2012年考研数学三真题分值分布及特点
2012考研必备资料数学--三考试大纲
【2012考研必备资料】考研数学2010年全国硕士研究生入学统一考试数学考试大纲--数学三考试科目:微积分、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分 56%线性代数 22%概率论与数理统计 22%四、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:0sinlim1xxx→=1lim1xxex→∞⎛⎫+=⎪⎝⎭函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分. 5.理解罗尔(Rolle )定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学 考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz )公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及p 级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解xe .sin x .cos x .ln(1)x +及(1)x α+的麦克劳林(Maclaurin )展开式.六、常微分方程与差分方程 考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法. 3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念. 6.了解一阶常系数线性差分方程的求解方法. 7.会用微分方程求解简单的经济应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算. 2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes )公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布 考试内容随机变量随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数(){}()F x P X x x =≤-∞<<∞的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson )分布()P λ及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ、指数分布及其应用,其中参数为(0)λλ>的指数分布()E λ的概率密度为()00xe f x x λλ-⎧=⎨≤⎩若x>0若5.会求随机变量函数的分布.三、多维随机变量及其分布 考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布221212(,;,;)N u u σσρ,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征 考试内容随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 切比雪夫(Chebyshev )不等式 矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli )大数定律辛钦(Khinchine )大数定律棣莫弗—拉普拉斯(De Moivre -Laplace )定理 列维—林德伯格(Levy -Lindberg )定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩2χ分布 t 分布 F 分布 分位数 正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2211()1ni i S X X n ==--∑2.了解产生2χ变量、t变量和F变量的典型模式;了解标准正态分布、2χ分布、t分布和F分布得上侧α分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.。
2012考研数学三真题及答案
2012考研数学三真题及答案2012年考研数学三真题及答案2012年考研数学三真题是考研数学科目中的一道重要题目。
这道题目的出现考察了考生对于数学知识的掌握程度,也是对考生解决实际问题的能力的一种考察。
下面将对2012年考研数学三真题及答案进行详细的分析。
首先,让我们来看一下2012年考研数学三真题的具体内容。
这道题目是一个关于概率论和数理统计的问题。
题目要求考生根据给定的数据,计算出相关的概率和统计量。
通过这道题目,考生需要运用概率论和数理统计的知识,进行数据分析和计算。
接下来,我们来看一下这道题目的答案。
根据题目的要求,考生需要计算出一系列的概率和统计量。
通过对给定的数据进行分析,考生可以得出相应的答案。
在计算过程中,考生需要运用概率论和数理统计的相关公式和方法,进行数据的处理和计算。
在解答这道题目的过程中,考生需要注意以下几点。
首先,要仔细阅读题目,理解题目的要求和条件。
其次,要对给定的数据进行合理的处理和分析,找出相应的规律和关系。
然后,要运用概率论和数理统计的知识,进行计算和推导。
最后,要对计算结果进行合理的解释和说明,确保答案的准确性和可靠性。
通过解答这道题目,考生可以提高对概率论和数理统计的理解和应用能力。
同时,也可以加深对于实际问题的分析和解决能力。
这对于考生在考试中取得好成绩具有重要的意义。
除了解答这道题目,考生还可以通过其他方式来提高对概率论和数理统计的掌握程度。
可以通过阅读相关的教材和参考书籍,深入学习和理解概率论和数理统计的基本概念和方法。
可以通过做一些相关的习题和例题,加强对概率论和数理统计的实践操作能力。
可以参加一些相关的学习班和培训课程,提高对概率论和数理统计的学习效果。
总之,2012年考研数学三真题及答案是考生备考过程中的一道重要题目。
通过解答这道题目,考生可以提高对概率论和数理统计的理解和应用能力。
同时,也可以加深对于实际问题的分析和解决能力。
希望考生能够认真对待这道题目,做好相应的准备工作,取得好成绩。
2012年考研数学三真题分值分布及特点
题型分布部分主要知识点考试所占比
例分值特点选择题:
1.渐近线的条数;
2.函数
在一点处的导数;
3.二重积分的坐本部分和大纲规定的分高
本部分共标变换;
4.级数的敛散性;填空题:
值基本一致,考查的也有选择题
9.求极限;
10.求导;
11.二元函都是历年考试中常考的等
4道、填数的微分;
12.平面图形的面积;重要知识点,没有偏题、56%
空题4解答题:
15.求极限;
16.无界区域怪题,但是综合性比较数
道、解答上的重积分的计算;17微分学在经强。与2011年不同的是,题5道。济中的应用(最小成本、边际成本);今年在大题中考察了微学
18.不等式的证明;
19.微分方程、分学在经济中的应用。
拐点。
本部分共
本部分和大纲规定的分线有选择题:
5.向量组的相关性;
率率;解答题:
22.二维离型随机22%
空题1
论变量的概率、协方差;
23.随机变量
道、解答
的函数的密度、数学期望。
题2道。
6.
值基本一致,考查的也性2道、填初等变换;填空题:
13.伴随矩阵、
22%都是历年考试中常考的代空题1行列式的计算;解答题:
20.解线
重要知识点,没有偏题、数道、解答性方程组;
21.二次型的标准型。
怪题。
题2道。
本部分共
选择题:
7.均匀分布、几何概型;
有选择题概8.抽样分布;填空题:
14.条件概
2道、填
2012年全国硕士研究生入学统一考试考研数学三真题及详解【圣才出品】
A.0
B.1
C.2
D.3
【答案】C
【考点】求曲线的渐近线
【解析】因为
x2 x
lim
x1 x2 1
所以,由定义可知,x=1 为曲线的垂直渐近线。
又
lim
x1
x2 x x2 1
1 2
所以 x=-1 不是曲线的渐近线。
因为
lim
x
x2 x2
x 1
1
1 / 27
圣才电子书 十万种考研考证电子书、题库视频学习平台
i 1
n sin
1 n
绝对收敛知
1
lim n
n
n sin n 0
从而
lim
n
3
n2
sin
1 n
0
即 α>3/2。综上知,α 的取值范围为 3/2<α<2。
5.设 α1=(0,0,c1)T,α2=(0,1,c2)T,α3=(1,-1,c3)T,α4=(-1, 1,c4)T,其中 c1,c2,c3,c4 为任意常数,则下列向量组线性相关的是( )。
圣才电子书 十万种考研考证电子书、题库视频学习平台
2012 年全国硕士研究生入学统一考试考研数学三真题及详解
一、选择题(1~8 小题,每小题 4 分,共 32 分。下列每题给出的四个选项中,只有
一个选项符合题目要求。)
1.曲线 y=(x2+x)/(x2-1)渐近线的条数为( )。
7 / 27
圣才电子书 十万种考研考证电子书、题库视频学习平台
X1 X2 | X3 X4 2|
X1 X2
2
( X3 X 4 2)2
2 2
X1 X2 2
( X3 X4 2)2 2
【2012考研必备资料】考研数学三考试大纲
【2012考研必备资料】全国硕士研究生入学统一考试数学考试大纲--数学三考试科目:微积分、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分 56%线性代数 22%概率论与数理统计 22%四、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:0sinlim1xxx→=1lim1xxex→∞⎛⎫+=⎪⎝⎭函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学 考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz )公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学 考试内容多元函数的概念 二元函数的几何意义二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数的求导法与隐函数求导法二阶偏导数 全微分多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数 考试内容常数项级数收敛与发散的概念 收敛级数的和的概念级数的基本性质与收敛的必要条件 几何级数与p 级数及其收敛性 正项级数收敛性的判别法 任意项级数的绝对收敛与条件收敛 交错级数与莱布尼茨定理 幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及p 级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解xe.sin x .cos x .ln(1)x +及(1)x α+的麦克劳林(Maclaurin )展开式.六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布 随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数(){}()F x P X x x =≤-∞<<∞的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson )分布()P λ及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布. 4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ、指数分布及其应用,其中参数为(0)λλ>的指数分布()E λ的概率密度为()0xe f x x λλ-⎧=⎨≤⎩若x>0若5.会求随机变量函数的分布.三、多维随机变量及其分布 考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布221212(,;,;)N u u σσρ,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩2分布t分布F分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为 2211()1n i i S X X n ==--∑2.了解产生2χ变量、t 变量和F 变量的典型模式;了解标准正态分布、2χ分布、t 分布和F 分布得上侧α分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法 最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.。
2012考研数学--各科分值比例
2012考研数学--各科分值比例&考查重点今年的数学考研大纲跟去年可以从三个方面进行解读:第一,试卷的内容。
今年的考试大纲依然保持了数学一和数学三在高等数学占比是56%。
线性代数和概率各占22%。
数学二,依然是高等数学占了78%,线性代数占了22%。
从试卷内容的结构上,跟往年来比没有任何变化。
第二,试卷的题型结构。
试卷的题型结构保持了三种提醒。
第一种题型是选择题。
第二种题型是填空题。
第三种题型是解答题。
题型的比例依然是保持了8、6、9的分布,有8个选择、6个填空、9个大题。
分值和题型的结构跟往前是保持一致的。
最主要的一块是考点和考试要求,我们把今年的考试大纲和往年的考试大纲进行了认真的对比,结果发现无论是考点和考试要求上都与去年没有任何变化。
对于广大考生来说这也是一个比较好的消息。
我们广大考生对自己的数学复习不需要做任何调整,按部就班进行后续的复习就可以了。
2012年考研数学的难度,首先要看近几年数学考研难度的变化,2008年和2009年考研数学的难度是基本保持一致的。
对于数学一、数学二和数学三都是这样一种情况。
到了2010年,数学一的难度稍微有所上升,数学二和数学三保持了平稳的难度。
就刚过去的2011年来讲,2011年数学一和数学二、数学三的难度都略有微调,从大家的平均分可以看出来,从去年的考试分数来看一、二、三的平均分较往年有所上升。
预计今年与往年相比,尤其与去年相比,2012年的考研难度可能会有所上升,但是总体的难度是保持平稳发展的,难度适中。
广大考生也不用担心考试变难如何应对,实际上我们考研命题组一直是本着对“三基”的一个基本要求。
也就是注重对基本概念和性质,基本方法和基本能力的考查。
在9月份大纲出来之后,我们考研数学的复习由基础复习向强化提高复习过渡。
9月份之前,大家更关注的是全面地毯式的复习。
到了9月份之后,一定要由全面的复习向重点复习进行过渡。
下面我就考研数学的三科,高等数学、线性代数和概率论三部分内容在每一章节的考试或者考查重点跟大家说一下。
【2012考研必备资料】考研数学大纲-数三
【2012考研必备资料】全国硕士研究生入学统一考试数学考试大纲--数学三 考试科目:微积分.线性代数.概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分 56%线性代数 22%概率论与数理统计 22%四、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分微 积 分一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性.单调性.周期性和奇偶性 复合函数.反函数.分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →= 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数 复合函数.反函数和隐函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital )法则 函数单调性的判别 函数的极值 函数图形的凹凸性.拐点及渐近线 函数图形的描绘 函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle )定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton- Leibniz )公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值.最大值和最小值二重积分的概念.基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径.收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及p级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解x e .sin x .cos x .ln(1)x +及(1)x α+的麦克劳林(Maclaurin )展开式.六、常微分方程与差分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题. 线 性 代 数一、行列式考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型.正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数=≤-∞<<∞F x P X x x(){}()的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson )分布()P λ及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ、指数分布及其应用,其中参数为(0)λλ>的指数分布()E λ的概率密度为()00xe f x x λλ-⎧=⎨≤⎩若x>0若5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容 多维随机变量及其分布函数 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布221212(,;,;)N u u σσρ,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 切比雪夫(Chebyshev )不等式 矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律 伯努利(Bernoulli )大数定律 辛钦(Khinchine )大数定律 棣莫弗—拉普拉斯(De Moivre -Laplace )定理 列维—林德伯格(Levy -Lindberg )定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体 个体 简单随机样本 统计量 经验分布函数 样本均值 样本方差和样本矩 2χ分布 t 分布 F 分布 分位数 正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2211()1ni i S X X n ==--∑ 2.了解产生2χ变量、t 变量和F 变量的典型模式;了解标准正态分布、2χ分布、t 分布和F 分布得上侧α分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念 估计量与估计值 矩估计法 最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.。
2012考研数学三真题及答案解析
2012年研究生入学考试数学三真题解析(纯word )版一、 1. 解析:C 由lim 1,1x y y →∞==得为水平渐近线 由1lim 1x y x →=∞=得为垂直渐近线由11lim ,12x y x →-=≠∞=-得非垂直渐近线,选(C )2. 解析: A2221()(2)(2)(1)2()(1)(2)(0)1(1)(1)(1)(1)!x x nx x x nx x x nxn f x e e e e e e n e e ne f n n ''-=--+-⋅-+--∴=⨯-⨯⨯-=--选(A ) 3. 解析:B原式=2220()dx f x y dy+⎰4. 解析:D1211~,n n αα-且11(1)nn n α∞--∑绝对收敛.131.22α-α∴>>即又21(1)n n n α∞-=-∑条件收敛.02112αα∴<-≤⇒≤<322α∴<<,选D5. 解析:C343400c c αα⎛⎫⎪+= ⎪⎪+⎝⎭,34αα+ 与1α成比例.1α∴与3α+4α线性相关,134ααα∴,,线性相关,选C或134134011,,0110c c c ααα-=-=134,,ααα∴线性相关,选C6. 解析:B111100100100110110110000001001Q P Q AQ P AP , ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭100110011011100012001⎛⎫⎛⎫⎛⎫⎪⎪⎪=- ⎪⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭100100100110110010002001002⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=-= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,选B.7. 解析:D1,0,1)()()0,x y x y f x y f x f y <<⎧==⎨⎩(,其他22{1}(,)4D DS P X Y f x y d D S πΩ+≤=σ==⎰⎰,选8. 解析:B212~(0,2)~(0,1)X X X X N N --σ⇒23422~(0,2)~(0,1)X X X X N N +-+-σ⇒~(1)X X t -即1234~(1),2X X t X X -+-选B二、 9.解析:e解:原式=tan 11cos sin tan 14lim (1(tan 1))x x xx x x π---→⎡⎤+-⎢⎥⎣⎦=41sin cos limcos cos sin x x x x x ee π→-⋅-=10. 解析: 40[()]()(1)(0)x dyf f x f x dx dyf f dx ''''===-而1()2x f x '<=时,(1)(0) 2. 4.x dyf f dx=∴-===于是11. 解析:2x dzdx dy==-解:令ρ=则(,)220(),(0,1)1f x y x y f ρ-+-==(,)12(1)0()f x y x y ρ-=--+(0,1)(0,1)2,(0,1)1,2.x y f f dzdx dy ''==-∴=-12. 解析:4 ln2 解:12014(4)S x x dx x dxx ⎛⎫=-+- ⎪⎝⎭⎰⎰1324ln 24ln 222=-+-=13. 解析:-27 解:|||| 3.B A =-=-**2||||||3||27.BA B A A =⋅=-⋅=-14.解析:34解:()()()(|)1()()P ABC P AB P ABC P AB C P C P C -==- AC φ= ,ABC φ∴=.1()32(|)21()43P AB P AB C P C ∴===-.三、 15.解析:原式222cos 22cos 41lim x xx x ee x -+-→-=⋅2430022cos 2(sin )lim lim 4x x x x x x x x →→-+-==2011cos 1lim .2312x x x →-==16.解析:xDe xydxdy⎰⎰1xxe dx ydy=⎰1122001111(1)0222xx x x e dx e x e dx =-=-⎰⎰ 2111121(22)022222x e e e x x e ---=--+=-=.17.解析:1)设成本函数为(,),C x y 则(,)202,x x C x y '=+对x 积分得,2(,)20(),4x C x y x y +ϕ=+再对y 求导有,(,)()6y C x y y y'ϕ'==+,再对y 积分有,21()62y y y c ϕ=++所以,221(,)20642x C x y x y y c=++++ (0,0)10000,10000,C c =∴= 于是221(,)2061000042x C x y x y y =++++2)若50x y +=,则50(250)y x x =-≤≤,代入到成本函数得221()206(50)(50)1000042x C x x x x =++-+-+=2336115504x x -+所以,令3()360,24,26,2C x x x y '=-===得总成本最小为(24,26)11118C =3)总产量为50件且总成本最小时甲产品的边际成本为(24,26)32,x C '=即在要求总产量为50件时,在甲产品为24件时,改变一个单位的产量,成本会发生32万元的改变。
2012数学三试题及答案
x→0
x4
( ) 【解析】 lim ex2
e − 2−2cos x
e2−2cos x = lim
e −1 x2 +2cos x−2
x2 + 2 cos x − 2
= lim
=
1
x→0
x4
x→0
x4
x→0
x4
12
(16)(本题满分 10 分)
∫∫ 计算二重积分 ex xydxdy ,其中 D 为由曲线 y = x 与 y = 1 及 y 轴为边界的无界区域
(2) 设函数 y(x) = (ex −1)(e2x − 2)⋯(enx − n), 其中 n 为正整数,则 y '(0) =
()
(A) (−1)n−1(n −1)! (B) (−1)n (n −1)! (C) (−1)n−1n!
(D) (−1)n n!
答案:(A)
【解析】因为 y '(0) = lim y(x) − y(0) = lim (ex −1)(e2x − 2)⋯(enx − n) = (−1)n−1(n −1)!
=
⎜ ⎜
0
1
0
⎟ ⎟
,
若
⎜⎝ 0 0 2⎟⎠
P = (α1,α2 ,α3 ),Q = (α1 + α2 ,α2 ,α3 ), 则 Q−1AQ =
()
⎛1 0 0⎞
(A)
⎜ ⎜
0
2
0
⎟ ⎟
⎜⎝ 0 0 1 ⎟⎠
⎛1 0 0⎞
(B)
⎜ ⎜
0
1
0
⎟ ⎟
⎜⎝ 0 0 2⎟⎠
⎛2 0 0⎞
(C)
⎜ ⎜
0
2012年数学三真题答案解析
tan x
e 1
cos xsin x
lim
x
tan
x
1
cos
1 x sin
x
4
x
4
lim
x
tan
x
1
cos
x
1
sin
x
=
lim
x
tan x tan 4
cos x sin x
4
4
=
lim
x 4
tan
x
-
4
1
tan
x
2
sin
x
4
tan
4
=
lim
x 4
x
4 -
1 tan x
X3
X4 2
2
2
2
2
服从标准正态分布且相互独立,可知
X1 X2
2
X3
X4 2
2
2
t 1 。
二、填空题:914 小题,每小题 4 分,共 24 分,请将答案写在答.题.纸.指定位置上.
1
(9) lim tan x cos xsin x ________。 x 4
【答案】: e- 2
【解析】: lim
(4)已知级数 (1) n
i 1
n
sin
1 n
绝对收敛,
i 1
(1) n n 2
条件收敛,则 范围为(
)
(A) 0 1 2
(B) 1 1 2
(C)1 3 2
(D) 3 2 2
【答案】:(D)
【解析】:考察的知识点是绝对收敛和条件收敛的定义及常见的 p 级数的收敛性结论.
1
(A)
2012考研试题及评分标准
(D) (−1)n n!
(3) 如果函数 f (x, y) 在 (0, 0) 处连续,那么下列命题正确的是
(A) 若极限 lim f (x, y) 存在,则 f (x, y) 在 (0, 0) 处可微
x→0 y→0
x+
y
(B)
若极限 lim f (x, y)
x→0 y→0
x2
+
y2
存在,则 f (x, y) 在 (0, 0) 处可微
(1)
曲线 y
=
x2 + x x2 −1
的渐近线的条数为
(A) 0
(B) 1
(C) 2
(D) 3
(2) 设函数 f (x) = (ex −1)(e2x − 2)L(en x − n) ,其中 n 为正整数,则 f ′(0) =
(A) (−1)n−1(n −1)!
(B) (−1)n (n −1)!
(C) (−1)n−1n!
n=0 2n +1
(18)(本题满分
10
分)已知曲线
L
:
x y
= =
f (t cos
) t
(0 ≤ t
< π ) ,其中 2
f (t) 具有连续导数,且
f (0) = 0 , f ′(t) > 0 (0 < t < π ) ,若曲线 L 的切线与 x 轴的交点到切点的距离恒为 1, 2
求函数 f (t) 的表达式,并求以曲线 L 及 x 轴和 y 轴为边界的区域的面积.
2012 年全国硕士研究生入学统一考试 数学(一) 试 卷
考生注意:(1)本试卷共三大题,23 小题,满分 150 分. (2)本试卷考试时间为 180 分钟.
2012考研数学三大纲
2012考研数学三大纲考试科目微积分、线性代数、概率论与数理统计考试形式和试卷结构考试形式和试卷结构1、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.2、答题方式答题方式为闭卷、笔试.3、试卷内容结构微积分56%线性代数22%概率论与数理统计 22%四、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题)9小题,共94分考试内容之微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解...及的麦克劳林(Maclaurin)展开式.六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.考试内容之线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.考试内容之概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布得上侧分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.。
数学三题型和分数
数学三题型和分数
考研数学三的题型包括单项选择题、填空题和解答题。
各题型分值如下:
1. 单项选择题:8小题,每小题4分,共32分。
2. 填空题:6小题,每小题4分,共24分。
3. 解答题:9小题,共94分。
其中,解答题第一题一般考察数列极限的求解,分值为10分左右;第二题考察导数的计算及应用,分值为10分左右;第三题考察定积分的计算及应用,分值为10分左右;第四题考察一元微分
学及应用,分值为10分左右;第五题考察多元函数微分学及应用,分值为10分左右;第六题考察常微分方程及差分方程,分值为10分左右;第七、八、九题为解答题的分数主体部分,分数比重较大,一般包含较多的计算和证明。
以上信息仅供参考,具体题型和分数可能会根据年份和考试难度有所调整。
2012年考研数学三完全解读
2012年考研数学三完全解读今年的数学考研大纲跟去年可以从三个方面进行解读:第一,试卷的内容。
今年的考试大纲依然保持了数学一和数学三在高等数学占比是56%。
线性代数和概率各占22%。
数学二,依然是高等数学占了78%,线性代数占了22%。
从试卷内容的结构上,跟往年来比没有任何变化。
第二,试卷的题型结构。
试卷的题型结构保持了三种提醒。
第一种题型是选择题。
第二种题型是填空题。
第三种题型是解答题。
题型的比例依然是保持了8、6、9的分布,有8个选择、6个填空、9个大题。
分值和题型的结构跟往前是保持一致的。
最主要的一块是考点和考试要求,我们把今年的考试大纲和往年的考试大纲进行了认真的对比,结果发现无论是考点和考试要求上都与去年没有任何变化。
对于广大考生来说这也是一个比较好的消息。
我们广大考生对自己的数学复习不需要做任何调整,按部就班进行后续的复习就可以了。
2012年考研数学的难度,首先要看近几年数学考研难度的变化,2008年和2009年考研数学的难度是基本保持一致的。
对于数学一、数学二和数学三都是这样一种情况。
到了2010年,数学一的难度稍微有所上升,数学二和数学三保持了平稳的难度。
就刚过去的2011年来讲,2011年数学一和数学二、数学三的难度都略有微调,从大家的平均分可以看出来,从去年的考试分数来看一、二、三的平均分较往年有所上升。
预计今年与往年相比,尤其与去年相比,2012年的考研难度可能会有所上升,但是总体的难度是保持平稳发展的,难度适中。
广大考生也不用担心考试变难如何应对,实际上我们考研命题组一直是本着对“三基”的一个基本要求。
也就是注重对基本概念和性质,基本方法和基本能力的考查。
在9月份大纲出来之后,我们考研数学的复习由基础复习向强化提高复习过渡。
9月份之前,大家更关注的是全面地毯式的复习。
到了9月份之后,一定要由全面的复习向重点复习进行过渡。
下面我就考研数学的三科,高等数学、线性代数和概率论三部分内容在每一章节的考试或者考查重点跟大家说一下。
2012年考研数学三与答案解析
2012年全国硕士研究生入学统一考试数学三试题选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)曲线221x xyx+=-渐近线的条数为()(A)0 (B)1 (C)2 (D)3(2)设函数2()(1)(2)x x nxf x e e e n=--…(-),其中n为正整数,则(0)f'=()(A)1(1)(1)!n n---(B)(1)(1)!n n--(C)1(1)!n n--(D)(1)!n n-(3)设函数()f t连续,则二次积分22202cos()d f r rdrπθθ⎰⎰=()(A)222() dx x y dy+⎰(B)222()dx f x y dy+⎰(C)2221() dx x y dy+⎰⎰(D)2221() dx x y dy+⎰⎰(4)已知级数11(1)ninα∞=-∑绝对收敛,21(1)ninα∞-=-∑条件收敛,则α范围为()(A)0<α12≤(B)12< α≤1(C )1<α≤32(D )32<α<2(5)设1234123400110,1,1,1c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭其中1234c c c c ,,,为任意常数,则下列向量组线性相关的是()(A )123ααα,,(B )124ααα,, (C )134ααα,,(D )234ααα,,(6)设A 为3阶矩阵,P 为3阶可逆矩阵,且P-1AP=112⎛⎫ ⎪ ⎪ ⎪⎝⎭, 123=P ααα(,,),1223=Q αααα(+,,)则1=Q AQ -()(A )121⎛⎫⎪ ⎪ ⎪⎝⎭(B )112⎛⎫⎪ ⎪ ⎪⎝⎭ (C )212⎛⎫ ⎪ ⎪ ⎪⎝⎭(D )221⎛⎫ ⎪ ⎪ ⎪⎝⎭ (7)设随机变量X 与Y 相互独立,且都服从区间(0,1)上的均匀分布,则+P X Y ≤22{1}()(A )14(B )12(C )8π(D )4π(8)设1234X X X X ,,,为来自总体N σσ>2(1,)(0)的简单随机样本,则统计量1234|+-2|X X X X -的分布() (A )N (0,1)(B )(1)t(C )2(1)χ (D )(1,1)F二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)1cos sin 4lim(tan)x x xxπ-→(10)设函数0ln1(),(()),21,1xdyxf x y f f xdxx x=⎧≥⎪=⎨-<⎪⎩求__(11)函数(,)z f x y=满足10,xy→→=则(0,1)dz=_______.(12)由曲线4yx=和直线y x=及4y x=在第一象限中所围图形的面积为_______.(13)设A为3阶矩阵,|A|=3,A*为A的伴随矩阵,若交换A的第一行与第二行得到矩阵B,则|BA*|=________.(14)设A,B,C是随机事件,A,C互不相容,11 (),(),23P AB P C==则CP AB()=_________.解答题:15~23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)计算222cos4limx x xe ex-→-(16)(本题满分10分)计算二重积分xDe xydxdy⎰⎰,其中D为由曲线y y==所围区域.(17)(本题满分10分)某企业为生产甲、乙两种型号的产品,投入的固定成本为10000(万元),设该企业生产甲、乙两种产品的产量分别为x(件)和y(件),且固定两种产品的边际成本分别为20+2x(万元/件)与6+y(万元/件).1)求生产甲乙两种产品的总成本函数(,)C x y(万元)2)当总产量为50件时,甲乙两种的产量各为多少时可以使总成本最小?求最小的成本.3)求总产量为50件时且总成本最小时甲产品的边际成本,并解释其经济意义.(18)(本题满分10分)证明:21ln cos1,1 1.12x xx x xx++≥+-<< -(19)(本题满分10分)已知函数()f x满足方程()()2()0f x f x f x"'+-=及()()2xf x f x e'+=1)求表达式()f x2)求曲线的拐点22()()xy f x f t dt=-⎰(20)(本题满分10分)设1001010100100010aaA baa⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪==⎪ ⎪⎪ ⎪⎝⎭⎝⎭,(I)求|A|(II)已知线性方程组Ax b=有无穷多解,求a,并求Ax b=的通解.(21)(本题满分10分)已知1010111001Aaa⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦,二次型123(,,)()f x x x x xT T=A A的秩为2,求实数a的值;求正交变换x=Qy将f化为标准型.(22)(本题满分10分)已知随机变量X,Y以及XY的分布律如下表所示:求(1)P(X=2Y); (2)cov(,)XY X Y Y -ρ与.(23)(本题满分10分)设随机变量X 和Y 相互独立,且均服从参数为1的指数分布,min(,),=max(,).V X Y U X Y =求(1)随机变量V 的概率密度; (2)()E U V +.2012年研究生入学考试数学三真题解析(纯word )版一、 1. 解析:C 由lim 1,1x y y →∞==得为水平渐近线 由1lim 1x y x →=∞=得为垂直渐近线由11lim ,12x y x →-=≠∞=-得非垂直渐近线,选(C )2.解析: A2221()(2)(2)(1)2()(1)(2)(0)1(1)(1)(1)(1)!x x nx x x nx x x nxn f x e e e e e e n e e ne f n n ''-=--+-⋅-+--∴=⨯-⨯⨯-=--选(A ) 3. 解析:B原式=2220()dx f x y dy+⎰4. 解析:D1211~,n n αα-且11(1)n n α∞--∑绝对收敛.131.22α-α∴>>即又21(1)nn n α∞-=-∑条件收敛.02112αα∴<-≤⇒≤<322α∴<<,选D5. 解析:C343400c c αα⎛⎫⎪+= ⎪⎪+⎝⎭,34αα+ 与1α成比例.1α∴与3α+4α线性相关,134ααα∴,,线性相关,选C或13413411,,0110c c c ααα-=-=134,,ααα∴线性相关,选C6. 解析:B111100100100110110110000001001Q P Q AQ P AP , ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 100110011011100012001⎛⎫⎛⎫⎛⎫⎪⎪⎪=- ⎪⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭100100100110110010002001002⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=-= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,选B.7. 解析:D1,0,1)()()0,x y x y f x y f x f y <<⎧==⎨⎩(,其他 22{1}(,)4D DS P X Y f x y d D S πΩ+≤=σ==⎰⎰,选8. 解析:B212~(0,2)~(0,1)X X N N -σ⇒2342~(0,2)~(0,1)X X N N +-σ⇒~(1)t即1234~(1),2X X t X X -+-选B二、 9.解析:e 解:原式=tan 11cos sin tan 14lim (1(tan 1))x x xx x x π---→⎡⎤+-⎢⎥⎣⎦=41sin cos limcos cos sin x x x x x ee π→-⋅-=10. 解析: 40[()]()(1)(0)x dyf f x f x dx dyf f dx ''''===- 而1()2x f x '<=时, 0(1)(0) 2. 4.x dy f f dx=∴-===于是11. 解析:2x dzdx dy==-解:令ρ=则(,)220(),(0,1)1f x y x y f ρ-+-==(,)12(1)0()f x y x y ρ-=--+(0,1)(0,1)2,(0,1)1,2.x y f f dzdx dy ''==-∴=-12. 解析:4 ln2 解:12014(4)S x x dx x dxx ⎛⎫=-+- ⎪⎝⎭⎰⎰1324ln 24ln 222=-+-=13. 解析:-27 解:|||| 3.B A =-=-**2||||||3||27.BA B A A =⋅=-⋅=-14.解析:34解:()()()(|)1()()P ABC P AB P ABC P AB C P C P C -==-AC φ= ,ABC φ∴=.1()32(|)21()43P AB P AB C P C ∴===-.三、 15.解析:原式222cos 22cos 41lim x xx x ee x -+-→-=⋅2430022cos 2(sin )lim lim 4x x x x x x x x →→-+-==2011cos 1lim .2312x x x →-==16.解析:x De xydxdy⎰⎰1x xe dx ydy=⎰1122001111(1)0222xx x x e dx e x e dx =-=-⎰⎰ 2111121(22)022222x e e e x x e ---=--+=-=.17.解析:1)设成本函数为(,),C x y 则(,)202,x x C x y '=+对x 积分得,2(,)20(),4x C x y x y +ϕ=+再对y 求导有,(,)()6y C x y y y'ϕ'==+,再对y 积分有,21()62y y y cϕ=++所以,221(,)20642x C x y x y y c=++++(0,0)10000,10000,C c =∴= 于是221(,)2061000042x C x y x y y =++++2)若50x y +=,则50(250)y x x =-≤≤,代入到成本函数得221()206(50)(50)1000042x C x x x x =++-+-+=2336115504x x -+所以,令3()360,24,26,2C x x x y '=-===得总成本最小为(24,26)11118C =3)总产量为50件且总成本最小时甲产品的边际成本为(24,26)32,x C '=即在要求总产量为50件时,在甲产品为24件时,改变一个单位的产量,成本会发生32万元的改变。
2012考研数三真题及解析
2012年全国硕士研究生入学统一考试数学三试题解析一、选择题:1~8 小题,每小题4 分,共32 分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.x 2 x(1)曲线y2渐近线的条数为()x 1(A )0 (B )1 (C )2 (D )3【答案】:Cx 2 xlim1 x 21 ,所以x 1为垂直的【解析】:xx 2 xli m21,所以y 1为水平的,没有斜渐近线故两条选C x x 1(2)设函数f x ( ) (e x 1)(e 2x 2) (e nx n ) ,其中n 为正整数,则f ' (0) (A ) ( 1)n 1(n 1)! (B ) ( 1) (n n 1)! (C ) ( 1)n 1n ! (D ) ( 1)n n ! 【答案】:C ( A ) yfx x dx dyy xxx ) ( 2242 2 2 2 0 22( B ) dx fx y dyxxx) (224 2 20 22( C )dyx yfx y dx xxx ( ) 224 1 2 2220 22【解析】:f ' (x ) e e x ( 2x 2) (e nx n ) (e x 1)(2e 2x 2) (e nx n ) (e x 1)(e 2x2) (ne nx n ) 所以f ' (0) ( 1)n 1n !2数f t ( ) 连续,则二次积分2df r ( 2 )rdr =()(3)设函2 cos 2dx y 2 )dy(D )【答案】:(B )【解析】:由x y 解得y 的下界为2x x 2 ,由x 2 y 2 2 解得y 的上界为4 x 2 .故排除答案(C )(D ). 将极坐标系下的二重积分化为X 型区域的二重积分得到被积函数为f x ( 2y 2 ) ,故选(B ).n1 绝对收敛, ( 1)n条件收敛,则 范围为()(4)已知级数( 1)n sin2i 1ni 1n(A )0 (B ) 1 (C )1 (D ) 2【答案】:(D )n1 【解析】:考察的知识点是绝对收敛和条件收敛的定义及常见的p 级数的收敛性结论.( 1)n si nfxx xx ( 24 1 2 2222xi 1 n3 ( 1)n绝对收敛可知 ; 条件收敛可知 2,故答案为(D)22 i 1 n0 0 1 1(5)设 1, 21, 31, 41其中c c cc1, 2 , 3 , 4 为任意常数,则下列向量组线性相关c1 c2的是()(A) 1, 2 , 3(C) 1, 3 , 4【答案】:(C)【解析】:由于1, 3 , 4 0c1(6 )设A 为3 阶矩阵,Pc3 c4(B) 1, 2 , 4(D) 2, 3 , 41 11 11 0,可知 1, 3 , 4 线性相关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题型分布部分主要知识点考试所占比
例分值特点选择题:
1.渐近线的条数;
2.函数
在一点处的导数;
3.二重积分的坐本部分和大纲规定的分高
本部分共标变换;
4.级数的敛散性;填空题:
值基本一致,考查的也有选择题
9.求极限;
10.求导;
11.二元函都是历年考试中常考的等
4道、填数的微分;
12.平面图形的面积;重要知识点,没有偏题、56%
率率;解答题:
22.二维离散型随机22%空 Nhomakorabea1论变量的概率、协方差;
23.随机变量
道、解答
的函数的密度、数学期望。
题2道。
空题4解答题:
15.求极限;
16.无界区域怪题,但是综合性比较数
道、解答上的重积分的计算;17微分学在经强。与2011年不同的是,题5道。济中的应用(最小成本、边际成本);今年在大题中考察了微学
18.不等式的证明;
19.微分方程、分学在经济中的应用。
拐点。
本部分共
本部分和大纲规定的分线有选择题:
5.向量组的相关性;
6.
值基本一致,考查的也性2道、填初等变换;填空题:
13.伴随矩阵、
22%都是历年考试中常考的代空题1行列式的计算;解答题:
20.解线
重要知识点,没有偏题、数道、解答性方程组;
21.二次型的标准型。
怪题。
题2道。
本部分共
选择题:
7.均匀分布、几何概型;
有选择题概8.抽样分布;填空题:
14.条件概
2道、填