模拟电路课件(计算机专业)1-电子电路-12
合集下载
《模拟电路》课件
详细描述
模拟电路是处理模拟信号的电子电路,这些信号在时间和幅 度上都是连续变化的。在模拟电路中,电路元件的参数通常 是连续变化的,这使得模拟电路的分析方法与数字电路有所 不同。
模拟电路的应用
总结词
模拟电路广泛应用于通信、音频处理、图像处理、控制系统等领域。
详细描述
模拟电路在许多领域都有广泛的应用,包括通信、音频处理、图像处理、控制系统等。在通信领域,模拟电路用 于信号的传输和处理;在音频处理领域,模拟电路用于音频信号的放大和处理;在图像处理领域,模拟电路用于 图像信号的处理和传输;在控制系统中,模拟电路用于控制信号的生成和传输。
准备必要的调试工具和测试设备,搭 建调试环境。
功能调试
对电路的功能进行测试和验证,确保 各功能正常工作。
性能优化
根据测试结果,对电路的性能进行优 化,提高各项技术指标。
问题分析与解决
针对调试过程中发现的问题,进行深 入分析并采取有效措施解决。
05
模拟电路实验与实践
实验设备与器材
信号发生器
产生各种频率和幅 度的正弦波、方波 和三角波等信号。
电路的性能也不断提高。
02
模拟电路基础知识
电阻
总结词
电阻是模拟电路中最重要的元件之一 ,用于限制电流的流动。
详细描述
电阻由导电材料制成,其阻值取决于 材料、长度和横截面积。在电路中, 电阻用于控制电流的大小,从而实现 电压的调节和信号的处理。
电容
总结词
电容是存储电荷的元件,具有隔直流通交流的特性。
详细描述
交流分析是模拟电路分析的重要环节,主要 研究电路在交流信号下的响应。通过交流分 析,可以了解电路的动态性能,如增益、带 宽、失真等。交流分析通常采用小信号模型 进行分析,以简化计算过程。
模拟电路是处理模拟信号的电子电路,这些信号在时间和幅 度上都是连续变化的。在模拟电路中,电路元件的参数通常 是连续变化的,这使得模拟电路的分析方法与数字电路有所 不同。
模拟电路的应用
总结词
模拟电路广泛应用于通信、音频处理、图像处理、控制系统等领域。
详细描述
模拟电路在许多领域都有广泛的应用,包括通信、音频处理、图像处理、控制系统等。在通信领域,模拟电路用 于信号的传输和处理;在音频处理领域,模拟电路用于音频信号的放大和处理;在图像处理领域,模拟电路用于 图像信号的处理和传输;在控制系统中,模拟电路用于控制信号的生成和传输。
准备必要的调试工具和测试设备,搭 建调试环境。
功能调试
对电路的功能进行测试和验证,确保 各功能正常工作。
性能优化
根据测试结果,对电路的性能进行优 化,提高各项技术指标。
问题分析与解决
针对调试过程中发现的问题,进行深 入分析并采取有效措施解决。
05
模拟电路实验与实践
实验设备与器材
信号发生器
产生各种频率和幅 度的正弦波、方波 和三角波等信号。
电路的性能也不断提高。
02
模拟电路基础知识
电阻
总结词
电阻是模拟电路中最重要的元件之一 ,用于限制电流的流动。
详细描述
电阻由导电材料制成,其阻值取决于 材料、长度和横截面积。在电路中, 电阻用于控制电流的大小,从而实现 电压的调节和信号的处理。
电容
总结词
电容是存储电荷的元件,具有隔直流通交流的特性。
详细描述
交流分析是模拟电路分析的重要环节,主要 研究电路在交流信号下的响应。通过交流分 析,可以了解电路的动态性能,如增益、带 宽、失真等。交流分析通常采用小信号模型 进行分析,以简化计算过程。
模拟电子技术基础PPT课件-经典全
模拟电子技术基础
绪论
一、电子技术的发展 二、模拟信号与模拟电路 三、电子信息系统的组成 四、模拟电子技术基础课的特点 五、如何学习这门课程
一、电子技术的发展
电子技术的发展,推动计算机技术的发展,使之“无 孔不入”,应用广泛!
• 广播通信:发射机、接收机、扩音、录音、程控交换机、电 话、手机
• 网络:路由器、ATM交换机、收发器、调制解调器
因基区薄且多子浓度低,使极少 数扩散到基区的电子与空穴复合
基区空穴 的扩散
因发射区多子浓度高使大量 电子从发射区扩散到基区
最大功耗PZM= IZM UZ
动态电阻rz=ΔUZ /ΔIZ
若稳压管的电流太小则不稳压,若稳压管的电流太大则会
因功耗过大而损坏,因而稳压管电路中必需有限制稳压管电
流的限流电阻!
§1.3 晶体三极管
一、晶体管的结构和符号 二、晶体管的放大原理 三、晶体管的共射输入特性和输出特性 四、温度对晶体管特性的影响 五、主要参数
结电容小,故结允许 结电容大,故结允许 可大,小的工作频率
的电流小,最高工作 的电流大,最高工作 高,大的结允许的电
频率高。
频率低。
流大。
二、二极管的伏安特性及电流方程
二极管的电流与其端电压的关系称为伏安特性。
i f (u)
u
i IS(eUT 1) (常温下UT 26mV)
击穿 电压
温度的 电压当量
漂移运动
因电场作用所产 生的运动称为漂移 运动。
参与扩散运动和漂移运动的载流子数目相同,达到动态 平衡,就形成了PN结。
PN 结的单向导电性
PN结加正向电压导通: 耗尽层变窄,扩散运动加
剧,由于外电源的作用,形 成扩散电流,PN结处于导通 状态。
绪论
一、电子技术的发展 二、模拟信号与模拟电路 三、电子信息系统的组成 四、模拟电子技术基础课的特点 五、如何学习这门课程
一、电子技术的发展
电子技术的发展,推动计算机技术的发展,使之“无 孔不入”,应用广泛!
• 广播通信:发射机、接收机、扩音、录音、程控交换机、电 话、手机
• 网络:路由器、ATM交换机、收发器、调制解调器
因基区薄且多子浓度低,使极少 数扩散到基区的电子与空穴复合
基区空穴 的扩散
因发射区多子浓度高使大量 电子从发射区扩散到基区
最大功耗PZM= IZM UZ
动态电阻rz=ΔUZ /ΔIZ
若稳压管的电流太小则不稳压,若稳压管的电流太大则会
因功耗过大而损坏,因而稳压管电路中必需有限制稳压管电
流的限流电阻!
§1.3 晶体三极管
一、晶体管的结构和符号 二、晶体管的放大原理 三、晶体管的共射输入特性和输出特性 四、温度对晶体管特性的影响 五、主要参数
结电容小,故结允许 结电容大,故结允许 可大,小的工作频率
的电流小,最高工作 的电流大,最高工作 高,大的结允许的电
频率高。
频率低。
流大。
二、二极管的伏安特性及电流方程
二极管的电流与其端电压的关系称为伏安特性。
i f (u)
u
i IS(eUT 1) (常温下UT 26mV)
击穿 电压
温度的 电压当量
漂移运动
因电场作用所产 生的运动称为漂移 运动。
参与扩散运动和漂移运动的载流子数目相同,达到动态 平衡,就形成了PN结。
PN 结的单向导电性
PN结加正向电压导通: 耗尽层变窄,扩散运动加
剧,由于外电源的作用,形 成扩散电流,PN结处于导通 状态。
模电课件-第1章-精选文档
(3)运算电路:完成一个或多个信号的各种运算。 (4)信号转换电路: 电压(流)→电流(压)、
直(交)流→交(直)流。
(5)信号发生电路:产生正弦、三角、矩形波等。 (6)直流电源:将交流电转换成不同输出电压和电流的 直流电。
33 MHz
目录
Analog Electronics
1
导言
33 MHz
2 运算放大器 3 二极管及其基本电路 4 晶体三极管及放大电路基础 5 场效应管放大电路 6 模拟集成电路 7 反馈放大电路 8 信号的运算和滤波 9 波形的发生与变换电路 10 直流稳压电源
信号的 信号的 信号的
信号的
提取
传感器 接收器
预处理
隔离、滤波 放大、阻抗 变换
加工
运算、转 换、比较
执行
功率放大 A/D转换
33 MHz
图1.2.1电子信息系统示意图
Analog Electronics
1.2.3
电子信息系统中的模拟电路
信号的 预处理 信号的 加工 信号的 执行
信号的 提取
(1)放大电路:用于信号的电压、电流或功率放大。 (2)滤波电路:用于信号的提取、变换或抗干扰。
Analog Electronics
模拟电子技术基本教程 Fundamentals of Analog Electronics 华成英 主编
33 MHz
Analog Electronics 1. 电子技术的发展简史
电子技术诞生的历史虽短,但深入的领域却是最深最广, 它不仅是现代化社会的重要标志,而且成为人类探索宇宙宏观 世界和微观世界的物质技术基础。 1904年第一只电子器件发明以来,世界电子技术经历了 电子管、晶体管和集成电路等重要发展阶段。
直(交)流→交(直)流。
(5)信号发生电路:产生正弦、三角、矩形波等。 (6)直流电源:将交流电转换成不同输出电压和电流的 直流电。
33 MHz
目录
Analog Electronics
1
导言
33 MHz
2 运算放大器 3 二极管及其基本电路 4 晶体三极管及放大电路基础 5 场效应管放大电路 6 模拟集成电路 7 反馈放大电路 8 信号的运算和滤波 9 波形的发生与变换电路 10 直流稳压电源
信号的 信号的 信号的
信号的
提取
传感器 接收器
预处理
隔离、滤波 放大、阻抗 变换
加工
运算、转 换、比较
执行
功率放大 A/D转换
33 MHz
图1.2.1电子信息系统示意图
Analog Electronics
1.2.3
电子信息系统中的模拟电路
信号的 预处理 信号的 加工 信号的 执行
信号的 提取
(1)放大电路:用于信号的电压、电流或功率放大。 (2)滤波电路:用于信号的提取、变换或抗干扰。
Analog Electronics
模拟电子技术基本教程 Fundamentals of Analog Electronics 华成英 主编
33 MHz
Analog Electronics 1. 电子技术的发展简史
电子技术诞生的历史虽短,但深入的领域却是最深最广, 它不仅是现代化社会的重要标志,而且成为人类探索宇宙宏观 世界和微观世界的物质技术基础。 1904年第一只电子器件发明以来,世界电子技术经历了 电子管、晶体管和集成电路等重要发展阶段。
《模拟电子技术》课件第2章半导体二极管及其基本电路
成为本自由征电半子导(体带负电), 同时的共价导键电中机留理下一个空
位,称为空穴(带正电)。
+4
+4
+4
+4 空穴
&;4
4
自由电子
空穴:共价键中的空位。
空穴的移动:相邻共价
+4
键中的价电子依次充填
空穴来实现。 +4
电子空穴对:由热激发
而产生的自由电子和空
+4
穴对。
§1.1 半导体的基本知识
P型半导体——掺入三价杂质元素(如硼)的 半导体。【Positive】
1. P型半导体
三、杂质半导体
掺入三价元素(如硼)
Si
Si
BS–i
Si
空穴
掺杂后空穴数 目大量增加,空穴导电 成为这种半导体的主要 导电方式,称为空穴半 导体或 P型半导体。
接受一个 电子变为 负离子
硼原子
空穴:多子(多数载流子)
26
三、二极管的主要参数: (1) 最大整流电流IF
§3.3 二极管
二极二管极长管期反连向续电工流作急时, 允许剧通增过加二时极对管应的的最反大 整流向电电流压的值平称均为值反。向
击穿电压VBR。
(2) 反向击穿电压VBR和最大反向工为作安全电计压,V在R实M际工作
(3) 反向电流IR (4) 极间电容Cj
当vI = 6 sinωt (V)时,分别对于理想模型和恒压降模型绘出相应
的输出电压vO的波形。
R
+a.理想模型 D
当AVI=0V时 +
D截止
当VI=4V时
D导通
当VI=6V时
D导通
vI
VREF
位,称为空穴(带正电)。
+4
+4
+4
+4 空穴
&;4
4
自由电子
空穴:共价键中的空位。
空穴的移动:相邻共价
+4
键中的价电子依次充填
空穴来实现。 +4
电子空穴对:由热激发
而产生的自由电子和空
+4
穴对。
§1.1 半导体的基本知识
P型半导体——掺入三价杂质元素(如硼)的 半导体。【Positive】
1. P型半导体
三、杂质半导体
掺入三价元素(如硼)
Si
Si
BS–i
Si
空穴
掺杂后空穴数 目大量增加,空穴导电 成为这种半导体的主要 导电方式,称为空穴半 导体或 P型半导体。
接受一个 电子变为 负离子
硼原子
空穴:多子(多数载流子)
26
三、二极管的主要参数: (1) 最大整流电流IF
§3.3 二极管
二极二管极长管期反连向续电工流作急时, 允许剧通增过加二时极对管应的的最反大 整流向电电流压的值平称均为值反。向
击穿电压VBR。
(2) 反向击穿电压VBR和最大反向工为作安全电计压,V在R实M际工作
(3) 反向电流IR (4) 极间电容Cj
当vI = 6 sinωt (V)时,分别对于理想模型和恒压降模型绘出相应
的输出电压vO的波形。
R
+a.理想模型 D
当AVI=0V时 +
D截止
当VI=4V时
D导通
当VI=6V时
D导通
vI
VREF
模拟电子技术第1章 数字电路基础
于其进位规则为“逢十六进一”,故称为十六进制,常用大写字母“H”表示。十六进制按
权展开式为:
n1
(N)16 =
ai 16i
im
式中,ai 为十六进制数的任意一个数码;n 表示整数部分数位,m 表示小数部分数位;下标
16(或 H)表示十六进制数。例如
(5D.6A)H =5×161+13×160+6×16-1+10×16-2
(2)二进制数与十六进制数的相互转换 由表 1-1 可知制数与十六进制数之间
进行转换时通常采用分组等值法。 具体操作以小数点为基准,向左或者向右将二进制数按 4 位一组进行分组(当不足 4 位时,
按整数部分从高位、小数部分从低位的原则予以补 0 处理),然后用对应十六进制数代替各组的 二进制数,即可得等值的十六进制数。反之,将十六进制数的每个数码用相应的 4 位二进制数代 替,并去除高、低位无效的 0,所得结果即为等值二进制数。
1.2.2 编码
利用二进制数表示图形、文字、符号和数字等信息的过程称为编码(Encode),编码的结果 称为代码(Code)。例如,发送邮件时收/发信人的 E-mail、因特网上计算机主机的 IP 地址等, 就是生活中常见的编码实例。
进制数。例如:
(110.01)B =1×22+1×21+0×20+0×2-1+1×2-2
【十六进制】十六进制(Hexadecimal System)是数字电路中另一种常用数制,包含 0~9、A、B、
C、D、E、F 十六个数码,其中 A、B、C、D、E、F 依次表示十进制数 10~15,所以基数为 16。由
(3)十进制数转换为二进制数 十进制数转换为二进制数需要将整数部分和小数部分分别进行转换。通常整数部分采用除 2 反序取余法进行转换,小数部分采用乘 2 顺序取整法进行转换。 具体操作:将给定的十进制整数部分依次除以 2,按反序的原则取余数即为等值二进制数; 十进制小数部分依次乘以 2,按顺序的原则取整数即为等值二进制数。当小数部分不能精确转换 为二进制小数时,可根据精度要求,保留几位小数。 此外,利用二进制数作桥梁,可以方便地将十进制数转换为十六进制数。
模电课件
~
~
C16 100 F C17 R12 10 0.1
+
100 F C15 0.47 3 8 1 + 2 _ 4 U2A
1.0 F
+ 6 _ 7 R7 C12 1M
3 6 5 + U3 _ 4 2
Audio Output
100 F
~
0.0033
Audio power C18 amp
Electric circuit of a radio receiver
模拟信号指幅度的取值是连续的(幅值可由无限个数值表 示)。时间上连续的模拟信号连续变化的图像(电视、传真) 信号等,如图(a)所示。 数字信号指幅度的取值是离散的,幅值表示被限制在有限 个数值之内。二进制码(0,1)就是一种数字信号。
模拟信号放大
us
Rs
信号源
ui
A
放大电 路 直流电源
压力 流量 液位 等等
非电量
显示
传感器
电量
信号调
理电路
放大
滤波 线性化 变换 等等
记录
控制
执行
*若配以微机、单片机或DSP等,并利用信号处理技术
可设计智能系统。
学好模拟电路的几点理由:
1.工作面试,《模拟电路》作为很重要的专业基础课成绩,将是 用人单位主要参考;并且电路考题常被用于面试题目。我校与其 它高校的专业优势--“带电”。
5.电子技术学科可划分为两类:
(1).模拟电子技术:可细分为高频、低频,主要研究对模拟信 号的处理。
(2).数字电子技术:研究逻辑电路,对数字信号进行处理。
本课程研究的主要对象--低频模拟信号 的放大电路(故本课程又叫低频电路)
模电课件第一章
+ Vi –
放大电路
+ Vo –
RL
AV AV ( ) ( )
Vo ( j ) AV ( ) V ( j )
i
Av为什么是 f 的函数?
原因:放大电路存在电抗
称为幅频响应 元件,如电容、电感。
称为相频响应
( ) o ( ) i ( )
1.5 放大电路的主要性能指标
九、联系方式
•姓名:张华
•单位:电子信息教研室 408
•Email: 8755166@
课程介绍 部分结束
进入绪论部分学习
1.1 信号 1.2 信号的频谱
1.3 模拟信号与数字信号 1.4 放大电路模型
1.5 放大电路的主要性能指标
1.1 信号
1. 信号: 信息的载体
T/℃ 2 200.5 2 200.0 2 199.5
在输入正弦信号情况下,输出随输入信号频率连续变化的 稳态响应,称为放大电路的频率响应。 电压增益可表示为
Vo ( j ) AV ( j ) V ( j )
i
Ii
Io
+ Vs –
Rs
Vo ( j ) [ o ( ) i ( )] Vi ( j )
或写为 其中
课程介绍
一、课程名称及教材 模拟电子技术基础
二、课程的性质
工程性、 实践性强 是一门技术基础课
三、课程的特点
1)规律性 基本电子电路的组成具有规律性
2)非线性 3)工程性
4)实践性
半导体器件具有非线性 即近似性。抓主要矛盾
实验和设计-实验课
四、课程研究内容
器件 二极管(chap3)
三极管(chap4)
模拟电路基础教程PPT完整全套教学课件全
返回目录 CONTENTS PAGE
透彻掌握器 件特性
1
重视对电路 构成原理的
学习
2
理论与实践 的关系
3
返回目录 CONTENTS PAGE
目前国内使用较多的电路设计仿真软件有PSPICE、Proteus和Multisim 等。就模拟电路仿真来说,Multisim 以其界面友好、功能强大、易于学习 的优点而受到高校电类专业师生和工程技术人员的青睐。Multisim13.0版 本已上市,但目前使用比较稳定、用户数较多的还是10.0版本。对于使用 者来说,只要有一台计算机和Multisim 软件,就相当于拥有了一间设备齐全 的电路实验室,可以调用元器件,搭建电路,利用虚拟仪器进行测量,对电路 进行仿真测试,可以实时修改各类电路参数,实时仿真,从而帮助使用者了解 各种电路变化对电路性能的影响,对电路的测量直观、智能,是进行电路分 析和设计的有效辅助工具。使用者在学习和解题的过程中,可以通过 Multisim 对电路中某个节点的电压波形、某条支路的电流波形、电路结构 变化产生的影响等方方面面问题快速仿真而得到答案。
模拟电路基础教程PPT课件
1.1.4 一般电子系统的构成 1.电子系统的分类
返回目录 CONTENTS PAGE
模拟电子 系统
数字电子 系统
模拟电路基础教程PPT课件
2.电子系统的构成
返回目录 CONTENTS PAGE
模拟电路基础教程PPT课件
返回目录 CONTENTS PAGE
1.1.5 模拟电子技术的发展
在式(1-1-1)中,K 为常数,使u(t)和T(t)之间形成如图1-1-1所示的相 似形关系。如果K 不能保持为常数,则称模拟信号发生了失真。失真问 题是模拟电路中始终需要引起注意和克服的重要问题。
模拟电子技术说课(参考课件)
扬中绿扬
常州Amicc
四、教学设计
1、基本信息
课程名称:模拟电子技术
课程性质: 专业基础课程
学
时:80(理论60 实践20)
适用专业:应用电子技术
开课学期:1年级第2学期
2. 教材选取
曾经使用教材
现在使用教材
主要特点:理论讲解细致 可作为主要参考书
主要特点:项目化导向,知 识点融入于不同项目中。提 高了学生的学习兴趣
3、具备团结协 作精神
4、创新意识 5、查找资料及 自学能力
三、授课条件
1、学生情况分析 2、师资情况 3、实训条件
1. 学情分析
学生差异
高 中 文 科 毕 业 生
高 中 理 科 毕 业 生
前 导 课 程 掌 握 程 度
学生共同点
排喜思渴自 斥动维望信 传手活成不 统不跃功足 教善但但易 学学缺缺于 模理韧耐放 式论性心弃
【重点难点】 单相桥式整流电路工作原理和波形分析
(一) 导入新课
手机师充生电一器起工观作看流以程下图图片
A
R1
R2
各式各样充电器VD1
VD2
了解手机充电器
v1
V2
VD4
输入
桥式
电卡路通充电器整 流
智能集成化快速充电器
座充充电器
C1 VD3
B 滤波
C2 VZ
稳压 输出
最常见的充电器外形图 充电器拆开后
4、实验项目
天煌模电实验台及实验配套教材
4、实验项目
实验项目
知识目标
学时分配
实验1
学习电子电路中常用电子仪器:示波器、 函数信号发生器、直流稳压电源、交流毫
2
常用电子仪器使用 伏表、频率计等的主要技术指标、性能及
模拟电子技术课件chapter1
16
N型半导体(掺五价元素)
硅原子
Negative(负) 自由电子为多子; 空穴为少子
磷原子
Si
Si
多余电子获很 少能量可成为 自由电子
P
Si
N型硅表示
+
施主原子(正离子)
自由电子
17
P型半导体(掺三价元素) 硅原子 空位 Si B Si
Positive(正)
空穴为多子;
自由电子为少子
硼原子
Si
iD
uD UT
rd
Q
●
UT ID
iD
+
iD
ID
uD UD
u D
-
rd
uD
36
三、高频模型
1. 正向偏置 1. 反向偏置
势垒电容Cb 加扩散电容Cd
势垒电容Cb
37
1.2.5 稳压二极管(zener diode)
稳压二极管符号 +
当稳压二极管工 作在反向击穿状 态下,当工作电 流IZ在Izmax和 Izmin之间时,其两 端电压近似为常 数 稳压二极管特性曲线 I 稳定 电压 UZ IZmin U 稳定 IZ 电流 IZmax
Industrial ~
Mechtronics ~ Medical ~ Office ~
4
应用举例
传感器
电子线路
执行器件
5
§0.3 课程特点
• 技术基础课(专业基础课) – 实践性强 – 讨论共性概念问题 – 基本分析方法、分析原则 – 为后续课程打基础 时间紧、任务重、难度大、难掌握 问题实质:实践性强、内容分散
一般,击穿电压在6V以下的属于齐纳击穿,6V以上的 主要是雪崩击穿。 6V左右,两种击穿都有。
N型半导体(掺五价元素)
硅原子
Negative(负) 自由电子为多子; 空穴为少子
磷原子
Si
Si
多余电子获很 少能量可成为 自由电子
P
Si
N型硅表示
+
施主原子(正离子)
自由电子
17
P型半导体(掺三价元素) 硅原子 空位 Si B Si
Positive(正)
空穴为多子;
自由电子为少子
硼原子
Si
iD
uD UT
rd
Q
●
UT ID
iD
+
iD
ID
uD UD
u D
-
rd
uD
36
三、高频模型
1. 正向偏置 1. 反向偏置
势垒电容Cb 加扩散电容Cd
势垒电容Cb
37
1.2.5 稳压二极管(zener diode)
稳压二极管符号 +
当稳压二极管工 作在反向击穿状 态下,当工作电 流IZ在Izmax和 Izmin之间时,其两 端电压近似为常 数 稳压二极管特性曲线 I 稳定 电压 UZ IZmin U 稳定 IZ 电流 IZmax
Industrial ~
Mechtronics ~ Medical ~ Office ~
4
应用举例
传感器
电子线路
执行器件
5
§0.3 课程特点
• 技术基础课(专业基础课) – 实践性强 – 讨论共性概念问题 – 基本分析方法、分析原则 – 为后续课程打基础 时间紧、任务重、难度大、难掌握 问题实质:实践性强、内容分散
一般,击穿电压在6V以下的属于齐纳击穿,6V以上的 主要是雪崩击穿。 6V左右,两种击穿都有。
模拟电子技术基础PPT课件-经典全
温度升高,热运动加剧,载流子浓 度增大,导电性增强。
热力学温度0K时不导电。
两种载流子
为什么要将半导体变成导电性很差的本征半导体?
二、杂质半导体
1. N型半导体
5
多数载流子
空穴比未加杂质时的数目多了?少 了?为什么?
杂质半导体主要靠多数载流子导 电。掺入杂质越多,多子浓度越高, 导电性越强,实现导电性可控。
➢ 根据需求,最适用的电路才是最好的电路。 ➢ 要研究利弊关系,通常“有一利必有一弊”。
4. 注意电路中常用定理在电子电路中的应用
六、课程的目的
本课程通过对常用电子元器件、模拟电路及其系统的分析和设计的 学习,使学生获得模拟电子技术方面的基础知识、基础理论和基本技 能,为深入学习电子技术及其在专业中的应用打下基础。
于漂移运动,形成漂移电流。由于电 流很小,故可近似认为其截止。
四、PN 结的电容效应
1. 势垒电容
PN结外加电压变化时,空间电荷区的宽度将发生变化,有电荷 的积累和释放的过程,与电容的充放电相同,其等效电容称为势 垒电容Cb。
2. 扩散电容
PN结外加的正向电压变化时,在扩散路程中载流子的浓度及 其梯度均有变化,也有电荷的积累和释放的过程,其等效电容称 为扩散电容Cd。
若反向电压u UT,则i IS
2. 伏安特性受温度影响
反向特性为横轴的平行线
T(℃)↑→在电流不变情况下管压降u↓ →反向饱和电流IS↑,U(BR) ↓
T(℃)↑→正向特性左移,反向特性下移
增大1倍/10℃
三、二极管的等效电路
1. 将伏安特性折线化
理想 二极管
导通时△i与△u成线 性关系
理想开关 导通时 UD=0截 止时IS=0
热力学温度0K时不导电。
两种载流子
为什么要将半导体变成导电性很差的本征半导体?
二、杂质半导体
1. N型半导体
5
多数载流子
空穴比未加杂质时的数目多了?少 了?为什么?
杂质半导体主要靠多数载流子导 电。掺入杂质越多,多子浓度越高, 导电性越强,实现导电性可控。
➢ 根据需求,最适用的电路才是最好的电路。 ➢ 要研究利弊关系,通常“有一利必有一弊”。
4. 注意电路中常用定理在电子电路中的应用
六、课程的目的
本课程通过对常用电子元器件、模拟电路及其系统的分析和设计的 学习,使学生获得模拟电子技术方面的基础知识、基础理论和基本技 能,为深入学习电子技术及其在专业中的应用打下基础。
于漂移运动,形成漂移电流。由于电 流很小,故可近似认为其截止。
四、PN 结的电容效应
1. 势垒电容
PN结外加电压变化时,空间电荷区的宽度将发生变化,有电荷 的积累和释放的过程,与电容的充放电相同,其等效电容称为势 垒电容Cb。
2. 扩散电容
PN结外加的正向电压变化时,在扩散路程中载流子的浓度及 其梯度均有变化,也有电荷的积累和释放的过程,其等效电容称 为扩散电容Cd。
若反向电压u UT,则i IS
2. 伏安特性受温度影响
反向特性为横轴的平行线
T(℃)↑→在电流不变情况下管压降u↓ →反向饱和电流IS↑,U(BR) ↓
T(℃)↑→正向特性左移,反向特性下移
增大1倍/10℃
三、二极管的等效电路
1. 将伏安特性折线化
理想 二极管
导通时△i与△u成线 性关系
理想开关 导通时 UD=0截 止时IS=0
模拟电路课件北航自动化unit
电阻、电容和电感
常用的电子元件,用于模拟电 路的搭建和测试。
电源
为电路提供稳定的直流或交流 电源。
实验步骤与操作
实验准备
根据实验要求选择合适的设备和器材,搭建 实验电路。
电路连接
按照电路图将各个元件连接起来,确保连接 正确无误。
信号源设置
根据实验需要设置信号源的参数,如幅度、 频率和相位等。
实验操作
列举了模拟电路在通信、音频处理、电源 等领域的应用实例。
模拟电路的发展趋势与展望
第一季度
第二季度
第三季度
第四季度
集成化与小型化
随着微电子技术的发展 ,模拟电路正朝着集成 化和小型化的方向发展 ,这将有助于提高电路 的性能和降低成本。
智能化与自动化
随着人工智能和机器学 习技术的不断发展,模 拟电路的设计和优化将 更加智能化和自动化, 从而提高设计效率和电
03
总结词
04
调制解调器的性能指标包括调制 效率、带宽占用和抗干扰能力等 。
详细描述
调制效率表示低频信号在传输过 程中所占用的带宽,带宽占用决 定了通信系统的容量和传输速率 ,抗干扰能力则表示调制解调器 在存在噪声和其他干扰时维持正 常工作的能力。
04
模拟电路的应用
音频处理01Fra bibliotek0203
音频信号的放大
详细描述
稳定性表示振荡器在受到干扰时维持稳定输出的能力,频 率准确度表示实际输出频率与设计频率之间的差异,波形 质量则表示输出信号的失真程度。
调制解调器
01 总结词
调制解调器用于实现信号的调 制和解调。
02
详细描述
调制是将低频信号加载到高频 载波上,以便传输;解调则是 从高频信号中提取出低频信号 。调制解调器在通信系统中具 有重要作用。
模拟电子技术基础(完整课件)
>100000
封装好的集成电路
课程的教学方法
模电——“魔”电 特点:电路形式多、公式多、工程性强 教学方法: 课堂讲课 ——每章小结 ——自我检测题
——作业 ——作业反馈
——实验 ——答疑
总成绩=期末(70%)+平时(30%) 平时:作业、课堂、实验等
教材:《模拟电子技术基础》,李国丽王涌李如 春主编,高等教育出版社,国家级十二 五规划教材
就在这个过程中,爱迪生还发现了一 个奇特 的现象:一块烧红的铁会散发出电子云。后人 称之为爱迪生效应,但当时不知道利用这一效 应能做些什么。
1904年,英国发明家弗莱明在真空中加热的 电丝(灯丝)前加了一块板极,从而发明了第一 只电子管,称为二极管。
1906 年,美国发明家德福雷斯特,在二极管 的灯丝和板极之间巧妙地加了一个栅板,从而 发明了第一只真空三极管,建树了早期电子技 术上最重要的里程碑——电子工业真正的诞生 起点 。
2000年10月10日,基尔比 与另外两位科学家共同分享 诺贝尔物理学奖。
获得2000年Nobel物理奖
1958年第一块集成电路:TI公司的Kilby,12个器件,Ge晶片
1959年7月30日,硅谷的仙童半导体公司的诺依斯 采用先进的平面处理技术研制出集成电路,也申请到 一项发明专利 ,题为“半导体器件——导线结构”; 时间比基尔比晚了半年,但确实是后来微电子革命的 基础。
1959年仙童制造的IC
诺依斯
1971年:全球第一个微处理器4004由Intel 公司推出,在它3毫米×4毫米的掩模上,有 2250个晶体管,每个晶体管的距离是10微米, 每秒运算6万次。也就是说,一粒米大小的芯片 内核,其功能居然与世界上第一台计算机—— 占地170平方米的、拥有1.8万个电子管的 “爱
模拟电路ppt课件
主编:林加儒
电子电路基础
1
绪论 电子线路:将电子元件(如电阻、电容和电感等)与电子器件(如半导体二极管、三极管, 场效应管和集成运放等)按一定的规律排列起来,实现一定功能的电路。
本课程处理的信号:低频模拟信号
;.
2
模拟信号和数字信号
模拟信号: 时间和幅值均连 续
模拟电路: 处理模拟信号的 电子电路。
7
2、各种半导体器件的应用电路 二极管电路:限幅、稳压及整流等。(1) 三极管电路:单级放大电路(2)、功率放大电路 (6)、
差动放大电路(7)、反馈放大电路(5) 场效应管电路:场效应管放大电路(4)
8
集成运算放大器的应用电路: 运算电路(加、减、乘、除、微分和积分)和 处理电路(电压比较器)(8)
信号产生电路:正弦波振荡器(9) 直流稳压电源:产生直流电压的电路(10)
9
30-300 300-3000
101-1 1-10-1
波段 长波 中波(MW) 短波(SW) 米波 分米波
用途 音频 中波广播 短波、调频广播 电视、雷达 电视、雷达、 卫星
4
1、半导体器件
本课程的主要内容 半导体二极管图片(分立器件)
5
半导体三极管(晶体管)和场效应管图片( 分信号: 幅值是离散的, 只存在高和低两种电平。
模拟信号波形举例
数字电路: 处理 数字信号的电 子电路。
数字信号波形举例
3
无线电波段的划分
频段 低频( LF)
频率(MHz) 0.03-0.3
波长 (m)
104-103
中频(MF) 高频(HF)
0.3-3 3-30
103-102 102-101
甚高频(VHF) 超高频(UHF)
电子电路基础
1
绪论 电子线路:将电子元件(如电阻、电容和电感等)与电子器件(如半导体二极管、三极管, 场效应管和集成运放等)按一定的规律排列起来,实现一定功能的电路。
本课程处理的信号:低频模拟信号
;.
2
模拟信号和数字信号
模拟信号: 时间和幅值均连 续
模拟电路: 处理模拟信号的 电子电路。
7
2、各种半导体器件的应用电路 二极管电路:限幅、稳压及整流等。(1) 三极管电路:单级放大电路(2)、功率放大电路 (6)、
差动放大电路(7)、反馈放大电路(5) 场效应管电路:场效应管放大电路(4)
8
集成运算放大器的应用电路: 运算电路(加、减、乘、除、微分和积分)和 处理电路(电压比较器)(8)
信号产生电路:正弦波振荡器(9) 直流稳压电源:产生直流电压的电路(10)
9
30-300 300-3000
101-1 1-10-1
波段 长波 中波(MW) 短波(SW) 米波 分米波
用途 音频 中波广播 短波、调频广播 电视、雷达 电视、雷达、 卫星
4
1、半导体器件
本课程的主要内容 半导体二极管图片(分立器件)
5
半导体三极管(晶体管)和场效应管图片( 分信号: 幅值是离散的, 只存在高和低两种电平。
模拟信号波形举例
数字电路: 处理 数字信号的电 子电路。
数字信号波形举例
3
无线电波段的划分
频段 低频( LF)
频率(MHz) 0.03-0.3
波长 (m)
104-103
中频(MF) 高频(HF)
0.3-3 3-30
103-102 102-101
甚高频(VHF) 超高频(UHF)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 电路的基本概念
蔡竟业 jycai@
第1章 电路的基本概念
教学内容和要求 ➢理解电路和电路模型 ➢理解电路的电流、电压和功率 ➢掌握基尔霍夫定律 ➢掌握电阻、独立电源、受控电源 ➢理解两类约束和电路方程
蔡竟业 jycai@
1.1 电路和电路模型(电分1.1)
作业(P43):1-1、1-3
蔡竟业 jycai@
1.3 基尔霍夫定律(电分1.3)
1、电路(网络)结构的名词 ➢支路——任1二端元件 ➢结点——支路的连接点 ➢回路——支路组成的闭合路径 ➢网孔——平面电路内部不含支路的回路(网孔 与平面电路的画法有关) 例见p11,图1-10
电原理图——电路描述 ➢电子元器件←图形符号(《电路分析》p2, 表1-1) ➢电路结构←拓扑结构
蔡竟业 jycai@
2、电路模型 ➢电子元器件抽象为一个理想元件或若干个理想 元件的组合
➢导线抽象为理想导线(也可以看成理想元件) 或理想导线与理想元件的组合
➢只考虑单一电过程
1、电路 实际电路——电子元器件与导线连接,多种物理
过程交织在一起
蔡竟业 jycai@
作用 ➢电能的传输和转换 ➢电信号的传输、处理和存储 分类 ➢集总参数实际电路——条件:实际电路的几何 尺寸d远小于其工作信号波长 ➢分布参数实际电路
蔡竟业 jycai@
关于功率计算 ➢根据是否采用关联参考方向采用相应的p(t)计算 式 ➢计算出p(t)>0,二端元件吸收功率,由外电路向 其提供功率;计算出p(t)<0,二端元件发出功率, 向外电路提供功率
蔡竟业 jycai@
例1,图示为同一二端元件,电压参考方向的假定 不同,计算其吸收功率
蔡竟业 jycai@
关联参考方向
二端元件的电流参考方向与电压参考方向有四种 组合
关联参考方向——电流参考方向与电压参考方向 一致
i(t)
i(t)
a
b a
b
u(t)
u(t)
关联参考方向
非关联参考方向
蔡竟业 jycai@
3、功率 吸收功率——单位时间所获得的能量
电路模型建立的难点在于电子元器件的抽象
电路——用于电信号传输、处理和存储的集总参 数实际电路的电路模型
蔡竟业 jycai@
电路图——电路描述 ➢理想元件←图形符号(p4-5,表1-2) ➢电路结构←拓扑结构(p4,图1-3)
蔡竟业 jycai@
电路研究 ➢电路分析——电路特性←电路结构、元件特性 ➢电路设计(电路综合)——电路结构、元件参
数←电路特性
蔡竟业 jycai@
1.2 电路的基本物理量(电分1.2)
描述电路特性的基本物理量——电流、电压 描述电路特性的复合物理量——电功率(功率) 电路分析——电流、电压和功率计算←电路结构、 元件特性
蔡竟业 jycai@
1、电流及其参考方向 电流——单位时间内通过导体截面的正电荷
i(t) dq(t) dt
电流的参考方向——电流的实际方向是正电荷运 动的方向,分析电路时电流采用参考方向
蔡竟业 jycai@
电流的参考方向任意假定,在电路图中的二端元 件上用箭头表示
任意假定
a
b
i(t)
蔡竟业 jycai@
关于电流计算 ➢未标注参考方向,电流的正负无意义 ➢参考方向条件下,计算出i(t)>0,电流的实际方 向与参考方向一致;计算出i(t)<0,电流的实际方 向与参考方向相反
蔡竟业 jycai@
2、基尔霍夫电流定律(KCL)
KCL——任何集总参数电路的任一结点,在任一 时刻,流出该结点全部支路电流的代数1
式中各支路电流前的正、负取决于各支路电流参 考方向对结点的关系(流出或是流入),流出取 正,流入则取负!
电压的参考方向(极性)——电压的实际方向是 由高电位到低电位的方向,分析电路时电压采用 参考方向
电压的参考方向也是任意假定,在电路图中的二 端元件两端用“+”表示高电位、“-”表示低电位
任意假定
a
b
u(t)
蔡竟业 jycai@
关于电压计算 ➢未标注参考方向,电压的正负无意义 ➢参考方向条件下,计算出u(t)>0,电压的实际方 向与参考方向一致;计算出u(t)<0,电压的实际方 向与参考方向相反
i(t) = cost A
i(t)= cost A
a
b
+ u(t)=2sint V -
a
b
- u(t)= -2sint V +
图(a)
图(b)
蔡竟业 jycai@
图(a) 采用关联参考方向 p(t)=u(t)i(t)=2sintcost=sin2t (W) 图(b) 采用非关联参考方向 p(t)=-u(t)i(t)=-(-2sint)cost=2sintcost=sin2t (W)
p(t) dw(t) dt
关联参考方向条件下
p(t) dw(t) dw(t) dq(t) u(t)i(t) dt dq(t) dt
非关联参考方向条件下(多1个“-”号)
p(t) dw(t) dw(t) dq(t) u(t)i(t) dt dq(t) dt
蔡竟业 jycai@
蔡竟业 jycai@
例1,列出图示局部电路两个结点的KCL方程
i2 (t ) i1 (t ) a
i4 (t ) b
i3 (t )
结点a:i1(t) -i2(t) -i3(t)=0 结点b:i2(t) +i3(t) +i4(t)=0(计算结果一定有电流与参 考方向不同!)
蔡竟业 jycai@
2、电压及其参考方向
a点的电位——在电路中设一个参考点,某一时刻 单位正电荷在电路中由a点移动到该参考点所获得 的能量
ua
(t)
dw(t) dq(t)
电压——某一时刻a点与b点的电位差
uab (t)
ua
(t)
ub
(t)
dw(t) dq(t)
蔡竟业 jycai@
蔡竟业 jycai@
第1章 电路的基本概念
教学内容和要求 ➢理解电路和电路模型 ➢理解电路的电流、电压和功率 ➢掌握基尔霍夫定律 ➢掌握电阻、独立电源、受控电源 ➢理解两类约束和电路方程
蔡竟业 jycai@
1.1 电路和电路模型(电分1.1)
作业(P43):1-1、1-3
蔡竟业 jycai@
1.3 基尔霍夫定律(电分1.3)
1、电路(网络)结构的名词 ➢支路——任1二端元件 ➢结点——支路的连接点 ➢回路——支路组成的闭合路径 ➢网孔——平面电路内部不含支路的回路(网孔 与平面电路的画法有关) 例见p11,图1-10
电原理图——电路描述 ➢电子元器件←图形符号(《电路分析》p2, 表1-1) ➢电路结构←拓扑结构
蔡竟业 jycai@
2、电路模型 ➢电子元器件抽象为一个理想元件或若干个理想 元件的组合
➢导线抽象为理想导线(也可以看成理想元件) 或理想导线与理想元件的组合
➢只考虑单一电过程
1、电路 实际电路——电子元器件与导线连接,多种物理
过程交织在一起
蔡竟业 jycai@
作用 ➢电能的传输和转换 ➢电信号的传输、处理和存储 分类 ➢集总参数实际电路——条件:实际电路的几何 尺寸d远小于其工作信号波长 ➢分布参数实际电路
蔡竟业 jycai@
关于功率计算 ➢根据是否采用关联参考方向采用相应的p(t)计算 式 ➢计算出p(t)>0,二端元件吸收功率,由外电路向 其提供功率;计算出p(t)<0,二端元件发出功率, 向外电路提供功率
蔡竟业 jycai@
例1,图示为同一二端元件,电压参考方向的假定 不同,计算其吸收功率
蔡竟业 jycai@
关联参考方向
二端元件的电流参考方向与电压参考方向有四种 组合
关联参考方向——电流参考方向与电压参考方向 一致
i(t)
i(t)
a
b a
b
u(t)
u(t)
关联参考方向
非关联参考方向
蔡竟业 jycai@
3、功率 吸收功率——单位时间所获得的能量
电路模型建立的难点在于电子元器件的抽象
电路——用于电信号传输、处理和存储的集总参 数实际电路的电路模型
蔡竟业 jycai@
电路图——电路描述 ➢理想元件←图形符号(p4-5,表1-2) ➢电路结构←拓扑结构(p4,图1-3)
蔡竟业 jycai@
电路研究 ➢电路分析——电路特性←电路结构、元件特性 ➢电路设计(电路综合)——电路结构、元件参
数←电路特性
蔡竟业 jycai@
1.2 电路的基本物理量(电分1.2)
描述电路特性的基本物理量——电流、电压 描述电路特性的复合物理量——电功率(功率) 电路分析——电流、电压和功率计算←电路结构、 元件特性
蔡竟业 jycai@
1、电流及其参考方向 电流——单位时间内通过导体截面的正电荷
i(t) dq(t) dt
电流的参考方向——电流的实际方向是正电荷运 动的方向,分析电路时电流采用参考方向
蔡竟业 jycai@
电流的参考方向任意假定,在电路图中的二端元 件上用箭头表示
任意假定
a
b
i(t)
蔡竟业 jycai@
关于电流计算 ➢未标注参考方向,电流的正负无意义 ➢参考方向条件下,计算出i(t)>0,电流的实际方 向与参考方向一致;计算出i(t)<0,电流的实际方 向与参考方向相反
蔡竟业 jycai@
2、基尔霍夫电流定律(KCL)
KCL——任何集总参数电路的任一结点,在任一 时刻,流出该结点全部支路电流的代数1
式中各支路电流前的正、负取决于各支路电流参 考方向对结点的关系(流出或是流入),流出取 正,流入则取负!
电压的参考方向(极性)——电压的实际方向是 由高电位到低电位的方向,分析电路时电压采用 参考方向
电压的参考方向也是任意假定,在电路图中的二 端元件两端用“+”表示高电位、“-”表示低电位
任意假定
a
b
u(t)
蔡竟业 jycai@
关于电压计算 ➢未标注参考方向,电压的正负无意义 ➢参考方向条件下,计算出u(t)>0,电压的实际方 向与参考方向一致;计算出u(t)<0,电压的实际方 向与参考方向相反
i(t) = cost A
i(t)= cost A
a
b
+ u(t)=2sint V -
a
b
- u(t)= -2sint V +
图(a)
图(b)
蔡竟业 jycai@
图(a) 采用关联参考方向 p(t)=u(t)i(t)=2sintcost=sin2t (W) 图(b) 采用非关联参考方向 p(t)=-u(t)i(t)=-(-2sint)cost=2sintcost=sin2t (W)
p(t) dw(t) dt
关联参考方向条件下
p(t) dw(t) dw(t) dq(t) u(t)i(t) dt dq(t) dt
非关联参考方向条件下(多1个“-”号)
p(t) dw(t) dw(t) dq(t) u(t)i(t) dt dq(t) dt
蔡竟业 jycai@
蔡竟业 jycai@
例1,列出图示局部电路两个结点的KCL方程
i2 (t ) i1 (t ) a
i4 (t ) b
i3 (t )
结点a:i1(t) -i2(t) -i3(t)=0 结点b:i2(t) +i3(t) +i4(t)=0(计算结果一定有电流与参 考方向不同!)
蔡竟业 jycai@
2、电压及其参考方向
a点的电位——在电路中设一个参考点,某一时刻 单位正电荷在电路中由a点移动到该参考点所获得 的能量
ua
(t)
dw(t) dq(t)
电压——某一时刻a点与b点的电位差
uab (t)
ua
(t)
ub
(t)
dw(t) dq(t)
蔡竟业 jycai@