New cardanolsucrose epoxy blends for biobased coatings
拜耳的杀菌剂在美国上市
拜耳的杀菌剂在美国上市
胡笑形
【期刊名称】《新农药》
【年(卷),期】2004(000)001
【摘要】拜耳作物科学公司咪唑啉酮杀菌剂Reason(咪唑菌酮500g/1)预计明年取得几种作物登记后将在北美上市。
该有效成分2002年末在美国登记,莴苣的耐药量也已确立。
但该杀菌剂在获准用于马铃薯,葫芦,洋葱,大棕蔬菜和西红柿前不会推广。
【总页数】1页(P17)
【作者】胡笑形
【作者单位】无
【正文语种】中文
【中图分类】S482
【相关文献】
1.拜耳在智利上市谷物种子处理杀菌剂Scenic [J], 杨光;
2.拜耳在智利上市谷物种子处理杀菌剂Scenic [J], ;
3.拜耳在智利上市铜制剂杀菌剂Agrocopper [J], ;
4.拜耳在加拿大上市Luna Sensation杀菌剂 [J], 无;
5.拜耳在加拿大上市Luna Sensation杀菌剂 [J], 无;
因版权原因,仅展示原文概要,查看原文内容请购买。
异喹啉生物碱生物合成
异喹啉生物碱生物合成异喹啉生物碱(Isoquinoline alkaloids)是一类广泛存在于植物和动物中的天然产物,具有多种生物活性和药理作用。
异喹啉生物碱的生物合成是由多个酶催化的化学反应组成的复杂代谢途径。
异喹啉生物碱的生物合成过程通常起始于芳香族氨基酸苯丙氨酸或酪氨酸。
首先,苯丙氨酸或酪氨酸经过酚酸途径被氧化酶催化生成对羟基苯丙氨酸或对羟基酪氨酸。
接下来,通过脱羧酶的作用,对羟基苯丙氨酸或对羟基酪氨酸失去一个CO2分子,生成对羟基苯乙胺或对羟基酪胺。
在异喹啉生物碱的生物合成过程中,最重要的是一个叫做异喹啉合成酶(Isoquinoline synthase)的酶。
异喹啉合成酶催化对羟基苯乙胺或对羟基酪胺的环化反应,形成异喹啉环结构。
这个反应是通过酮醇互变机制完成的,首先生成一个酮型中间体,然后通过内环酯化反应将酮型中间体转化为环结构。
在异喹啉生物碱的生物合成过程中,还存在其他一些重要的酶催化反应,如甲基化、羟基化、氧化、还原等。
这些反应通过调控酶的活性和底物的选择,进一步改变异喹啉生物碱的结构和功能。
异喹啉生物碱具有多种生物活性和药理作用。
其中一些具有抗菌、抗炎、抗氧化、抗肿瘤等药理活性,被广泛应用于药物研发和临床治疗。
例如,白屈菜碱是一种常用的抗心律失常药物;阿托品是一种常用的抗胆碱药物;吗啉胺是一种常用的抗组胺药物。
除了药理作用外,异喹啉生物碱还具有其他一些生物活性。
例如,一些异喹啉生物碱具有昆虫抗性活性,可以作为植物的天然杀虫剂。
此外,一些异喹啉生物碱还具有毒性作用,可以用于控制害虫和杂草的生长。
异喹啉生物碱是一类具有多种生物活性和药理作用的天然产物。
其生物合成是由多个酶催化的化学反应组成的复杂代谢途径。
异喹啉生物碱的结构和功能可以通过调控酶的活性和底物的选择来改变。
异喹啉生物碱在药物研发和临床治疗中有着广泛的应用前景。
同时,异喹啉生物碱还具有其他一些生物活性,如昆虫抗性活性和毒性作用,可以用于农业和环境保护领域。
倍赛诺他的结构式
倍赛诺他的结构式倍赛诺他(Bezafibrate)是一种用于治疗高胆固醇和高甘油三酯血症的药物。
它属于一类被称为“纤维酸类药物”的药物,通过调节脂肪代谢来降低血脂水平。
倍赛诺他在临床上已被广泛应用,并被证明对改善心血管健康具有积极的作用。
倍赛诺他的化学结构非常独特。
它是一种酰胺类化合物,含有苯环和咪唑环。
这种特殊的结构使得倍赛诺他能够与脂肪酸结合并激活脂肪酸代谢途径。
通过这种机制,倍赛诺他可以促进脂肪酸的氧化和合成,从而调节体内脂肪的代谢平衡。
倍赛诺他的作用机制包括多个方面。
首先,它通过激活细胞内的PPAR(过氧化物酶体增殖物激活受体)来影响基因表达,从而调节脂肪代谢途径。
其次,倍赛诺他还可以抑制胆固醇合成酶和甘油三酯合成酶,减少胆固醇和甘油三酯的合成。
此外,倍赛诺他还具有抗炎和抗氧化的作用,可以减少血管内膜的炎症反应和氧化应激,保护心血管系统的健康。
临床研究表明,倍赛诺他在降低胆固醇和甘油三酯水平方面非常有效。
它可以显著降低总胆固醇、低密度脂蛋白胆固醇和甘油三酯的水平,同时增加高密度脂蛋白胆固醇的水平。
这些效应使倍赛诺他成为治疗高胆固醇和高甘油三酯血症的首选药物之一。
除了降低血脂水平外,倍赛诺他还有其他一些积极的效应。
它可以改善血管功能,减少动脉粥样硬化的发生。
此外,倍赛诺他还可以降低血液中的凝血因子水平,减少血栓形成的风险。
这些作用使得倍赛诺他在预防心脑血管疾病方面具有广阔的应用前景。
尽管倍赛诺他在降低血脂方面非常有效,但在使用时仍需谨慎。
患有肝功能障碍、胆结石或肾功能不全的患者应避免使用倍赛诺他。
此外,长期使用倍赛诺他可能会导致肌肉损伤和肝功能异常等副作用,因此应在医生的指导下使用。
倍赛诺他作为一种治疗高胆固醇和高甘油三酯血症的药物,通过调节脂肪代谢途径来降低血脂水平。
它具有独特的化学结构和多重作用机制,在临床上被广泛应用。
然而,在使用倍赛诺他时应注意副作用和禁忌症,遵循医生的建议,并定期进行检查,以确保其疗效和安全性。
进口奶粉、保健品报价
商品名称销售限价Bodytrim Nutra shot(tropical kiwi flavour) 蛋白粉220Musashi Bulk Mass Gain (Protein Blend)蛋白粉 500g 200Swisse Slim Shake 蛋白粉 385g 240秘鲁玛卡190秘鲁吗卡-kaita axiomax 258Goat Weed Him 男性淫羊藿295深海鲑鱼油胶囊1000mg 180 Cap(SL Omega-3 )158深海鲑鱼油胶囊1000mg 360 Cap(SL Omega-3 )208葡萄籽12000mg 80 Cap(SL Grape Seed)189葡萄籽油12000mg 360 Cap(SL Grape Seed)355超强袋鼠精3000mg 110 Cap(SL Kangaroo )202超强前列康1600mg 60 Cap(SL SawPalmettoPlu)273保肝宁胶囊700mg 240 Cap(SL Liver Tonic)275高纯度角鲨基1000mg 200 Cap(SL Squalene )310高纯度角鲨基1000mg 360 Cap(SL Squalene )390海洋胶原蛋白胶囊250mg 90 Cap(SL Collag+RJ+GS)218蜂胶胶囊1000mg 365 Cap(SL PropCap)288蜂胶胶囊2000mg 200 Cap(SL PropCap)388月见草油胶囊1000mg 100 Cap(SL EPO )118月见草油胶囊1000mg 300 Cap(SL EPO )218卵磷脂胶囊1200mg 100Cap(SL Lecithin)120卵磷脂胶囊1200mg 200Cap(SL Lecithin)250甲壳素25mg 90Cap(SL Super Chitosan)190蜂胶牙膏120g (SL Eucalyptus Propolis Toothpaste)40蜂胶滴液(百分之四十) 25ml(SL Propolis/Eucalyptus Propolis Liquid)68swisse胶原蛋白口服液 美肌vc饮料238Dermaveen Everyday Moisturising Cream 宝宝霜120Baby Moisturising Cream Packet 宝宝霜套装190Kids Smart Omega-3 Fish Oil(佳思敏鱼油草莓味)-鱼油122Study Power Omega-3 Fish Oil(儿童学习动力鱼油)142Kids Smart Muti-Vitamin+vegies(复合维生素软糖)115Kids Smart Calcium+vitD(儿童补钙软糖)122Kids Smart Vita Gummies Fusay Eaters(偏食儿童多元维生素)122Kids Smart Vita Gummies Vitamin C+Zinc(维生素C+锌软糖)115Sudocrem Healing cream(预防宝宝红屁股)95Lucas Pa Paw Ointment(万能膏)50Penta-vite Multivitamins 复合维生素 含铁(液体,小孩吃)175Farex Rice Cereal 4 Month+ 米糊30Farex Rice Cereal 6 Month+米糊30Pentavite Wizz Kids 鱼油160Multivitamin + Fish Oil(佳思敏 复合维生素&鱼油)168Kids Smart Omega-3 Fish Oil/佳思敏 鱼油软糖175Rosanna Lanolin Cream 绵羊油 100g59Blistex Raspberry Lemonade Blast SPF15 润唇膏 1支装452支装 Blistex Raspberry Lemonade Blast SPF15 润唇膏 7g58 Blistex Lip Conditioner (new improved formula) SPF15 润唇膏 7g33 Palmer s Cocoa Butter Formula 润唇膏 10g45 Nature Care Lip Balm (Pawpaw)润唇膏 10g35 summer s eve 夏依舒摩尔 女性护理液 私处洗液89 Vagisil feminine powder 女性专用护理粉99 Benzac AC Gel 治疗青春痘药膏 50g195牛初乳粉 400g195惠氏金装S-26第一阶段230惠氏金装S-26第二阶段230惠氏金装S-26第三阶段190可瑞康爱他美金装第一阶段250可瑞康爱他美金装第二阶段250可瑞康爱他美金装第三阶段190可瑞康爱他美金装第四阶段190可瑞康Food Thickener (增稠)195可瑞康爱他美一段试用装55可瑞康羊奶粉第二阶段345可瑞康防过敏金装第一阶段255可瑞康爱他美二段试用装55美赞臣金樽第一阶段1490G375美赞臣金樽第一阶段1390G358美赞臣金樽第二阶段1080G240雀巢 孕妇,成人奶粉/香草味195雀巢 少儿奶粉/香草味240。
含冻干的活乳酸菌的食用组合物[发明专利]
专利名称:含冻干的活乳酸菌的食用组合物
专利类型:发明专利
发明人:R·卡瓦里勒,威斯利,G·吉安尼,G·麦奥施,M·E·威斯利,L·威斯利
申请号:CN97120411.X
申请日:19970930
公开号:CN1185904A
公开日:
19980701
专利内容由知识产权出版社提供
摘要:本发明涉及一种含有冻干的新鲜细菌混合物的食用组合物,该细菌包括:选自短双歧杆菌、婴儿双歧杆菌、长双歧杆菌和两歧双歧杆菌的至少两种细菌,选自嗜酸乳杆菌、嗜热链球菌、保加利亚乳杆菌、干酪乳杆菌、植物乳杆菌和屎链球菌的至少两种细菌和一种或多种寡糖。
申请人:思简-约莫公司
地址:意大利米兰
国籍:IT
代理机构:中国国际贸易促进委员会专利商标事务所
代理人:郭建新
更多信息请下载全文后查看。
咔唑磺酰胺衍生物及其制备方法[发明专利]
专利名称:咔唑磺酰胺衍生物及其制备方法专利类型:发明专利
发明人:胡来兴,大卫·W·博伊金,李卓荣,蒋建东申请号:CN200510105255.5
申请日:20050928
公开号:CN1807413A
公开日:
20060726
专利内容由知识产权出版社提供
摘要:本发明提供了一种新咔唑磺酰胺衍生物及药用盐,具有以下通式(I),该化合物可以作为小分子微管蛋白抑制剂,不仅具有抗微管作用,还具有显著的抗肿瘤活性,并且具有分子量小,合成简单,毒副作用小的优点。
本发明还提供了含有该咔唑磺酰胺衍生物作为活性成分的药物组合物。
申请人:中国医学科学院医药生物技术研究所,佐治亚州立大学研究基金会
地址:100050 北京市天坛西里1号
国籍:CN
代理机构:北京三友知识产权代理有限公司
代理人:黄健
更多信息请下载全文后查看。
腰果酚醛胺固化剂的合成及应用研究
腰果酚醛胺固化剂的合成及应用研究周茗萱;张思思;黄山;邹路丝;管蓉【摘要】A bio-based epoxy resin curing agent was synthesized through simple Mannich reactions between cardanol,paraformaldehyde and isophoronediamine(IPDA).The structure and properties of the curing agent was verified by FTIR,1H NMR and DSC.The synthesized curing agent was applied to cure the PVB-epoxy resin adhesive,and the mechanical properties and thermal performance of the adhesives with different PVB content were characterized.The results show that compared with pure epoxy resin,the tensile strength and modulus,flexural strength and modulus,impact strength and shear strength of the adhesive containing 15 phr PVB increase by 45.3% and 28.1%,42.1% and 61.6%,68.4% and38.2%,respectively,and the thermostability still remains unchanged.So the adhesive has better combined performance and thermostability.%以腰果酚、甲醛和异佛尔酮二胺(IPDA)为原料合成了一种生物基的腰果酚醛胺环氧固化剂.采用红外光谱(FTIR),核磁共振氢谱(1H NMR)和差示扫描量热法(DSC)对固化剂的结构和性质进行了表征,并将该固化剂用于固化聚乙烯醇缩丁醛(PVB)-环氧胶粘剂,讨论了不同PVB含量胶粘剂的力学性能及热稳定性.结果表明,PVB用量为1 5质量份(100份环氧树脂中的加入量,下同)时,与纯环氧树脂胶粘剂相比,所制备的胶粘剂的拉伸强度、拉伸模量、弯曲强度、弯曲模量、冲击韧度和拉伸剪切强度分别提高了45.3%、28.1%、42.1%、61.6%、68.4%和38.2%,热稳定性保持不变.表明制备的胶粘剂有良好的综合力学性能和热稳定性.【期刊名称】《粘接》【年(卷),期】2017(038)009【总页数】5页(P39-43)【关键词】腰果酚;环氧树脂;固化剂;聚乙烯醇缩丁醛;胶粘剂【作者】周茗萱;张思思;黄山;邹路丝;管蓉【作者单位】湖北大学化学化工学院,湖北武汉 430062;湖北大学化学化工学院,湖北武汉 430062;湖北大学化学化工学院,湖北武汉 430062;湖北大学化学化工学院,湖北武汉 430062;湖北大学化学化工学院,湖北武汉 430062【正文语种】中文【中图分类】TQ433.4+37环氧树脂固化剂直接影响环氧树脂胶粘剂的固化效果,无毒环保化的固化剂是研究的热点之一。
美国FDA批准EnstilarFoam美国处方信息更新,纳入斑块型银屑病治疗长期使用数据
美国FDA批准EnstilarFoam美国处方信息更新,纳入斑块型银屑病治疗长期使用数据2020年10月22日, LEO制药宣布,美国食品和药物管理局(FDA)已经批准了Enstilar®(卡泊三醇和倍他米松)泡沫治疗成人银屑病美国处方信息的更新,纳入了PSO-LONG临床试验的数据的长期使用数据。
Enstilar Foam是钙磷三烯(一种维生素D类似物)和倍他米松二丙酸酯(一种皮质类固醇)的组合,在美国被指定用于12岁及以上患者的局部治疗斑块状牛皮癣。
美国补充新药申请(sNDA)提交是基于PSO-LONG 3期临床试验的数据。
一项随机,双盲,载体对照试验(NCT02899962)评估了Enstilar Foam在治疗成功的成年患者中的长期使用情况。
在每天一次使用Enstilar Foam进行最初的四周治疗后,与基线相比至少改善了两级。
关于PSO-LONG临床试验这项为期12个月的国际,多中心,随机,赋形剂对照,双盲,两臂,平行组试验比较了Enstilar Foam与赋形剂泡沫(注:赋形剂是一种无疗效的基质或物质, 用以传送某种起作用的药的施用)在成人寻常型牛皮癣(斑块状牛皮癣)中的安全性和有效性。
参与者(n = 545)被随机分配,在连续两天的非连续两天中每周两次接受Enstilar Foam或赋形剂泡沫,最多连续52周。
经历反应减退(定义为PGA评分至少为“轻度”)的受试者每天用Enstilar Foam 治疗一次,持续4周,而那些PGA评分在4周后恢复为“清除”或“几乎清除”的受试者然后恢复随机长期使用治疗。
结果表明,那些每周两次接受Enstilar Foam治疗的患者,与使用赋形剂泡沫的患者相比,第一次丧失反应的时间更长,反应的损失也更少。
与赋形剂泡沫相比,Enstilar Foam延长了首次缓解时间的响应时间(30天vs 56天. ;P <0.001),达到了PSO-LONG试验的主要终点。
雀巢胶囊咖啡介绍---精品管理资料
1芮斯崔朵—Ristretto (浓度10)2阿佩姬-Arpeggio (浓度9)3罗马—Roma (浓度8)4浓郁低因咖啡-Decaffeinato Intenso (浓度7)5 利梵托—Livanto (浓度6)6卡布姬婀—Capriccio (浓度5)7 沃鲁托-Volluto (浓度4)8 柯奇—Cosi (浓度3)9.温和低因咖啡—Decaffeinato (浓度2)10.Dulsao do Brazil (浓度5)11。
Rosabaya de Colombia (浓度6)12。
Indriya from India (浓度10)13. Vivalto Lungo (浓度4)14。
Decaffeinato Lungo (浓度3)15. Finezzo Lungo (浓度3)16.Fortissio Lungo (浓度7)口味介绍:1、芮斯崔朵Ristretto黑色浓度:10杯量:25or40ml以拉丁美洲的阿拉比卡(Arabica)为主,取其精致口味,再混合少许非洲中部的罗布斯特(Robusta)加强粗犷的口感,醇度完美,余味持久.苦度:强;酸度:弱;烘焙程度:重烘焙;特色:最香醇;2、阿佩姬Arpeggio紫色浓度:9杯量:25or40ml这是纯粹阿拉比卡豆(Arabica)所呈现出厚重口感的典型浓缩咖啡.配方选自中美洲知名咖啡农庄的浓香阿拉比卡豆(Arabica),搭配少量较轻淡的巴西圣多斯(Santos)豆,取得口味上的平衡。
以传统义式风格蒸馏出小半杯加重口味的浓醇香。
如果搭配些许奶泡,就是一杯玛奇雅朵(Macchiato)。
苦度:强;酸度:弱;烘焙程度:中浅焙;特色:最浓烈;3、罗马Roma淡灰色浓度:8杯量:25or40ml豆种选自中非罗布斯特豆(Robusta)、拉丁美洲阿拉比卡豆(Arabica)和巴西圣多斯豆(Santos),香醇浓烈是最大特色。
这也是意大利咖啡师傅的最爱,表面有一层厚厚的咖啡油沬,浓呛带劲,口感浓烈芬芳,是卡布奇诺(Cappuccino)或拿铁(Latte)的绝佳咖啡底。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Progress in Organic Coatings 83(2015)47–54Contents lists available at ScienceDirectProgress in OrganicCoatingsj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /p o r g c o atNew cardanol/sucrose epoxy blends for biobased coatingsEmilie Darroman a ,Nelly Durand b ,Bernard Boutevin a ,Sylvain Caillol a ,∗a UMR 5253CNRS-UM2-ENSCM-UM1,Institut Charles Gerhardt Montpellier,Equipe I.A.M.,8Rue de l’Ecole Normale,34296Montpellier Cedex 5,France bSogatra Nouvelle,784chemin de la Calladette,30350Lezan,Francea r t i c l ei n f oArticle history:Received 8June 2014Received in revised form 24December 2014Accepted 5February 2015Keywords:Epoxy resins Cardanol Sorbitol IsosorbideBiobased polymersa b s t r a c tCommercial epoxidized cardanol,from cashew nutshell liquid (CNSL)is a biobased reactant with inter-esting aromatic structure.Cured with two different amines,isophorone diamine and Jeffamine T403,the materials exhibit good properties but not enough to replace the bisphenol A diglycidyl ether (BADGE)in epoxy networks.Two kind of sucrose epoxy derivatives,sorbitol and isosorbide,were used as blends to enhance the properties of the epoxy cardanol-derived materials.These epoxy networks with differ-ent ratios were characterized by thermogravimetric analysis and differential scanning calorimetry;their hardness and brightness were measured as well as their resistance to chemical solvents.Biobased epoxy blends exhibit interesting properties for coating applications.©2015Elsevier B.V.All rights reserved.1.IntroductionEpoxy resins are an important class of thermoset polymers used for coating applications.Bisphenol A (BPA),a reactant that was ini-tially synthesized as a chemical estrogen [1],is nowadays the most used monomer for the production of epoxy resins.The aromatic ring of BPA is particularly interesting since it confers good thermal resistance to epoxy resins.But this endocrine disruptor can mimic the hormones of the human body and may lead to several negative health effects [2–5].Thus,a recent review [6]about studies of low-dose effects of BPA found that 94of the 115publications reported significant effects.Effects include alterations in brain chemistry,in the immune system,in the enzyme activity,in the male and female reproductive systems in a variety of animals,including snails,fish,frogs and mammals [6].The negative impact of BPA on human health and on environment necessarily implies the elimination of BPA especially since some countries,such as Canada or France,have recently banned the use of BPA in food contact materials.Therefore there is an increasing interest of chemical industries for non-harmful reactants allowing the synthesis of epoxy resins without BPA.Moreover,thermoset polymers cannot be recycled due to their cross-linked networks and for that reason they need to be biobased to ensure less environmental impacts.Thus,non-toxic biobased epoxy reactants are highly needed and studied [7].Few commercial∗Corresponding author.Tel.:+33467144327;fax:+33467147220.E-mail address:sylvain.caillol@enscm.fr (S.Caillol).biobased epoxy reactants are available with the exception of veg-etable epoxidized oils which are the most used biobased monomers [8].Despite their cross-linked networks,epoxidized vegetable oil based resins have low T g due to the long aliphatic chain (T g =−38◦C with epoxidized-linseed oil cured with amine-functionalized grape seed oil [9])and low reaction enthalpy.However,coatings need to have excellent thermal and mechanical properties,brought by compounds bearing aromatic rings or a high cross-linked network.Biobased aromatic epoxy reactants would give good properties to coatings as the BPA based resins.Even if literature reports some very interesting works based on natural flavonoids [10]or lignin,these resources exhibit strong drawbacks.Indeed,low purity and high molar masses of these resources limit their development in chemistry.Depolymerization of lignin [11,12]is an alluring route to give an access to biobased aromatic compounds,required by chemical industries,however this route remains deceptive since,like vanillin [13],very interesting product,the availability of this resource is not sufficient.Cardanol [14],extracted from cashew nut shell liquid (CNSL),a non-edible by-product of CNSL industries,is a really promising aromatic renewable resource,available in large quantity and would be suitable for food contact [15].Cardanol is a yellow pale liquid composed of four meta-alkyl phenols differing by unsaturation degree of aliphatic chain:saturated chains (SC)8.4%,mono-olefinic (MO)48.5%,di-olefinic (DO)16.8%and tri-olefinic (TO)29.33%chains [16,17].Cardanol was already extensively stud-ied for material synthesis,through direct polymerization [18],as a polyol in new polyurethanes [19],in polyester compositions [20],with partial or total substitution of phenol in thermoset resins such/10.1016/j.porgcoat.2015.02.0020300-9440/©2015Elsevier B.V.All rights reserved.48 E.Darroman et al./Progress in Organic Coatings83(2015)47–54Fig.1.Idealized structure of epoxidized cardanol by Cardolite and the structure defined by our team[28].as Novolac resins[21–23],vinyl esters[24,25]and also in epoxy resins modification[26,27].Our team previously worked on epoxidized cardanol[28]pro-vided by Cardolite and depicted the detailed chemical structure compared to the one given by the technical data sheet(Fig.1). In fact,this commercial epoxidized cardanol is not a dimer but appeared to be a mix of oligomers of cardanol and phenol with various molar masses,with opened epoxy rings and a mean func-tionality of2.3epoxy functions per molecule[28].Despite a120◦C curing of epoxidized cardanol formulations,the glass transition temperatures,T g,of cardanol resins were too low,and in order to increase them,blends with other epoxy reactants are needed. Some academic products such as isosorbide or prototypes,deriva-tives from sugar as sorbitol could also be proposed as candidates to substitute bisphenol A in coatings.The objective of this work is to obtain blends of epoxy resins with good thermal and mechan-ical properties in order to meet required properties for coating applications.In literature,to the best of our knowledge,few works reported the study of blends of biobased epoxy whereas this is cru-cial since it will be hard to substitute bisphenol A diglycidyl ether (BADGE)by an unique molecule.Our resins were formulated,cured at room temperature and characterized to measure their resistance as coatings in contact with acid or basic solvents.This publication is thefirst one to compare different biobased commercial epoxy reactants in coating applications.2.Materials and methods2.1.MaterialsTrifunctional polyetheramine Jeffamine T403(amine hydro-gen equivalent weight(AHEW)=81g/eq),isophorone diamine Aradur42BD(AHEW=42.5g/eq)were purchased from Hunts-man(Switzerland).Diglycidyl ether of cardanol NC-514(epoxy equivalent weight(EEW)=400g/eq)was obtained from Car-dolite(Belgium).Polyglycidyl ether of sorbitol Denacol EX622 (EEW=188g/eq),and two epoxidized isosorbide Denacol GSR100 (EEW=155g/eq)and Denacol GSR102(EEW=158g/eq)were pur-chased from Nagase(Japan).Bisphenol A diglycidyl ether(BADGE) (EEW=187g/eq),ethyl acetate,and sodium hydroxide were pur-chased from ThaïOrganic Chemicals Co,Brenntag and Univar, respectively.Glacial acetic acid and deionized water were pur-chased from Analytic Lab.All reactants were used as received.2.2.FormulationsSeveral mixtures were obtained from diglycidyl ether of car-danol NC-514(EEW=400g/eq)at different massic ratios(100wt%, 75wt%,50wt%and25wt%)with various epoxy reactants:polygly-cidyl ether of sorbitol Denacol EX622(EEW=188g/eq),and two epoxy reactants of isosorbide Denacol GSR100(EEW=155g/eq) and Denacol GSR102(EEW=158g/eq).These mixtures were cured at room temperature with two commercial amines,trifunctional polyetheramine Jeffamine T403and isophorone diamine Aradur 42BD,and were compared to the formulation obtained with DGEBA.Theoretically,all the formulations should be prepared in1:1M ratio of epoxy group to active H of amine in the view to obtaining the maximal crosslinking density of cured epoxy agent.Therefore, we used the given data(EEW and AHEW)from technical sheet of the different reactants.Each formulation is carried out with75g of epoxy resin which EEW is given by the technical sheet for mass content of100wt%or calculated as below:mol%epoxy1=m epoxy1EEW1(m epoxy1/EEW1)+(m epoxy2/EEW2)×100(1)where mol%epoxy1,m epoxy1,m epoxy2,EEW1and EEW2are respec-tively the molar percentage of epoxy1,the mass(g)of epoxys1and 2,and the epoxy equivalent weight of epoxys1and2.EEW mixture=EEW1×mol%epoxy1+EEW2×(1−mol%epoxy1)(2) where EEW mixture,mol%epoxy1,EEW1and EEW2are respectively the epoxy equivalent weight of the mixture of epoxys1and2,the molar percentage of epoxy1,and the epoxy equivalent weight of epoxys1and2.The mass of curing agent is determined as below:m curing agent=m epoxy×AHEWEEW(3) where m curing agent,m resin,AHEW and EEW are respectively the mass of the amine curing agent,the mass of epoxy or mixture of epoxys, the amine hydrogen equivalent weight and the epoxy equivalent weight of epoxy or mixture of epoxys.Formulations were carried out without solvent.After weigh-ing,reactants were mixed and vigorously manually stirred during 3min.Then mixtures were poured in a silicon mold and on a sable glass.These preparations were cured at22◦C during at least5days.2.3.Analytical techniquesViscosity and density of different mixtures were performed at 33◦C with a DV-E Brookfield viscosimeter and an Erichsen pyc-nometer(100mL,model290/1).Gel times were measured on a mixture of100g with a Trombo-mat purchased from Matériau Ingénierie.The micro-applicator(BYK)allowed us to cast a layer of500m on the glass(length:165mm,width:110mm and thickness:4mm).The brightness was evaluated by a Picogloss560MC on different places on the glass.Swelling index:The study of swelling is based on the materials cured in the silicon molds with different solvents and conditions. These materials were immerged into100mL(high:150mm and diameter:40mm)of the simulants as below:-in3wt%of acetic acid solution at40◦C during10days;-in3wt%of sodium hydroxide solution at22◦C during10days; -in ethyl acetate at22◦C during30min.The swelling index SI is given by following equation:SI=m1−m0×100(4)where SI,m1and m0are respectively,the swelling index,the mass in grams of the sample after being in the simulant and the initial mass of the sample.Thermogravimetric analyses(TGA)were performed on a Q50 from TA Instrument.10mg of sample in an aluminum pan was heated from room temperature to580◦C under nitrogenE.Darroman et al./Progress in Organic Coatings83(2015)47–5449Fig.2.Structure of IPDA and Jeffamine T403.(60mL/min).The experiments were carried out at a heating rate of10◦C/min.Differential scanning calorimetry(DSC)analyses were carried out on a NETZSCH DSC200calorimeter.Cell constant calibration was performed using indium,n-octadecane and n-octane stan-dards.Nitrogen was used as the purge gas.10–15mg samples were sealed in hermetic aluminum pans.The thermal properties were analyzed at10◦C/min between−100and280◦C to observe the glass transition as well as crystallization/fusion processes.All the reported temperatures are inflexion values.For each sample,the thermal history was erased with afirst heating ramp up to100◦C. The T g value was measured at the second ramp.3.Results and discussion3.1.Raw materialsWe formulated various epoxy-amine resins at room temper-ature with a view to replacing the bisphenol A diglycidyl ether (BADGE).Firstly,two amines were used as hardeners:isophorone diamine(IPDA)and a polyetheramine,Jeffamine T403.Isophorone diamine is a classic cyclic amine,often used as a hardener for epoxy resins.Jeffamine T403is a classic polyetheramine,and its use is approved by Huntsman as a non-toxic reactant and suitable for food contact(Fig.2).BADGE,Fig.3,is used as a reference in order to compare the properties of our new epoxy-amine resins.Epoxidized cardanol comes from cashew nut shell liquid and was obtained from Cardolite.Epoxidized cardanol was studied by our team[25,28],indeed we already reported some new epoxy networks with this product.Epoxy sorbitol and epoxy isosorbide are issued from sugar and isosorbide is obtained by a double-reaction of dehydration of the sorbitol.In Fig.3,idealized structure of the different epoxy reactants are presented.3.2.Gel timeGel time at room temperature wasfirstly studied to evaluate the start time of crosslinking of the different epoxy formulations (Table1).At22◦C,BADGE takes15h and3.5h to become a gel with Jeffamine T403and IPDA,respectively.Indeed,structures of the Jeffamine T403and IPDA have an influence on their reactivity. The methyl groups in˛position of Jeffamine T403contribute to the steric hindrance and decrease the reactivity of the primary amines [29].All the other epoxy reactants exhibit lower gel time that BADGE with IPDA.Indeed,epoxidized cardanol is cured with IPDA in3h, epoxidized isosorbide100and102in1.5and2h,respectively.The more reactive is the epoxidized sorbitol,with a gel time of0.9h with IPDA.The epoxidized sorbitol is more reactive due to the presence of six epoxide groups compared to two epoxy groups in epoxide cardanol and epoxidized isosorbide100and102.With Jeffamine T403,epoxidized isosorbide networks cannot be obtained without thermal cure.3.3.Thermogravimetric analysisThermogravimetric analyses on the different resins have been carried out under nitrogen atmosphere(Table1).The reference with BADGE gives the best thermal resistance with a degrada-tion temperature around365◦C at30%weight loss,whatever the diamine used.For the new renewable epoxy compounds cured with IPDA,the epoxidized isosorbide100is the best substitute to BADGE since it leads to higher T g(109◦C)and degradation temperature (362◦C)than isosorbide102;therefore we keep this isosorbide100 for further formulations.Then epoxidized cardanol and epoxidized isosorbide102are good candidates,however epoxidized sorbitol is not enough stable as its temperature degradation is285◦C.Despite its high crosslinking density,the epoxidized sorbitol cannot reach the thermal stability of aromatic or cycloaliphatic compounds.For the networks crosslinked with Jeffamine T403,the epoxy cardanol is enough resistant contrary to epoxy sorbitol which its degradation temperature is277◦C.Indeed the aromatic ring of the epoxy cardanol ensure a good thermal stability whereas the epoxy sorbitol is not enough resistant because its structure do not provide to its resin good resistance.3.4.Glass transition temperatureThe glass transition temperatures(T g)of the various epoxy-amine networks were studied by differential scanning calorimetry (Table1).The highest T g are obtained with IPDA,whereas Jeffamine T403leads to the lowest T g.The highest T g is121◦C,corresponding to the BADGE-IPDA works based on epoxidized car-danol exhibit the lowest T g:41◦C and23◦C,respectively with IPDA and Jeffamine T403.This low T g is due to the aliphatic chain of the cardanol which bringsflexibility to the networks.The T g of epoxy isosorbide100–IPDA material is109◦C,close to the T g of BADGE-IPDA whereas the resin obtained with epoxy isosorbide102and IPDA has a lower T g of72◦C.This difference can be explained by the oligomerization of the epichlorhydrine which can lead to an epoxy isosorbide with a higher rate of cycloaliphatic ring.More-over,the molar mass is increased as well as the functionality of isosorbide which lead to an higher T g[30],Fig.4.The glass transi-tion temperature depends of the epoxy isosorbide structure too,as the oligomer would not have the same properties with the epoxy isosorbide monomer.Epoxidized sorbitol cured with IPDA has a T g of82◦C,higher than the material from epoxy isosorbide102. Fig.3.BADGE,idealized structure of epoxy cardanol NC-514,polyglycidyl ether of sorbitol EX622and diglycidyl ether of isosorbide.50 E.Darroman et al./Progress in Organic Coatings83(2015)47–54 Table1Gel time,degradation temperature,glass transition of the different epoxy compounds cured with IPDA or Jeffamine T403.Curing agent Epoxy reactants Gel time(h)Degradation temperatureat30%weight loss(◦C)Glass transition temperature T g(◦C)IPDA BADGE 3.5367121 Epoxidized cardanol335041 Epoxidized sorbitol0.928582 Epoxidized isosorbide100 1.5362109 Epoxidized isosorbide102234572Jeffamine T403BADGE1536470 Epoxidized cardanol1035223 Epoxidized sorbitol627748 Epoxidized isosorbide100No curing at room temperatureEpoxidized isosorbide102Fig.4.Possible structures of the epoxidized isosorbide.An article studied the thermal and mechanical properties of Jeffamine T403-crosslinked with isosorbide resins at100◦C for 4h[31]and the properties were compared to BADGE resins.The mechanical properties were very good and permitted to use them as coatings.Nevertheless,the glass transition temperature obtained with epoxy isosorbide is lower than for resin based on BADGE:48◦C and90◦C,respectively.The T g obtained without cure of the resin BADGE-Jeffamine T403is70◦C which indicates the crosslinking is not complete.The lack of crosslinking could not give the best prop-erties regarding the chemical resistance,the thermal stability and the glass transition temperatures.Finally,the T g is a really important parameter in the coat-ing applications and epoxidized cardanol leads to materials with too low T g values.To substitute BADGE,blends with other epoxy compounds could increase the glass transition temperature and enhance the materials properties.To raise the T g of epoxidized car-danol resins,we proposed to mix epoxidized cardanol reactant with other renewable epoxy reactants such as sorbitol or isosorbide100.3.5.Blends with epoxidized sorbitolThe different mixtures of epoxy cardanol with epoxy sorbitol are presented in Table2.3.5.1.Thermogravimetric analysisWhen the epoxy sorbitol content increases,the degradation temperature decreases whatever the diamine used to cure the epoxy network,Fig.5.This is an expected result since epoxy sor-bitol resins with IPDA or Jeffamine T403previously exhibited theTable2Composition of the different epoxy system of epoxidized cardanol and epoxidized sorbitol.wt%epoxidized cardanol mol%epoxidizedcardanolmol%epoxidizedsorbitolEEW mixture(g/eq)1001000400 7558.541.5312 503268256 2513.586.5217 00100188 Reference BADGE––187lower thermal resistance.From50%weight of epoxy sorbitol,the degradation temperature at30%weight loss is under300◦C.3.5.2.Glass transition temperatureWhen the epoxy sorbitol content increases,the glass transi-tion temperature increases whatever the diamine used to cure the epoxy network,Fig.6.This is an expected result since epoxy sor-bitol networks with IPDA or Jeffamine T403previously exhibited higher glass transition temperature than epoxy cardanol networks. However,the glass temperature is not high enough to replace the BADGE resins in all applications as they are respectively of60◦C and37◦C at50wt%of epoxidized sorbitol in the resin with IPDA and Jeffamine T403.3.5.3.BrightnessThere is a slight tendency in Fig.7showing that the resins are brighter with the increase of epoxidized sorbitol content,but the evolution is verylow.Fig.5.Thermogravimetric analyses under nitrogen atmosphere of the epoxidized cardanol resin mixed with epoxidized sorbitol.E.Darroman et al./Progress in Organic Coatings 83(2015)47–5451Fig.6.Differential scanning calorimetry of the epoxidized cardanol and epoxidized sorbitol resins.3.5.4.HardnessWhen the epoxidized sorbitol content increases,the hardness of the materials increases whatever the diamine used to cure the epoxy networks,Fig.8.The largest change is observed for the resins cured with Jeffamine T403.Indeed,the hardness of pure epoxi-dized cardanol with Jeffamine T403is 56whereas the blend of epoxidized cardanol/epoxidized sorbitol with a ratio of 25/75,the hardness reaches 99.The structure of epoxidized sorbitol and its high functionality permit to have an equivalent hardness to BADGE resins.3.5.5.Swelling indexAll the epoxy networks are insoluble and exhibit very low swelling in sodium hydroxide (Table 3).The influence of epoxi-dized sorbitol is very low.In acetic acid,the swelling index of the resins cured with IPDA slightly increases.The epoxidized sorbitol is not enough resistant to acid treatment.However,a stability of the resins cured with Jeffamine T403is observed.In ethyl acetate,the swelling index is reduced with the addition of sorbitol.The epoxidized sorbitol enhances the stability regarding ethyl acetatetreatment.Fig.7.Evolution of the brightness of epoxidized cardanol resins with the content of epoxidizedsorbitol.Fig.8.Evolution of hardness with the content of epoxidized sorbitol in epoxy car-danol resins.Table 3Swelling index of the different epoxy resins in sodium hydroxide,acetic acid and ethyl acetate solutions.Curing agentRatio epoxidized cardanol/epoxidized sorbitolSwelling (%)Sodium hydroxide Acetic acid Ethyl acetate IPDABADGE 011100/001475/2501150/5015125/750400/100140Jeffamine T403BADGE 132100/002475/2507250/5010125/750000/10023.6.Blends with epoxidized isosorbideThe different mixtures of epoxy with epoxidized isosorbide 100are presented in Table 4.3.6.1.Thermogravimetric analysisWhen the epoxidized isosorbide content increases,the degrada-tion temperature slightly decreases whatever the diamine used to cure the epoxy networks,Fig.9.But all these networks are still good candidates to substitute the BADGE in epoxy resins since the degra-dation temperature at 30%weight loss is over 300◦C whatever the blend and the diamine used.Table 4Composition of the different epoxy system of epoxidized cardanol and epoxidized isosorbide 100.wt%epoxidized cardanolmol%epoxidized cardanolmol%epoxidized isosorbide 100EEW mixture (g/eq)10010004007553.846.22875027.972.12232511.488.618300100155Reference BADGE––18752E.Darroman et al./Progress in Organic Coatings 83(2015)47–54Fig.9.Thermal stability of the epoxy resins cured withisosorbide.Fig.10.Evolution of the glass transition temperature with the content of epoxidized isosorbide.3.6.2.Glass transition temperatureWhen the epoxidized isosorbide content increases,the glass transition temperature increases whatever the diamine used to cure the epoxy network,Fig.10.This is an expected result since epoxidized isosorbide networks with IPDA or Jeffamine T403previously exhibited higher glass transition temperature than epoxy cardanol resins.The blend of a ratio epoxidized car-danol/epoxidized isosorbide 100of 25/75cured with IPDA leads to a glass transition temperature of 83◦C which is a good T g for coating.3.6.3.BrightnessThe isosorbide content has not influence on the brightness,Fig.11.3.6.4.HardnessWhen the epoxidized isosorbide content increases,the hard-ness of the materials increases whatever the diamine used to cure the epoxy network,Fig.12.The largest change is observed for the resins cured with Jeffamine T403.Indeed,the hardness of pure epoxidized cardanol with Jeffamine T403is 56whereas the blendofFig.11.Brightness of the resins cured with different amounts of isosorbide.E.Darroman et al./Progress in Organic Coatings83(2015)47–5453Fig.12.Evolution of the hardness with different isosorbide content in epoxy cardanol resins.Table5Swelling index of the different epoxy networks in sodium hydroxide,acetic acid andethyl acetate solutions.Curing agent Ratio epoxidized cardanol/epoxidized isosorbide100Swelling(%)SodiumhydroxideAceticacidEthylacetateIPDA BADGE011 100/0014 75/250142 50/501251 25/755420 0/10011430Jeffamine T403BADGE132 100/0024 75/250292 50/501490 25/757750 0/100Not testedepoxidized cardanol/epoxidized sorbitol with a ratio of25/75,the hardness reaches91.The structure of epoxidized isosorbide with its two cycloaliphatic rings permits to have an equivalent hardness to BADGE resins.3.6.5.Swelling indexThe addition of epoxidized isosorbide100slightly increases the swelling index in sodium hydroxide(Table5)but the swelling index is very high in acetic acid.Indeed,increasing contents of isosorbide in the resin leads to a high swelling content of networks in acetic acid due to the affinity of isosorbide for water.Nevertheless,in ethyl acetate,the swelling index decreases with the isosorbide content.4.ConclusionEven if epoxidized cardanol-based networks cannot replace BADGE networks,the blends of epoxy cardanol with other biobased epoxy reactants could improve the properties of the networks. Indeed,the addition of biobased epoxy reactants to epoxidized car-danol could enhance the properties of the materials for coating applications.With the different sucrose derivative compounds,sor-bitol and isosorbide,the properties of cardanol epoxy resins were improved:with the epoxy sorbitol at a ratio of50/50,the T g value and the hardness were increased.The epoxy isosorbide with a ratio cardanol/isosorbide of25/75could be a good way to improve the properties without any toxicity.Finally,even if the substitution of BPA and especially BADGE in epoxy resins is crucial,it is difficult to replace it by a unique molecule,whereas a mix of various biobased epoxy reactants could allow to tune the properties of coatings and to be a success in various applications.AcknowledgmentsThe authors are grateful to Sogatra Nouvelle for their collabo-ration.Cardolite,Nagase,Huntsman are thanked for the supplied samples.References[1]E.C.Dodds,wson,Synthetic estrogenic agents without the phenanthrenenucleus,Nature137(1936)996(London,United Kingdom).[2]A.C.Gore,Endocrine-Disrupting Chemicals:From Basic Research to ClinicalPractice,Humana Press Inc.,New York,USA,2007.[3]J.C.O’Connor,R.E.Chapin,Critical evaluation of observed adverse effectsof endocrine active substances on reproduction and development,the immune system,and the nervous system,Pure Appl.Chem.75(2003) 2099–2123.[4]H.Okada,T.Tokunaga,X.Liu,S.Takayanagi,A.Matsushima,Y.Shimohigashi,Direct evidence revealing structural elements essential for the high binding ability of bisphenol A to human estrogen-related receptor-gamma,Environ.Health Perspect.116(2008)32–38.[5]F.S.Vom Saal,J.P.Myers,Bisphenol A and risk of metabolic disorders,JAMA300(2008)1353–1355.[6]F.S.Vom Saal,C.Hughes,An extensive new literature concerning low-doseeffects of bisphenol A shows the need for a new risk assessment,Environ.Health Perspect.113(2005)926–933.[7]R.Auvergne,S.Caillol,G.David,B.Boutevin,J.-P.Pascault,Biobased ther-mosetting epoxy:present and future,Chem.Rev.114(2014)1082–1115 (Washington,DC,United States).[8]M.A.R.Meier,J.O.Metzgerb,U.S.Schubert,Plant oil renewable resourcesas green alternatives in polymer science,Chem.Soc.Rev.36(2007) 1788–1802.[9]M.Stemmelen,F.Pessel,pinte,S.Caillol,J.-P.Habas,J.-J.Robin,A fullybiobased epoxy resin from vegetable oils:From the synthesis of the precursors by thiol-ene reaction to the study of thefinal material,J.Polym.Sci.A:Polym.Chem.49(2011)2434–2444.[10]C.Aouf,H.Nouailhas,M.Fache,S.Caillol, B.Boutevin,H.Ful-crand,Multi-functionalization of gallic acid,Eur.Polym.J.49(2013) 1185–1195.[11]C.Brazinha,D.S.Barbosa,J.G.Crespo,Sustainable recovery of pure naturalvanillin from fermentation media in a single pervaporation step,Green Chem.13(2011)2197–2203.[12]M.Carrier,A.Loppinet-Serani,D.Denux,snier,F.Ham-Pichavant,F.Cansell,C.Aymonier,Thermogravimetric analysis as a new method to deter-mine the lignocellulosic composition of biomass,Biomass Bioenergy35(2011) 298–307.[13]M.Fache,E.Darroman,V.Besse,R.Auvergne,S.Caillol,B.Boutevin,Vanillin,a promising biobased building-block for monomer synthesis,Green Chem.16(2014)1987.[14]V.S.Balachandran,S.R.Jadhav,P.K.Vemula,G.John,Recent advances in car-danol chemistry in a nutshell:from a nut to nanomaterials,Chem.Soc.Rev.42 (2013)427–438.[15]C.Voirin,S.Caillol,N.V.Sadavarte,B.V.Tawade,B.Boutevin,P.P.Wadgaonkar,Functionalization of cardanol:towards biobased polymers and additives, Polym.Chem.5(2014)3142–3162.[16]M.Sultania,J.S.P.Rai, D.Srivastava,Process modeling,optimization andanalysis of esterification reaction of cashew nut shell liquid(CNSL)-derived epoxy resin using response surface methodology,J.Hazard.Mater.185(2011) 1198–1204.[17]J.H.P.Tyman,Long-chain phenols.IV.Quantitative determination of the olefiniccomposition of the component phenols in cashew nut-shell liquid,J.Chro-matogr.111(1975)277–284.。