大数据系统计算技术展望_光环大数据培训
大数据培训课件pptx
数据挖掘过程
包括数据准备、数据挖掘、结果评估和应用四个阶段。
数据挖掘任务
分类、聚类、关联规则挖掘、预测等。
常用数据挖掘算法介绍
分类算法
决策树、朴素贝叶斯、支持向量机等。
关联规则挖掘算法
线性回归、逻辑回归、时间序列分析 等。
聚类算法
K-means、层次聚类、DBSCAN等。
预测算法
Apriori、FP-Growth等。
在线教育
大数据和云计算技术使得 在线教育得以普及,学生 可以通过网络随时随地学 习各种课程。
教育评估与改进
通过分析学生的表现和成 绩等数据,教育机构可以 评估教学效果并不断改进 教学方法和课程。
其他行业应用实践
01
智慧城市
大数据和物联网技术被广泛应用于智慧城市建设中,包括交通管理、环
境监测、公共安全等方面。
数据分析方法及应用案例
数据分析方法
描述性统计、推断性统 计、可视化分析等。
应用案例
电商用户行为分析、金 融风险控制、医疗健康
数据分析等。
数据分析工具
Excel、Python、R语言 等。
05
大数据在各行各业应用实践
金融行业应用实践
风险管理与合规
高频交易与算法交易
利用大数据分析技术,金融机构可以 更有效地识别、评估和管理风险,包 括信用风险、市场风险和操作风险等。
存储技术
01
分布式文件系统
HDFS、GFS等
02
NoSQL数据库
HBase、 Cassandra等
03
分布式数据库
MySQL Cluster、 Oracle RAC等
04
云存储技术
Amazon S3、 Google Cloud
大数据技术发展趋势及前景展望
大数据技术发展趋势及前景展望尊敬的读者:随着信息社会的快速发展,大数据已经成为全球范围内热门的话题。
本文将探讨大数据技术的发展趋势以及其前景展望,为您呈现一张大数据技术发展的全景图。
一、大数据技术的发展趋势1. 数据量的爆炸性增长:随着互联网的普及和物联网的发展,全球产生的数据量呈现指数级的增长。
据统计,到2025年,全球数据量将达到175ZB。
这将推动大数据技术的快速发展。
2. 数据多样性:不仅仅是数量的增长,数据的多样性也是大数据技术发展的一个重要趋势。
除了传统的结构化数据外,半结构化和非结构化数据的增加也使得大数据技术需要更强大的分析能力和处理能力。
3. 实时性要求的提升:随着互联网的高速发展,用户对信息的获取速度要求越来越高。
大数据技术需要具备实时处理和分析的能力,以满足用户的需求。
4. 云计算与大数据的融合:云计算技术的快速普及也为大数据技术的发展提供了更多的可能性。
云计算的弹性和高性能使得大数据处理更加灵活高效,提升了大数据技术的可操作性。
二、大数据技术的前景展望1. 商业智能和数据分析的应用:大数据技术的发展将推动商业智能和数据分析的应用。
通过对大数据进行深度分析和挖掘,企业可以更好地理解客户需求和市场趋势,从而制定更准确的营销策略和业务发展方向。
2. 数据安全和隐私保护的挑战:随着数据的增长和应用的广泛,数据安全和隐私保护问题变得愈发重要。
大数据技术发展的前景之一是解决数据安全和隐私保护的挑战,为用户提供更可信赖和安全的数据环境。
3. 人工智能的发展与大数据技术的结合:大数据技术和人工智能的结合将成为未来的重要趋势。
通过对大数据的分析和挖掘,人工智能系统可以获得更准确的数据输入,从而提高自身的学习和决策能力。
4. 跨界融合创新的推动:大数据技术的应用正逐渐涉及到各个领域,推动了不同领域之间的融合创新。
例如医疗领域的大数据分析可以提供更准确的诊断结果,金融领域的大数据应用可以改善风险评估等。
大数据技术的发展现状与未来趋势展望
大数据技术的发展现状与未来趋势展望近年来,随着互联网和移动互联网的高速发展,大数据技术逐渐成为各行各业的重要工具。
大数据技术通过对海量数据的收集、分析和运用,为企业和组织提供了全新的决策依据和商业机会。
本文将探讨大数据技术的发展现状,并展望其未来的趋势。
一、大数据技术的发展现状大数据技术在过去十年内取得了巨大的进展。
首先,数据规模呈爆发式增长,各种传感器、社交媒体平台和智能设备不断产生着庞大的数据流。
其次,云计算技术的普及使得数据的存储和处理更加高效和便捷。
再者,机器学习和人工智能的快速发展为大数据的挖掘和分析提供了新的方法和算法。
这些因素的共同促进,大数据技术得以持续创新和升级。
在商业领域,大数据技术被广泛应用于市场研究、用户分析和精准营销等方面。
以电商巨头阿里巴巴为例,其利用大数据技术实现了用户画像和个性化推荐,提高了用户购物体验和精准营销效果。
此外,大数据技术也被应用于证券交易、风险管理和供应链管理等金融和物流领域,为企业提供了全新的商业模式和增长机会。
在城市管理方面,大数据技术能够实现对城市内各种设施设备和人流、交通流的实时监测和调度。
例如,各大城市的智能交通管理系统能够通过大数据分析实现交通拥堵的预测和疏导;而智能电网系统能够通过大数据技术进行电力需求和供应的优化和调控。
大数据技术的应用使得城市变得更加智能、高效和宜居。
二、大数据技术的未来趋势展望1. 数据安全与隐私保护将成为重要关注点随着大数据规模的不断扩大,数据安全和隐私问题将越来越突出。
未来,大数据技术需要更加注重数据的安全存储和传输,采用更加严格的数据权限管理和加密技术,防止数据泄露和滥用。
同时,隐私保护法律和监管政策也需要随之完善,确保个人隐私权益得到有效保护。
2. 边缘计算和智能设备将推动大数据技术的进一步发展边缘计算是指将计算任务从中心服务器下放到数据源附近的网络边缘。
未来,随着物联网的普及和智能设备的智能化,边缘计算将为大数据技术的应用提供更大的便利。
大数据发展趋势与前景展望
大数据发展趋势与前景展望引言在当今信息时代,大数据已经成为各行各业的核心驱动力。
随着技术的不断发展和应用的普及,大数据正以惊人的速度改变着我们的生活和工作方式。
本文将探讨大数据的发展趋势以及对未来的展望。
一、云计算与大数据云计算作为大数据时代的基础设施,为大数据的存储和处理提供了强大的支持。
云计算的出现使得大数据的获取和分析变得更加高效和便捷。
随着云计算技术的不断成熟和普及,大数据的应用场景也将进一步扩大。
二、人工智能与大数据人工智能是大数据时代的重要应用领域之一。
大数据提供了海量的数据资源,为人工智能的训练和学习提供了充足的素材。
通过大数据的分析和挖掘,人工智能可以更加准确地理解和预测人类的行为和需求,为我们提供更好的服务和体验。
三、物联网与大数据物联网的快速发展为大数据的收集和应用提供了更广阔的空间。
通过物联网设备的连接和数据的传输,我们可以实时地获取和分析各种各样的数据,从而更好地理解和掌握我们所处的环境和情况。
物联网与大数据的结合将为我们的生活带来更多的便利和智能。
四、数据安全与隐私保护随着大数据的广泛应用,数据安全和隐私保护问题也变得日益突出。
大数据的泄露和滥用可能对个人和社会造成严重的损害。
因此,加强数据安全和隐私保护已经成为大数据发展的重要课题。
未来,我们需要通过技术手段和法律法规的完善来保障大数据的安全和合法使用。
五、大数据的商业价值大数据的快速发展为商业带来了巨大的机遇和挑战。
通过对大数据的深度分析和挖掘,企业可以更好地了解消费者需求,优化产品和服务,提高市场竞争力。
同时,大数据也为企业创新和发展提供了新的思路和方法。
因此,大数据已经成为企业获取竞争优势的重要手段之一。
六、大数据的社会影响大数据的发展不仅对商业领域产生了深远的影响,也对社会生活产生了重要的影响。
通过大数据的分析和应用,政府可以更好地了解社会状况和民众需求,从而提供更好的公共服务和治理。
同时,大数据也为科学研究和社会决策提供了更多的依据和参考。
云计算与粒计算_光环大数据培训
云计算与粒计算_光环大数据培训云计算,不必细说谁都知道是什么,人们多多少少都有所耳闻。
云计算是继20世纪80年代大型计算机到C/S转变之后,IT界的又一次巨变,它通过互联网将某计算任务分布到大量的计算机上,并可配置共享计算的资源池,且共享 ...云计算云计算,不必细说谁都知道是什么,人们多多少少都有所耳闻。
云计算是继20世纪80年代大型计算机到C/S转变之后,IT界的又一次巨变,它通过互联网将某计算任务分布到大量的计算机上,并可配置共享计算的资源池,且共享软件资源和信息可以按需提供给用户的一种技术。
云计算真正作为一个新兴技术得到IT界认可是在2007年左右,经过这十年的普及和发展,云计算早已走进千万个数据中心,成为IT世界里炙手可热的技术门类,并可以在未来的一段时间内继续获得长足发展。
云计算固然好,但也有不少的缺陷和使用限制,这样才出现了雾计算、霾计算等技术,这些技术都是针对云计算做的很好的补充,满足多样化的市场应用需求。
本文也介绍一个新技术,就是粒计算,粒计算同样是和云计算有着千丝万缕的联系。
其实,粒计算比云计算的概念出现得还早。
在1997年时,美国一大学教授首次在论文中提出了粒计算,这标志着涉及多学科的一个应用研究领域产生。
此后,国外诸多学者对它进行了研究,提出了许多有关粒计算的理论、方法和模型,现已成为研究模糊的、不较精确的、不完整的及海量信息处理的重要工具。
粒计算是一个含义广泛的术语,覆盖了所有有关粒的理论、方法学、技术和工具的研究,并认为粒计算是模糊信息粒化、Rough集理论和区间计算的超集,是粒数学的子集。
粒计算是在问题求解中使用粒子,构建信息粒化,将一类对象基于不可分辨关系、相似性等特征划分为一系列粒。
粒计算模型分为两大类:一类以处理不确定性为主要目标,如以模糊处理为基础的计算模型,以粗糙集为基础的模型,侧重于计算对象的不确定性处理。
模糊概念是粒计算的主要组成部分;另一类则以多粒度计算为目标,如商空间理论。
光环大数据培训_ Palantir之核心技术探秘
光环大数据培训_Palantir之核心技术探秘1.Palantir源起:B2B大数据和企业级Google。
Palantir(中文名帕兰提尔,源于《指环王》中可穿越时空、洞悉世间一切的水晶球Palantír)被誉为硅谷最神秘的大数据独角兽企业,短短几年内跻身百亿俱乐部,成为全球估值排名第四的初创公司。
它的主要客户只在美剧和好莱坞里出现,如美国联邦调查局(FBI)、美国中央情报局(CIA)、美国国家安全局(NSA)、美国军队和各级反恐机构,当然还有如JPMorgan这样的华尔街金融大鳄等等。
关于Palantir的传奇故事很多,CIA通过他家的大数据技术追踪到本拉登;创始人Alex Karp师从德国的Jürgen Habermas(研究西方马克思主义)获得哲学博士,热衷中国气功和太极;帮多家银行揭露旁氏骗局挽回数十亿损失,帮助摩根大通解决欺诈交易和黑客攻击问题,每年节约数亿美元;公司创始人和投资人(号称“硅谷黑帮”)由海军陆战队员随时保护以防不测;产品只卖美国及其盟友国;与棱镜门有说不清楚的关系等…这些花边新闻不是本文的关注点,本文重点从大数据技术角度来揭密Palantir的B2B大数据王国。
如果说谷歌是互联网大数据的霸主(我在前文《从Tensorflow看谷歌的云端人工智能战略》有详细解读),那么Palantir的目标就是未来企业级大数据霸主,做企业和政府领域的Google。
为什么这样讲?从技术角度来分析,这是大数据发展的必然趋势,互联网上的数据多半是UGC用户产生内容,或是如电商平台这种某细分领域的独立生态数据,而真正的大数据金矿还在众多大型企业和政府机构的服务器集群中沉睡。
比如一个国家的情报部门和各部、各局信息中心,无不是掌握着成千上万关键领域的大数据,包括各种业务数据、监控数据、DNA样本、语音视频图片、地图时空数据等(当然前提是信息化程度及其发达,就像我们的税务系统一样,而不是房产登记系统),面对如此海量、多源、异构而且高关联性、复杂性、动态性大数据,如果没有快速的大数据分析技术和工具支持,那只能是望数兴叹。
大数据课程培训方案模板
一、课程背景随着信息技术的飞速发展,大数据已经成为当今时代的热门话题。
为了培养具备大数据分析、处理和挖掘能力的人才,本培训方案旨在为学员提供全面、系统的大数据课程培训。
二、培训目标1. 使学员掌握大数据基本概念、技术架构和常用工具;2. 培养学员运用大数据技术解决实际问题的能力;3. 提升学员的数据分析、处理和挖掘水平;4. 增强学员在职场中的竞争力。
三、培训对象1. 计算机相关专业学生;2. 有志于从事大数据行业的在职人员;3. 对大数据感兴趣的各类人员。
四、培训内容第一阶段:大数据基础理论1. 大数据概述;2. 大数据技术架构;3. 大数据生态系统;4. 常用大数据工具介绍。
第二阶段:大数据技术栈1. Hadoop生态圈:- Hadoop分布式文件系统(HDFS)- Hadoop分布式计算框架(MapReduce)- YARN资源管理器- Hadoop重要子项目(Hive、Pig、HBase等)2. Spark生态圈:- Spark计算引擎- Spark SQL- Spark Streaming- Spark MLlib3. 大数据存储与处理:- NoSQL数据库(MongoDB、Cassandra等)- 分布式数据库(HBase、Cassandra等)4. 大数据可视化:- ECharts- Tableau第三阶段:大数据应用与实践1. 数据采集与清洗;2. 数据存储与处理;3. 数据挖掘与分析;4. 大数据应用案例分析。
第四阶段:大数据项目实战1. 项目背景介绍;2. 项目需求分析;3. 项目方案设计;4. 项目实施与优化;5. 项目成果展示。
五、培训方式1. 讲师授课:邀请业界资深大数据专家进行授课,确保学员获得高质量的教学资源;2. 案例分析:结合实际案例,让学员深入理解大数据技术的应用;3. 项目实战:通过实际项目,锻炼学员的大数据应用能力;4. 互动交流:组织学员进行讨论、交流,提高学员的学习效果。
2024年大数据技术应用培训资料
大数据实时处理技术的应用场景
适用于需要实时处理和分析数据流的场景,如实时监控、实时分析等。
03
CATALOGUE
大数据分析与挖掘方法
数据预处理与特征工程
数据清洗
去除重复、缺失、异常 值,处理噪声数据。
数据变换
归一化、离散化、标准 化等转换方法。
数据驱动决策
未来,数据将成为决策的重要依据,大数据技术将帮助企业更好地 了解市场和客户需求,制定更精准的营销策略。
跨界应用拓展
大数据技术将不断拓展应用领域,包括金融、医疗、教育、交通等 ,为社会发展和进步提供更多的支持。
THANKS
感谢观看
据生态系统。
大数据技术应用领域
01
02
03
04
金融领域
大数据技术在金融领域的应用 非常广泛,包括风险控制、客 户画像、智能投顾等方面。
零售领域
大数据技术可以帮助零售企业 了解消费者需求和行为,优化
产品设计和营销策略。
医疗领域
大数据技术在医疗领域的应用 包括疾病预测、个性化治疗、
医疗资源优化等方面。
健康管理
通过对个人健康数据的采集和分析,医疗机构可以为患者 提供更个性化的健康管理服务,预防疾病的发生和发展。
医疗资源优化
利用大数据技术对医疗资源和需求进行分析和预测,医疗 机构可以实现医疗资源的优化配置和管理,提高医疗服务 的可及性和公平性。
物流行业应用案例
路线优化
基于大数据技术的智能物流系统 可以对货物运输路线进行优化, 减少运输时间和成本,提高物流 效率。
神经网络基础
感知机、反向传播、激活函数等原理 介绍。
云计算技术在教育培训行业中的应用及发展前景展望
云计算技术在教育培训行业中的应用及发展前景展望云计算技术在教育培训行业中的应用及发展前景展望一、引言随着信息技术的高速发展,云计算已经成为了全球各个行业中不可或缺的技术。
教育培训行业也不例外,云计算技术的应用已经开始改变传统的教育培训方式,为学生和教师提供了更多的便利和创新空间。
本文将探讨云计算技术在教育培训行业中的应用,并展望其未来的发展前景。
二、云计算技术在教育培训行业中的应用1. 学习管理系统学习管理系统是云计算技术在教育培训行业中最常见的应用之一。
学习管理系统可以帮助学校和机构进行在线教育和培训管理,提供在线学习资源、课程评估和学生成绩分析等功能。
通过云计算技术,学习管理系统可以实现学习内容的存储和分享,学生们可以随时随地通过网络进行学习,不再受限于时间和地点。
2. 远程教育云计算技术的另一个重要应用是远程教育。
远程教育通过互联网技术实现了教育资源的共享和教学过程的远程传输,打破了传统教育的时间和空间限制。
教师可以通过远程教育平台进行在线授课,学生可以通过网络参与课堂互动,实现了教育资源的优化配置和教学效果的提升。
3. 协同学习云计算技术可以帮助教育培训机构实现协同学习。
传统的教育培训方式往往只能在课堂中进行知识传递,学生们很难在有限的时间内进行更深入的学习和思考。
而通过云计算技术,教师和学生可以共享学习资源、进行在线讨论和合作,实现了学习过程的互动和碰撞,促进了学生们的思考和创新能力的提升。
4. 数据分析云计算技术可以为教育培训行业提供大数据分析服务,帮助学校和机构通过对学生学习数据的分析来优化教学过程和个性化教学。
通过对学生学习数据的分析,可以更好地了解学生们的学习习惯、兴趣和能力,为教学和培训提供科学依据和个性化建议,提高教学效果和培训质量。
三、云计算技术在教育培训行业中的发展前景展望云计算技术在教育培训行业中的应用已经初具规模,但仍面临一些挑战和机遇。
1. 挑战尽管云计算技术在教育培训行业中的应用已经取得了一些成果,但仍然存在一些挑战。
大数据培训课件pptx
将处理后的数据以易于理解的方式呈 现给用户,如仪表板、报告等。
Part
03
大数据工具与平台
Hadoop生态系统
Hadoop分布式文件系统(HDFS)
提供高可靠性的数据存储,支持大规模数据集。
MapReduce编程模型
用于处理和生成大数据集,通过映射和规约操作实现。
Hive数据仓库工具
提供数据汇总、查询和分析功能。
大数据的来源与类型
总结词
大数据的来源和类型
详细描述
大数据的来源主要包括互联网、物联网、社交媒体、企业数据库等。根据不同的 分类标准,大数据可以分为结构化数据、非结构化数据、时序数据、地理空间数 据等类型。
大数据的应用场景
总结词
大数据的应用场景
详细描述
大数据在各个领域都有广泛的应用,如商业智能、金融风控、医疗健康、智慧城市、科研等。通过大 数据分析,可以挖掘出海量数据中的有价值信息,为决策提供科学依据,提高企业的竞争力和创新能 力。
01
大数据可以帮助企业实时监测设备运行状态,预测设备维护需
求。
智能物流与供应链管理
02
大数据可以提高物流和供应链管理的智能化程度,优化资源配
置。
智能家居与智慧城市
03
大数据可以为智能家居和智慧城市建设提供数据支持和分析服
务。
大数据面临的挑战与解决方案
1 2
数据安全与隐私保护
加强数据安全和隐私保护技术的研究和应用,如 加密技术、匿名化处理等。
在数据丢失或损坏时,通过备份数据快速恢复数据,确保业务的连续性。
隐私保护法律法规与标准
法律法规
了解和遵守相关法律法规,如《个人信息保 护法》等,确保大数据处理合法合规。
云计算的未来展望
云计算的未来展望随着信息技术的不断发展,云计算作为一种新型的计算模式,正逐渐改变着人们的生活和工作方式。
未来,云计算将继续发挥重要作用,为各行各业带来更多的便利和创新。
本文将从技术、应用和发展趋势等方面展望云计算的未来。
一、技术方面展望1.1 弹性计算能力提升未来,随着硬件技术的不断进步和云计算平台的不断优化,云计算将具备更强的弹性计算能力。
用户可以根据自身需求随时调整计算资源,实现按需分配,提高资源利用率,降低成本。
1.2 安全性进一步加强随着网络安全威胁的不断增加,云计算的安全性将成为未来发展的重点。
未来的云计算平台将加强数据加密、访问控制等安全机制,保障用户数据的安全性和隐私性。
1.3 多样化服务不断涌现未来,云计算将不仅仅局限于计算和存储服务,还将涌现出更多的多样化服务,如人工智能、区块链等,为用户提供更丰富的选择,满足不同行业的需求。
二、应用方面展望2.1 云计算在医疗健康领域的应用未来,云计算将在医疗健康领域发挥更大的作用。
通过云计算平台,医疗机构可以实现医疗数据的共享和交换,提高医疗服务的质量和效率,推动医疗健康产业的发展。
2.2 云计算在智慧城市建设中的应用未来,云计算将在智慧城市建设中发挥重要作用。
通过云计算技术,城市可以实现对各种数据的采集、分析和应用,提升城市管理水平,改善居民生活质量。
2.3 云计算在教育领域的应用未来,云计算将在教育领域带来革命性的变化。
通过云计算平台,教育机构可以实现教学资源的共享和互动式教学,提高教学效果,促进教育公平和均衡发展。
三、发展趋势展望3.1 边缘计算与云计算融合未来,边缘计算与云计算将逐渐融合,形成一体化的计算模式。
边缘计算将处理一部分数据,减轻云计算的负担,提高数据处理效率,实现更快速的响应和更低的延迟。
3.2 量子计算技术的应用未来,随着量子计算技术的不断突破,云计算将迎来新的发展机遇。
量子计算具有更强的计算能力和更高的安全性,将为云计算带来全新的应用场景和商业模式。
大数据对云计算技术发展的影响及前景展望
大数据对云计算技术发展的影响及前景展望随着信息时代的到来,大数据已经成为当今社会的一个重要组成部分,并对各行各业产生了深远的影响。
同时,云计算技术也在过去几年中取得了长足的发展,为企业和个人提供了更加灵活和高效的计算资源。
本文将探讨大数据对云计算技术发展的影响,并展望其未来的前景。
云计算作为一种基于互联网的计算模式,可以提供按需使用的计算资源和服务。
云计算的核心理念是资源的共享和虚拟化,它以服务为中心,通过动态分配计算资源的方式,满足用户对计算能力的需求。
云计算的发展给用户提供了更高效、更灵活的计算方案,让用户无需购买昂贵的硬件设备,即可根据实际需要来使用计算资源,大大降低了计算成本。
然而,大数据的迅猛发展给云计算技术提出了更高的要求。
大数据的特点在于数据量大、类型多样、速度快,传统的计算方式已经无法满足对大数据的处理需求。
而云计算正是基于虚拟化的技术,可以提供高性能的计算资源,满足大数据分析的需求。
因此,大数据对云计算技术的发展产生了重要的影响。
首先,大数据对云计算技术提出了更高的性能要求。
传统的计算资源无法有效地处理大规模的数据,并在较短的时间内提供计算结果。
而云计算通过虚拟化技术,可以将多个物理服务器组合在一起,形成一个超级计算机,提供强大的计算能力。
云计算技术的发展使得大数据的处理效率大大提高,使用户能够快速有效地分析和利用海量的数据资源。
其次,大数据对云计算技术提供了更广泛的应用场景。
传统的计算方式往往只能处理结构化数据,而大数据则包括结构化、半结构化和非结构化的数据。
云计算技术通过虚拟化技术提供了更灵活的计算环境,可以同时处理不同类型的数据,并提供相应的分析工具和算法。
这使得大数据在各行各业中得以广泛应用,包括金融、医疗、交通、能源等多个领域。
此外,大数据还推动了云计算技术的进一步发展。
通过对大数据的分析,可以发现隐藏在数据中的规律和趋势,为企业决策提供更准确的依据。
随着企业对大数据分析需求的增加,云计算技术也在不断地演进,向着更高效、更可靠、更安全的方向发展。
最新大数据分析培训内容(2024)
风险预警与预测
利用大数据分析技术,可 以实现对潜在风险的预警 和预测,帮助企业及时应 对风险挑战。
27
未来发展趋势预测及挑战应对
2024/1/29
数据驱动决策
未来企业将更加依赖数据进行决策,需要建立完善的数据驱动决 策体系,提高决策效率和准确性。
跨领域融合
大数据分析将与人工智能、物联网等领域进行更深入的融合,推动 技术创新和应用拓展。
数据安全与隐私保护问题探讨
数据泄露风险
随着数据量不断增长,数据泄露风险也相应增加。需要加强数据安 全管理,采取加密、脱敏等技术手段保护数据安全。
隐私保护法规
各国纷纷出台隐私保护法规,要求企业在处理个人数据时遵守相关 规定。企业需要建立完善的数据合规体系,确保合规处理个人数据 。
数据匿名化处理
通过数据匿名化技术,可以在一定程度上保护个人隐私,同时满足数 据分析需求。
2024/1/29
25
算法模型可解释性与透明度提升
2024/1/29
模型可解释性
为了提高算法模型的可信度,需要关注模型的可解释性。 采用易于理解的模型结构、提供详细的模型解释等方法有 助于提高模型可解释性。
透明度提升
通过公开算法原理、模型参数等信息,提高算法模型的透 明度,有助于增加公众对算法的信任度。
4
大数据应用领域
金融
应用于高频交易、社交 情绪分析和信贷风险分 析三大金融创新领域。
2024/1/29
医疗
应用于医疗信息化、远 程医疗、健康管理等方
面。
教育
物流
应用于个性化教学、教 育数据挖掘、在线学习
分析等方面。
5
应用于优化库存、配送 路线规划、预测运输需
2024版华为云计算大数据培训
•云计算与大数据概述•华为云计算核心技术解析•华为大数据处理平台介绍•华为云计算在各行各业应用案例分享目录•华为大数据解决方案展示与探讨•培训总结与展望未来发展趋势云计算定义及发展历程云计算定义发展历程大数据概念及价值挖掘大数据概念价值挖掘大数据领域华为在大数据领域提供从数据采集、存储、处理到分析的全流程解决方案,以及大数据平台和工具,帮助企业实现数据价值挖掘。
云计算领域华为在云计算领域提供全栈式解决方案,包括基础设施、平台服务和应用服务三个层面,涵盖了计算、存储、网络、安全等方面。
生态合作华为积极与合作伙伴和开发者合作,共同构建云计算和大数据生态,推动产业的发展和创新。
华为在云计算大数据领域布局KVM(Kernel-based Virtual M…基于Linux内核的虚拟化技术,通过直接调用硬件资源实现高性能的虚拟化。
虚拟机管理包括虚拟机的创建、启动、停止、迁移等操作,以及虚拟机资源的动态调整。
虚拟计算资源管理实现CPU、内存等计算资源的虚拟化,提供弹性可扩展的计算能力。
分布式存储技术存储资源管理数据保护技术030201SDN(Software-Defined Netwo…通过软件定义网络的方式,实现网络资源的灵活调度和管理。
网络功能虚拟化将网络功能以软件的形式运行在通用硬件上,降低网络建设和运营成本。
虚拟网络技术包括虚拟交换机、虚拟路由器等技术,构建高效、安全的虚拟网络环境。
容器技术与微服务架构Docker容器技术01Kubernetes容器编排技术02微服务架构03分布式存储分布式计算实时数据处理数据挖掘与机器学习FusionInsight平台架构及功能特性数据采集、存储与处理流程支持多种数据源接入,包括关系型数据库、NoSQL数据库、文件系统等。
采用分布式文件系统存储数据,支持数据备份和恢复。
提供数据清洗、转换、聚合等处理功能,支持SQL查询和编程接口。
支持多种数据输出格式,包括CSV、JSON、Parquet等。
大数据专业名词解释_光环大数据培训
大数据专业名词解释_光环大数据培训01算法(Algorithm)算法可以理解成一种数学公式或用于进行数据分析的统计学过程。
那么,「算法」又是何以与大数据扯上关系的呢?要知道,尽管算法这个词是一个统称,但是在这个流行大数据分析的时代,算法也经常被提及且变得越发流行。
02分析(Analyticsanalyze)让我们试想一个很可能发生的情况,你的信用卡公司给你发了封记录着你全年卡内资金转账情况的邮件,如果这个时候你拿着这张单子,开始认真研究你在食品、衣物、娱乐等方面消费情况的百分比会怎样?你正在进行分析工作,你在从你原始的数据(这些数据可以帮助你为来年自己的消费情况作出决定)中挖掘有用的信息。
那么,如果你以类似的方法在推特和脸书上对整个城市人们发的帖子进行处理会如何呢?在这种情况下,我们就可以称之为大数据分析。
所谓大数据分析,就是对大量数据进行推理并从中道出有用的信息。
以下有三种不同类型的分析方法,现在我们来对它们分别进行梳理。
03描述性分析法(DescriptiveAnalytics)如果你只说出自己去年信用卡消费情况为:食品方面25%、衣物方面35%、娱乐方面20%、剩下20%为杂项开支,那么这种分析方法被称为描述性分析法。
当然,你也可以找出更多细节。
04预测性分析法(PredictiveAnalytics)如果你对过去5年信用卡消费的历史进行了分析,发现每年的消费情况基本上呈现一个连续变化的趋势,那么在这种情况下你就可以高概率预测出:来年的消费状态应该和以往是类似的。
这不是说我们在预测未来,而是应该理解为,我们在「用概率预测」可能发生什么事情。
在大数据的预测分析中,数据科学家可能会使用先进的技术,如机器学习,和先进的统计学处理方法(这部分后面我们会谈到)来预测天气情况、经济变化等等。
05规范性分析(PrescriptiveAnalytics)这里我们还是用信用卡转账的例子来理解。
假如你想找出自己的哪类消费(如食品、娱乐、衣物等等)可以对整体消费产生巨大影响,那么基于预测性分析(PredictiveAnalytics)的规范性分析法通过引入「动态指标(action)」(如减少食品或衣物或娱乐)以及对由此产生的结果进行分析来规定一个可以降低你整体开销的最佳消费项。
大数据开发初学者应该学习哪些东西_光环大数据培训
大数据开发初学者应该学习哪些东西_光环大数据培训其实这就是想告诉你的大数据的三个发展方向,平台搭建/优化/运维/监控、大数据开发/设计/架构、数据分析/挖掘。
请不要问我哪个容易,哪个前景好,哪个钱多。
先扯一下大数据的4V特征:数据量大,TB->PB数据类型繁多,结构化、非结构化文本、日志、视频、图片、地理位置等;商业价值高,但是这种价值需要在海量数据之上,通过数据分析与机器学习更快速的挖掘出来;处理时效性高,海量数据的处理需求不再局限在离线计算当中。
现如今,正式为了应对大数据的这几个特点,开源的大数据框架越来越多,越来越强,先列举一些常见的:文件存储:Hadoop HDFS、Tachyon、KFS离线计算:Hadoop MapReduce、Spark流式、实时计算:Storm、Spark Streaming、S4、HeronK-V、NOSQL数据库:HBase、Redis、MongoDB资源管理:YARN、Mesos日志收集:Flume、Scribe、Logstash、Kibana消息系统:Kafka、StormMQ、ZeroMQ、RabbitMQ查询分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid分布式协调服务:Zookeeper集群管理与监控:Ambari、Ganglia、Nagios、Cloudera Manager数据挖掘、机器学习:Mahout、Spark MLLib数据同步:Sqoop任务调度:Oozie……眼花了吧,上面的有30多种吧,别说精通了,全部都会使用的,估计也没几个。
就我个人而言,主要经验是在第二个方向(开发/设计/架构),且听听我的建议吧。
第一章:初识Hadoop1.1 学会百度与Google不论遇到什么问题,先试试搜索并自己解决。
Google首选,翻不过去的,就用百度吧。
1.2 参考资料首选官方文档特别是对于入门来说,官方文档永远是首选文档。
大数据分析中的计算智能研究现状与展望
大数据分析中的计算智能研究现状与展望一、概述随着信息技术的飞速发展,大数据已经成为现代社会的重要特征,其广泛的应用在各行各业中带来了前所未有的挑战和机遇。
大数据分析的核心在于从海量、复杂的数据中提取出有价值的信息,这要求我们具备强大的数据处理能力和高效的算法设计。
在这一背景下,计算智能作为人工智能的一个重要分支,其在大数据分析中的应用逐渐凸显出来。
计算智能是一种模拟人类智能行为的分析方法,它通过数学和计算机模型,模拟人的学习过程,实现对复杂问题的求解。
在大数据分析中,计算智能技术如机器学习、深度学习、神经网络等被广泛应用,为数据分析和模式识别提供了有力的工具。
这些技术不仅提高了数据分析的准确性和效率,还为我们提供了全新的视角和思路,使得大数据分析更加智能化和自动化。
尽管计算智能在大数据分析中的应用取得了显著的成果,但仍然存在许多问题和挑战。
例如,如何有效地处理高维、异构的数据,如何设计更加高效和稳定的算法,如何确保数据分析的准确性和可解释性等。
这些问题不仅限制了计算智能在大数据分析中的应用范围,也为我们提供了进一步研究和发展的空间。
1. 大数据时代的背景与特点随着信息技术的迅猛发展和互联网的普及,我们迎来了一个被称为“大数据”的时代。
大数据时代的背景可以追溯至20世纪90年代末,当计算机技术的快速进步和互联网的广泛应用使得数据的生成、存储和处理能力得到了极大的提升。
在过去的几十年里,随着科技的进步和数据量的不断积累,我们已经逐渐步入了真正的大数据时代。
大数据时代的特点主要表现在以下三个方面。
数据规模巨大。
随着各种设备和系统的普及,各个领域产生的数据量呈爆发性增长,从社交媒体、传感器数据到在线交易和云存储,数据以惊人的速度积累。
这些海量的数据为我们提供了前所未有的机会,但同时也带来了处理和分析上的挑战。
数据种类多样。
大数据时代的数据不仅包括传统的结构化数据(如数据库记录),还包括非结构化数据,如文本、图像、音频和视频等。
大数据技术的发展现状与未来趋势展望
大数据技术的发展现状与未来趋势展望随着信息技术的快速发展和互联网的普及,大数据技术已经逐渐成为当今社会的热点话题。
大数据技术以其具有的高效率、广泛应用和价值挖掘的特点,被广泛应用于各行各业,并为人们带来了不少便利。
本文将分析大数据技术的发展现状,并对未来的趋势进行展望。
首先,我们来看一下大数据技术的发展现状。
随着互联网用户数量的快速增长,大量的信息数据被不断产生。
这些数据包含了丰富的信息和商业价值,但是也面临着巨大的挑战,因为传统的数据处理方法已经无法胜任这样庞大的数据量。
为了能够有效地处理和分析这些大数据,大数据技术应运而生。
大数据技术的核心是数据的存储、处理和分析,这需要大量的硬件和软件的支持。
目前,大数据技术的发展主要集中在以下几个方面:首先,存储技术的发展。
为了应对海量数据的存储需求,研究人员提出了一系列的大数据存储解决方案,如分布式文件系统和NoSQL数据库。
这些技术使得大数据的存储更加可靠和高效。
其次,数据处理和分析技术的进步。
为了能够更好地挖掘大数据中的信息和价值,研究人员提出了一些高效的数据处理和分析算法,如MapReduce和Spark。
这些算法能够将大数据分成小块进行处理,并且能够并行执行,大大提高了数据处理的速度和效率。
此外,人工智能和机器学习的发展也为大数据技术带来了新的机遇。
人工智能和机器学习算法能够自动从大数据中学习和发现隐藏的模式和规律,从而提供更好的决策支持和业务预测。
未来,随着云计算和物联网技术的发展,大数据技术将迎来更高的发展。
云计算技术可以提供强大的计算和存储能力,使得大数据处理和分析更加高效和灵活。
物联网技术将大量增加传感器设备的数量,这些设备产生的数据将成为未来的大数据来源。
同时,人们对于数据隐私和安全的关注也将成为大数据技术发展的重要方向。
为了更好地发展大数据技术,我们需要解决一些挑战和问题。
首先,数据隐私和安全是大数据技术面临的重要问题。
因为大数据中包含着大量的敏感信息,因此如何保护数据的安全和隐私成为了一个迫切需要解决的问题。
大数据相关的培训课程
大数据相关的培训课程随着信息技术的快速发展和互联网的普及,大数据成为了当下热门的话题之一。
随之而来的是对大数据分析人才的需求日益增长。
为了满足市场对大数据专业人才的需求,各种大数据相关的培训课程应运而生。
本文将介绍几个热门的大数据培训课程,帮助读者了解这些课程的内容和特点。
一、大数据基础课程大数据基础课程是大数据培训的入门课程,旨在帮助学员建立对大数据概念和基础技术的理解。
该课程通常包括以下内容:1. 大数据概述:介绍什么是大数据、大数据的特征和应用场景,帮助学员对大数据有一个整体的认识。
2. 大数据技术架构:介绍大数据的技术架构,包括数据采集、数据存储、数据处理和数据分析等环节。
3. 大数据存储与管理:介绍大数据存储和管理的相关技术,包括分布式文件系统、NoSQL数据库和数据仓库等。
4. 大数据处理与分析:介绍大数据处理和分析的相关技术,包括分布式计算框架、MapReduce算法和机器学习等。
5. 大数据可视化:介绍大数据可视化的方法和工具,帮助学员将海量的数据以直观的方式展示出来。
二、大数据分析课程大数据分析课程是培养学员掌握大数据分析技术的专业课程。
该课程通常包括以下内容:1. 数据清洗与预处理:介绍数据清洗和预处理的方法和技术,包括数据去重、缺失值处理和异常值检测等。
2. 数据挖掘与机器学习:介绍数据挖掘和机器学习的基本概念和算法,包括聚类、分类、回归和关联规则等。
3. 文本挖掘与自然语言处理:介绍文本挖掘和自然语言处理的相关技术,包括情感分析、文本分类和信息抽取等。
4. 时间序列分析:介绍时间序列分析的基本方法和模型,包括ARIMA模型、ARCH模型和GARCH模型等。
5. 数据可视化与报告:介绍数据可视化和报告的技术和工具,帮助学员将分析结果以直观和易懂的方式呈现给他人。
三、大数据工程师课程大数据工程师课程是培养学员成为大数据工程师的专业课程。
该课程通常包括以下内容:1. 大数据平台搭建:介绍大数据平台的搭建和配置,包括Hadoop、Spark和Hive等常用的大数据框架和工具。
大数据培训课件
智能交通
运用大数据技术对交通流量、路 况、交通事故等多源数据进行挖 掘和分析,实现交通拥堵的预测 和疏导,提高交通运行效率和安 全性。
环境保护
利用大数据技术对环境监测数据 进行实时分析和预测,及时发现 和解决环境问题,为环境保护和 可持续发展提供有力支持。
THANKS
感谢观看
数据传输安全
分析数据传输过程中可能面临的安全威胁,探讨 如何通过SSL/TLS等协议来确保数据传输的安全 性。
密钥管理
阐述密钥管理的重要性和挑战,介绍常见的密钥 管理技术(如密钥交换、密钥存储等)及其最佳 实践。
数据脱敏与匿名化处理
数据脱敏技术
01
探讨数据脱敏的原理和方法,包括静态数据脱敏和动态数据脱
化规律。
社区发现
识别社交网络中的社区结构,分 析社区内的交互行为和信息传播
机制。
网络传播分析
研究信息在社交网络中的传播路 径、速度和影响范围,为舆情监
控和营销策略提供支持。
06
大数据安全与隐私保护
数据加密与传输安全
1 2 3
数据加密技术
介绍常见的加密算法(如AES、RSA等)及其原 理,探讨如何在实际应用中选择合适的加密算法 来保护数据的机密性。
特点
大数据具有5V特点,即Volume(大量)、Velocity(高速)、Variety(多样 )、Value(低价值密度)、Veracity(真实性)。
大数据技术架构
分布式存储技术
Hadoop的HDFS、HBase、 Cassandra等,用于存储海量
数据。
分布式计算技术
MapReduce、Spark、Flink等 ,用于处理和分析大数据。
文本挖掘与情感分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据系统计算技术展望_光环大数据培训大数据系统计算技术展望1 引言大数据是新一代信息技术的核心方面和竞争前沿,也是制约大数据产业快速发展的关键瓶颈。
大数据技术创新能力已经成为后信息时代衡量国家竞争力的重要指标。
与传统信息产业的发展过程相似,大数据必将逐渐形成一个相对独立、体系完善的产业形态,完成传统信息产业的升级换代。
互联网和云计算的发展过程与趋势已经证明,大数据未来的产业形态将是以服务为核心的新型产业形态,大数据产业体系的各个环节将提供极为丰富的服务。
大数据是国家、社会和产业在后信息时代的战略性资源,以大数据为核心支撑的新一代信息技术与应用(如互联网+、物联网、智慧城市、智能制造等)利用大数据资源的手段和工具,为社会提供信息服务,其最终目的是利用大数据解决科学研究、社会管理、产业发展等一系列实际问题,从而在战略决策、运营管理、终端服务等不同层面和环节提升效能与效益,形成新的核心竞争力。
当前,全社会数据产生越来越快、积累越来越多,大数据资源越来越丰富,而现有的信息技术已经跟不上数据的发展,特别是对大数据的处理、分析与应用已经成为全球性问题,引起了各国政府和产业界的高度重视。
大规模且高复杂性的大数据,其处理时间、响应速度等都有明确且具体的要求,这对计算平台的架构、计算模型的框架、共性技术等提出了更高的要求。
传统的以计算速度为优先的设计理念已经不能满足当前大数据时代的处理需求,新计算平台的研发、框架设计和共性技术开发等需要兼顾效率与效能的双重标准,同时兼顾大数据类型多、变化快、价值稀疏的特性。
2 大数据系统计算技术现状与问题大数据计算平台是大数据的硬件与系统基础,对大数据的所有分析与处理都需要在高性能的计算平台上进行;共性技术是大数据分析与处理的知识与技术基础,所有的大数据系统都涉及数据采集、传输、存储、处理和分析过程中的多项共性的技术;典型的应用可以用来验证计算平台和共性技术的可行性与执行效率,并为相近应用的研发提供借鉴。
经过近几年的快速发展,大数据已经形成从数据采集、数据处理到数据分析的完整产业,为社会经济的发展提供有力的数据支持。
然而技术的发展赶不上数下面从计算平台、共性技术和应用3个方面对大数据的技术现状及存在的问题进行阐述。
2.1 大数据计算平台现状及存在的问题大数据计算平台是大数据产品体系的核心龙头。
大数据计算平台以云计算为基础环境、以服务模式为总体架构,覆盖大数据应用全过程,支持多源异构海量数据的采集、存储、集成、处理、分析、可视化展现、交互式应用,涉及企业大数据产品体系的各个层面,为各层产品实现供关键技术支撑。
当前,面向信息服务的大数据计算平台还远不成熟,平台优化和节能等关键技术有待突破,面临的问题主要包括以下几个方面。
●平台研发需要交叉学科知识。
由于大数据计算平台环境复杂,要提高大数据计算平台的处理能力、优化平台性能和降低能耗、提高平台的安全性和隐私保护,需要多学科、多种专业背景的科研人员协同创新、联合攻关,才能实现技术突破。
平台研发需要交叉学科知识。
●平台研发人才缺乏。
由于大数据应用在许多行业属于新生事物,虽然很多企业管理者认识到了大数据的潜在价值,但还处于观望状态,不愿冒风险做领先者;多数企业缺少大数据技术和应用人才,也缺少大数据应用的技术平台,无法开展实际应用项目;目前大数据技术还很不成熟,很多是开源软件,实施应用项目成本高、风险大。
企业、科研机构和大学协同创新是突破行业示范应用障碍的有效途径。
●平台框架需要突破。
大数据计算平台的处理和分析能力主要依赖分布式计算框架来完成。
分布式计算框架不仅要提供高效的计算模型、简单的编程接口,还要具备容错能力和高扩展性。
大数据计算平台的计算框架主要分为批处理和流处理两种。
批处理计算框架主要针对静态数据的离线计算,吞吐量好,但是不能保证实时性;流处理计算框架主要针对动态数据的在线实时计算,时效性好,但是难以获取数据全貌。
●技术环境不统一。
目前大数据最前沿的计算框架和衍生的生态圈都分布在以GitHub为主的开源社区内,形成了大数据基础架构和大数据分析处理技术群。
大数据的技术环境为用户提供了丰富的技术选择,但也给用户掌握和使用多样性的大数据技术造成障碍,且提高了应用成本。
2.2 大数据共性技术现状及存在的问题根据处理流程,大数据技术可以分为基础架构支持、数据采集、数据存储、数据计算以及展现与交互几类。
具体来说,基础架构涉及的技术包括云计算平台、云存储、虚拟化、网络以及资源监控等;数据采集涉及的技术包括数据总线、抽术包括分布式文件系统、关系型数据库、NoSQL数据库、内存数据库等;数据计算涉及的技术包括数据查询、统计与分析、数据预测与挖掘、图谱挖掘、商业智能(businessintelligence,BI)等;展现与交互技术包括图形与报表、可视化工具、增强现实技术等。
此外,大数据技术还包括大数据的安全与隐私保护等相关技术。
当前,大数据的存储、处理、分析、展示等关键技术有待突破,大数据处理和分析能力、算法的数据处理能力远远达不到实际应用要求。
现有的信息技术不足以解决大数据的问题,面对丰富和复杂的大数据应用场景,需要多学科、多领域的交叉合作才能解决。
这给传统信息技术带来了挑战,主要表现在:多源多模大数据的获取和融合;对数据质量和低质量数据的容忍;面向大数据算法及理论的进一步研究;对现有可扩展存储和处理的计算架构更新设计;对大数据并行处理及分析挖掘技术适应性设计等。
2.3 大数据应用的现状及存在的问题随着国家政策扶持力度的不断加大,产业资本的持续投入,国内外发展大数据的积极性都很高,行业应用得到快速推广。
当前,大数据的应用给企业不仅带来了技术和应用模式上的突破,还为商业模式的创新以及企业的转型发展带来了驱动力。
对公共服务机构来说,挖掘大数据的潜在价值对解决城市发展问题、完善社会机制、更好地服务于市民有着重大的意义。
虽然大数据应用逐步深入人们的生活,但限于目前大数据技术仍不成熟,因此与实际问题解决需求存在一定的差异,主要表现如下。
●时空大数据面临海量数据管理、时空数据融合、时空大数据理论框架和时空推理与数据挖掘的深度结合的挑战;针对时空大数据模式发现与价值提炼的问题,揭示大尺度事件的演化推理机理,突破大尺度安全时间的理解和局限的挑战。
●媒体大数据的包容量大、源头多且成分迥异的特性,给媒体大数据计算理论和关联算法的研究带来了巨大的挑战。
此外,目前无论是科学研究还是新技术开发,都没有解决计算机按内容自动搜索视频媒体的可行性方案。
●为了有效地利用物联网海量多样化的大数据,挖掘其价值,一方面需要对网络进行优化,使其具备未来物联网需具备的承载大数据的能力;另一方面,对用户的服务进行分析挖掘,充分实现物联网的潜在价值。
●物流大数据应用领域面临使用大数据技术推动电子商务与现代物流的协同发展问题,是物流大数据应用的一大挑战。
3 大数据系统计算技术创新平台算平台和共性技术研究不充分的情况下,国家发展和改革委员会于2017年正式批复由深圳大学牵头建设大数据系统计算技术国家工程实验室(以下简称国家工程实验室)。
国家工程实验室面向国家实施大数据战略的需求,着重解决我国大数据计算平台安全可信性差、软件通用性低的突出问题;采用国产高性能处理器互联芯片和计算平台,实现大数据智能诊断和自动纠错等可靠性信息高速转发,提升大数据计算平台的安全控制能力,满足国家加密算法的要求;以研制自主可控、通用性强的大数据计算平台为核心目标,解决高性能大数据计算中的共性问题,并以此为基础,着力开展大数据示范性应用研发。
各技术方向的架构和关系如图1所示。
图1 国家工程实验室研究方向国家工程实验室计划突破的3个主要技术方向包括高性能高安全的大数据计算平台研发、高度通用的大数据计算共性关键技术研究、大数据示范性应用研发,有针对性地解决目前我国大数据计算平台面临的安全性差、通用性低等突出问题。
采用全国产化、面向特定工程领域的芯片及软件技术,实现完全自主可控的高性能大数据计算平台。
将在该自主可控的硬件计算平台上,研发可以适用于大数据计算共性关键技术的通用系统软件。
还将面向大数据计算中的示范性应用,开展应用软件技术的研发,实现“硬件—系统软件—应用软件”的完整的大数据计算生态环境。
(1)高性能高安全的大数据计算平台研发随着国家、国防信息化建设的发展,构建自主可控的大数据计算平台是国家战略安全的至关重要的问题。
目前我国绝大多数的大数据计算平台都基于国外的软硬件系统。
大数据计算平台安全可信性差和软件通用性低等问题,成为大数据行业最为突出的核心问题。
采用国外的基础技术平台,不仅在核心技术上受制于人,而且对我国重要数据信息的安全构成了直接威胁。
国家工程实验室将从“硬件—系统软件—应用”3个层次,全面构建国产化高可靠性、高性能大数据平台。
该平台的建设以研制基于国产化处理器的大数据计算硬件系统为核心方向。
采用创新的RAS2.0(增强的可靠性(reliability)、可用性(availability)及可服务性(serviceability))和处理器互联技术,提供超越现有标准开放平台的单机可靠性和计算性能。
采用基于固件、不依赖操作系统(operatinsystem,OS)的故障响应和诊断机制,能够全面、自动收集故障信息并进行分析,实现主动预警、隔离、替换失效部件,并率先支持CPU、内存等核心部件的在线维护,面向计划内零停机维护设计,保障重要部门和企业的关键业务连续运行。
(2)高度通用的大数据计算共性关键技术研究数据计算在数据量、数据类型方面与传统高性能计算有显着不同,对数据的实时响应、安全性等方面也有特殊的要求。
国家工程实验室拟在通用大数据并行计算框架、一体化平台集成、数据存储、资源调度、数据安全、一体化应用环境6个方面开展研究。
基于度量空间的大数据抽象框架,利用度量空间将大数据复杂繁多的数据类型和多样化的距离抽象为统一的数据类型和距离函数接口,并通过支撑点选取算法选取若干支撑点,以数据到支撑点的距离为坐标,从而将数据从无坐标的度量空间映射到有坐标的多维空间,使众多数学工具得以使用。
(3)大数据示范性应用研发研发特定领域的大数据示范性应用及其共性技术是国家工程实验室建设的重要目标之一。
国家工程实验室建设期间将从“智慧城市”“智能制造”“智慧政府”及“智慧服务”等领域的关键应用技术出发,开展五大示范性应用及共性技术的开发,包括多维时空大数据分析在智慧城市中的示范应用、物流大数据示范应用、媒体大数据分析的示范应用、物联网大数据示范应用以及大数据可视化分析技术的示范应用。
通过示范应用的开发及共性技术的研究,建立大数据“产学研用”协同创新生态链,促进大众创业和万众创新。
4 基于大数据系统计算技术平台打造大数据生态创新基地国家工程实验室的总体功能定位概括为我国大数据领域领先的“4个基地”,分别介绍如下。