06树与二叉树
树和二叉树 PPT课件
C
E
D
F
C
D
C
D
F
E F 二叉链表
E
二叉树
三叉链表
三叉链表的静态结构
root data parent lchild rchild 0 1 2 3 4 5 A B C D E F -1 0 1 1 3 3 1 2 -1 4 -1 -1 -1 3 -1 5 -1 -1
A
B C E D F
0
1 3 7 8 9 4 5
2 6
4. 二叉树的存储结构
顺序表示
1
2 4 5 6 3 7 7 4 8 2 5 9 1 3 6 10 9
8 9 10
1 2 3 4 5 6 7 8 910
完全二叉树 的顺序表示
1 2 3 4 0 5 6 7 8 0 0 0 0 910
一般二叉树 的顺序表示
链表表示
第六章 树和二叉树
1. 2. 3. 4. 5. 6.
树的定义和基本术语 二叉树 遍历二叉树与线索二叉树 树与森林 赫夫曼树 及其应用 二叉树的计数
6.1 树的定义和基本术语
树的定义
树是由 n (n 0) 个结点组成的有限集合。如果 n = 0, 称为空树;如果 n > 0,则 有且仅有一个特定的称之为根(Root)的结点,它只有直 接后继,但没有直接前驱; 当n > 1,除根以外的其它结点划分为 m (m >0) 个互不 相交的有限集 T1, T2 ,…, Tm,其中每个集合Ti本身又是一 棵树,并且称为根的子树(SubTree)。
特点
每个结点至多只有两棵非空子树(二叉树中 不存在度大于2的结点)
2.五种形态
树和二叉树的知识点总结
树和二叉树的知识点总结一、树的基本概念1. 树的定义:树是一种非线性数据结构,由 n(n>=1)个结点组成的有限集合。
对于每个非终端节点,都有一个被称为根的结点,且除根节点外,其他结点可以分为 m(m>=0)个互不相交的子集合,而每个子集合本身又是一个树。
2. 树的基本特点:树是一种分层数据的抽象模型,具有层级关系的数据结构。
树的结点包括根结点、子节点、叶子结点、父节点等。
3. 树的术语解释:树的根节点是树的顶端结点,没有父节点;子节点是一个结点向下连接的结点;叶子结点是没有子节点的结点;父节点是有一个或多个子节点的结点。
二、树的分类1. 二叉树:一种特殊的树,每个结点最多有两个子结点,分别为左子结点和右子结点。
二叉树的子树有左子树和右子树,必须遵循左子树 < 根节点 < 右子树的顺序。
2. 平衡树:每个结点的左子树和右子树的高度之差不能超过1的二叉树。
3. 满二叉树:每个结点要么没有子节点,要么有两个子节点的二叉树。
4. 完全二叉树:除了最底层,所有层的结点数都达到最大,并且最底层的结点都依次从左到右排列。
三、二叉树的基本概念1. 二叉树的特点:每个结点最多有两个子结点,分别为左子结点和右子结点。
二叉树的子树都遵循左子树 < 根节点 < 右子树的顺序。
2. 二叉树的遍历:分为前序遍历、中序遍历和后序遍历。
前序遍历先访问根节点,再递归左右子树;中序遍历先递归左子树,再访问根节点,最后递归右子树;后序遍历先递归左右子树,最后访问根节点。
3. 二叉树的存储:二叉树的存储方式可以采用链式存储和顺序存储。
链式存储是通过结点间的指针链接,顺序存储是通过数组或列表进行存储。
四、二叉树的应用1. 二叉搜索树:是一种特殊的二叉树结构,对于任意节点,其左子树上的结点值都小于该节点的值,右子树上的结点值都大于该节点的值。
2. 堆:是一种特殊的完全二叉树,分为最大堆和最小堆。
最大堆的每个结点的值都大于或等于其子节点的值,最小堆的每个结点的值都小于或等于其子节点的值。
第6章树和二叉树
9
6.1.4 树的存储结构
3.孩子兄弟表示法 孩子兄弟表示法 在结点中设置两个指针域, 在结点中设置两个指针域,一个指针域指向该结 点的第一个孩子,另一个指针域指向其右兄弟。 点的第一个孩子,另一个指针域指向其右兄弟。
2
6.1.1树的定义 树的定义
结点的度:结点所拥有子树的个数称为结点的度。 结点的度:结点所拥有子树的个数称为结点的度。 子树 称为结点的度 树的度:树中所有结点的度的最大值称为树的度。 最大值称为树的度 树的度:树中所有结点的度的最大值称为树的度。 叶结点:度为零的结点称为叶结点。也称终端结点 终端结点或 叶结点:度为零的结点称为叶结点。也称终端结点或叶 子 分支结点:度不为零的结点称为分支结点。也称非终端 分支结点:度不为零的结点称为分支结点。也称非终端 结点。除根结点以外,分支结点也称为内部结点。 结点。除根结点以外,分支结点也称为内部结点。 孩子结点和双亲结点: 孩子结点和双亲结点:树中一个结点的子树的根结点称 为孩子结点。该结点就称为孩子结点的双亲结点。 为孩子结点。该结点就称为孩子结点的双亲结点。 兄弟结点:具有同一双亲的孩子结点互为兄弟结点。 兄弟结点:具有同一双亲的孩子结点互为兄弟结点。 结点的祖先:从根到该结点所经分支上的所有结点, 结点的祖先:从根到该结点所经分支上的所有结点,称 为结点的祖先。 为结点的祖先。
17
6.2.2 二叉树的性质
性质4 具有n( 性质 具有 (n>0)个结点的完全二叉树的深度 )个结点的完全二叉树的深度h= log 2 n + 1 证明: 证明: 根据完全二叉树的定义可知深度为h-1层及以上的结点构成 根据完全二叉树的定义可知深度为 层及以上的结点构成 满二叉树,因此由性质2得深度为 得深度为h的完全二叉树满足 满二叉树,因此由性质 得深度为 的完全二叉树满足 n>2h-1-1和n≤2h-1 和 整理后得到 2h-1≤n<2h 不等式两边取对数, 不等式两边取对数,得 h-1≤log2n<h 由于h为正整数 为正整数, 由于 为正整数,因此 h= log 2 n + 1
树和二叉树的实验报告
树和二叉树的实验报告树和二叉树的实验报告一、引言树和二叉树是计算机科学中常用的数据结构,它们在各种算法和应用中都有广泛的应用。
本实验旨在通过实际操作和观察,深入了解树和二叉树的特性和操作。
二、树的构建与遍历1. 树的概念和特性树是一种非线性的数据结构,由节点和边组成。
每个节点可以有零个或多个子节点,其中一个节点没有父节点的称为根节点。
树的特点包括层次结构、唯一根节点和无环等。
2. 树的构建在本实验中,我们使用Python语言构建了一棵树。
通过定义节点类和树类,我们可以方便地创建树的实例,并添加节点和连接节点之间的边。
3. 树的遍历树的遍历是指按照一定顺序访问树中的所有节点。
常见的遍历方式有前序遍历、中序遍历和后序遍历。
我们在实验中实现了这三种遍历方式,并观察了它们的输出结果。
三、二叉树的实现与应用1. 二叉树的概念和特性二叉树是一种特殊的树,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树的特点包括唯一根节点、每个节点最多有两个子节点和子节点的顺序等。
2. 二叉树的实现我们使用Python语言实现了二叉树的数据结构。
通过定义节点类和二叉树类,我们可以创建二叉树的实例,并实现插入节点、删除节点和查找节点等操作。
3. 二叉树的应用二叉树在实际应用中有很多用途。
例如,二叉搜索树可以用于实现快速查找和排序算法。
AVL树和红黑树等平衡二叉树可以用于高效地插入和删除操作。
我们在实验中实现了这些应用,并通过实际操作验证了它们的效果。
四、实验结果与讨论通过实验,我们成功构建了树和二叉树的数据结构,并实现了它们的基本操作。
通过观察和分析实验结果,我们发现树和二叉树在各种算法和应用中的重要性和灵活性。
树和二叉树的特性使得它们适用于解决各种问题,例如搜索、排序、图算法等。
同时,我们也发现了一些问题和挑战,例如树的平衡性和节点的插入和删除操作等。
这些问题需要进一步的研究和优化。
五、总结本实验通过实际操作和观察,深入了解了树和二叉树的特性和操作。
第六章-树和二叉树
之
树 和 二 叉 树 13
1 2 3 A B C
4 5 6 7 0 D E F
8 0
9 10 0 G
¾ 二叉树顺序存储的算法描述
数 据 结 构
¾ 初始化二叉树
之
树 和 二 叉 树 14
#define Max_Size 100 typedef int TElemType; typedef TElemType SqBT[Max_Size+1]; void InitBT(SqBT bt){//设置空树 int i; for(i=1;i<=Max_Size;i++) bt[i]=0; }
数 据 结 构
之
树 和 二 叉 树 19
¾ 后序遍历顺序二叉树算法 void PostBT(SqBT bt,int i){ if(i>Max_Size||!bt[i]) return; PostBT(bt,2*i); PostBT(bt,2*i+1); printf("%3d ",bt[i]); }
数 据 结 构
之
树 和 二 叉 树 4
5. 孩子结点、双亲结点、兄弟结点、堂兄弟 结点、祖先结点、子孙结点…… 6. 结点的层次从根开始,根为第一层,根的 孩子为第二层;若某结点在第L层,则其 子树的根就在第L+1层。 7. 树的深度或高度:树中结点的最大层次。 8. 有序树:如果将树中结点的各子树看成是 从左至右有次序的;反之,则是无序树。 9. 森林:是m棵互不相交的树的集合。
数 据 结 构
之
树 和 二 叉 树 25
¾ 打印一维数组 void printSq(SqBT bt){ int i; printf("\nSeqArray:"); for(i=1;i<=Max_Size;i++) printf("%3d ",bt[i]); }
数据结构PPT(树和二叉树)
徽 理
第6章 树和二叉树
工
大 本章学习导读
学
树型结构是一类重要的非线性结构。它的特点是结点之
间有分支,并具有明显的层次关系的结构。树在计算机领
域中有着广泛的应用,例如在编译程序中,用树来表示源
程序的语法结构;在数据库系统中,可用树来组织信息;
在分析算法的行为时,可用树来描述其执行过程。
本章重点讨论二叉树的存储表示及其各种运算,并研究
假设对所有j, 1≤j﹤i,命题成立,即第j层上至多有2 j-1 个
结点。
由归纳假设第i-1 层上至多有 2i -2个结点。
由于二叉树的每个结点的度至多为2,故在第i层上的最大结
点数为第i-1层上的最大结点数的2倍,即2×2i -2= 2 i-1。
安
徽 理
6.2.2 二叉树的性质
工
大 学
性质2 深度为 k 的二叉树至多有 2 k-1个结点(k ≥1)。
一般树和森林与二叉树的转换关系,最后介绍树的应用实
例。
安
徽 理
6.1 树的定义和基本术语
工
大 学
❖ 什么是树?树是由 n (n ≥ 0) 个结点的有限集合。如果 n
= 0,称为空树;如果 n > 0,则
▪ 有且仅有一个特定的称之为根(Root)的结点,它只有直
接后继,但没有直接前驱;
▪ 当n > 1,除根以外的其它结点划分为 m (m >0) 个互不
相交的有限集 T1, T2 ,…, Tm,其中每个集合本身又是一棵 树,并且称为根的子树(SubTree)。
安
徽 理
树的示例
A
工
B
C
D
大
学
E
数据结构第六章树和二叉树习题及答案
习题六树和二叉树一、单项选择题1.以下说法错误的是 ( )A.树形结构的特点是一个结点可以有多个直接前趋B.线性结构中的一个结点至多只有一个直接后继C.树形结构可以表达(组织)更复杂的数据D.树(及一切树形结构)是一种"分支层次"结构E.任何只含一个结点的集合是一棵树2.下列说法中正确的是 ( )A.任何一棵二叉树中至少有一个结点的度为2B.任何一棵二叉树中每个结点的度都为2C.任何一棵二叉树中的度肯定等于2D.任何一棵二叉树中的度可以小于23.讨论树、森林和二叉树的关系,目的是为了()A.借助二叉树上的运算方法去实现对树的一些运算B.将树、森林按二叉树的存储方式进行存储C.将树、森林转换成二叉树D.体现一种技巧,没有什么实际意义4.树最适合用来表示 ( )A.有序数据元素 B.无序数据元素C.元素之间具有分支层次关系的数据 D.元素之间无联系的数据5.若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是()A.9 B.11 C.15 D.不确定6.设森林F中有三棵树,第一,第二,第三棵树的结点个数分别为M1,M2和M3。
与森林F 对应的二叉树根结点的右子树上的结点个数是()。
A.M1 B.M1+M2 C.M3 D.M2+M37.一棵完全二叉树上有1001个结点,其中叶子结点的个数是()A. 250 B. 500 C.254 D.505 E.以上答案都不对8. 设给定权值总数有n 个,其哈夫曼树的结点总数为( )A.不确定 B.2n C.2n+1 D.2n-19.二叉树的第I层上最多含有结点数为()A.2I B. 2I-1-1 C. 2I-1 D.2I -110.一棵二叉树高度为h,所有结点的度或为0,或为2,则这棵二叉树最少有( )结点A.2h B.2h-1 C.2h+1 D.h+111. 利用二叉链表存储树,则根结点的右指针是()。
A.指向最左孩子 B.指向最右孩子 C.空 D.非空12.已知一棵二叉树的前序遍历结果为ABCDEF,中序遍历结果为CBAEDF,则后序遍历的结果为()。
《数据结构》习题汇编06 第六章 树和二叉树 试题
第六章树和二叉树试题一、单项选择题1.树中所有结点的度等于所有结点数加()。
A. 0B. 1C. -1D. 22.在一棵树中,()没有前驱结点。
A. 分支结点B. 叶结点C. 根结点D. 空结点3.在一棵二叉树的二叉链表中,空指针域数等于非空指针域数加()。
A. 2B. 1C. 0D. -14.在一棵具有n个结点的二叉树中,所有结点的空子树个数等于()。
A. nB. n-1C. n+1D. 2*n5.在一棵具有n个结点的二叉树的第i层上(假定根结点为第0层,i大于等于0而小于等于树的高度),最多具有()个结点。
A. 2iB. 2i+1C. 2i-1D. 2n6.在一棵高度为h(假定根结点的层号为0)的完全二叉树中,所含结点个数不小于()。
A. 2h-1B. 2h+1C. 2h-1D. 2h7.在一棵具有35个结点的完全二叉树中,该树的高度为()。
假定空树的高度为-1。
A. 5B. 6C. 7D. 88.在一棵具有n个结点的完全二叉树中,分支结点的最大编号为()。
假定树根结点的编号为0。
A. ⎣(n-1)/2⎦B. ⎣n/2⎦C. ⎡n/2⎤D. ⎣n/2⎦ -19.在一棵完全二叉树中,若编号为i的结点存在左孩子,则左子女结点的编号为()。
假定根结点的编号为0A. 2iB. 2i-1C. 2i+1D. 2i+210.在一棵完全二叉树中,假定根结点的编号为0,则对于编号为i(i>0)的结点,其双亲结点的编号为()。
A. ⎣(i+1)/2⎦B. ⎣(i-1)/2⎦C. ⎣i/2⎦D. ⎣i/2⎦ -111.在一棵树的左子女-右兄弟表示法中,一个结点的右孩子是该结点的()结点。
A. 兄弟B. 子女C. 祖先D. 子孙12.在一棵树的静态双亲表示中,每个存储结点包含()个域。
A. 1B. 2C. 3D. 413.已知一棵二叉树的广义表表示为a (b (c), d (e ( , g (h) ), f ) ),则该二叉树的高度为A. 3B. 4C. 5D. 614.已知一棵树的边集表示为 {<A, B>, <A, C>, <B, D>, <C, E>, <C, F>, <C, G>, <F, H>,<F, I>},则该树的高度为()。
数据结构第六章:树和二叉树
性质2:深度为 的二叉树至多有 个结点(k≥ 性质 :深度为k的二叉树至多有2 k 1 个结点 ≥1)
证明:由性质 ,可得深度为k 证明:由性质1,可得深度为 的二叉树最大结点数是
(第i层的最大结点数 ) = ∑ 2 i 1 = 2 k 1 ∑
i =1 i =1
k
k
10
性质3:对任何一棵二叉树 ,如果其终端结点数(即 性质 :对任何一棵二叉树T,如果其终端结点数 即 叶节点)为 度为2的结点数为 的结点数为n 叶节点 为n0,度为 的结点数为 2,则n0=n2+1 证明: 为二叉树 中度为1的结点数 为二叉树T中度为 证明:n1为二叉树 中度为 的结点数 因为:二叉树中所有结点的度均小于或等于2 因为:二叉树中所有结点的度均小于或等于 所以:其结点总数n=n0+n1+n2 所以:其结点总数 又二叉树中,除根结点外, 又二叉树中,除根结点外,其余结点都只有一个 分支进入; 分支进入; 为分支总数, 设B为分支总数,则n=B+1 为分支总数 又:分支由度为1和度为 的结点射出,∴B=n1+2n2 分支由度为 和度为2的结点射出, 和度为 的结点射出 于是, 于是,n=B+1=n1+2n2+1=n0+n1+n2 ∴n0=n2+1
7
结点A的度:3 结点 的度: 的度 结点B的度:2 结点 的度: 的度 结点M的度:0 结点 的度: 的度 结点A的孩子: , , 结点 的孩子:B,C,D 的孩子 结点B的孩子 的孩子: , 结点 的孩子:E,F 树的度: 树的度:3 E K 结点A的层次: 结点 的层次:1 的层次 结点M的层次 的层次: 结点 的层次:4 L B F A C G H M
数据结构 第六章 树和二叉树
F
G
H
M
I
J
结点F,G为堂兄弟 结点A是结点F,G的祖先
5
树的基本操作
树的应用很广,应用不同基本操作也不同。下面列举了树的一些基本操作: 1)InitTree(&T); 2)DestroyTree(&T); 3)CreateTree(&T, definition); 4)ClearTree(&T); 5)TreeEmpty(T); 6)TreeDepth(T); 7) Root(T); 8) Value(T, &cur_e); 9) Assign(T, cur_e, value); 10)Paret(T, cur_e); 11)LeftChild(T, cur_e); 12)RightSibling(T, cur_e); 13)InsertChild(&T, &p, i, c); 14)DeleteChild(&T,&p, i); 15)TraverseTree(T, Visit( ));
1
2 4 8 9 10 5 11 12 6 13 14 3 7 15 4 6 2
1
3
5 7
证明:设二叉树中度为1的结点个数为n1 根据二叉树的定义可知,该二叉树的结点数n=n0+n1+n2
又因为在二叉树中,度为0的结点没有孩子,度为1的结点有1 个孩子,度为2的结点有2个结孩子,故该二叉树的孩子结点 数为 n0*0+n1*1+n2*2(分支数) 而一棵二叉树中,除根结点外所有都为孩子结点,故该二叉 树的结点数应为孩子结点数加1即:n=n0*0+n1*1+n2*2+1
文件夹1
文件夹n
第六章 树与二叉树
森林的遍历
(4) 广度优先遍历(层次序 遍历) :
数据结构
若森林F为空,返回; 否则 依次遍历各棵树的根 结点; 依次遍历各棵树根结 点的所有子女; 依次遍历这些子女结 森林的二叉树表示 点的子女结点。
45
二叉树的计数 由二叉树的前序序列和中序序列可唯 一地确定一棵二叉树。例, 前序序列 { ABHFDECKG } 和中序序列 { HBDFAEKCG }, 构造二叉树过程如 下:
三个结点构成的不同的二叉树
8
用二 叉 树 表达实际问题
例2 双人比赛的所有可能的结局
开始
甲
开局连赢两局 或五局三胜
乙
甲
甲 甲 乙
乙
乙 甲 乙 甲 甲 乙
甲
乙 甲
乙
乙
甲
乙甲
乙
甲
乙 甲 乙
二叉树的性质
数据结构
性质1 若二叉树的层次从1开始, 则在二叉树的 第 i 层最多有 2i -1个结点。(i 1) [证明用数学归纳法] 性质2 高度为k的二叉树最多有 2k-1个结点。 (k 0) [证明用求等比级数前k项和的公式]
前序遍历二叉树算法的框架是 若二叉树为空,则空操作; 否则 – 访问根结点 (V); – 前序遍历左子树 (L); – 前序遍历右子树 (R)。
遍历结果 -+a*b-cd/ef
27
数据结构
后序遍历 (Postorder Traversal)
后序遍历二叉树算法的框架是 若二叉树为空,则空操作; 否则 – 后序遍历左子树 (L); – 后序遍历右子树 (R); – 访问根结点 (V)。
数据结构
36
左子女-右兄弟表示法 第一种解决方案
软件技术--树与二叉树
(3 ) 若*p结点的左子树和右子树均不为空。
五、哈夫曼树的应用
1、什么是哈夫曼树
假设有n个权值{w1,w2,…,wn},试构造一棵有n 个叶子结点的二叉树,每个叶子结点带权wi,则其中带 权路径长度WPL最小的二叉树称作最优二叉树或哈夫 曼树。
2、 树的基本术语
结点的度:一个结点拥有的子树数称为该结点的度。 叶子结点:度为0的结点称为叶子(Leaf)或终端结点。 非终端结点:度不为0的结点称为非终端结点或分支结点。除根结 点之外,分支结点也称为内部结点。
树的度:树内各结点的度的最大值称为树的度。 树中结点之间的关系:在描述结点之间的关系时,通常用家族关 系来形象的称呼结点之间的联系。结点的子树的根称为该结点的孩 子(Child),相应的,该结点称为孩子的双亲(Parents)或父结点。 同一个双亲的孩子之间称为兄弟(Sibling)。 结点的层次(Level):一棵树从根开始定义起,根为第一层,根的 孩子为第二层,…,依此类推。若某结点在第i层,则其子树的根就 在第i+1层。其双亲在同一层的结点互为堂兄弟。
(4) 性质4: 具有n个结点的完全二叉树的深度为log2n+1。
3、几种特殊的二叉树
• 满二叉树:深度为K,且存在2K-1个结点的二叉树。 • 完全二叉树:至多只有最下面两层上的结点度数可以小于
2,并且最下层结点都集中在该层最左边的位置。 • 平衡二叉树:或是一棵空树,或是具有下列性质的二叉树:
每次插入一个结点的递归算法
struct node {anytype data; struct node *lchild; struct node *rchild; } *root; void insnode(t,d) struct node *t; anytype d;
数据结构详细教案——树与二叉树
数据结构教案第六章树与二叉树目录6.1树的定义和基本术语 (1)6.2二叉树 (2)6.2.1 二叉树的定义 (2)6.2.2 二叉树的性质 (4)6.2.3 二叉树的存储结构 (5)6.3树和森林 (6)6.4二叉树的先|中|后序遍历算法 (7)6.5先|后|中序遍历的应用扩展 (9)6.5.1 基于先序遍历的二叉树(二叉链)的创建 (9)6.5.2 统计二叉树中叶子结点的数目 (9)6.5.3 求二叉树的高度 (10)6.5.4 释放二叉树的所有结点空间 (11)6.5.5 删除并释放二叉树中以元素值为x的结点作为根的各子树 (12)6.5.6 求位于二叉树先序序列中第k个位置的结点的值 (12)6.5.7 线索二叉树 (13)6.5.8 树和森林的遍历 (14)6.6二叉树的层次遍历 (16)6.7判断一棵二叉树是否为完全二叉树 (16)6.8哈夫曼树及其应用 (18)6.8.1 最优二叉树(哈夫曼树) (18)6.8.2 哈夫曼编码 (19)6.9遍历二叉树的非递归算法 (19)6.9.1 先序非递归算法 (19)6.9.2 中序非递归算法 (20)6.9.3 后序非递归算法 (21)第6章二叉树和树6.1 树的定义和基本术语1、树的递归定义1)结点数n=0时,是空树2)结点数n>0时有且仅有一个根结点、m个互不相交的有限结点集——m棵子树2、基本术语结点:叶子(终端结点)、根、内部结点(非终端结点、分支结点);树的规模:结点的度、树的度、结点的层次、树的高度(深度)结点间的关系:双亲(1)—孩子(m),祖先—子孙,兄弟,堂兄弟兄弟间是否存在次序:无序树、有序树去掉根结点非空树森林引入一个根结点3、树的抽象数据类型定义树特有的操作:查找:双亲、最左的孩子、右兄弟结点的度不定,给出这两种操作可以查找到一个结点的全部孩子插入、删除:孩子遍历:存在一对多的关系,给出一种有规律的方法遍历(有且仅访问一次)树中的结点ADT Tree{数据对象:D={a i | a i∈ElemSet, i=1,2,…,n, n≥0}数据关系:若D为空集,则称为空树;若D仅含一个数据元素,则R为空集,否则R={H},H是如下二元关系:(1) 在D中存在唯一的称为根的数据元素root,它在关系H下无前驱;(2) 若D-{root}≠Ф,则存在D-{root}的一个划分D1, D2, …, D m (m>0)(D i 表示构成第i棵子树的结点集),对任意j≠k (1≤j, k≤m) 有D j∩D k=Ф,且对任意的i (1≤i≤m),唯一存在数据元素x i∈D i, 有<root,x i>∈H(H表示结点之间的父子关系);(3) 对应于D-{root}的划分,H-{<root, x1>,…, <root, x m>}有唯一的一个划分H1, H2, …, H m(m>0)(H i表示第i棵子树中的父子关系),对任意j≠k(1≤j,k≤m)有H j∩H k=Ф,且对任意i(1≤i≤m),H i是D i上的二元关系,(D i, {H i})是一棵符合本定义的树,称为根root的子树。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
请画出该二叉树,并写出它的先序遍历的序列。 4.已知一棵二叉树的先序遍历和中序遍历的序列分别为: A,B,D,G,H,C,E,F,I 和 G,D,H,B,A,E,C,I,F。
请画出此二叉树,并写出它的后序遍历的序列。 5.已知一棵二叉树的层次序列为:A B C D E F G H I J,中序序列为 D B G E H J A C I F,
(10)以结点 C 为根的子树的深度是多少?
(11)树的度数是多少?
六.应用题
1.二叉树按中序遍历的结果为:ABC,试问有几种不同形态的二叉树可以得到这一遍
历结果?并画出这些二叉树。
**2.分别画出具有 3 个结点的树和三个结点的二叉树的所有不同形态。
**3.已知一棵二叉树的后序遍历和中序遍历的序列分别为: A,C,D,B,G,I,H,F,E 和 A,B,C,D,E,F,G,H,I。
( )(3)由树转换成二叉树,其根结点的右子树一定为空。 ( )(4)在中序线索二叉树中,右线索若不为空,则一定指向其双亲。 ( )(5)在前序遍历二叉树的序列中,任何结点的子树的所有结点都是直接跟在该
结点之后。
( )(6)一棵二叉树中序遍历序列的最后一个结点,必定是该二叉树前序遍历的最
后一个结点。
作业要求: 五:2、3 六:2、3、6(1)、7、10 七:1、2
习题 6
一.名词解释
(1)结点
(2)结点的度
(3)树的度
(4)二叉树
(5)哈夫曼树
二.判断题(下列各题,正确的请在前面的括号内打√;错误的打ㄨ)
( )(1)树结构中每个结点最多只有一个直接前趋。 ( )(2)完全二叉树一定是满二叉树。
( )。
A.A 在 B 的右方 B.A 是 B 的祖先 C.A 在 B 的左方 D.A 是 B 的子
孙
15.线索二叉树是一种( )结构。
A.物理
B.逻辑
C.逻辑和存储
D.线性
五.简答题 1.什么是一般树?什么是二叉树?
**2.一棵度为 2 的树与一棵二叉树有何区别?
**3.已知一棵树边的集合如下,请画出此树,并回答问题。 {<L, M),<L, N>, <E, L>, <B, E>, <B, D>, <A, B>, <G, J>, <G,K>,
C.7
D.8
7.二叉树按某种顺序线索化后,任一结点均有指向其前趋和后继的线索,这种说法
( )。
A.正确
B.错误
C.不确定
D.都有可能
8.根据树的定义,具有 3 个结点的树有( )种树型。
A.2
B.3
C.4
D.5
9.下列 4 棵树,( )不是完全二叉树。
A.
B.
C.
D.
A
A
A
A
B
C
B
C
B
C
B
C
D EF G
请画出该二叉树。 6.把下列一般树转换为二叉树 **(1) 1
(2)
A
2
历序列为( )。
A. JLKMNOI B.LKNJOMI
C.LKJNOMI
D.LKNOJMI
5.某二叉树的后序遍历序列为:DABEC,中序遍历序列为: DEBAC,则先序遍历序列
为( )。
A.ACBED
B.DECAB
C.DEABC
D.CEDBA
6.具有 35 个结点的完全二叉树的深度为( )
A.5
B.6
D.n=2h -1
A.n
B.n+1
C.n-1
D.不确定
13.任何一棵二叉树的叶子结点在前序、中序、后序遍历序列中的相对次序( )。
A.不发生改变 B.发生改变
C.不能确定
D.以上都不对
14. A, B 为 一 棵 二 叉 树上 的两 个叶 子结点 ,在 中序遍 历时 ,A 在 B 前 的 条 件 是
有
个。
9.由一棵二叉树的前序序列和
序列可惟一确定这棵二叉树。
10.有 20 个结点的完全二叉树,编码为 10 的结点的父结点的编号是
。
11.有 20 个结点的完全二叉树,编码为 10 的结点的左子树结点的编号是
。
12.一棵含有 n 个结点的完全二叉树,它的高度是
。
13.树的存储结构有:
。
14.哈夫曼树是带权路径长度
三.填空题
1.结点的度是
。
2.叶子结点是
结点。
3.树的度是
。
4.树中结点的最大层次称为树的 5.对于二叉树来说,第 i 层上至多有
。 个结点。
6.深度为 h 的二叉树至多有
个结Байду номын сангаас。
7.对于一棵具有 n 个结点的树,该树中所有结点的度数之和为:
。
8.在一棵二叉树中,度为 2 的结点有 5 个,度为 1 的结点有 6 个,则叶子结点数
的二叉树。
15.某二叉树的前序遍历序列为:DABEC,中序遍历序列为:
A
DEBAC,则后序遍历序列为:
。
给定右图所示的二叉树:
B
C
16.其前序遍历序列为: 17.其中序遍历序列为:
。
。
E
F
G
18.其后序遍历序列为:
。
19.结点最少的二叉树是
。
20.前序为 A,B,C 且后序为 C,B,A 的二叉树共有
DE
F
DE
D
10.树最适合用来表示( )。
A.有序数据元素
B.无序数据元素
C.元素之间无联系的数据
D.元素之间有分支层次的关系
11.对于一棵满二叉树,m 个树叶,n 个结点,深度为 h,则( )。
A.n=h+m
B.h+m=2n
C.m=h-1
12.一棵 n 个结点的二叉树,其空指针域的个数为( )。
<C,G>,<C,F>,<H,I>,<C,H>,<A,C>}
(1)哪个是根结点?
(2)哪些是叶子结点?
(3)哪个是 G 的双亲?
(4)哪些是 G 的祖先?
(5)哪些是 G 的孩子?
(6)哪些是 E 的子孙?
(7)哪些是 E 的兄弟?哪些是 F 的兄弟?
(8)结点 B 和 N 的层次各是多少?
(9)树的深度是多少?
( )(7)用一维数组来存储二叉树时,总是以前序遍历存储结点。 ( )(8)已知二叉树的前序遍历和后序遍历不能惟一确定这棵二叉树,这是因为不
知道根结点是哪一个。 ( )(9)二叉树按某种顺序线索后,任一结点均有指向其前趋和后继的线索。 ( )(10)二叉树的前序遍历中,任意一个结点均处于其子树结点的前面。
H
种。
四.选择题
1.深度为 h 的二叉树至多有( )个结点。
A.2h
B.2h-1
C.2h-1
D.2h-1-1
2.对于二叉树来说,第 K 层至多有( )个结点。
A.2K
B.2K-1
C. 2K-1
D.2K-1-1
3.结点前序为 ABC 的不同二叉树有( )种形态。
A.3
B.4
C.5
D.6
4.某二叉树的先序遍历序列为:IJKLMNO,中序遍历序列为: JLKINMO,则后序遍