一元一次方程应用题经济问题专项训练二(含答案)
一元一次方程经济问题(习题及答案).
售价
成本
利润
A.赚了 9 元
B.赔了 18 元
C.不赚不赔
D.赚了 18 元
4. 乐乐家附近的商场购进一批服装,每件进价 1 000 元,计划
在春节期间开展促销活动,按照标价的 7 折销售则该服装每件的标价应为
多少元?
售价
成本
利润
2
5. 某商店将一种书包按成本价提高 40%进行标价,由于促销, 决定打八五折处理,为吸引更多顾客又降价 9 元,这时每个 书包仍可获利 10%,则每个书包的成本为多少元?
售价
成本
利润
A. 0.7(1 0.6)x x 36
B. 0.7(1 0.6)x x 36
C. 0.7(1 0.6x) x 36
D. 0.7(1 0.6x) x 36
3. 某商店同时卖出两件上衣,每件都以 135 元售出,其中一件
盈利 25%,另一件亏本 25%,则该商店在这次买卖中( )
售价
成本
利润
打折前
打折后
3
8. 某校七年级社会实践小组去商店调查商品销售情况,了解到
该商店以每条 80 元的价格购进某品牌牛仔裤 50 条,并以每
条 120 元的价格销售了 40 条.商店准备采取促销措施,将剩
下的牛仔裤降价销售.请你帮商店计算一下,每条牛仔裤降
价多少元时,销售完这批牛仔裤正好达到盈利 45%的预期目
利润
A. 8x 1528 (112%)
B. 0.8x 152812%
C. 0.8x 1528 (112%)
D. 0.8x 1528 (112%)
2. 一件夹克衫先按成本价提高 60%标价,再将标价打 7 折出售,
结果获利 36 元.设这件夹克衫的成本价是 x 元,那么根据题
一元一次方程应用题之经济问题
一元一次方程应用题之经济问题
巩固练习
1.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()
A.赚16元B.赔16元
C.不赚不赔D.无法确定
2.某商场将某种商品按标价的8折出售,此时商品的利润率为10%,已知这种商品的进价为1 800元,那么这种商品的标价是多少元?
3.某商品的进价是100元,原定售价为180元,由于该商品积压,商店准备打折销售,若要保持利润率为8%,则商店应打几折?
4.某商店购进一批商品,每件成本是500元,商店决定按成本提高60%来标价.由于天气的缘故,需要尽早处理这批商品,于是决定打折后再降价20元销售,此时得到的利润是打折前的40%.请问商家打了几折?。
初中数学一元一次方程的应用练习题含答案
初中数学一元一次方程的应用练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该家商店()A.亏损8元B.盈利8元C.不亏不盈D.以上都不正确2. 我国古代有很多经典的数学题,其中有一道题目是:良马日行二百里,驽马日行一百二十里,驽马先行十日,问良马几何追及之.意思是:跑得快的马每天走200里,跑得慢的马每天走120里,慢马先走10天,快马几天可追上慢马?若设快马x天可追上慢马,则由题意可列方程为( )A.120+10x=200xB.120x+200x=120×10C.200x=120x+200×10D.200x=120x+120×103. 在某月历表中,竖列相邻的三个数的和为39,则该列第一个数是()A.6B.12C.13D.144. 某商店卖出两个电子产品,每个168元,其中一件赚20%,另一件亏20%,那么这两个电子产品卖出后,商店是()A.不赚不亏B.赚37.2元C.赚14元D.亏14元5. 河北省某机械厂加工车间有34名工人,平均每名工人每天加工大齿轮20个或小齿轮15个.已知3个大齿轮和2个小齿轮配成一套,问分别安排多少名工人加工大、小齿轮,才能刚好配套?若设加工大齿轮的工人有x名,则可列方程为( )A.20x=15(34−x)B.2×20x=3×15(34−x)C.3×20x=2×15(34−x)D.3×20(34−x)=2×15x6. 某童装店剩有两件进价不同的童装,处理时都卖了60元,其中一件赢利20%,另一件亏本25%,针对这两件童装,这家童装店( )A.赚了5%B.赚了10元C.亏了5%D.亏了10元7. 《九章算术》中有一道题,原文是:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.走路慢的人先走100步,走路快的人走多少步才能追上走路慢的人?答( )A.300步B.250步C.200步D.150步8. 若正方形的边长增加3cm,它的面积就增加39cm,则正方形的边长原来是()A.8cmB.6cmC.5cmD.10cm9. 某商店出售两件衣服,每件售价600元,其中一件赚了20%,而另一件赔了20%,那么这家商店销售这两件衣服的总体收益情况是()A.赚了50元B.赔了50元C.赚了80元D.赔了80元10. 如图,将矩形ABCD分割成1个灰色矩形与148个面积相等的小正方形,若灰色矩形的长与宽的比为5:3,则AD:AB的值是( )A.5:3B.11:7C.23:15D.47:2911. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走________步才能追到速度慢的人.12. 互联网“微商”经营已经成为大众创业的一种新途径,某互联网平台上一件商品的标价为200元,按标价的六折销售,仍可获利20%,则这件商品的进价为________元.13. 甲、乙两车站相距450km,一列慢车从甲站开出,每小时行驶65km,一列快车从乙站开出,每小时行驶85km.(1)两车同时开出,相向而行,________小时相遇;(2)快车先开30分钟,两车相向而行,慢车行驶________小时两车相遇.14. 我国明代数学家程大位所著的《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的译文为:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.则该店有客房________间.15. 某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打7折销售,则该商品每件销售利润为________元.16. 有一道古算题:"我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.问多少房间多少客?"题目大意是:一些客人到李三公的店中住宿,若每间房住7人,则有7人没地方住;若每间房住9人,则空出一间房.问有多少房间?多少客人?若有x间房,则根据题意可列出方程为________.17. 自来水厂为鼓励节约用水,对水费按以下方式收费:每月用水量不超过10吨,每吨按2元收费,超过10吨的部分按每吨3元收费,王老师家12月份平均水费为每吨2.5元,则王老师家12月份的用水量是________吨.18. 如图,甲、乙两个等高圆柱形容器,内部底面积分别为20cm2,50cm2,且甲中装满水,乙是空的若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲中的水位高度低了3cm,则甲、乙两容器的高度均为________.19. 如图,长方形ABCD中有6个形状、大小相同的小长方形,根据图中所标尺寸,则小长方形的面积为________.20. 如图,小明将一张正方形纸片剪去一个宽为3cm的长条后,再从剩下的长方形纸片上剪去一个宽为4cm的长条,如果两次剪下的长条面积正好相等,则剪下的长条的面积之和为________.21. 某班同学分组参加活动,原来每组8人,后来重新编组,每组6人,这样比原来增加了2组,这个班共有多少名学生?22. 已知A,B两地相距400千米,甲、乙两车从A地向B地运送货物.甲车的速度为每小时60千米,乙车的速度为每小时80千米,甲车先出发0.5小时后乙车才开始出发. (1)乙车出发几小时后,才能追上甲车?(2)若乙车到达B地后,立即原路原速返回A地,则乙车返回时再经过多少小时与甲车再次相遇?23. 张新和李明到图书城去买书,请你根据他们的对话内容(如图),求出李明上次所买书籍的原价.24. 某商场用加权平均数来确定什锦糖的单价,由单价为每千克15元的甲种糖果30千克,单价为每千克12元的乙种糖果50千克,单价为每千克10元的丙种糖果20千克混合成的什锦糖果的单价应定为每千克多少元?25. 某学校安排学生住宿,若每间宿舍住7人,则有10人无法安排;若每间宿舍住8人,则恰好空出2间宿舍.这个学校的住宿生有多少人?26. 如图所示,小红将一个正方形剪去一个宽为4cm的长条后,再从剩下的长方形纸片上沿平行短边的方向剪去一个宽为5cm的长条.若两次剪下的长条面积正好相等,那么每一长条的面积为多少?原正方形的面积为多少?27. 某商场以每部500元的价格购进某品牌手机共100部,加价50%后标价销售.在国庆期间,商场计划降价销售.请根据商场的盈利需求,解答下列问题:(1)如果商场按降价后的价格售完这批手机,仍可盈利20%,求应按几折销售;(2)如果商场先按标价的九折销售60部,但为了尽快销售完,将剩余数量手机在九折的基础上每购买一部再送打车费,若在销售完这些手机时还需要支出其他费用8000元,求购买一部手机送多少元打车费,使售完这批手机后可盈利15%.28. 《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,每3人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?29. 某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话图片,解决下面问题:求小明原计划购买文具袋多少个?30. 国庆节期间,甲、乙两商场以同样价格出售相同的商品,并且各自推出不同的优惠方案:在甲商场累计购物超过200元后,超出部分打八折;在乙商场累计购物超过100元后,超出部分打九折.(1)购买多少元商品时(大于200元),两个商场的实际花费相同?(2)小李要购买350元的商品,选哪个商场购物实际花费会少些?31. “双十一购物狂欢节”已成为中国电子商务行业的年度盛事,并且逐渐影响到国际电子商务行业.某网络直播平台推销A、B两种商品,每件A商品售价为200元,B商品售价为150元.(1)已知一件A商品的进价为120元,B商品的进价为100元,该直播平台在“双十一”前一天卖出A、B商品共200件,总利润为13600元,求A、B商品各卖出去多少件;(2)“双十一”当天,该平台决定将A商品的售价下调10%,B商品的售价保持不变,结果与(1)中的销售量相比,A商品的销售量增加了2a%,而B商品的销售量增加了a%,当天最终的销售额比前一天的销售额增加了14160元,求a的值.32. 一根长为18m的铁丝围成一个长是宽的2倍的长方形,求长方形的面积.33. 列方程解应用题:新年联欢会要美化教室环境,有几个同学按需要做一些拉花.这几个同学如果每人做3个还剩1个未做,如果每人做4个则缺少2个做拉花的材料,求做拉花的同学的人数.34. 把一个正方形的一边加长4cm,另一边缩小1cm,则产生的长方形面积比原正方形面积增加了20cm2,求原正方形的边长.35. 某市居民生活用电基本价格为每度0.60元,若每月用电量超过a度,超出部分按基本电价的120%收取.(1)某用户6月份用电150度,共交电费93.6元,求a;(2)在(1)的条件下,若该用户7月份的电费平均每度为0.66元,求7月份用电多少度?应交多少电费?36. 在长为20m、宽为16m的长方形空地上,沿平行于长方形各边的方向割出三个完全相同的小长方形花圃,其示意图如图所示,求每个小长方形花圃的面积.37. 如图是某长方体包装盒的展开图,具体数据如图所示,且长方体盒子的长是宽的2倍.(1)展开图的6个面分别标有如图所示的序号,若将展开图重新围成一个包装盒,则相对的面分别是________与________,________与________,________与________;(2)若设长方体的宽为xcm,则长方体的长为________cm,高为________cm;(用含x的式子表示)(3)求这种长方体包装盒的体积.38.(1)张阿姨到商场以940元购买了一件羽绒服和一条裙子,已知羽绒服打8折,裙子打6折,结果比标价购买时共节省了360元.那么该羽绒服及裙子的标价分别是多少元?(2)某校为防疫需要,实行错时错峰测温并开通专用通道上学,该校七、八年级人数如下表所示:①八年级学生进校时同时开通了A,B两通道,经过6分钟,八年级全部学生进校,已知A通道每分钟通过的人数是B通道每分钟通过人数的2倍.求A,B通道每分钟通过的人数各是多少人?②考虑到七年级人数更多的原因,为节约学生进校时间,学校决定在A通道旁边增开C 通道,在B通道旁边增开D通道,已知C通道每分钟通过的人数比A通道每分钟通过的人数多20%,D通道每分钟通过的人数比B通道每分钟通过的人数少20%.求七年级全部学生进校所需时间是多少分钟?39. 2019年12月14日,中国教育学会第32次学术年会在山东济南召开,某校选派16名教师前往参会,准备用一辆七座汽车(除司机外限载6人,从学校出发),送16位教师去高铁站与机场,其中11位教师准备一起到学校正东方向25千米处的机场,另外5位教师准备一起到学校正东方向15千米处的高铁站,其中去机场的老师中有6人因工作需要需先赶去机场,已知这辆汽车的平均速度为45千米/小时,教师步行的平均速度为5千米/小时.(注:不计教师上、下车时间,教师上车后,中途不下车,汽车到达目的地后立即沿原路返回)(1)求汽车送第一批教师到达机场所用的时间.(2)若只有这辆汽车送这16位教师去目的地后返回学校,请设计一种方案使该车所用总时间最短,并求出这个最短时间.40. 某药品在2006年涨价30%后,2007年降价70%至39元,则这种药品在2006年涨价前的价格为多少元?参考答案与试题解析初中数学一元一次方程的应用练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】A【考点】一元一次方程的应用——工程进度问题【解析】已知售价,需算出这两件衣服的进价,让总售价减去总进价就算出了总的盈亏.【解答】解:设盈利25%的那件衣服的进价是x元,根据进价与得润的和等于售价列得方程:x+0.25x=60,解得:x=48,类似地,设另一件亏损衣服的进价为y元,它的商品利润是−25%y元,列方程y+(−25%y)=60,解得:y=80.那么这两件衣服的进价是x+y=128元,而两件衣服的售价为120元.∴120−128=−8元,所以,该家商店亏损8元.故选:A.2.【答案】D【考点】一元一次方程的应用——路程问题【解析】设快马x天可追上慢马,根据“快马走的总路程=慢马走的总路程”即可列出方程.【解答】解:设快马x天可追上慢马,根据题意,得200x=120x+120×10.故选D.3.【答案】A【考点】一元一次方程的应用——工程进度问题【解析】日历上竖列相邻的三个数一定相隔7,那么等量关系是:第一个数+第二个数+第三个数=39.根据等量关系,列方程并求解即可.【解答】解:设该列的第一个数是x,根据题意得x+(x+7)+(x+2×7)=39,解得,x=6.则该列的第一个数是6.故选A.4.【答案】D【考点】一元一次方程的应用——打折销售问题【解析】此题暂无解析【解答】此题暂无解答5.【答案】B【考点】一元一次方程的应用——调配与配套问题【解析】此题暂无解析【解答】解:根据题意得2×20x=3×15(34−x).故选B.6.【答案】D【考点】一元一次方程的应用——打折销售问题【解析】此题暂无解析【解答】解:设第一件童装的进价为x元,第二件童装的进价为y元,根据题意得(1+20%)x=60,(1−25%)y=60,解得x=50,y=80元,即60×2−50−80=−10(元).∴这家商店是亏10元.故选D.7.【答案】B【考点】一元一次方程的应用——路程问题【解析】设走路快的人追上走路慢的人所用时间为t,根据二者的速度差×时间=路程,即可求出t值,再将其代入路程=速度×时间,即可求出结论.【解答】解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100−60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故选B.8.【答案】C【考点】一元一次方程的应用——面积问题【解析】试题分析:原来正方形的边长为x,则(x+3)2−x2=39,解得:x=5【解答】此题暂无解答9.【答案】B【考点】一元一次方程的应用——工程进度问题一元一次方程的应用——其他问题【解析】设赚钱的衣服的进价为x元,赔钱的衣服的进价为y元,根据售价=成本×(1+利润率),即可得出关于x,y的一元一次方程,解之即可得出x,y的值,再利用利润=售价-成本,即可求出结论.【解答】设赚钱的衣服的进价为x元,赔钱的衣服的进价为y元,依题意,得:(1+20%)x=600,(1−20%)y=600,解得:x=500,y=750,∴600+600−500−750=−50(元).10.【答案】D【考点】一元一次方程的应用——面积问题【解析】可设灰色长方形的长上摆5x个小正方形,宽上摆3x个小正方形,因为将长方形ABCD 分割成1个灰色长方形与148个面积相等的小正方形,可表示出灰色长方形的长和宽,进而求出大长方形的长和宽,从而可求解.【解答】解:设灰色长方形的长上摆5x个小正方形,宽上摆3x个小正方形,则2(5x+3x)+4=148,解得x=9,则5x=45,3x=27,则AD=45+2=47,且AB=27+2=29,即ADAB =4729.故选D.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】250【考点】一元一次方程的应用——路程问题【解析】设走路快的人追上走路慢的人所用时间为t,根据二者的速度差×时间=路程,即可求出t值,再将其代入路程=速度×时间,即可求出结论.【解答】解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100−60)t=100,解得:t=2.5,∴100t=100×2.5=250.故答案为:250.12.【答案】100【考点】一元一次方程的应用——其他问题一元一次方程的应用——工程进度问题【解析】设这件商品的进价为x元,根据利润=售价-进价,即可得出关于x的一元一次方程,解之即可得出结论.【解答】设这件商品的进价为x元,依题意,得:200×0.6−x=20%x,解得:x=100.13.【答案】316360【考点】由实际问题抽象出一元一次方程一元一次方程的应用——路程问题【解析】(1)设两车行驶了x小时相遇,则慢车走的路程为65xkm,快车走的路程为85xkm,根据慢车与快车的路程和为450km建立方程求出其解即可;(3)设慢车行驶了x小时后两车相遇,则快车行驶了(0.5+x)小时,根据慢车与快车的路程和为450km建立方程求出其解即可.【解答】解:(1)设两车行驶x小时相遇,根据题意,得65x+85x=450,解得:x=3.故答案为:3.(2)30分钟=1小时.2设慢车行驶x小时后两车相遇,+x)=450,根据题意,得65x+85(12解得:x=163.60.故答案为:1636014.【答案】8【考点】一元一次方程的应用——调配与配套问题【解析】根据题意设出房间数,进而表示出总人数得出等式方程求出即可.【解答】解:设该店有x间客房,则7x+7=9x−9,解得x=8.故答案为:8.15.【答案】4【考点】一元一次方程的应用——打折销售问题【解析】设该商品每件销售利润为x元,根据进价+利润=售价列出方程,求解即可.【解答】解:设该商品每件销售利润为x元,根据题意,得80+x=120×0.7,解得x=4.答:该商品每件销售利润为4元.故答案为:4.16.【答案】7x+7=9(x−1)【考点】由实际问题抽象出一元一次方程一元一次方程的应用——调配与配套问题解一元一次方程【解析】此题暂无解析【解答】解:根据题意若每间房住7人,则有7人没地方住;若每间房住9人,则空出一间房,得7x+7=9(x−1).故答案为:7x+7=9(x−1).17.【答案】20【考点】一元一次方程的应用——其他问题【解析】此题暂无解析【解答】解:由题意得:则该户居民12月份实际用水超过10吨.设该户居民12月份实际用水为x吨,根据题意得:10×2+3(x−10)=2.5×x,解得:x=20.故答案为:20.18.【答案】5cm【考点】一元一次方程的应用——工程进度问题一元一次方程的应用——其他问题【解析】设甲、乙两容器的高度均为xcm,根据将水倒入前后水的体积不变列出方程,解之可得.【解答】设甲、乙两容器的高度均为xcm,根据题意,得:20x=50(x−3),解得:x=5,即甲、乙两容器的高度均为5cm,19.【答案】20cm?【考点】一元一次方程的应用——面积问题【解析】设小长方形的长为xcm,宽为16−x3cm,观察图形即可列出关于x的一元一次方程,解之即可得出x的值,即可求出结论.【解答】设小长方形的长为xcm,宽为16−x3cm,由题意得:2×16−x3+8=x+16−x3解得:x=10所以16−x3=2,…小长方形的面积为20:故答案是:20cm220.【答案】72cm2【考点】一元一次方程的应用——其他问题一元一次方程的应用——工程进度问题【解析】首先根据题意,设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是3cm,第二次剪下的长条的长是(x−3)cm,宽是4cm;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x的值是多少,即可求出每一个长条面积为多少,即可求解.【解答】设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是3cm,第二次剪下的长条的长是(x−3)cm,宽是4cm,则3x=4(x−3),去括号,可得:3x=4x−12,移项,可得:4x−3x=12,解得x=12,3x=3×12=36,36×2=72(cm2)故剪下的长条的面积之和为72cm2.三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】这个班学生共有48人.【考点】一元一次方程的应用——工程进度问题【解析】设这个班学生共有x人,先表示出原来和后来各多少组,其等量关系为后来的比原来的增加了2组,根据此列方程求解.【解答】解:设这个班学生共有x人,根据题意得:x 8=x6−2,解得:x=48,22.【答案】解:(1)设乙车出发x小时后,才能追上甲车,依题意得60×0.5+60x=80x,解得:x=1.5.答:乙车出发1.5小时后,才能追上甲车.(2)设乙车返回时经过y小时与甲车再次相遇,依题意得60y+80y=400−60×(400÷80+0.5)解得:y=0.5.答:乙车经过0.5小时与甲车再次相遇.【考点】一元一次方程的应用——路程问题【解析】此题暂无解析【解答】解:(1)设乙车出发x小时后,才能追上甲车,依题意得60×0.5+60x=80x,解得:x=1.5.答:乙车出发1.5小时后,才能追上甲车.(2)设乙车返回时经过y小时与甲车再次相遇,依题意得60y+80y=400−60×(400÷80+0.5)解得:y=0.5.答:乙车经过0.5小时与甲车再次相遇.23.【答案】李明上次所买书籍的原价为100元.【考点】一元一次方程的应用——工程进度问题【解析】假设原价为x元,即可得出等式方程70%x+20=x−10,求出即可.【解答】解:设原价为x元,根据题意得:70%x+20=x−10,解之得:x=100.24.【答案】什锦糖果的单价应定为每千克12.5元【考点】一元一次方程的应用——其他问题一元一次方程的应用——工程进度问题【解析】此题暂无解析【解答】此题暂无解答25.【答案】解:设这个学校的有x间宿舍,由题意可知:7x+10=8(x−2),解得:x=26,∴这个学校的住宿生为:8×24=192.【考点】一元一次方程的应用——其他问题【解析】设这个学校的有x间宿舍,根据题意列出方程即可求出答案.【解答】解:设这个学校的有x间宿舍,由题意可知:7x+10=8(x−2),解得:x=26,∴这个学校的住宿生为:8×24=192.26.【答案】解:设正方形的边长是xcm,则根据题意得:4x=5(x−4),解得:x=20,则4x=80(cm2),20×20=400(cm2).答:每一长条的面积为80cm2,原正方形的面积为400cm2.【考点】一元一次方程的应用——面积问题【解析】设正方形的边长是xcm,根据“两次剪下的长条面积正好相等”这一等量关系列出方程进而求出未知量即可.【解答】解:设正方形的边长是xcm,则根据题意得:4x=5(x−4),解得:x=20,则4x=80(cm2),20×20=400(cm2).答:每一长条的面积为80cm2,原正方形的面积为400cm2.27.【答案】解:(1)设应按x折销售,则500×(1+50%)×0.1x−500=500×20%,解得x=8.答:应按八折销售.(2)设购买一部手机送y元打车费,由题意,得500×(1+50%)×0.9×100−(100−60)y−500×100−8000=500×15%×100.解得y=50.答:购买一部手机送50元打车费,使售完这批手机后可盈利15%.【考点】一元一次方程的应用——打折销售问题【解析】无无【解答】解:(1)设应按x折销售,则500×(1+50%)×0.1x−500=500×20%,解得x=8.答:应按八折销售.(2)设购买一部手机送y元打车费,由题意,得500×(1+50%)×0.9×100−(100−60)y−500×100−8000=500×15%×100.解得y=50.答:购买一部手机送50元打车费,使售完这批手机后可盈利15%.28.【答案】解:设有x辆车,则有(2x+9)人,依题意得:3(x−2)=2x+9.解得,x=15.∴2x+9=2×15+9=39(人).答:有39人,15辆车.【考点】一元一次方程的应用——调配与配套问题【解析】找准等量关系:人数是定值,列一元一次方程二元一次方程组或可解此题.【解答】解:设有x辆车,则有(2x+9)人,依题意得:3(x−2)=2x+9.解得,x=15.∴2x+9=2×15+9=39(人).答:有39人,15辆车.29.【答案】解:设小明原计划购买文具袋x个,则实际购买了(x+1)个,依题意得:10(x+1)×0.85=10x−17.解得x=17.答:小明原计划购买文具袋17个.【考点】一元一次方程的应用——打折销售问题【解析】设小明原计划购买文具袋x个,则实际购买了(x+1)个,根据对话内容列出方程并解答;【解答】解:设小明原计划购买文具袋x个,则实际购买了(x+1)个,依题意得:10(x+1)×0.85=10x−17.解得x=17.答:小明原计划购买文具袋17个.30.【答案】解:(1)设购买x元商品时,两个商场的实际花费相同.由题意,得200+(x−200)×80%=100+(x−100)×90%,解得x=300.答:当购买300元商品时,两个商场的实际花费相同.(2)当小李购买350元商品时,在甲商场实际花费为:200+(x−200)×80%=200+(350−200)×80%=320(元),在乙商场实际花费为:100+(x−100)×90%=100+(350−100)×90%=325(元),320<325,所以小李选甲商场购物实际花费会少些.【考点】一元一次方程的应用——其他问题一元一次方程的应用——打折销售问题【解析】此题暂无解析【解答】解:(1)设购买x元商品时,两个商场的实际花费相同.由题意,得200+(x−200)×80%=100+(x−100)×90%,解得x=300.答:当购买300元商品时,两个商场的实际花费相同.(2)当小李购买350元商品时,在甲商场实际花费为:200+(x−200)×80%=200+(350−200)×80%=320(元),在乙商场实际花费为:100+(x−100)×90%=100+(350−100)×90%=325(元),320<325,所以小李选甲商场购物实际花费会少些.31.【答案】设A商品卖出去x件,B商品卖出去y件,解得,答:A商品卖出去120件,B商品卖出去80件;∵A商品的售价下调10%,∴A商品的售价为:200×(1−10%)=180(元).∵A商品的销售量增加了2a%,而B商品的销售量增加了a%,∴A商品的销售量为:120(3+2a%)件,B商品的销售量为:80(1+a%)件.依题意得,180×120(8+2a%)+150×80(1+a%)=200×120+150×80+ 14160,化简得,552a=16560,解得,a=30.故所求a的值为30.【考点】一元一次方程的应用——其他问题一元一次方程的应用——工程进度问题【解析】此题暂无解析【解答】此题暂无解答32.【答案】长方形的面积是18m2.【考点】一元一次方程的应用——工程进度问题【解析】首先根据长与宽的关系以及周长得出长与宽的长度,进而得出面积.【解答】解:设长方形的宽为xm,则长为2xm,根据题意得出:2(x+2x)=18,解得:x=3,∴长方形的面积为:3×6=18(m2),33.【答案】做拉花的同学有3人.【考点】一元一次方程的应用——工程进度问题【解析】根据每人做3个还剩1个未做,如果每人做4个则缺少2个做拉花的材料得出等式求出即可.【解答】解:设做拉花的同学有x人,依题意3x+1=4x−2.解得x=3.34.【答案】解:设原正方形边长为xcm.根据题意,得(x+4)(x−1)=x2+20,解得x=8.∴原正方形边长为8cm.【考点】。
一元一次方程组的应用题练习题
一元一次方程组的应用题练习题题目一某商店正在举行促销活动,购买第一件商品打7折,购买第二件商品打8折,购买第三件商品打9折。
小明在这个活动中购买了三件商品,他总共支付了180元。
现在我们来求解每件商品的原价。
假设第一件商品原价为x元,则根据折扣的计算方式,第一件商品实际价格为0.7x元。
同理,第二件商品实际价格为0.8x元,第三件商品实际价格为0.9x元。
根据题意,小明购买了三件商品,总共支付了180元,我们可以列出如下的方程:0.7x + 0.8x + 0.9x = 180为了方便计算,我们可以整理方程:(0.7 + 0.8 + 0.9)x = 1802.4x = 180解方程可得:x = 75所以,第一件商品的原价为75元。
题目二某学校有两个篮球队,A队和B队,每个队有男生和女生共四名队员。
已知A队的男生每人持有x元,女生每人持有y元;B队的男生每人持有z元,女生每人持有w元。
已知A队男生的总金额为48元,女生的总金额为36元;B队男生的总金额为54元,女生的总金额为45元。
现在我们来求解每个队员的个人金额。
根据题意,我们可以列出四个方程:A队男生总金额:x + y + x + y = 48A队女生总金额:x + y + x + y = 36B队男生总金额:z + w + z + w = 54B队女生总金额:z + w + z + w = 45为了方便计算,我们可以整理方程:2x + 2y = 482x + 2y = 362z + 2w = 542z + 2w = 45解方程可得:x = 12, y = 12, z = 18, w = 13所以,A队男生每人持有12元,女生每人持有12元;B队男生每人持有18元,女生每人持有13元。
以上是关于一元一次方程组的应用题的练习题。
希望对你有帮助!。
一元一次方程应用题专项练习附详细答案(自编)
一元一次方程应用题专项调配问题(一)人数调配1.某厂一车间有64人,二车间有56人。
现因工作需要,要求第一车间人数是第二车间人数的一半。
问需从第一车间调多少人到第二车间?2.甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还多15人。
求甲、乙两队原有人数各多少人?3.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。
4.甲班有45人,乙班有39人,现在需要从甲、乙两班各抽调一些同学去参加歌咏比赛。
如果甲班抽调的人数比乙班多1人,那么甲班剩余的人数恰好是乙班剩余人数的2倍。
问从甲、乙两班各抽调了多少人参加歌咏比赛。
5.甲、乙两车间各有工人64人和38人,现需从两车间调出相同数量的工人,使甲车间剩余的人数是乙车间剩余的人数的2倍还多3人,问需要从甲、乙两车间各调出多少工人?6.甲、乙两车间各有工人64人和38人,现需从两车间调出相同数量的工人,使甲车间剩余的人数是乙车间剩余的人数的2倍还多3人,问需要从甲、乙两车间各调出多少工(二)物品调配1、甲车队有15辆汽车,乙车队有28辆汽车,现调来10辆汽车分给两个车队,使甲车队车数比乙车队车数的一半多2辆,应分配到甲乙两车队各多少辆车?2、甲仓库储粮35吨 ,乙仓库储粮19吨,现调粮食15吨,应分配给两仓库各多少吨,才能使得甲仓库的粮食数量是乙仓库的两倍?3、甲、乙两个仓库共有20吨货物,从甲仓库调出101到乙仓库后,甲仓库中的货物比乙仓库中的货物多16吨.问甲、乙两仓库中原来各有多少吨货物?4、学校买来一批练习本,分给三个班.甲班分得的为全部练习本的42%,乙班分到的是甲班的75,丙班分到的比乙班少20本,问共有多少练习本?5、将一批白杨树苗栽在一条马路的两旁,若每隔3米栽一棵,将剩下3棵树苗;若每隔2.5米栽一棵,则还缺77棵树苗.求这条马路的长及这批树苗的棵数.三、分配问题:1.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。
采购烟花,爆竹,年货的初一一元一次方程应用题
采购烟花,爆竹,年货的初一一元一次方程应用题
春节即将来临,某公司计划采购烟花、爆竹和年货。
为了解这个问题,我们可以用一元一次方程来建立数学模型。
假设公司计划采购的烟花数量为x 箱,爆竹数量为y 箱,年货数量为z 箱。
根据题目,我们可以建立以下方程:
1. 采购烟花的总费用是 20x 元(因为每箱烟花20元)。
2. 采购爆竹的总费用是 30y 元(因为每箱爆竹30元)。
3. 采购年货的总费用是 50z 元(因为每箱年货50元)。
4. 公司计划的总预算是 1000 元。
因此,总预算方程可以表示为:20x + 30y + 50z = 1000。
由于采购的烟花、爆竹和年货的数量都是整数,我们需要找到满足这些条件的整数解。
现在我们要来解这个方程,找出 x、y 和 z 的值。
计算结果为: [{x: 10 - y - z/2, z: 2y}]
所以,公司应该采购的烟花数量为:10 - y - z/2 箱,爆竹数量为:y 箱,年货数量为:2y 箱。
一元一次方程经济问题应用题
一元一次方程经济问题应用题1.甲商品的进价是1400元,按标价1700元的九折出售;乙商品的进价是400元,按标价520元的八折出售,则( )A.甲商品获利多B.乙商品获利多C.甲,乙获利一样多D.无法比较2.一件风衣,按成本价提高50%后标价,后因季节关系按标价的八折出售,每件卖180元,这件风衣的成本价是( )A.80元B.100元C.120元D.150元3.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则标价为( )A.26元B.27元C.28元D.29元4.某商场购进某种商品的进价是每件8元,销售价是每件10元.现为了扩大销售量,把每件的销售价降低x%出售,但要求卖出一件商品所获得的利润是降价前所获得的利润的90%,根据题意可列方程为( )A.10(1-x%)-8=(1+90%)×(10-8)B.10(1-x%)-8=90%×(10-8)C.10·x%-8=90%×(10-8)D.10(1-x%)-8=(10-8)÷90%5.某商店有一套运动服,按成本价提高40%进行标价,为了促销,决定打九折,又降价16元,此时这套运动服仍可获利10%,则这套运动服的成本是多少元?若设这套运动服的成本是x 元,根据题意可列方程为( )A.(1+40%)x ∙0.9-16=10%xB.(1+40%)x ∙0.9-16-x=10%xC. (1+40%)x ∙0.9-16=(1+10%)xD. (1+40%)x-16-x=10%x6.某商品提价25%后,欲恢复原价,则应再降价( )A.40% B.25% C.20% D.15%7.“十一期间”某网店推出一系列并行优惠活动:(1)在“十一”期间,网店全部商品九折销售;(2)凡在本网店购物均可享受5%的返利(在成交价的基础上返还5%).小李是该网店的一个店主,他想将商铺中进价为每件350元的羽绒服卖出,且保证在自己承担13元运费的情况下每件获得150元的利润,请问他该如何给这种羽绒服标价?若设这种羽绒服的标价为x 元,根据题意可列方程为( )A.0.9x-5%x-350-13=150B.0.9x(1-5%)-350-13=150C.0.9x5%-350-13=150D.0.9x(1-5%)-350=1508.一件风衣,按成本价提高50%后标价,后因季节关系按标价的8折出售,每件卖180元,这件风衣的成本价是( )A.150元 B.80元 C.100元 D.120元9.某商场卖出两个进价不同的手机,都卖了1200元,其中一个盈利50%,另一个亏本20%,在这次买卖中,这家商场( )A.不赔不赚B.赔100元C.赚100元D.赚360元10.受季节影响,某种商品每件按原售价降10%后又降m 元,现在每件售价为n 元,那么该种商品每件的原售价为( )元.A .()()n m +-%101B .%101-+n m C.%101--m n D .()()n m --%101 11.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( ).A.120元 B .125元 C .135元 D .140元12.爸爸买了年利率为13.96%的三年期债券,到期后,可获得本息共2128.20元,他买债券花了( ).A.1500元 B .1600元 C .1700元 D.1800元13.商场将一批学生书包按成本价提高了50%后标价,又以8折优惠卖出.售价是72元.这种书包成本是多少元?每个书包的利润是多少元?利润率是多少?设这种书包成本为x 元,则:书包标价为_____,按标价打折后的价格________,书包的实际售价__________,由此列出方程_________________,解方程得x =_________,每个书包的成本价是__________元,利润是__________,利润率是__________.14.一只钢笔原价30元,现打8折出售,现售价是 元.15.一个书包,打9折后售价45元,原价 元.16.某件商品进价100元,售价150元,则其利润是 元,利润率是 .17.一件服装进价200元,按标价的8折销售,仍可获利10%,该服装的标价是 元.18.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是 元.19.一年期存款的年利率是2.25%.存入10000元,一年到期后的利息是元.20.小张和小王购进了同一类书,进价都是每本10元.小张按标价15元的8折出售,一天售出1000本书;小王按标价的9折出售,一天售出500本书.问:小张小王一天内的利润分别是多少?21.某商店因换季销售打折商品,如果按定价6折出售,将赔20元,若按定价的8折出售,将赚15元,问:这种商品定价多少元?22.某商店对购买大件商品实行分期付款,明明的爸爸买了一台9000元的电脑,第一个月付款30%,以后每月付款450元,问明明的爸爸还需几个月付清?23.小航在某商店买了8盒某品牌的米粉,几个星期后,该商店的此品牌米粉为了促销让利销售,每盒降低2.4元,于是小航又用上次买米粉同样多的钱比上次多买了2盒,问这种米粉降价前后每盒各多少元?24.某商品的售价为每件900元,为了参与市场竞争,商店按售价的9折再让利40元销售,此时仍可获利10%,此商品的进价是多少?25.某学校七(1)班组织课外活动,准备举行一次羽毛球比赛,于是去商店购买羽毛球拍及羽毛球,每副球拍25元,每个羽毛球2元,甲商店说“买羽毛球拍及球都打9折”,乙商店说“买一副球拍赠送2个羽毛球”.(1)若准备将90元钱全部用于买2副羽毛球拍及羽毛球若干个,问到哪家商店购买更合算?(2)若必须买2副羽毛球拍,则当买多少个羽毛球时到两家商店花钱一样多?。
一元一次方程(二)(通用版)(含答案)
一元一次方程(二)(通用版)试卷简介:行程问题和经济问题一、单选题(共14道,每道7分)1.甲商品的进价是1400元,按标价1700元的九折出售;乙商品的进价是400元,按标价520元的八折出售,则( )A.甲商品获利多B.乙商品获利多C.甲,乙获利一样多D.无法比较答案:A解题思路:甲商品的利润是元,乙商品的利润是元,因此甲商品获利多.试题难度:三颗星知识点:一元一次方程的应用——打折销售2.一件风衣,按成本价提高50%后标价,后因季节关系按标价的八折出售,每件卖180元,这件风衣的成本价是( )A.80元B.100元C.120元D.150元答案:D解题思路:设这件风衣的成本价是x元,根据题意可列方程为:,解得x=150,因此这件风衣的成本价是150元.试题难度:三颗星知识点:一元一次方程的应用——打折销售3.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为( )A.26元B.27元C.28元D.29元答案:C解题思路:设这种电子产品的标价是x元,根据题意列方程得:,解得x=28试题难度:三颗星知识点:一元一次方程的应用——打折销售4.某商场购进某种商品的进价是每件8元,销售价是每件10元.现为了扩大销售量,把每件的销售价降低x%出售,但要求卖出一件商品所获得的利润是降价前所获得的利润的90%,根据题意可列方程为( )A.10(1-x%)-8=(1+90%)×(10-8)B.10(1-x%)-8=90%×(10-8)C.10·x%-8=90%×(10-8)D.10(1-x%)-8=(10-8)÷90%答案:B解题思路:利润=售价-成本,可知降价前的利润是(10-8)元,降价后的利润是10(1-x%)-8,根据题意可列方程为:10(1-x%)-8=90%×(10-8),故选B试题难度:三颗星知识点:一元一次方程的应用——打折销售5.某商店有一套运动服,按成本价提高40%进行标价,为了促销,决定打九折,为了吸引更多顾客又降价16元,此时这套运动服仍可获利10%,则这套运动服的成本是多少元?若设这套运动服的成本是x元,根据题意可列方程为( )A. B.C. D.答案:B解题思路:由题知这套运动服的售价是,利润是10%x,根据利润=售价-成本,可列方程为试题难度:三颗星知识点:一元一次方程的应用——打折销售6.某商品提价25%后,欲恢复原价,则应再降价( )A.40%B.25%C.20%D.15%答案:C解题思路:设商品的价格为a,欲恢复原价,则应再降价x,提价后价格为(1+25%)a,根据题意可列等式,可求得x=20%,故选C试题难度:三颗星知识点:一元一次方程的应用——打折销售7.网络购物方便快捷,逐渐成为人们日常购物的一种重要方式.“十一期间”某网店推出一系列并行优惠活动:(1)在“十一”期间,网店全部商品九折销售;(2)凡在本网店购物均可享受5%的返利(在成交价的基础上返还5%).小李是该网店的一个店主,他想将商铺中进价为每件350元的羽绒服卖出,且保证在自己承担13元运费的情况下每件获得150元的利润,请问他该如何给这种羽绒服标价?若设这种羽绒服的标价为x元,根据题意可列方程为( )A. B.C. D.答案:B解题思路:设这种羽绒服的标价为x元,在“十一”期间的售价为,成本为(350+13)元,利润为150元,由售价-成本=利润得:,故选B 试题难度:三颗星知识点:一元一次方程的应用——打折销售8.小黄骑自行车从A地到B地,小周骑自行车从B地到A地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距35 km,到中午12时,两人又相距70 km.则A,B两地间的距离为( )A.35kmB.70 kmC.105 kmD.140 km答案:D解题思路:设两地之间的距离是xkm,根据题意列方程为:,解得x=140,故选D试题难度:三颗星知识点:行程问题9.甲、乙两船航行于A,B两地之间,由A地到B地航速为35千米/时,由B地到A地航速为25千米/时,现甲船由A地开往B地,乙船由B地开往A地,甲船先航行2小时,两船在距B地120千米处相遇,求两地的距离.若设两地的距离为x千米,根据题意可列方程为( )A. B.C. D.答案:A解题思路:两船在距B地120千米处相遇,所以甲船走的距离为(x-120)千米,乙走路程为120千米,甲先走2小时,根据时间相等列等式:,故选A试题难度:三颗星知识点:行程问题10.A,B两城相距720km,普快列车从A城出发行进120km后,特快列车从B城出发开往A城,特快列车出发6h后两车相遇,若普快列车的速度是特快列车速度的,且设普快列车的速度为xkm/h,则下面所列方程正确的是( )A. B.C. D.答案:C解题思路:根据题意,由公式:路程=速度×时间可得,变形得,故选C试题难度:三颗星知识点:行程问题11.一列火车通过450米长的山洞用了23秒,经过一位站在铁路边的扳道工人用了8秒,求这列火车的长度.若设这列火车的长度为x米,根据题意可列方程为( )A. B.C. D.答案:C解题思路:火车通过山洞所行的路程是(450+x)米,经过工人所行的路程是x米,由于火车的速度不变,由公式:速度=路程÷时间可得,故选C试题难度:三颗星知识点:行程问题12.小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.若设小华去时走平路的时间为x分,则下面所列方程正确的是( )A. B.C. D.答案:D解题思路:小明从家到学校走的是平路和下坡,从学校到家走的是上坡和平路,由题可知小明下坡所用的时间是(10-x)分钟,小明上坡所用的时间是(15-x)分钟,由于路程相等,因此可列方程为,故答案选D试题难度:三颗星知识点:行程问题13.一客车以60千米/小时的速度从甲地出发驶向乙地,经过45分钟后,一辆小汽车以每小时比客车快10千米的速度从乙地出发驶向甲地.若两车刚好在甲、乙两地的中点相遇,若设甲、乙两地的距离为x千米,依题意可列方程为( )A. B.C. D.答案:B解题思路:由题知客车和汽车行驶的路程都是,而行驶同样的路程,客车比汽车多用个小时,根据题意可列方程为,故选B试题难度:三颗星知识点:行程问题14.小明骑自行车到郊外游玩,有一辆农用车在小明前方200米处与小明相向行进,小明骑自行车的速度为4米/秒,农用车行驶的速度为6米/秒,经测算,当人距离农用车20米时可受到噪声的影响.若小明和农用车继续保持原来的速度和方向行进,小明受到农用车噪声的影响会持续多长时间?若设小明受到农用车噪声的影响持续时间为x秒,根据题意可列方程为( )A. B.C. D.答案:A解题思路:设持续x秒,由题意知,当人距离农用车20米内可受到噪声的影响,两人相向而行,相遇前两人相距20米时小明开始受到噪音影响,相遇后两人相背而行,再次距离20米时,小明开始远离噪音影响,共走路程40米,根据题意列式:,故选A 试题难度:三颗星知识点:行程问题。
一元一次方程经典应用题(有答案)
应用题专题训练知能点1:市场经济、打折销售问题 (1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?解:设标价是x 元,80%604060100x -=解之:x =105 (元)优惠价为),(8410510080%80元=⨯=x2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?解:设进价为x 元,80%x (1+40%)— x =15x =125(元) 答:进价是125元。
3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?解:设进价是x 元,50)45.01(108=-+⨯x x解之:x =312.5 (元) 答:进价是312.5元。
4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.解:设至多打x 折,根据题意有1200800800x -×100%=5%解得x =0.7=70%答:至多打7折出售.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.解:设每台彩电的原售价为x 元,根据题意,有 10[x (1+40%)×80%-x ]=2700 解得 x =2250答:每台彩电的原售价为2250元.知能点2:工程问题工作量=工作效率×工作时间6. 一件工作,甲独作10天完成,乙独作8天完成,两人合作几天完成?解:甲独作10天完成,说明的他的工作效率是,101乙的工作效率是,81等量关系是:甲乙合作的效率×合作的时间=1 解:设合作x 天完成, 依题意得方程 9401)81101(==+x x 解得 答:两人合作940天完成7. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?[分析]设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。
一元一次方程的应用专项练习(经济问题与行配套问题)
一元一次方程的应用(经济问题与行配套问题)一.选择题(共20小题)1.今年双11狂欢节,小区超市的部分商品也搞了促销活动,一袋标价130元的大米,按照九折销售仍可获利13元,设这袋大米的成本为x元,根据题意,下面所列的方程正确的是()A.130×0.9﹣x=13B.(130﹣x)×0.9﹣x=13C.x﹣=13D.(130﹣x)×0.9=x﹣132.某种商品每件的进价为80元,标价为120元,为了拓展销路,商店准备打折销售,若使利润率为20%,设商店打x折销售,则依题意得到的方程是()A.120×﹣80=120×20%B.120x﹣80=120×20%C.120×﹣80=80×20%D.120x﹣80=80×20%3.小王去早市为餐馆选购蔬菜,他指着标价为每千克5元的豆角问摊主:“这豆角能便宜吗?”摊主说:“多买按八折,你要多少千克?”小王报了质量后,摊主同意按八折卖给小王,并说:“之前有一个人只比你少买5kg就是按标价,还比你多花了10元呢!”小王购买豆角的质量是()A.25kg B.2.20kg C.30kg D.35kg4.某甜品铺子正在热销一种“脏脏面包”,其标价为每个12元,打8折销售后每个可获利3元,该面包的进价为()A.6.4元B.6.5元C.6.6元D.6.7元5.某商场为促销对顾客实行优惠,规定:(1)如一次性购物不超过200元,则不予优惠;(2)如一次性购物超过200元,但不超过500元的,按标价给予9折优惠;(3)如一次性购物超过500元的,其中500元按(2)给予优惠,超过500元的部分则给予8折优惠.某人两次购物,分别付款160元与360元,如果他一次性购买这些商品,则应付()A.468元B.498元C.504元D.520元6.某家具的标价为132元,若降价以九折出售(优惠10%)仍可获利10%(相对于进货价),则该家具的进货价是()A.118元B.108元C.106元D.105元7.某店将一新款羽绒服先按进价提高60%进行标价,再打八折出售,结果每件仍可获利56元.设这款羽绒服每件进价为x元,则根据题意可列出方程为()A.(1+60%)x×80%﹣x=56B.60%x×80%=56C.(1+60%)x×(1﹣80%)﹣x=56D.60%x×(1﹣80%)=568.互联网“微商”经营已经成为大众创业的一种新途径,某互联网平台上一件商品的标价为200元,按标价的六折销售,仍可获利20%,则这件商品的进价为()A.80元B.90元C.100元D.110元9.一件毛衣先按成本提高50%标价,再以8折出售,获利70元,求这件毛衣的成本是多少元,若设成本是x元,可列方程为()A.0.8x+70=(1+50%)x B.0.8 x﹣70=(1+50%)xC.x+70=0.8×(1+50%)x D.x﹣70=0.8×(1+50%)x10.一商店以每件75元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则该商店卖这两件商品总的盈亏情况是()A.亏损10元B.盈利10元C.亏损20元D.不盈不亏11.和宏家具厂生产由一个桌面和三条桌腿组成休闲茶桌,该厂共有27名工人,每人每天可生产5张桌面或12条桌腿,若分配x名工人生产桌面,其它工人生产桌腿,每天生产的桌面和桌腿恰好配套,下面所列方程正确的是()A.3×12x=5(27﹣x)B.5x=3×12(27﹣x)C.12x=3×5(27﹣x)D.3×5x=12(27﹣x)12.某工厂用硬纸生产圆柱形茶叶筒.已知该工厂有44名工人,每名工人每小时可以制作筒身50个或制作筒底120个.要求一个筒身配两个筒底,设应该分配x名工人制作筒身,其它工人制作筒底,使每小时制作出的筒身与筒底刚好配套,则可列方程为()A.2×120(44﹣x)=50x B.2×50(44﹣x)=120xC.120(44﹣x)=2×50x D.120(44﹣x)=50x13.某车间有21名工人生产螺栓和螺母,每人每小时能生产螺栓12个或螺母18个,现分配x名工人生产螺栓,其余的工人生产螺母,并使得每小时生产的螺栓和螺母可按1:2配套,则所列方程为()A.12x=18(21﹣x)B.2×12x=18(21﹣x)C.2×18x=12(21﹣x)D.12x=2×18(21﹣x)14.某车间有28名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓24个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.24x=16(28﹣x)B.16x=24(28﹣x)C.2×16x=24(28﹣x)D.2×24x=16(28﹣x)15.用200张彩纸制作圆柱,每张彩纸可制作圆柱侧面20个或底面60个,一个圆柱侧面与两个底面组成一个圆柱.为使制作的圆柱侧面和底面正好配套,设把x张彩纸制作圆柱侧面,则方程可列为()A.60x=20(200﹣x)B.20x=2×60(200﹣x)C.2×60x=20(200﹣x)D.2×20x=60(200﹣x)16.某车间有18名工人生产螺栓和螺母,每人每小时平均能生产螺栓24个或螺母36个,1个螺栓需要配2个螺母,若安排m名工人生产螺栓时每小时生产的螺栓和螺母刚好配套,那么可列方程为()A.24×m=36×(18﹣m)×2B.24×(18﹣m)=36×m×2C.24×m×2=36×(18﹣m)D.24×(18﹣m)×2=36×m17.某车间21名工人生产螺栓和螺母,每人每天平均生产螺栓4个或螺母6个.现有x名工人生产螺栓,其他工人生产螺母,恰好每天生产的螺栓和螺母按1:2配套,为求x列出的方程正确的是()A.2×4(21﹣x)=6x B.2×6x=4(21﹣x)C.2×4x=6(21﹣x)D.4x=2×6(21﹣x)18.某车间有22名工人,每人每天可以生产600个螺钉或1000螺母.1个螺钉配两个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?设有x 名工人生产螺钉,可列方程为()A.2×600x=1000(22﹣x)B.2×1000x=600(22﹣x)C.600x=2×1000(22﹣x)D.1000x=2×600(22﹣x)19.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120张,或长方形铁片80张.将圆形铁片2张和长方形铁片1张可配套做成一个密封圆桶.问如何安排工人生产圆形铁片或长方形铁片,能合理的将铁片配套?设安排x人生产圆形铁片,则可列方程为()A.120x=2×80(42﹣x)B.2×120x=80(42﹣x)C.80x=2×120(42﹣x)D.2×80x=120(42﹣x)20.某眼镜厂车间有28名工人,每个工人每天生产镜架60个或者镜片90片,为使每天生产的镜架和镜片刚好配套.设安排x名工人生产镜片,则可列方程()A.60(28﹣x)=90x B.60x=90(28﹣x)C.2×60(28﹣x)=90x D.60(28﹣x)=2×90x二.填空题(共12小题)21.一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售20件的销售额,与按这种服装每件的标价降低27元销售25件的销售额相等.则这种服装每件的标价是元.22.某商店以每件800元购进一种商品,如果将该商品按标价的打八折出售,那么该商品的利润率为15%.设这种商品的标价是x元,则可列方程为.23.小敏把一商品按标价的九折出售(即优惠10%),仍可获利30元,若这种商品的进价为60元,则该商品的标价为元.24.某件家用电器进价2000元,若按标价打8折销售该件电器,可获利润400元,则这件电器的标价是元.25.某服装店将每件进价80元的服装按进价提高50%后标价,然后以九折销售,则售出每件服装可获利元.26.某商品随季节变化降价出售,如果按标价降价10%,仍可盈利40元.如果降价后再九折出售,就要亏损14元,则这件商品的标价是元.27.某车间每天能制作甲种零件350只,或制作乙种零件150只,甲乙两种零件各一只配成一套产品,现要在30天内制作最多的成套产品,则制作甲零件需要的天数是.28.现用110立方米木料制作桌子和椅子,已知1张桌子配6把椅子,1立方米木料可做5把椅子或1张桌子,要使桌子和椅子刚好配套.设用x立方米的木料做桌子,则依题意可列方程为.29.用白铁皮制作罐头盒,每张铁皮可制盒身16个,或盒底48个,一个盒身与两个盒底配成一个罐头盒,现有100张铁皮,用张铁皮制作盒身,正好使得这100张铁皮制作出来的盒身和盒底全部配套.30.某校食堂有甲、乙、丙三种套餐,为了解哪种套餐更受欢迎,学校调查了该校的全体学生,其中喜欢甲、乙、丙三种套餐的人数比为2:5:3,若选择甲套餐的有180名学生,则这个学校有名学生.31.为支持武汉抗击疫情,全国各地加班加点为前线医护人员提供防护面罩和防护服.某车间有30名工人,每人每天生产防护服160件或防护面罩240个,一件防护服和一个防护面罩配成一套,若分配x名工人生产防护服,其他工人生产防护面罩,恰好使每天生产的防护服和防护面罩配套,则所列方程是.32.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,根据题意可列方程得.三.解答题(共18小题)33.某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应的返还金额.根据上述促销方案,顾客在该商场购物可以获得双重优惠,例如:若购买标价为400元的商品,则消费金额为320元,获得的优惠额为400×(1﹣80%)+30=110(元).(1)购买一件标价为1000元的商品,顾客获得的优惠额是多少?(2)如果某顾客消费金额在500﹣600范围内,且获得的优惠额为226元,那么该商品的标价为多少元?34.惠民超市“十一”大酬宾,对顾客实行优惠购物,规定如下:若顾客一次性购物不超过200元,则不予优惠;若顾客一次性购物超过200元,但不超过500元,则按标价给予九折优惠;若顾客一次性购物超过500元,其中500元按上述给予九折优惠,超过500元的部分给予八折优惠.(1)刘阿姨在该超市购买了一台标价750元的吸尘器,她应付多少元?(2)何叔叔先后两次去该超市购物,分别付款189和554元,如果何叔叔一次性购买,只需要付款多少元?35.文峰文具店分两次购进一款礼品盲盒共70盒,总共花费960元,已知第一批盲盒进价为每盒15元,第二批盲盒进价为每盒12元.(1)文具店老板计划将每盒盲盒标价20元出售,销售完第一批盲盒后,再打八折销售完第二批盲盒,按此计划该老板总共可以获得多少利润?(2)在实际销售中,该文具店老板在以(1)中标价销售完m盒后,决定搞一场促销活动,尽快清理库存.老板先将标价提高到每盒40元,再推出活动:购买两盒,第一盒七折,第二盒半价,不单盒销售.售完所有盲盒该老板共获利600元,求m的值.36.今年恰逢中国共青团建团100周年,小华积极参与社会实践并为留守儿童捐赠了一盒画笔.已知一盒画笔标价28元,现正在打折促销,支付时还可以减1元,小华实际支付了17.2元,请用列方程的方法计算出该盒画笔打几折.37.某水果店标价为10元/kg的某种水果经过两次降价且两次降价的百分率都是10%,请回答下列问题:(1)该水果经过两次降价后的价格是元/kg;(2)从第二次降价的第1天算起,第x天(x为整数)的销量及储藏和损耗费用的相关信息如下表所示,已知该水果的进价为4.1元/kg,设销售该水果第x天(1≤x<10)的利润为368元,求x的值.38.2022年春节来临之际,各大商场都进行了促销活动.某商场将某品牌的电视机按进价提高60%作为标价,然后以“九折酬宾,再返现金200元”的优惠进行促销,结果该品牌电视机每台仍可获利460元.求该品牌电视机每台的进价.39.北京冬奥会花样滑冰双人滑比赛中,中国队隋文静、韩聪圆梦夺金,获得中国代表团本届冬奥会第九金!某商场看准商机,需订购一批冰刀鞋,现有甲、乙两个供应商,均标价每双8元.为了促销,甲说:“凡来我店进货一律九折.”乙说:“如果超出60双,则超出的部分打八折”.(1)购进多少双时,去两个供应商处的进货价钱一样多?(2)第一次购进了100双,第二次购进的数量比第一次的2倍多10双,如果你是商场的经理请设计一种购买方案,使得两次总进货价最少,并计算出总进货价为多少元?40.某单位计划“双12期间”购进一批手写板,网上某店铺的标价为900元/台,优惠活动如下:(1)①若该单位购买了16台这种手写板,花了元;②若该单位购买了x(x>20)台这种手写板,花了元;(用含x的代数式表示)(2)若该单位购买的这种手写板均价为696元,求他们购买的数量.41.某商场开展春节促销活动出售A、B两种商品,活动方案如下两种:(1)某单位购买A商品30件,B商品20件,选用何种方案划算?能便宜多少钱?(2)某单位购买A商品x件(x为正整数),购买B商品的件数是A商品件数的2倍少1件,若两方案的实际付款一样,求x的值.42.某车间有技术工人50人,平均每天每人可加工甲种部件18个或乙种部件14个,1个甲种部件和2个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?43.油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人;每个工人平均每小时可以生产圆形铁片120片或长方形铁片80片;一个油桶由2个圆形铁片和一个长方形铁片组成;如何安排工人,使生产的圆形铁片和长方形铁片刚好配套.44.在手工制作课上,老师组织七年级2班的学生用硬纸制作圆柱形茶叶筒.七年级2班共有学生50人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身40个或剪筒底120个.(1)七年级2班有男生、女生各多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,要求一个筒身配两个筒底,那么男生应向女生支援多少人时,才能使每小时剪出的筒身与筒底配套.45.某车间每天能制作甲种零件400只,或者制作乙种零件200只,1只甲种零件需要和3只乙种零件配成一套.现要在49天内制作最多的成套产品,则甲乙两种零件各应制作多少天.46.某生产教具的厂家准备生产正方体教具,教具由塑料棒和金属球组成(一条棱用一根塑料棒,一个顶点由一个金属球镶嵌),安排一个车间负责生产这款正方体教具,该车间共有34名工人,每个工人每天可生产塑料棒100根或金属球75个,如果你是车间主任,你会如何分配工人成套生产正方体教具?47.某医疗器械企业计划购进20台机器生产口罩,已知生产口罩面的机器每台每天的产量为12000个,生产耳挂绳的机器每台每天的产量为96000个,口罩是一个口罩面和两个耳挂绳构成,为使每天生产的口罩面和耳挂绳刚好配套,该企业应分别购进生产口罩面和生产耳挂绳的机器各多少台?48.有蓝色和黑色两种布料,其中蓝布料每米30元,黑布料每米50元.(1)若花了5400元买两种布料共136米,两种布料各买了多少米?(2)用蓝布料做上衣,每件上衣需要布料1.5米,用黑布料做裤子,每条裤子需要布料1.2米,一件上衣和一条裤子配成一套.购买这两种布料共162米做上衣和裤子,布料全部用完,且做的上衣和裤子刚好完全配套,购买这162米布料花了多少元?49.某工厂有28名工人生产A零件和B零件,每人每天可生产A零件18个或B零件12个(每人每天只能生产一种零件),一个A零件配两个B零件.工厂将零件批发给商场时,每个A零件可获利10元,每个B零件可获利5元.(1)若每天生产的A零件和B零件恰好配套,求该工厂每天有多少工人生产A零件?(2)因市场需求,该工厂每天在生产配套的零件外,还要多生产出一部分A零件供商场零售.在(1)的人员分配情况下,现从生产B零件的工人中调出多少名工人生产A零件,才能使每天生产的零件全部批发给商场后总获利为3120元?50.2020年为了应对武汉新冠肺炎疫情,需要快速建立医院,某车间连夜加班生产医用设备,现共有60个工人可以生产甲、乙两种零件,每人每天平均能生产甲种零件24个或乙种零件12个,已知每2个甲种零件和每3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?3.4 一元一次方程的应用(经济问题与行配套问题)参考答案与试题解析一.选择题(共20小题)1.今年双11狂欢节,小区超市的部分商品也搞了促销活动,一袋标价130元的大米,按照九折销售仍可获利13元,设这袋大米的成本为x元,根据题意,下面所列的方程正确的是()A.130×0.9﹣x=13B.(130﹣x)×0.9﹣x=13C.x﹣=13D.(130﹣x)×0.9=x﹣13【分析】利用利润=标价×折扣率﹣成本价,即可得出关于x的一元一次方程,此题得解.【解答】解:依题意得:130×0.9﹣x=13.故选:A.2.某种商品每件的进价为80元,标价为120元,为了拓展销路,商店准备打折销售,若使利润率为20%,设商店打x折销售,则依题意得到的方程是()A.120×﹣80=120×20%B.120x﹣80=120×20%C.120×﹣80=80×20%D.120x﹣80=80×20%【分析】设商店应打x折,根据利润=售价﹣进价,即可得出关于x的一元一次方程.【解答】解:设商店应打x折,依题意得120×﹣80=80×20%,故选:C.3.小王去早市为餐馆选购蔬菜,他指着标价为每千克5元的豆角问摊主:“这豆角能便宜吗?”摊主说:“多买按八折,你要多少千克?”小王报了质量后,摊主同意按八折卖给小王,并说:“之前有一个人只比你少买5kg就是按标价,还比你多花了10元呢!”小王购买豆角的质量是()A.25kg B.2.20kg C.30kg D.35kg【分析】根据“之前有一个人只比你少买5kg就是按标价,还比你多花了10元呢!”列方程求解.【解答】解:设小王购买豆角x kg,根据题意得:5×0.8x+10=5(x﹣5),解得:x=35,故选:D.4.某甜品铺子正在热销一种“脏脏面包”,其标价为每个12元,打8折销售后每个可获利3元,该面包的进价为()A.6.4元B.6.5元C.6.6元D.6.7元【分析】设该面包的进价为x元,根据利润=售价﹣成本,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设该面包的进价为x元,依题意得:12×0.8﹣x=3,解得:x=6.6.故选:C.5.某商场为促销对顾客实行优惠,规定:(1)如一次性购物不超过200元,则不予优惠;(2)如一次性购物超过200元,但不超过500元的,按标价给予9折优惠;(3)如一次性购物超过500元的,其中500元按(2)给予优惠,超过500元的部分则给予8折优惠.某人两次购物,分别付款160元与360元,如果他一次性购买这些商品,则应付()A.468元B.498元C.504元D.520元【分析】由于此人两次购物,分别付款160元与360元.根据商场的优惠规定,可知第一次付款160元没有享受优惠,即没有打折,第二次享受优惠,并且根据已知条件得到只享受九折优惠,然后根据已知条件即可确定实际购物的款数.【解答】解:∵此人两次购物,分别付款160元与360元,∴第一次付款160元没有享受优惠,即没有打折,第二次享受优惠,设第二次实际购物款为x元,而500×0.9=450>360,∴0.9x=360,∴x=400,所以此人两次去该超市购物实际购物的款数为160+400=560(元),∴在他决定一次性购买分两次购买的物品,他需付款500×0.9+60×0.8=498(元).6.某家具的标价为132元,若降价以九折出售(优惠10%)仍可获利10%(相对于进货价),则该家具的进货价是()A.118元B.108元C.106元D.105元【分析】根据售价﹣进价=利润,可以列出相应的方程,然后求解即可.【解答】解:设该家具的进货价是x元,132×0.9﹣x=10%x,解得x=108,即该家具的进货价是108元,故选:B.7.某店将一新款羽绒服先按进价提高60%进行标价,再打八折出售,结果每件仍可获利56元.设这款羽绒服每件进价为x元,则根据题意可列出方程为()A.(1+60%)x×80%﹣x=56B.60%x×80%=56C.(1+60%)x×(1﹣80%)﹣x=56D.60%x×(1﹣80%)=56【分析】设这款羽绒服每件进价为x元,则标价为(1+60%)x元,根据销售价格﹣进价=利润,即可得出关于x的一元一次方程,此题得解.【解答】解:设这款羽绒服每件进价为x元,则标价为(1+60%)x元,依题意得:(1+60%)x×80%﹣x=56.故选:A.8.互联网“微商”经营已经成为大众创业的一种新途径,某互联网平台上一件商品的标价为200元,按标价的六折销售,仍可获利20%,则这件商品的进价为()A.80元B.90元C.100元D.110元【分析】设这件商品的进价为x元,根据利润=销售价格﹣进价,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这件商品的进价为x元,根据题意得:200×0.6﹣x=20%x,解得:x=100.答:这件商品的进价为100元.9.一件毛衣先按成本提高50%标价,再以8折出售,获利70元,求这件毛衣的成本是多少元,若设成本是x元,可列方程为()A.0.8x+70=(1+50%)x B.0.8 x﹣70=(1+50%)xC.x+70=0.8×(1+50%)x D.x﹣70=0.8×(1+50%)x【分析】根据售价的两种表示方法解答,关系式为:标价×80%=成本+70,把相关数值代入即可.【解答】解:标价为:(1+50%)x八折出售的价格为:0.8×(1+50%)x;可列方程为:x+70=0.8×(1+50%)x.故选:C.10.一商店以每件75元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则该商店卖这两件商品总的盈亏情况是()A.亏损10元B.盈利10元C.亏损20元D.不盈不亏【分析】设盈利的商品的进价为x元,亏损的商品的进价为y元,根据销售收入﹣进价=利润,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再由两件商品的销售收入﹣成本=利润,即可得出商店卖这两件商品总的亏损10元.【解答】解:设盈利的商品的进价为x元,亏损的商品的进价为y元,根据题意得:75﹣x=25%x,75﹣y=﹣25%y,解得:x=60,y=100,∴75+75﹣60﹣100=﹣10(元).故选:A.11.和宏家具厂生产由一个桌面和三条桌腿组成休闲茶桌,该厂共有27名工人,每人每天可生产5张桌面或12条桌腿,若分配x名工人生产桌面,其它工人生产桌腿,每天生产的桌面和桌腿恰好配套,下面所列方程正确的是()A.3×12x=5(27﹣x)B.5x=3×12(27﹣x)C.12x=3×5(27﹣x)D.3×5x=12(27﹣x)【分析】设分配x名工人生产桌面,则分配(27﹣x)名工人生产桌腿,根据生产的桌腿数量是桌面数量的3倍,即可得出关于x的一元一次方程,此题得解.【解答】解:设分配x名工人生产桌面,则分配(27﹣x)名工人生产桌腿,故选:D.12.某工厂用硬纸生产圆柱形茶叶筒.已知该工厂有44名工人,每名工人每小时可以制作筒身50个或制作筒底120个.要求一个筒身配两个筒底,设应该分配x名工人制作筒身,其它工人制作筒底,使每小时制作出的筒身与筒底刚好配套,则可列方程为()A.2×120(44﹣x)=50x B.2×50(44﹣x)=120xC.120(44﹣x)=2×50x D.120(44﹣x)=50x【分析】根据题意可知:筒身的数量×2=筒底的数量,然后列出方程即可.【解答】解:设应该分配x名工人制作筒身,则有(44﹣x)名工人制作筒底,由题意可得:2×50x=120(44﹣x),故选:C.13.某车间有21名工人生产螺栓和螺母,每人每小时能生产螺栓12个或螺母18个,现分配x名工人生产螺栓,其余的工人生产螺母,并使得每小时生产的螺栓和螺母可按1:2配套,则所列方程为()A.12x=18(21﹣x)B.2×12x=18(21﹣x)C.2×18x=12(21﹣x)D.12x=2×18(21﹣x)【分析】设分配x名工人生产螺栓,则(21﹣x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.【解答】解:设分配x名工人生产螺栓,则(21﹣x)名生产螺母,∵要使每天生产的螺栓和螺母按1:2配套,每人每天能生产螺栓12个或螺母18个,∴可得2×12x=18(21﹣x).故选:B.14.某车间有28名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓24个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.24x=16(28﹣x)B.16x=24(28﹣x)C.2×16x=24(28﹣x)D.2×24x=16(28﹣x)【分析】设分配x名工人生产螺栓,则分配(28﹣x)名工人生产螺母,根据生产的螺母数量为螺栓的2倍,即可得出关于x的一元一次方程,此题得解.【解答】解:设分配x名工人生产螺栓,则分配(28﹣x)名工人生产螺母,故选:D.15.用200张彩纸制作圆柱,每张彩纸可制作圆柱侧面20个或底面60个,一个圆柱侧面与两个底面组成一个圆柱.为使制作的圆柱侧面和底面正好配套,设把x张彩纸制作圆柱侧面,则方程可列为()A.60x=20(200﹣x)B.20x=2×60(200﹣x)C.2×60x=20(200﹣x)D.2×20x=60(200﹣x)【分析】根据“每张彩纸可制作圆柱侧面20个或底面60个”列方程即可.【解答】解:把x张彩纸制作圆柱侧面,则制作底面为(200﹣x)张,由题意可得:2×20x=60(200﹣x).故选:D.16.某车间有18名工人生产螺栓和螺母,每人每小时平均能生产螺栓24个或螺母36个,1个螺栓需要配2个螺母,若安排m名工人生产螺栓时每小时生产的螺栓和螺母刚好配套,那么可列方程为()A.24×m=36×(18﹣m)×2B.24×(18﹣m)=36×m×2C.24×m×2=36×(18﹣m)D.24×(18﹣m)×2=36×m【分析】由车间的人数及安排生产螺栓的人数,可得出安排(18﹣m)名工人生产螺母,根据生产螺母的总数是生产螺栓总数的2倍,即可得出关于m的一元一次方程,此题得解.【解答】解:∵该车间有18名工人生产螺栓和螺母,且安排m名工人生产螺栓,∴安排(18﹣m)名工人生产螺母.依题意得:24×m×2=36×(18﹣m).故选:C.17.某车间21名工人生产螺栓和螺母,每人每天平均生产螺栓4个或螺母6个.现有x名工人生产螺栓,其他工人生产螺母,恰好每天生产的螺栓和螺母按1:2配套,为求x列出的方程正确的是()A.2×4(21﹣x)=6x B.2×6x=4(21﹣x)C.2×4x=6(21﹣x)D.4x=2×6(21﹣x)【分析】要列方程首先要根据题意找出题中存在的等量关系:每天生产的螺母=每天生产的螺栓的2倍,从而列出方程.【解答】解:设x名工人生产螺栓,则生产螺母的工人为(21﹣x)名.根据题意得:2×4x=6(21﹣x),故选:C.18.某车间有22名工人,每人每天可以生产600个螺钉或1000螺母.1个螺钉配两个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?设有x 名工人生产螺钉,可列方程为()A.2×600x=1000(22﹣x)B.2×1000x=600(22﹣x)C.600x=2×1000(22﹣x)D.1000x=2×600(22﹣x)【分析】设分配x名工人生产螺钉,则(22﹣x)人生产螺母,由1个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【解答】解:设安排x名工人生产螺钉,则(22﹣x)人生产螺母,由题意得:2×600x=1000(22﹣x),故选:A.19.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120张,或长方形铁片80张.将圆形铁片2张和长方形铁片1张可配套做成一个密封圆桶.问如何安排工人生产圆形铁片或长方形铁片,能合理的将铁片配套?设安排x人生产圆形铁片,则可列方程为()A.120x=2×80(42﹣x)B.2×120x=80(42﹣x)C.80x=2×120(42﹣x)D.2×80x=120(42﹣x)【分析】设安排x人生产圆形铁片,则安排(42﹣x)人生产长方形铁片,根据生产的圆形铁片的数量是长方形铁片的2倍,即可得出关于x的一元一次方程,此题得解.【解答】解:设安排x人生产圆形铁片,则安排(42﹣x)人生产长方形铁片,依题意,得120x=2×80(42﹣x).故选:A.20.某眼镜厂车间有28名工人,每个工人每天生产镜架60个或者镜片90片,为使每天生产的镜架和镜片刚好配套.设安排x名工人生产镜片,则可列方程()A.60(28﹣x)=90x B.60x=90(28﹣x)C.2×60(28﹣x)=90x D.60(28﹣x)=2×90x【分析】设安排x名工人生产镜片,则(28﹣x)人生产镜架,根据2个镜片和1个镜架恰好配一套,列方程即可.。
初中数学一元一次方程应用题
初中数学一元一次方程应用题
以下是一个初中数学一元一次方程的应用题,供参考:某工厂生产某种零件,每天需要生产100个零件才能满足市场需求。
已知生产1个零件需要2个小时的工时,每个零件的售价为5元。
如果该工厂每天工作8小时,那么该工厂每天的利润是多少元?
解法:
设该工厂每天生产x个零件,则根据题意可列出方程:x = 100
将x代入每个零件的售价,得到每天的利润为:
y = x·5 = 100×5 = 500元
因此,该工厂每天的利润为500元。
解析:
该应用题要求求该工厂每天的利润,可以通过已知条件列出方程,并求解得到x的值,再根据每个零件的售价计算每天的利润。
在解题过程中需要注意,每天工作8小时并不影响每天的生产量x,因为每天需要生产100个零件才能满足市场需求。
一元一次方程应用题(含答案解析)
一元一次方程应用题(含答案解析)一元一次方程应用题知能点1:市场经济、打折销售问题×100%(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,?经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,?但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,?在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50?元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1?分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。
超经典一元一次方程中考应用题专练(含答案).doc
第六章一元一次方程(应用题)专练(2) 如不使用分时电价结算, 5 月份小明家将多支付电费多少元1.某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率.6.一件商品按成本价提高 20%后标价,又以 9折销售,售价为 270 元,则这件商品的成本价是多少2.京津城际铁路将于2008 年 8 月 1 日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了 6 分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40 千米,那么这次试车时由北京到天津的平均速度是每小时多少千米解:3.某足球比赛的计分规则为胜一场得 3 分,平一场得 1分,负一场得 0 分.一个队踢 14场球负 5 场共得19 分,问这个队胜了几场4.芜湖供电公司分时电价执行时段分为平、谷两个时段,平段为8:00~22:00, 14 小时,谷段为22: 00~ 次日 8: 00,10 小时.平段用电价格在原销售电价基础上每千瓦时上浮0. 03 元,谷段电价在原销售电价基础上每千瓦时下浮元,小明家 5 月份实用平段电量40 千瓦时,谷段电量60 千瓦时,按分时电价付费元.(1)问小明该月支付的平段、谷段电价每千瓦时各为多少元7.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民 1月份用水8m3,则应收水费:价目表264(8 6) 20 元.每月水用量单价( 1)若该户居民2 月份用水 12.5m 3不超出 6m 3的部分2 元/,m3则应收水费 ______元;超出 6m 3不超出 10m3的 4 元/部分m3( 2)若该户居民3 、 4 月份共用水15m3 超出 10m3的部分8 元/( 4 月份用水量超过 3 月份),共交水费44 元,则该户居民 3 , 4 月份各用水多少立方米8.2007 年 5 月 19 日起,中国人民银行上调存款利率.人民币存款利率调整表项目调整前年利率%调整后年利率%活期存款二年期定期存款储户的实得利息收益是扣除利息税后的所得利息,利息税率为20%.(1)小明于 2007 年 5 月 19 日把 3500 元的压岁钱按一年期定期存入银行,到期时他实得利息收益是多少元(2)小明在这次利率调整前有一笔一年期定期存款,到期时按调整前的年利率%计息,本金与实得利息收益的和为元,问他这笔存款的本金是多少元(3)小明爸爸有一张在 2007 年 5 月 19 日前存人的 10000 元的一年期定期存款单,为获取更大的利息收益,想把这笔存款转存为利率调整后的一年期定期存款.问他是否应该转存请说明理由.约定:①存款天数按整数天计算,一年按360 天计算利息.②比较利息大小是指从首次存入日开始的一年时间内.获得的利息比较.如果不转存,利息按调整前的一年期定期利率计算;如果转存,转存前已存天数的利息按活期利率计算,转存后,余下天数的利息按调整后的一年期定期利率计算(转存前后本金不变).请理解题意,关注约定9.我国政府从2007 年起对职业中专在校学生给予生活补贴.每生每年补贴1500 元 .某市预计2008 年职业中专在校生人数是2007 年的倍,且要在2007 年的基础上增加投入600 万元 .2008 年该市职业中专在校生有多少万人,补贴多少万元10. 为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007 年 12 月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至 2008 年 12 月底 ,试点产品已销售 350 万台(部),销售额达 50 亿元,与上年同期相比,试点产品家电销售量增长了 40%.(1)求 2007 年同期试点产品类家电销售量为多少万台(部)( 2)如果销售家电的平均价格为:彩电每台1500 元,冰箱每台2000 元, ?手机每部800 销售的冰箱(含冰柜)数量是彩电数量的3倍,求彩电、冰箱、手机三大类产品分别销售多少万2(部),并计算获得的政府补贴分别为多少万元11. 为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007 年 12 月底起进行下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补数据显示,截至 2008 年 12 月底 ,试点产品已销售350 万台(部),销售额达50 亿元,与上年比,试点产品家电销售量增长了40%.(1)求 2007 年同期试点产品类家电销售量为多少万台(部)(2)如果销售家电的平均价格为:彩电每台1500 元,冰箱每台 2000 元, ?手机每部 800 元,已知销售的冰箱(含冰柜)数量是彩电数量的3倍,求彩电、冰箱、手机三大类产品分别销售多少万2(部),并计算获得的政府补贴分别为多少万元12. 列方程或方程组解应用题:北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年1至 2009 年 2 月 28 日期间,地面公交日均客运量与轨道交通日均客运量总和为1696 万人次交日均客运量比轨道交通日均客运量的 4 倍少 69 万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次13. 目前我省小学和初中在校生共136 万人,其中小学在校生人数比初中在校生人数的万人,问目前我省小学和初中在校生各有多少万人16. 为了防控甲型H1N1 流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100 瓶,其中甲种 6 元/瓶,乙种9 元/ 瓶.( 1)如果购买这两种消毒液共用780 元,求甲、乙两种消毒液各购买多少瓶( 2)该校准备再次购买这两种消毒液(不包括已购买的100 瓶),使乙种瓶数是甲种瓶数的 2 倍,且所需..费用不多于1200 元(不包括780 元),求甲种消毒液最多能再购买多少瓶...17. 在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做 20 天,剩下的工程由甲、乙合做24 天可完成.( 1)乙队单独完成这项工程需要多少天( 2)甲队施工一天,需付工程款万元,乙队施工一天需付工程款 2 万元.若该工程计划在70 天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱还是由甲乙两队全程合作完成该工程省钱19. 某校积极推进“阳光体育”工程,本学期在九年级11 个班中开展篮球单循环比赛(每个班与其它班分别进行一场比赛,每班需进行10 场比赛).比赛规则规定:每场比赛都要分出胜负,胜一场得 3 分,负一场得1分.( 1)如果某班在所有的比赛中只得14 分,那么该班胜负场数分别是多少( 2)假设比赛结束后,甲班得分是乙班的 3 倍,甲班获胜的场数不超过 5 场,且甲班获胜的场数多于乙班,请你求出甲班、乙班各胜了几场.参考答案1、解:设这个月的石油价格相对上个月的增长率为x .根据题意,得(1 x)(1 5%) 1 14%.解得: x120%.520%.答:这个月的石油价格相对上个月的增长率为2.解:设这次试车时,由北京到天津的平均速度是每小时x 千米,则由天津返回北京的平均速每小时 (x 40) 千米.依题意,得30 6x 1 (x 40) .60 2解得 x 200 .答:这次试车时,由北京到天津的平均速度是每小时200 千米.3、解:设这个队胜了x 场,依题意得:3x (14 5 x) 19 (解得: x 5 (答:这个队胜了 5 场.(4、 (1)设原销售电价为每千瓦时x 元,根据题意得: 1分40 (x 0.03) 60 ( x 0.25) 42.73 3分40x 1.2 60x 15 42.73 100x 42.73 13.8 x 0.5653. 4分 ∴当 x 0.5653时, x 0.03 0.5953; x 0.25 0.3153.答 :小明家该月支付平段电价为每千瓦时元、谷段电价每千瓦时元. 6分 (2)100 0.5653 42.73 13.8(元 )答 :如不使用分时电价结算,小明家5 月份将多支付元.8分5、解:( 1) 15 33(h) 45 (分钟),Q 45 42 ,604不能在限定时间内到达考场.4 分 ( 2)方案 1:先将 4 人用车送到考场,另外4 人同时步行前往考场,汽车到考场后返回到与另外4 人的相遇处再载他们到考场.5 分先将 4 人用车送到考场所需时间为15 0.25(h) 15 (分钟).60小时另外 4 人步行了 1.25km ,此时他们与考场的距离为15 1.25 13.75( km )7 分设汽车返回 t (h) 后先步行的 4 人相遇,5t 60t 13.75,解得 t2.75 .132.75汽车由相遇点再去考场所需时间也是 .9 分h13 2.75所以用这一方案送这 8 人到考场共需 15 2 60 40.4 42 .13所以这 8 个个能在截止进考场的时刻前赶到.10 分方案 2:8 人同时出发, 4 人步行,先将 4 人用车送到离出发点 xkm 的 A 处,然后这 4 个人步行 前往考场,车回去接应后面的 4 人,使他们跟前面 4 人同时到达考场.6 分 由 A 处步行前考场需 15x(h) ,5汽车从出发点到 A 处需x(h) 先步行的 4人走了5x (km) ,6060设汽车返回 t ( h )后与先步行的 4 人相遇,则有 60t 5t x5x11x,,解得 t780608 分所以相遇点与考场的距离为 15 x 6011x 152x(km) .780131 x(h) .由相遇点坐车到考场需3904所以先步行的 4 人到考场的总时间为x 11x 1x60 7804(h) ,390先坐车的 4 人到考场的总时间为x 15x(h) ,60 5x 11x 1xx15 x ,解得 x 13 .他们同时到达,则有7804 390 60560将 x13代入上式,可得他们赶到考场所需时间为13 237 (分钟).60 605Q 37 42 .他们能在截止进考场的时刻前到达考场. 1其他方案没有计算说明可行性的不给分.6、解:设这种商品的成本价为x 元,依题意得,x(1 20%)90% 270 ,(4 分)解以上方程,得x 250 .(5 分)答:这种商品的成本价是250 元.(6 分)7、( 1)应收水费 2 6 4 (10 6) 8 (12.5 10) 48 元.( 2)当三月份用水不超过 6m 3 时,设三月份用水 xm 3,则 2x 2 64 4 8(15 x 10)解之得 x 4 11,符合题意.当三月份用水超过 6m 3时,但不超过 10m 3 时,设三月份用水 xm 3 ,则2 6 4( x 6)2 6 4 4 8 (15 10 x)44 解之得 x 3 6 (舍去)所以三月份用水4m 3 .四月份用水11 m 3 .8、解: (1)3500 %× × 80% =(元 ),∴到期时他实得利息收益是 85.68 元. 2 分(2)设他这笔存款的本金是 x 元,则 x(1+% × 80% )=, 4 分解得 x=2500,∴这笔存款的本金是 2500 元.6 分(3)设小明爸爸的这笔存款转存前已存了x 天,由题意得x360 x ×% >10000 ×%,8 分l0000 ××% +10000 ×360360解得 x<417 ,9 分13当他这笔存款转存前已存天数不超过41天时;他应该转存;否则不需转存. 10 分9、( 1)设 2007 职业中专的在校生为 x 万 人根据题意得: 1500× - 1500x = 600 3 分解得: x25 分所以 . 21.22.4 万人2.4 1500=3600 万元7 分 答:略 .8 分10、解:( 1) 2007 年销量为 a 万台,则 a(1+40%)=350, a =250(万台).( 2 ) 设 销 售 彩 电 x 万 台 , 则 销 售 冰 箱 3x 万台,销售手机(350-5x) 万 台 . 由 题 意 得 :2235x)=500000 .1500x+2000 × x +800(35022解得 x = 88.∴3x 132 , 350 5130 .x2 2所以,彩电、冰箱(含冰柜) 、手机三大类产品分别销售 88 万台、 132 万台、 130 万部. ∴ 88×1500×13%=17160(万元), 132×2000×13%=34320(万元),130 × 800 × 13%=13520(万元). 获得的政府补贴分别是17160 万元、 34320 万元、 13520 万元.11、解:( 1) 2007 年销量为 a 万台,则 a ( 1+40%)=350, a =250(万台).( 2)设销售彩电 x 万台,则销售冰箱3 3 x 万台,销售手机( 350- 5 x )万台.由题意得: 1500x+2000 × x +8002 2 2( 350 5x ) =500000.2解得 x = 88.∴ 3 x 132 ,3505 x 130 . 22所以,彩电、冰箱(含冰柜) 、手机三大类产品分别销售 88 万台、 132 万台、 130 万部.∴ 88×1500×13%=17160(万元), 132×2000×13%=34320(万元),130 × 800 × 13%=13520(万元). 获得的政府补贴分别是17160 万元、 34320 万元、 13520 万元.12、解法一:设轨道交通日均客运量为x 万人次,则地面公交日均客运量为 (4 x 69) 万人依题意,得 x (4 x 69)1696 .解得 x353.4x 69 4 353 69 1343 .答:轨道交通日均客运量为353 万人次,地面公交日均客运量为1 343 万人次.解法二:设轨道交通日均客运量为x 万人次,地面公交日均客运量为 y 万人次.x y 1696, 依题意,得y 4x 69.x 353, 解得y 1343.答:轨道交通日均客运量为353 万人次,地面公交日均客运量为 1 343 万人次.13、解:设初中在校生为x 万人,依题意得x (2 x 2) 136解得 x46于是 2x 2 2 46 2 90 (万人).答:目前我省小学在校生为90 万人,初中在校生为 46 万人.14、解:设该公司今年到台湾采购苹果的成本价格为x 元 / 公斤根据题意列方程得100000 100000 x2x 解得 x 2.5 20000 根据题意,得 1 20 (1 1)24160 x 60解这个方程,得x =90经检验 x 2.5 是原方程的根.当 x 2.5时, 2x 5答:实现“三通”前该公司到台湾采购苹果的成本价格为 5 元/ 公斤.15、解:设每个中国结的原价为x 元,根据题意得160 160 0.8x 2x解得x 20 .经检验, x20 是原方程的根.答:每个中国结的原价为20 元.16、(1 )解法一:设甲种消毒液购买x 瓶,则乙种消毒液购买 (100 x) 瓶.依题意,得 6x 9(100 x) 780 .解得: x 40 .100 x 100 40 60 (瓶).答:甲种消毒液购买40 瓶,乙种消毒液购买60 瓶.解法二:设甲种消毒液购买x 瓶,乙种消毒液购买y 瓶.x y ,依题意,得1006x .9 y 780 x ,40解得:y.60答:甲种消毒液购买40 瓶,乙种消毒液购买60 瓶.( 2)设再次购买甲种消毒液y 瓶,刚购买乙种消毒液 2 y瓶.依题意,得 6 y 9 2 y ≤ 1200 .解得: y ≤ 50 .答:甲种消毒液最多再购买50 瓶.17、解:( 1)设乙队单独完成需x 天经检验, x =90是原方程的解∴乙队单独完成需90 天( 2)设甲、乙合作完成需y 天,则有(1 1) y 160 90解得 y36 (天)甲单独完成需付工程款为60×=210(万元)乙单独完成超过计划天数不符题意(若不写此行不扣分).甲、乙合作完成需付工程款为36( +2)=198(万元)答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.18、解: (1)设试销时这种苹果的进货价是每千克x 元,依题意,得)11000 5000x 0.52x解之,得x 5经检验, x 5 是原方程的解.5000(2) 试销时进苹果的数量为:10005第二次进苹果的数量为:2× (千克 )盈利为:2600×7+ 400×7×-5000 - 0(元 )答:试销时苹果的进货价是每千克 5 元,商场在两次苹果销售中共盈利4160 元.19、解 : ( 1)设该班胜x场,则该班负(10x) 场.依题意得 :3x (10 x) 14解之得 :x 6所以该班胜 6 场,负 4 场.( 2)设甲班胜了x 场,乙班胜了y 场,依题意有:3x (10 x) 3[ 3 y (10 y)]化简得: 3 y x 5x 5即 y 3由于 x , y 是非负整数,且 0≤ x ≤ 5 , x y∴ x 4 ,y 3 .所以甲班胜 4 场,乙班胜 3 场.答:(1)该班胜 6 场,负 4 场.( 2)甲班胜 4 场,乙班胜 3 场.。
一元一次方程的应用题
一元一次方程应用题专项训练(一)(通用版)试卷简介:训练学生读题的过程中,明确未知数的含义,找取关键词,表达关键词,并根据公式建立等式的能力。
一、单选题(共14道,每道7分)1.一个两位数的个位数字是a,十位上的数字比个位上的数字大4,将两个数字调换后的两位数可表示为( )A.2a+4B.11a+40C.11a+4D.11a-402.小明骑自行车走了0.5小时,然后乘汽车走了4小时,最后步行x千米,已知骑自行车与乘汽车的速度分别为v1千米/时和v2千米/时,则小明所走的全部路程为( )千米.A.0.5v2+4v1+xB.0.5v1+4v2+xC.0.5v1+4v2D.0.5v1+4+xv23.某商店销售一种服装的进价是每件350元,按标价的九折销售,设这种服装的标价是每件x 元,则这种服装的售价是( )元A. B. C.315 D.4.如果5年前父亲的年龄是儿子年龄的6倍,设今年儿子的年龄是x岁,则今年父亲的年龄是( )岁A. B. C. D.5.一种商品每件成本为a元,若按成本增加25%作为标价.现由于库存积压决定减价,按标价的90%出售,现售价为( )元A.(1-25%)×90%·aB.(1+25%)×90%·a-aC.25%×90%·aD.(1+25%)×90%·a6.一个两位数个位上的数字的3倍加1等于十位上的数字,设个位上的数字为x,则这个两位数可表示为( )A.31x-10B.4x+1C.13x+1D.31x+107.某影院热映了一部电影,某天共售出1000张票,已知学生票每张30元,成人票每张60元, 设售出学生票x张,则售出的成人票销售额为( )元A.60xB.60000C.60(1000-x)D.30(1000-x)8.汽车上坡时每小时走28千米,下坡时每小时走35千米,已知下坡路程比上坡路程的2倍少14千米.设上坡路程为x千米,则汽车下坡共用了( )小时A. B. C. D.9.某商店购进一批商品,每件成本是500元,商店决定按成本价提高60%来标价.由于天气的缘故,需要尽早处理这批商品,于是决定打x折后再降价20元销售,则此时商店卖一件商品能得到的利润为( )A. B.C.500×(1+60%)·x-20-500D.10.某商场购进某种商品的进价是每件8元,销售价是每件10元.现为了扩大销售量,把每件的销售价降低x%出售,降价后,卖出一件商品所获得的利润为( )元A. B. C.10-8·x% D.11.小明每天要在8:00前赶到学校上学.一天,小明以70米/分的速度出发去上学,11分钟后,小明的爸爸发现儿子忘了带数学作业,于是爸爸立即以180米/分的速度去追小明,并且与小明同时到达学校.设小明从家到学校用了x分钟,则小明家到学校的距离为( )米A.(180-70)xB.70(x-11)C.180(x-11)D.180x12.某商店有一种运动服,成本是每套500元,按成本价提高20%进行标价,为了促销,决定打x 折,为了吸引更多顾客又降价16元.则这种运动服的售价是每套( )元A. B.C. D.13.网络购物方便快捷,逐渐成为人们日常购物的一种重要方式.“中秋节”期间,某网店推出一系列并行优惠活动:(1)“中秋节”期间,网店全部商品九折销售;(2)凡在本网店购物均可享受5%的返利(在成交价的基础上返还5%).小李是该网店的一个店主,他想将商铺中进价为每件350元的风衣卖出,若小李将这种风衣标价为每件x元,则在自己承担13元运费的情况下每件获得的利润( )元A. B.C. D.14.一客车以60千米/小时的速度从甲地出发驶向乙地,经过45分钟后,一辆小汽车以每小时比客车快10千米的速度从乙地出发驶向甲地.若两车刚好在甲、乙两地的中点相遇,若设甲、乙两地的距离为x千米,则小汽车从出发到两车相遇行驶了( )小时A. B. C. D.一元一次方程应用题专题训练(二)(通用版)试卷简介:训练学生读题的过程中,明确未知数的含义,找取关键词,表达关键词,并根据公式建立等式的能力。
列一元一次方程解应用题专项练习180题(有答案)
列一元一次方程解应用题专项练习180题(有答案)(2)小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米.如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬?8.某工厂加强节能措施,2008年下半年与上半年相比,月平均用电量减少了0.5万度,全年用电39万度,问这个工厂2008年上半年每月平均用电多少万度?9.某周日小明在家门口搭乘出租车去参观博物馆,出租车的收费标准是:不超过3公里的付费7元;超过3公里后,每公里需加收一定费用,超出部分的公里数取整,即小数部分按1公里计算.小明乘出租车到距家6.2公里远的博物馆的车费为18.4元(其中含有1元的燃油附加税),问超过3公里的,每公里加收多少元?10.下边横排有12个方格,每个方格都有一个数字,已知任何相邻三个数字的和都是20,求x的值.11.某班举办了一次集邮展览,展出的邮票若平均每人3张则多24张,若平均每人4张则少26张,这个班级有多少名学生?一共展出了多少张邮票?12.某商场一种品牌的服装标价为每件1000元,为了参与市场竞争,商场按标价的8.5折(即标价的85%)再让利40元销售,结果每件服装仍可获利20%,这种服装每件的进价是多少元?13.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.(1)这个班有多少学生?(2)这批图书共有多少本?14.某同学打算骑自行车到野生动物园去参观,出发时心里盘算,如果以每小时8千米的速度骑行,那么中午12点才能到达;如果以每小时12千米的速度骑行,那么10点就能到达;但最好是不快不慢恰好在11点到达,那么,他行驶的速度是多少最好呢?15.一副羽毛球拍在进价的基础上提高40%后标价,再按标价的8折售出,仍然获利15元,那么羽毛球拍的进价是多少?16.2010年南非“世界杯”期间,中国球迷一行36人从酒店乘出租车到球场观看比赛.球迷领队安排车辆若干,若每辆坐4人,车不够,每辆坐5人,有的车未坐满.问领队安排的车有多少辆?17.某校三年共购买电脑160台,去年购买数量是前年的3倍,今年购买数量是前年的4倍,求这个学校前年购买了多少台电脑?18.某种出租汽车的车费是这样计算的:路程在4千米以内(含4千米)为10元4角;达到4千米以后,每增加1千米加1元6角;达到15千米后,每增加1千米加2元4角,不足1千米按四舍五入法计算.(1)乘座15千米该出租车应交费多少元?(2)某乘客乘座该种出租车交了95元2角,则这个乘客乘该出租车行驶的路程最多为多少千米?19.七年级(1)班数学兴趣小组的同学一起去租车秋游,预计租车费人均分摊1 8元,后来又有4名非兴趣小组同学要求加入,但租车费不变,结果每人可少摊3元,求七(1)班有多少名数学兴趣小组成员?20.某城市按以下规定收取每月的水费:用水量如果不超过6吨,按每吨1.2元收费;如果超过6吨,未超过的部分仍按每吨1.2元收取,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.8元.问:(1)该用户5月份用去多少水?(2)该用户5月份应交水费多少元?21.甲、乙两人同时从A地出发去B地,甲骑自行车,速度是10km/h,乙步行,速度为6km/h.若甲出发后在路上遇到熟人交谈了半小时后,仍以原速度前往B地,结果甲、乙两人同时到达B地,问A、B两地的路程是多少?22.一件服装先按成本提高60%标价,再以9折出售,结果获利66元,这件服装的标价是多少元?23.某校七(1)班学生步行去参加课外劳技活动,速度为5千米/时,走了48分钟的时候,学校要将一个紧急通知传给班长,通讯员从学校出发,骑摩托车以35千米/时的速度按原路追上去,通讯员用多少时间可以追上七(1)班学生队伍?24.某车间有60名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件10个或乙种零件25个,应分配多少人生产甲种零件,多少人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套?(2个甲种零件和1个乙种零件配成一套)25.A、B两地相距15千米,甲汽车在前边以50千米/小时从A出发,乙汽车在后边以40千米/小时从B出发,两车同时出发同向而行(沿BA方向),问经过几小时,两车相距30千米?26.甲、乙两人同时从A地到B地去参加一个会议,甲每分钟走80米,他走到B地等了5分钟.会议才开始,乙每分钟走60米,等他到B地会议已经开始了3分钟,问A、B两地之间的距离有多远?27.甲、乙两根绳子,甲绳长56米,乙绳长25米,两根绳子剪去同样的长度后,甲绳所剩的长度是乙绳所剩长度的3倍还少1米,每根绳子剪去的长度是多少米?28.某工人每天早晨在同一时刻从家里骑车去工厂上班,如果以16千米/时的速度行驶,则可在上班时刻前15分钟到达工厂;如果以12千米/时的速度行驶,则在工厂上班时刻后15分钟到达工厂.(1)求这位工人的家到工厂的路程;(2)这位工人每天早晨在工厂上班时刻前多少小时从家里出发?29.一列列车通过隧道,从车头进隧道到车尾出隧道共用了1分30秒.已知列车的速度为1500米/分,列车的长为150米,那么隧道长为多少米?30.在学校的一次劳动中,在甲处劳动的有27人,在乙处劳动的有19人,后因劳动任务需要,需要另外调20人来支援,使在甲处的人数是在乙处人数的2倍,问应分别调往甲、乙两处各多少人?31.一项工程,甲队单独做20天完成,乙队单独做12天完成,现在由甲队先做4天,剩下的部分由甲队和乙队合作完成,则剩下的部分需要几天完成?32.某校准备到旅游公司租若干辆汽车组织初一学生外出春游,每辆汽车可坐45人,按原计划,就有11人没有座位;如果每辆车放上加座后多坐8人,那么可以少租一辆汽车.问原计划租几辆汽车初一学生共有多少人?33.列方程解应用题:某人从家里骑自行车到学校.若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?34.甲、乙两船在静水中的速度相同,都不超过每小时60千米.甲船从A港顺流而下,3小时到达B港,乙船从B港逆流而上,4小时到达C港,如果水流速度为每小时10千米,请你通过计算说明A港在C港的上游还是下游.35.从甲地到乙地的长途汽车原需行驶3.5个小时,开通高速公路后,路程缩短了30千米,而车速平均每小时增加了30千米,只需2个小时即可到达.求甲乙两地之间高速公路的路程.36.甲乙两地相距240千米,从甲站开出一列慢车,速度为每小时80千米,从乙站开出一列快车,速度为每小时120千米.(1)若两车同时开出,背向而行,经过多长时间两车相距540千米?(2)若两车同时开出,同向而行(快车在后),经过多长时间快车可追上慢车?(3)若两车同时开出,同向而行(慢车在后),经过多长时间两车相距300千米?37.电气机车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电气机车速度的5倍还快20千米/时,半小时后两车相遇.两车的速度各是多少?38.粗蜡烛和细蜡烛的长短一样,粗蜡烛可以点5小时,细蜡烛可以点4小时,如果同时点燃这两支蜡烛,过了一段时间后,剩余的粗蜡烛长度是细蜡烛长度的2倍,问这两支蜡烛已点燃了多少时间?39.一队学生从学校步行去博物馆,他们以5km/h的速度行进需要40分钟,他们出发24分钟后,一名教师骑自行车以15km/h的速度按原路追赶学生队伍,问这名教师能否在学生到达之前追上他们?40.民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票.一名旅客带了45千克行李乘机,机票连同行李费共付1485元,求该旅客的机票票价.41.某城区居民用水实行阶梯收费、每户每月用水量如果未超过20吨,按每吨1.9元收费;如果超过20吨,未超过部分按每吨1.9元收费,超过部分按每吨2.8元收费,若该城市某户11月份水费平均每吨2.2元,求该户11月份用水多少吨?42.甲、乙两站相距360千米,一列慢车从甲站开出,每小时行50千米,一列快车从乙站开出,每小时行70千米,两车同时开出,相向而行,多长时间相遇?43.某商场因换季,将一品牌服装打折销售,每件服装如果按标价的六折出售将亏10元,而按标价的八折出售将赚70元,问:(1)每件服装的标价和成本分别是多少元?(2)为使销售该品牌服装每件获得20%的利润率,应按标价的几折出售?44.某班在绿化校园的活动中共植树130棵,有5位学生每人种树2棵,其余学生每人种树3棵,问这个班共有多少学生?45.郑州市某停车场的收费标准如下:大型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场停有大、小型汽车共50辆,这些车辆共缴纳了210元停车费,问其中大、小型汽车各缴纳了多少元停车费?46.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓1200个或螺母1800个,每天生产的螺栓和螺母按1:2配套,应各分配多少名工人生产螺栓和生产螺母?47.一项工作,如果由甲单独做,需7.5小时完成;如果由乙单独做.需要5小时完成.如果让甲、乙两人一起做1小时,再由乙单独完成剩余部分,还需多长时间完成?48.某车间20个工人生产螺钉和螺母,每人每天平均生产螺母800个或螺钉600个,一个螺钉要配2个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉呢?49.某地居民生活用电基本价格为0.5元/度,并规定了每月基本用电量,超过部分的电量每度电价比基本用电量的每度价格增加0.05元,某户8月份用电量为240度,应缴电费为122元,求每月的基本用电量.50.经测算,海拔高度每增加100米,气温下降0.6℃,已知高空中一气球所在的位置的温度是﹣4℃,此时地面温度是5℃,求该气球与地面的距离.51.有粗细两支蜡烛,粗蜡烛长是细蜡烛的三分之一,粗蜡烛点完用3个小时,细蜡烛点完用1小时.一次停电后同时点燃两支蜡烛,来电时发现两支蜡烛剩余部分刚好一样长,问停电的时间是多长?52.运动场的环形跑道一圈长400米,甲乙二人比赛跑步,甲每分钟跑300米,乙每分钟跑200米;两人同地同方向,同时出发,经过多少时间两人第一次相遇?53.根据我省“十二五”铁路规划,徐州至连云港的客运专线项目建成后,两地间列车的最短客运时间将由现在的2小时18分钟缩短为36分钟,速度每小时将提高260km,求提速后的列车速度.(精确到1km/h)54.一项工程,甲队单独施工15天完成,乙队单独9天完成,现在由甲、乙两队合作3天,剩下的由甲队单独完成,还需几天可以完成?55.为了减少库存,盘活资金,某商厦决定将某款玩具打5折销售,小莹爸爸用了300元买到的玩具比打折前花同样多的钱买到的玩具多3个,求每个玩具的原价是多少元?56.整理一批图书,由一人做要40小时完成.先安排一批人整理,2小时后其中两人因有其它任务离开,然后由余下的人又整理了4小时,完成了这项工作.假设每个人的工作效率相同,则先安排了多少人整理图书?57.一个长方形的场地,长是宽的2.5倍,现根据需要将长方形的场地进行扩建,若把它的长和宽各加长20m后,则此时它的长是宽的2倍,求扩建前长方形场地的长与宽.58.某中学要搬运一批图书,由甲班单独搬运需要9小时完成,由乙班单独搬运需要6小时完成.现在计划由甲班先单独搬运4小时,剩下的由乙班帮忙和甲班一起搬运,则甲、乙两班合作几小时后可完成任务?59.A、B两地相距50千米,一人从A地以每小时5千米的速度向B地行走,另一人从B地以每小时10千米的速度向A 地运动.若两人恰好在中点相遇,那么从B地运动的人比从A地运动的人慢多少小时出发呢?60.某厂要加工一批零件,若6人加工,每人每天生产10个,则需100天才能完成任务.现在为了赶进度,用20人加工,每人每天生产12个,需要多少天才能完成任务?61.学校部分师生到离校28千米的地方参观学习.开始一段路是步行,速度是4千米/小时,余下的路程乘汽车,汽车的速度是40千米/小时,全程共用了1小时.求步行和乘车各用了多少时间.62.某商店采购了一批节能灯,每盏灯20元,在运输过程中损坏了2盏,然后以每盏25元售完,共获利150元,问该商店共进了多少盏节能灯.63.某学校教学楼需装修,若甲工程队单独完成需8周,若乙工程队单独完成需12周,现在投标结果是由乙工程队先做7周后,再由甲、乙两队合作,求合作几周可以完成任务?64.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少1500度,全年用电12万度.这个工厂去年上半年每月平均用电多少度?65.早上8点钟,甲、乙、丙三人在一条笔直的公路上同时从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人的速度分别为每分钟120米、100米、90米.问经过多少分钟甲和乙、甲和丙的距离相等?66.某同学在A、B两家超市发现他看中的两款随身听的单价相同,两种不同颜色的书包的单价也相同.已知随身听和书包单价之和是452元,且随身听的单价是书包单价的4倍少8元.求该同学看中的随身听和书包的单价各是多少元?67.有一项工程,若由一人做需要20小时完成,现在先由若干人做2小时,然后增加2人再共同做4小时,完成了这项工程,假设这些人的工作效率相同,问开始时参与做这项工程的有多少人?68.小明的妈妈从商店给小明买回一条裤子,小明问妈妈:“这条裤子多少钱?”妈妈说:“按标价给我打七折,又让了我4元钱,是94元.”你知道这条裤子的标价吗?69.一轮船航行于两个码头之间,逆水需10小时,顺水需6小时.已知水流速度为3千米/时,求该船在静水中的速度和两码头间的距离.70.甲乙两书店共有数学练习册300本,某日甲店卖掉20本,乙店卖掉56本,此时甲乙两店剩余的数学练习册相等.求原先甲乙两店各有数学练习册多少本.71.某学校组织七年级学生去春游,计划租用若干辆车.若增加一辆车,每车正好坐40人,若减少一辆车,则每辆车坐50人,有一辆车还空着10人座位,问七年级共有多少名学生?72.某商店在某一时间内以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损40%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?73.一列火车匀速行驶,经过一条长720米的隧道需要30秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是6秒,求这列火车的速度和火车的长度.74.格子们是白族人民智慧的结晶,是剑川木雕的代表作品之一.一个格子们是由一块中板和两块腰板组构而成的.剑川县民族木雕厂有22名木雕工人在生产格子们,每人每月平均雕12块中板或20块腰板,为了使每个月的产品配套,应该分配多少名工人雕中板?多少名工人雕腰板?75.小明、小杰两人在400米的环形跑道上练习跑步,小明每分钟跑300米,小杰每分钟跑220米.小明、小杰两人同时同向出发,起跑时,小杰在小明前面100米处.(1)出发几分钟后,小明、小杰第一次相遇?(2)出发几分钟后,小明、小杰第二次相遇?(3)出发几分钟后,小明、小杰的路程第三次相差20米?76.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时完成了任务.已知甲每小时比乙多加工2个零件,问甲、乙二人每小时各加工多少个零件?77.从甲站到乙站原需16小时.采用“和谐”号动车组提速后,列车行驶速度提高了176千米/时,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.78.某工作甲单独做需15小时完成,乙单独做需12小时完成,若甲先单独做1小时,之后乙再单独做4小时,剩下的工作由甲乙两人合作,请问再做几小时可完成全部工作的十分之七?79.现加工一批机器零件,甲单独完成需4天,乙单独完成需6天.现由乙先做1天,然后两人合做,完成后共得报酬600元.若按个人完成的工作量给付报酬,你应如何分配呢?80.某文件需要打印,小李独立做需要6小时完成,小王独立做需要8小时完成.如果他们俩共同做,需要多长时间?81.王先生计划骑车以每小时10千米的速度由A地到B地,这样便可在规定时间到达B地,但他因事将原计划的出发时间推迟了10分钟,便只好以每小时12千米的速度前进,结果比规定时间早5分钟到达B地,求A、B两地间的路程.82.七年级学生在会议室开会,每排坐12人,则有11人无处坐,每排坐14人,则余1人独坐1排,问有多少学生?座位有多少排?83.小明周六去昌平图书馆查阅资料,他家距昌平图书馆35千米.小明从家出发先步行20分钟到车站,紧接着坐上一辆公交车,公交车行驶40分钟后到达图书馆.已知公交车的平均速度是步行的平均速度的7倍,求公交车平均每小时行驶多少千米?84.A、B两地相距90千米.甲从A地骑自行车去B地.1小时后乙骑摩托车也从A地去B地.已知甲每小时行12千米.乙每小时行30千米.(1)乙出发后多少时间追上甲?(2)若乙到达B地后立即返回,则在返回路上与甲相遇时距乙出发多少时间?85.某文艺团体为希望工程组织了一场募捐义演,共售出1 000张票,筹得票款6 950元,已知成人票每张10元,学生票每张5元.(1)问成人票和学生票各售出多少张?(2)如果票价和售出的总票数不变,所得票款能为6932元吗?说明你的理由.(3)如果票价和售出的总票数不变,若想筹得票款8 000元,问至少要售出多少张成人票?86.在暖气管线中装有甲、乙两种水管共25根,总长为155米,甲种水管每根长5米,乙种水管每根长8米,请问甲、乙两种水管各有多少根?87.某铁路由于沿线多为山壑,需修建桥梁和隧道共300个,桥梁和隧道的长度约占这条铁路全长的五分之四,其中桥梁数量(座)又比隧道数量(条)多50%.这条铁路工程总投资约135亿元,平均每千米造价约4500万元.(1)求该铁路隧道数量.(2)若该铁路平均每条隧道长度大约是平均每座桥梁长度的6倍.求该铁路隧道的总长度.88.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务?89.现有一个内直径为6厘米的圆柱形烧杯,里面有高2厘米的液体.将这些液体倒入一个内直径是2厘米的圆柱形量筒内,这个量筒内液体的液面高度是多少厘米?90.老师想为希望小学四年级(1)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.每个书包和每本词典的价格各是多少元?91.一架飞机在两城市之间飞行,顺风需4小时20分,逆风需要4小时40分,已知风速是每小时30千米,求此飞机本身的飞行速度.92.为了从小培养学生的足球兴趣,给国家培养并输送少年足球人才.在县教体局的大力倡导和有力推进下,全县各个学校都组建了学校足球队.某校队在练球时发现,若每人领一个少6个球,若每二人领一个则余6个球.校足球队又添新队员5人,为了保证训练时一人一球,还需新购多少个足球?93.某文艺团体为“希望工程”募捐义演,成人票8元,学生票5元.如果本次义演共售出1 000张票,筹得票款为6 950元.求成人票和学生票各售出多少张?94.水果店有一种5千克一袋装的苹果,如果小明单独买一袋,那么所带的钱还差5元;如果小杰单独买一袋,那么所带的钱还差3元;如果两人所带的钱合在一起买一袋,那么就多余8元.试问苹果每千克多少元?95.某车间安排甲、乙两人共加工400个零件,甲与乙一起加工了4小时后,又由甲单独加工了6小时才完成任务,已知甲比乙每小时少加工2个零件,求甲、乙两人每小时各加工多少零件?96.一家商店将一件西装按成本价提高50%后标价,后因节日促销按标价的8折优惠出售,每件以960元卖出,则这件西装的成本价是多少元?97.列方程解应用题:一架飞机在两城之间飞行,风速为24千米/小时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的航速和两城之间的航程.98.某书店在促销活动中,推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.有一次,小明到该书店购书,到收银台付款时,他先买优惠卡再凭卡付款,结果节省了12元,求小明不凭卡购书的书价为多少元?99.一条地下管线,甲工程队单独铺设需12天,乙工程队单独铺设需要18天,若果现有甲工程队铺设2天后再由甲、乙两个工程队共同铺设,还需要多少天可以铺好这条管线?100.某种商品的进价为400元,标价为600元,打折出售的利润率为5%,那么,此商品是按几折销售的?101.某商场进了一批豆浆机,按进价的180%标价,春节期间,为了能吸引消费者,打7折销售,此时每台豆浆机仍可获利52元,请问每台豆浆机的进价是多少元?102.某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,筹得票款6950元,已知成人票8元一人,学生票5元一人,问成人票与学生票各售出多少张?103.两船从长江同一港口同时出发反向而行,甲船顺水航行,乙船逆水航行,两船在静水中的速度都是50km/h,若2小时后甲船比乙船多行驶了80km,那么水流的速度是多少?104.足球循环赛中,A队胜B队,比分为3:1(即A队进3球,B队进1球);B队胜C队,比分为2:0,C队胜A队,比分为1:0;计算各队在这轮循环中的净胜球数.105.一艘船从甲码头到乙码头顺流行驶,用了3小时;从乙码头返回甲码头逆流行驶,用了4.5小时.已知船在静水中的平均速度为25千米/时,求水流的速度与两个码头之间的距离.106.小刚原计划骑自行车以12千米/小时的速度由A地到B 地,这样便可以在规定的时间到达,但他因事将原计划出发的时间推迟了20分钟,只好以每小时18千米的速度前进,结果比规定的时间早10分钟到达B地,求A、B两地间的距离.107.为迎接2008年奥运会召开,学校决定进一步绿化校园,在一片空地上有1000块砖需要搬开,团委组织了65名同学进行了清理活动,男同学每人板砖16块,女同学每人板砖8块,恰好搬完,问参加这次活动的男女同学各多少人?108.甲、乙两人想共同承包一项工程.甲单独做30天完成,乙单独做20天完成,合同规定15天完成.否则每超过一天罚款800元,甲、乙两人商量后签了合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合做了这项工程的75%,因别处有急事,必须调走一人,问调走谁比较合适些?说说你的理由.。
一元一次方程利润问题及答案(推荐文档)
一元一次方程的应用题(利润问题)1.体育用品商店胡老板到体育商场批发篮球、足球、排球,商场老板对胡老板说:“篮球、足球、排球平均每只36元,篮球比排球每只多10元,排球比足球每只少8元”.(1)请你帮胡老板求解出这三种球每只各多少元?(2)胡老板用1060元批发回这三种球中的任意两种共30只,你认为他可能是买哪两种球各多少只?(3)胡老板通常将每一种球各提价20元后,再进行打折销售,其中排球、足球打八折,篮球打八五折,在(2)的情况下,为了获得最大的利润,他批发回的一定是哪两种球各多少只?请通过计算说明理由.2.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?(提示:商品售价=商品进价+商品利润)3.某商品的售价为每件900元,为了参与市场竞争,商店按售价的9折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?4.小明在商店里看中了一件夹克衫,店家说:“我这儿所有商品都是在进价上加50%的利润再标价的,这件夹克衫我给你按标价打8折,你就付168元,我可只赚了你8元钱啊!”聪明的小明经过思考后觉得店家的说法不可信,请你通过计算,说明店家是否诚信?5.一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?6.虹远商场原计划以1500元出售甲、乙两种商品,通过调整价格,甲提价20%,乙降价30%后,实际以1600元售出,问甲商品的实际售价是多少元?7.某种商品的进价是215元,标价是258元,现要最低获得14%的利润,这种商品应最低打几折销售?8.一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售,将亏本20元.如果按标价的8折出售,将盈利40元.求:(1)每件服装的标价是多少元?(2)为保证不亏本,最多能打几折?9.某商店销售一种衬衫,四月份的营业额为5000元.为了扩大销售,在五月份将每件衬衫按原价的8折销售,销售比在四月份增加了40件,营业额比四月份增加了600元.求四月份每件衬衫的售价.10.在商品市场经常可以听到小贩的叫卖声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买哪!”“能不能再便宜2元”如果小贩真的让利(便宜)2元卖了,他还能获利20%,根据下列公式求一个玩具赛车进价是多少?(公式=进价×利润率=销售价×打折数﹣让利数﹣进价)11.某商场因换季,将一品牌服装打折销售,每件服装如果按标价的六折出售将亏10元,而按标价的七五折出售将赚50元,问:(1)每件服装的标价是多少元?(2)每件服装的成本是多少元?(3)为保证不亏本,最多能打几折?12.一家商店将某种服装按成本价提高40%标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本多少元?13.某商店将某种VCD按进价提高35%,然后打出“九折酬宾,外送50元出租车费”的广告,结果每台仍获利208元,求进价.14.学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.15.某件商品的标价为1100元,若商店按标价的80%降价销售仍可获利10%,求该商品的进价是多少元?16.甲商店将某种超级VCD按进价提高35%定价,然后打出“九折酬宾,外送50元出租车费”的广告,结果每台超级VCD仍获利208元.(1)求每台VCD的进价;(2)乙商店出售同类产品,按进价提高40%,然后打出“八折酬宾”的广告,若你想买此种产品,将选择哪家商店?17.某电器销售商为促销产品,将某种电器打折销售,如果按标价的六折出售,每件将亏本36元;如果按标价的八折出售,每件将盈利52元,问:(1)这种电器每件的标价是多少元?(2)为保证盈利不低于10%,最多能打几折?18.某商店到苹果产地去收购苹果,收购价为每千克1.2元,从产地到商店的距离是400km,运费为每吨货物每运1km收1.50元,如果在运输及销售过程中的损耗为10%,商店要想获得其成本的25%的利润,零售价应是每千克多少元?19.某商场按定价销售某产品,每件可获利润45元.现在按定价的85%出售8件该产品所获得的利润,与按定价每件减价35元出售12件所获利润一样.那么,该产品每件定价多少元?〔销售利润=(销售单价﹣进货单价)×销售数量〕解:设这一商品,每件定价x元.(1)该商品的进货单价为元;(2)定价的85%出售时销售单价是元,出售8件该产品所能获得的利润是元;(3)按定价每件减价35元出售时销售单价是元,出售12件该产品所获利润是元;(4)现在列方程解应用题.20.某厂生产一种零件,每个成本为40元,销售单价为60元.该厂为鼓励客户购买这种零件,决定当一次购买零件数超过100个时,每多购买一个,全部零件的销售单价均降低0.02元,但不能低于51元.(1)当一次购买多少个零件时,销售单价恰为51元?(2)当客户一次购买1000个零件时,该厂获得的利润是多少?(3)当客户一次购买500个零件时,该厂获得的利润是多少?(利润=售价﹣成本)21.商店里有种皮衣,进价500元/件,现在客户以2800元总价购买了若干件皮衣,而商家仍有12%的利润,问客户买了几件皮衣?22.利民商店购进一批电蚊香,原计划每袋按进价加价40%标价出售.但是,按这种标价卖出这批电蚊香的90%时,夏季即将过去.为加快资金周转,商店以打7折(即按标价的70%)的优惠价,把剩余电蚊香全部卖出.(1)剩余的电蚊香以打7折的优惠价卖出,这部分是亏损还是盈利请说明理由.(2)按规定,不论按什么价格出售,卖完这批电蚊香必须交税费300元(税费与购进蚊香用的钱一起作为成本),若实际所得纯利润比原计划的纯利润少了15%.问利民商店买进这批电蚊香用了多少钱?一元一次方程应用题(利润问题)参考答案1.体育用品商店胡老板到体育商场批发篮球、足球、排球,商场老板对胡老板说:“篮球、足球、排球平均每只36元,篮球比排球每只多10元,排球比足球每只少8元”.(1)请你帮胡老板求解出这三种球每只各多少元?(2)胡老板用1060元批发回这三种球中的任意两种共30只,你认为他可能是买哪两种球各多少只?(3)胡老板通常将每一种球各提价20元后,再进行打折销售,其中排球、足球打八折,篮球打八五折,在(2)的情况下,为了获得最大的利润,他批发回的一定是哪两种球各多少只?请通过计算说明理由.,得+=362.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?(提示:商品售价=商品进价+商品利润)3.某商品的售价为每件900元,为了参与市场竞争,商店按售价的9折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?4.小明在商店里看中了一件夹克衫,店家说:“我这儿所有商品都是在进价上加50%的利润再标价的,这件夹克衫我给你按标价打8折,你就付168元,我可只赚了你8元钱啊!”聪明的小明经过思考后觉得店家的说法不可信,请你通过计算,说明店家是否诚信?5.一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?6.虹远商场原计划以1500元出售甲、乙两种商品,通过调整价格,甲提价20%,乙降价30%后,实际以1600元售出,问甲商品的实际售价是多少元?7.某种商品的进价是215元,标价是258元,现要最低获得14%的利润,这种商品应最低打几折销售?×8.一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售,将亏本20元.如果按标价的8折出售,将盈利40元.求:(1)每件服装的标价是多少元?(2)为保证不亏本,最多能打几折?×9.某商店销售一种衬衫,四月份的营业额为5000元.为了扩大销售,在五月份将每件衬衫按原价的8折销售,销售比在四月份增加了40件,营业额比四月份增加了600元.求四月份每件衬衫的售价.10.在商品市场经常可以听到小贩的叫卖声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买哪!”“能不能再便宜2元”如果小贩真的让利(便宜)2元卖了,他还能获利20%,根据下列公式求一个玩具赛车进价是多少?(公式=进价×利润率=销售价×打折数﹣让利数﹣进价)11.某商场因换季,将一品牌服装打折销售,每件服装如果按标价的六折出售将亏10元,而按标价的七五折出售将赚50元,问:(1)每件服装的标价是多少元?(2)每件服装的成本是多少元?(3)为保证不亏本,最多能打几折?××=25012.一家商店将某种服装按成本价提高40%标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本多少元?13.某商店将某种VCD按进价提高35%,然后打出“九折酬宾,外送50元出租车费”的广告,结果每台仍获利208元,求进价.14.学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.15.某件商品的标价为1100元,若商店按标价的80%降价销售仍可获利10%,求该商品的进价是多少元?16.甲商店将某种超级VCD按进价提高35%定价,然后打出“九折酬宾,外送50元出租车费”的广告,结果每台超级VCD仍获利208元.(1)求每台VCD的进价;(2)乙商店出售同类产品,按进价提高40%,然后打出“八折酬宾”的广告,若你想买此种产品,将选择哪家商店?17.某电器销售商为促销产品,将某种电器打折销售,如果按标价的六折出售,每件将亏本36元;如果按标价的八折出售,每件将盈利52元,问:(1)这种电器每件的标价是多少元?(2)为保证盈利不低于10%,最多能打几折?18.某商店到苹果产地去收购苹果,收购价为每千克1.2元,从产地到商店的距离是400km,运费为每吨货物每运1km收1.50元,如果在运输及销售过程中的损耗为10%,商店要想获得其成本的25%的利润,零售价应是每千克多少元?×)×19.某商场按定价销售某产品,每件可获利润45元.现在按定价的85%出售8件该产品所获得的利润,与按定价每件减价35元出售12件所获利润一样.那么,该产品每件定价多少元?〔销售利润=(销售单价﹣进货单价)×销售数量〕解:设这一商品,每件定价x元.(1)该商品的进货单价为(x﹣45)元;(2)定价的85%出售时销售单价是85%x元,出售8件该产品所能获得的利润是[85%x﹣(x﹣45)]×8元;(3)按定价每件减价35元出售时销售单价是(x﹣35)元,出售12件该产品所获利润是[(x﹣35)﹣(x ﹣45)]×12元;(4)现在列方程解应用题.20.某厂生产一种零件,每个成本为40元,销售单价为60元.该厂为鼓励客户购买这种零件,决定当一次购买零件数超过100个时,每多购买一个,全部零件的销售单价均降低0.02元,但不能低于51元.(1)当一次购买多少个零件时,销售单价恰为51元?(2)当客户一次购买1000个零件时,该厂获得的利润是多少?(3)当客户一次购买500个零件时,该厂获得的利润是多少?(利润=售价﹣成本)21.商店里有种皮衣,进价500元/件,现在客户以2800元总价购买了若干件皮衣,而商家仍有12%的利润,问客户买了几件皮衣?22.利民商店购进一批电蚊香,原计划每袋按进价加价40%标价出售.但是,按这种标价卖出这批电蚊香的90%时,夏季即将过去.为加快资金周转,商店以打7折(即按标价的70%)的优惠价,把剩余电蚊香全部卖出.(1)剩余的电蚊香以打7折的优惠价卖出,这部分是亏损还是盈利请说明理由.(2)按规定,不论按什么价格出售,卖完这批电蚊香必须交税费300元(税费与购进蚊香用的钱一起作为成本),若实际所得纯利润比原计划的纯利润少了15%.问利民商店买进这批电蚊香用了多少钱?。
初中数学《一元一次方程的运用》专项训练(含答案)
一元一次方程的运用一、解答题(本大题共13小题)1.⑴甲仓库有粮120吨.乙仓库有粮90吨.从甲仓库调运多少吨到乙仓库,调剂后甲仓库存粮是乙仓库的一半.⑵甲乙两个圆柱体容器,底面积比为53∶,甲容器水深20cm,乙容器水深10cm,再往两个容器注入同样多的水,使两个容器的水深相等,这时水深多少厘米?2.船在静水中的速度为每小时15千米,水流速是每小时3千米,船从上游乙港到下游甲港航行了12小时,从甲港返回乙港需要多少小时?3.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元不超过300元一律九折;③一次性购物超过300元一律八折.⑴小新妈妈购物付款99元.那她购买的物品实际价格为多少元?⑵若购物付款259.2元.那她购买的物品实际价格为多少元?4.“五一”期间,某商场搞优惠促销,决定由顾客抽奖确定折扣.某顾客购买甲、乙两种商品,分别抽到七折(按售价的70%销售)和九折(按售价的90%销售),共付款386元,这两种商品原销售价之和为500元.问:这两种商品原销售价分别为多少元?5.一牛奶制品厂现有鲜奶9t.若将这批鲜奶制成酸奶销售,则加工1t鲜奶可获利1200元;若制成奶粉销售,则加工1t鲜奶可获利2000元.该厂的生产能力是:若专门生产酸奶,则每天可用去鲜奶3t;若专门生产奶粉,则每天可用去鲜奶1t.由于受人员和设备的限制,酸奶和奶粉两产品不可能同时生产,为保证产品的质量,这批鲜奶必须在不超过4天的时间内全部加工完毕.假如你是厂长,你将如何设计生产方案,才能使工厂获利最大,最大利润是多少?6.甲、乙两人从相距73km的A、B两地相向而行,甲每小时行7km,乙每小时行2km ,问:两人同时出发,多少小时相距1km ?7.一个两位数,十位数字是个位数字的3倍,如果把十位数字与各位数字交换,所成的新数比原数少54,求原数.8.一次数学测验中,小明认为自己可以得满分,不料卷子发下来一看得了96分,原来是由于粗心把一个题目的答案十位与个位数字写颠倒了,结果自己的答案比正确答案大了36,而正确答案的个位数字是十位数字的2倍.正确答案是多少?9.某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量增长率的12倍,求新品种花生亩产量的增长率.10.一水池,装有甲、乙两个进水管和一个出水管丙,如果单独开发甲管4小时注满水池;单独开放乙管3小时可注满水池;单独开放丙管8小时可以把满池水放完。
一元一次方程应用题(经济问题)专项训练(二)(含答案)
学生做题前请先回答以下问题问题1:在求解应用题时,首先需要审题梳理信息,用什么方式梳理信息?你是怎样做的?问题2:借助表格梳理题中信息之后,解题过程分为哪几步书写?问题3:跟经济问题相关的六个概念是什么?问题4:经济问题最常用的一个公式是什么?问题5:解一元一次方程的步骤是什么?举例说明你是怎么做的?一元一次方程应用题(经济问题)专项训练(二)一、单选题(共7道,每道14分)1.一件标价为600元的上衣,按8折销售仍可获利100元.设这件上衣的成本价为x元,根据题意,下面所列方程正确的是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:一元一次方程的应用——打折销售2.陈华以8折的优惠价钱买了一双鞋子,节省了20元,那么他买鞋子时实际用了( )A.60元B.80元C.100元D.150元答案:B解题思路:试题难度:三颗星知识点:一元一次方程的应用——打折销售3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,则依题意可列方程为()A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:一元一次方程的应用——打折销售4.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,若设这种商品每件的进价为x元,则依题意可列方程为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:一元一次方程的应用——打折销售5.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,打折后每件服装仍能获利20%,则该服装每件的标价是多少元?若设这种服装每件的标价是x元,则依题意可列方程为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:一元一次方程的应用——打折销售6.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多( )A.120元B.80元C.60元D.180元答案:A解题思路:试题难度:三颗星知识点:一元一次方程的应用——打折销售7.剃须刀由刀片和刀架组成.某时期,甲、乙两厂家分别生产老式剃须刀(刀片不可更换)和新式剃须刀(刀片可更换),有关销售策略与售价等信息如下表所示:某段时间内,甲厂家销售了8400把剃须刀,乙厂家销售的刀片数量是刀架数量的50倍,乙厂家获得的利润是甲厂家的两倍.设这段时间内,乙厂家销售了x把刀架,则依题意可列方程为( )A.B.C.D.答案:C解题思路:试题难度:三颗星知识点:一元一次方程应用题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生做题前请先回答以下问题
问题1:在求解应用题时,首先需要审题梳理信息,一般用什么方式梳理信息?
问题2:跟经济问题相关的六个概念是什么?
问题3:经济问题中常用的两个公式分别是什么?
问题4:某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,如果设该电子产品的标价为x元,请分别表达出售价和利润.
一元一次方程应用题(经济问题)专项训练(二)
一、单选题(共6道,每道16分)
1.一件标价为600元的上衣,按8折销售仍可获利100元.设这件上衣的成本价为x元,根据题意,下面所列方程正确的是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:一元一次方程的应用——打折销售
2.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,则依题意可列方程为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:一元一次方程的应用——打折销售
3.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,若设这种商品每件的进价为x元,则依题意可列方程为( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:一元一次方程的应用——打折销售
4.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,打折后每件服装仍能获利20%,则该服装每件的标价是多少元?若设这种服装每件的标价是x元,则依题意可列方程为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:一元一次方程的应用——打折销售
5.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多( )
A.120元
B.80元
C.60元
D.180元
答案:A
解题思路:
试题难度:三颗星知识点:一元一次方程的应用——打折销售
6.剃须刀由刀片和刀架组成.某时期,甲、乙两厂家分别生产老式剃须刀(刀片不可更换)和新式剃须刀(刀片可更换),有关销售策略与售价等信息如下表所示:
某段时间内,甲厂家销售了8400把剃须刀,乙厂家销售的刀片数量是刀架数量的50倍,乙厂家获得的利润是甲厂家的两倍.设这段时间内,乙厂家销售了x把刀架,则依题意可列方程为( )
A.
B.
C.
D.
答案:C
解题思路:
试题难度:三颗星知识点:一元一次方程应用题。