线”,让学生进一步感受画垂线的过程.师生共同总结画垂线的方法:(1)用三角尺:贴直线——过定点——画垂线.用三角尺的两条直角边“一贴”:贴住已知直线,“二靠”:靠住已知点,“三画”:画垂线.(2)用量角器.学生通过思考得到:在同一平面内,经过直线外一点,有且只有一条直线与已知直线垂直.注意:(1)在同一平面内,经过直线上一点或直线外一点画已知直线的垂线,只能画出一条.(2)如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在射线的反向延长线或线段的延长线上.【探究3】垂线的性质22.引导学生总结作垂线的一般方法.3.培养学生的作图能力、说理能力以及思考问题的严谨性.活动二: 实践探究交流新知1.解释概念垂线段:垂线上一点到垂足的线段;点到直线的距离:直线外一点到这条直线的垂线段的长度.2.问题:(1)如图5-1-33,在灌溉时需要把河AB中的水引到C处,如何挖渠能使渠道最短?图5-1-33(2)从上述探究过程中你能发现什么结论?图5-1-34学生可以自主探究,如图5-1-34,先在直线AB上任取一些点,连接这些点和点C,可以发现所连的这些线段中CD最短,此时CD ⊥AB,于是找到挖渠方案.3.学生归纳:连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.注意:垂线是直线;垂线段特指一条线段;点到直线的距离是指垂线段的长度,它是一个数量,是有单位的.活动三: 开放训练体现应用【应用举例】例1如图5-1-35,在给出的图形上,完成下列作图:(1)作出点A到直线BC的垂线段AD,并量出点A到直线BC的距离;(2)过点B作AC的垂线,垂足为E,过点C作AB的垂线,垂足为F;(3)延长DA,你能发现什么有趣的结论?图5-1-351.通过例题让学生学会画线段的垂线,并感受三角形三边上的高所在的直线相交于一点的这一事实.活动三: 开放训练体现应用解:(1)如图5-1-36.测量略.(2)如图5-1-36.(3)直线DA,BE,CF相交于同一点.图5-1-36变式1.在图5-1-37中分别画出点A,B到直线CD的垂线段AE,BF.图5-1-37解:如图5-1-38所示.图5-1-382.如图5-1-39,点A表示小明家,点B表示小明外婆家,若小明先去外婆家拿渔具,然后再去河边钓鱼,怎样走路程最短,请画出行走路径,并说明理由.图5-1-39 图5-1-40解:行走路径如图5-1-40,从A到B再到C.理由是两点之间线段最短,垂线段最短.2.通过变式练习进一步巩固垂线的概念及作图.活动三: 开放训练体现应用【拓展提升】例2如图5-1-41,一辆汽车在直线形公路AB上由A地开往B地,M,N是位于公路两侧的村庄.图5-1-41(1)设汽车行驶到公路AB上的点P位置时,距离村庄M最近;行驶到点Q位置时,距离村庄N最近,请在图中的公路AB上分别画出点P和点Q的位置;(2)当汽车从A出发向B行驶时,在公路AB的哪一段,距离M,N两村庄都越来越近?在哪一段路上距离村庄N越来越近,而距离村庄M越来越远?让学生运用垂线段最短的性质解决生活中的实际问题,让他们感受到数学来源于生活,从而增加他们学习数学的兴趣.活动四: 课堂总结反思【当堂训练】1.下面四种说法:(1)在同一平面内,过一点有一条线和已知直线垂直;(2)在同一平面内,过一点有且只有一条直线和已知直线垂直;(3)直线的垂线和直线上的任一线段垂直;(4)对顶角中有一个角是直角时,相邻的边互相垂直.其中说法正确的有(D)A.1个B.2个C.3个D.4个2.如图5-1-42,直线AB,CD相交于点O,EO⊥CD.下列说法错误的是(C)A.∠AOD=∠BOCB.∠AOE+∠BOD=90°C.∠AOC=∠AOED.∠AOD+∠BOD=180°图5-1-423.如图5-1-43是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段AP的长度.通过练习进一步巩固所学垂线的概念及性质,且能使教师及时掌握本课教学效果,为后续教学的安排提供依据.活动四: 课堂总结反思图5-1-434.课本第6页练习.课后作业:1.课本第8页习题5.1第3,4,5,6,7题.2.课本第9页习题5.1第10,12题.【板书设计】第1课时垂线第2课时垂线段框架图式总结,更容易形成知识网络.【教学反思】①[授课流程反思]通过耶稣被钉在十字架上引入相交线的模型,并揭示了“十字架”的多重含义.其中渗透了对学生的德育教育,让学生热爱生命,形成博爱的观念,这是对学生进行思想教育非常重要的方法,使学生在学到知识的同时受到了良好的美育、德育教育.活动四: 课堂总结反思②[讲授效果反思]本节采用“引导发现”法鼓励学生自己去发现、分析、解决问题,使学生在自己动手的基础上,发现垂线的性质,又借助于教具、实物、图形,从直观的感性认识发现抽象的概念,使他们成为探求知识的主体,同时还利用边讲边练的教法让学生对新知加以巩固理解.通过变式训练习题、开放性习题帮助学生逐步树立转化的思想和发展性思维.在授课过程中努力遵循由学生置疑——感知——概括——应用的过程,通过学生积极参与、积极思维,使学生从被动的学习转化到主动探索和发现的过程中,使学生能感受到学习与探索的乐趣.③[师生互动反思]④[习题反思]好题题号错题题号回顾反思,找出差距与不足,形成知识及数学体系,更进一步提升教师教学能力.一、自学范围(课本练习) 二、自学目标:1、知道垂线的定义、能过一点画出已经直线的垂线、会用符号表示垂直。

5.1.2垂线(2)

5.1.2垂线(2)

l
一连接两高速公路的一段通
道,欲使通道最短,应怎样
m
施工?
4、如图,P为ABC的
A
平分线上一点
P
B
C
(1)、分别画出点P到边BA、BC的垂线段;
(2)、分别量出点P到边BA、BC的距 离。
5 文峰学校第六届运动会上,701班一名运动员第
五跳打破了年级记录。如图A、B为这一跳的脚印
落点,起跳线为CD。请画图说明如何测量他的成
线段
BD .的长度.点D到直线AB的距离
是线段
DE . 的长度线段AD的长度是
点 A .到直线 BD
.的距离.
B
E
AD
C
G D
M· ·
A
问题1:长方体的顶点A处有 一只蚂蚁想爬到点C处,请你帮 它画出爬行的最佳路线。并说明 理由。
问题2:若A处的蚂蚁想爬到
C
棱BC上,你认为它的最佳路线
是什么?
┏N B
绩。
C

F
A
• •
EB
D
解:过脚印B的后跟E作EF⊥CD,垂足为点F。 那么垂线段EF的长度就是这名运动员跳远的成绩。
4、如图所示,在△ABC中,∠ABC=90 ,
①过点B作三角形ABC的AC边上的高BD,过D点作三
角形ABD的AB边上的高DE。②点A到直线BC的距离是
线段
AB .的长度.点B到直线AC的距离是
5.1.2垂线(2)
初中数学资源网
1、直线相交时有几种情况?
2、怎样的两条直线我们称它们互 相垂直? 3、一条直线仅有一条垂线。对吗?
学习目标:
1.了解垂线段定义及点到直线距 离定义。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例4
如图,已知AC⊥BC,CD⊥AB。 线段AC 的长度表示A点到BC的距离; 则图中以________ 线段BC 以_____________ 的长度表示B点到AC的距离; 线段CD 以_____________ 的长度表示C点到AB的距离.
C
A
B D
例5
如图OD⊥BC,D是垂足,连结OB,下列说法中: ①线段OB是O,B两点的距离 ②线段OB的长度是O,B两点的距离 ③线段OD是O点到直线BC的距离 ④线段OD的长度是O点到直线BC的距离 其中正确的个数有( B)个 A.1 B.2 C.3 D.4 B
O
D C
想一想: 已知: 如图AD<AE <AC<AB 能说AD的长是A到BC的 A 距离吗?
答:不能。
B D E C
中考链接
1.如图,直线AB与CD相交于点O,OE平分∠DOB, ∠AOC=40°,则∠DOE=____。
A O
D E
C
B
归纳小结
1.什么是垂直?垂直和相交有什么关系? 我们是如何刻画两直线垂直的位置关系的? 2.垂线有哪些性质?
如图,怎样测量 点A 到 直线m 的距离?
A
10m
B
20m
1.过点A画出直线m的垂线段AB,垂足为B; 2.用直尺量出垂线段AB的长.
0m
m
例1、如图,画出
(1)从村庄A到货场B怎样走最近?为什么?
(2)从货场B到铁道怎样走最近?为什么?
A
C B
例2
如图, AC⊥BC, ∠C=900 ,线段AC、BC、CD 中最短的是( C ) (A) AC (B) BC (C) CD (D) 不能确定 C Bຫໍສະໝຸດ 5.1.2 垂线段(第二课时)
探究
垂线是直线 垂线段是线段
O P
直线OP是直线a 的垂线
线段OP是直线a 的垂线段
a
垂线与垂线段的关系
有人不慎掉入有鳄鱼的湖中。如图,他 在P点,应选择什么样的路线尽快游到岸边 m呢?
P
A
B
C
D
m
连接直线外一点与直线上各点的所有 线段中,垂线段最短。 垂线段最短 简单说成:垂线段最短. 垂线段的长度 直线外一点到这条直线的垂线段的长度, 叫做点到直线的距离。
A
D
例3
如图2-22,AC⊥BC于C,CD⊥AB于D, DE⊥BC于E.试比较四条线段AC,CD,DE 和AB的大小
解:∵ AC⊥BC于C,(已知) ∴ AC<AB.(垂线段最短) 又∵ CD⊥AD于D,(已知) ∴ CD<AC.(垂线段最短) ∵ DE⊥CE于E,(已知) ∴ DE<CD.(垂线段最短) ∴ AB>AC>CD>DE.
相关文档
最新文档