北师大版 2018-2019学年八年级(上)开学数学试卷

合集下载

2019年北师大版八年级数学下册期中测试卷(含答案)

2019年北师大版八年级数学下册期中测试卷(含答案)

2018-2019学年八年级(下)期中数学试卷一、选择题:每题3分,共45分。

在每小题的四个选项中,只有一项是符合题目要求的,把正确答案的代号涂在答题卡上。

1.如果a>b,那么下列各式中正确的是()A.a﹣2<b﹣2B.<C.﹣2a<﹣2b D.﹣a>﹣b2.下列图形中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个3.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0B.a<0C.a>﹣1D.a<﹣14.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10B.8C.10D.6或125.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC 于点E,则PD+PE的长是()A.4.8B.4.8或3.8C.3.8D.56.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB 于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm7.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A.3cm B.4cm C.6cm D.9cm8.已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④9.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处10.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A.30°B.36°C.45°D.70°11.已知不等式组的解集为﹣1<x<1,则(a+1)(b﹣1)值为()A.6B.﹣6C.3D.﹣312.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.B.4C.D.513.如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到的△O′A′B′,点A的对应点A′在直线y=x上,则点B与其对应点B′间的距离为()A.B.3C.4D.514.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC 于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC :S△ABC=1:3.A.1B.2C.3D.415.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4、…,△16的直角顶点的坐标为()A.(60,0)B.(72,0)C.(67,)D.(79,)二、填空题:每题3分,共18分,将答案填在题的横线上16.在平面直角坐标系中,若点P(2x+6,5x)在第四象限,则x的取值范围是.17.如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A落在CB的延长线上的点E处,则∠BDC的度数为度.18.已知等腰△OPQ的顶点P的坐标为(4,3),O为坐标原点,腰长OP=5,点Q位于y轴正半轴上,则点Q的坐标为.19.初三的几位同学拍了一张合影作为留念,已知拍一张底片需要5元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数为.20.如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为10cm,那么△ABC 的周长为cm.21.如图,边长为1的等边△ABO在平面直角坐标系的位置如图所示,点O为坐标原点,点A在x 轴上,以点O为旋转中心,将△ABO按逆时针方向旋转60°,得到△OA′B′,则点A′的坐标为.三、解答题:共7小题,满分57分,解答应写出文字说明过程或演算步骤。

北师大版初中数学八年级上册期中试题(山东省青岛莱西市

北师大版初中数学八年级上册期中试题(山东省青岛莱西市

2018-2019学年山东省青岛莱西市八年级(上)期中数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)在1.414,,π,3.2122122122122…,2+,3.14151617这些数中,无理数的个数为()A.2B.3C.4D.52.(3分)木工师傅想利用木条制作一个直角三角形的工具,那么下列各组数据不符合直角三角形的三边长的是()A.3,4,5B.6,8,10C.5,12,13D.13,16,18 3.(3分)如果P(m+3,2m+4)在y轴上,那么点P的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0)D.(0,1)4.(3分)已知直角三角形两边的长为3和4,则此三角形的周长为()A.12B.7+C.12或7+D.以上都不对5.(3分)下列各式中计算正确的是()A.=﹣7B.=±7C.=﹣7D.(﹣)2=﹣7 6.(3分)估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间7.(3分)已知一次函数y=x+a与y=﹣x+b的图象都经过点A(﹣2,0),且与y轴分别交于B,C两点,那么△ABC的面积是()A.2B.3C.4D.58.(3分)若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.二、填空题(本题满分24分,共有8道小题,每小题3分)9.(3分)的平方根是;﹣2的相反数是:|﹣3|=.10.(3分)在如图所示的数轴上,点B与点C关于A对称,A、B两点对应的实数分别是和﹣1,则点C对应的实数为.11.(3分)如图,有一圆柱,其高为12cm,底面半径为3cm,在圆柱下底面A点处有一只蚂蚁,它想得到上底面B处的食物,则蚂蚁经过的最短距离为cm.(π取3)12.(3分)如图,等边△ABC,B点在坐标原点,C点的坐标为(4,0),点A关于x轴对称点A′的坐标为.13.(3分)直线y=3x+b与y轴的交点的纵坐标为﹣2,则这条直线一定不过象限.14.(3分)如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为.15.(3分)某水库的水位在6小时内持续上涨,初始的水位高度为8米,水位以每小时0.2米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤6)的函数关系式为.16.(3分)如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按照此做法进行下去,点A8的坐标为.三、作图题(本题满分4分)17.(4分)若一个负数x满足x2=5,在数轴上画出表示x的点.(要画出作图痕迹)四、解答题(本题满分68分,共有8道小题)18.(16分)计算:(1)+﹣(2)﹣×(3)(3﹣2)2(4)(﹣2)×﹣619.(6分)为了绿化环境,我县某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要200元,问总共需投入多少元?20.(8分)小明一家利用元旦三天驾车到某景点旅游.小汽车出发前油箱有油36L,行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的关系如图所示.根据图象回答下列问题:(1)小汽车行驶h后加油,中途加油L;(2)求加油前油箱余油量Q与行驶时间t的函数关系式;(3)如果小汽车在行驶过程中耗油量速度不变,加油站距景点200km,车速为80km/h,要到达目的地,油箱中的油是否够用?请说明理由.21.(6分)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计)22.(6分)如图,在直角坐标系中,A(﹣1,5),B(﹣3,0),C(﹣4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点C1的坐标;(3)求△ABC的面积.23.(6分)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,求这个一次函数的解析式.24.(10分)如图,l1和l2分别是走私船和我公安快艇航行路程与时间的函数图象,请结合图象解决下列问题:(1)在刚出发时,我公安快艇距走私船多少海里?(2)计算走私船与公安艇的速度分别是多少?(3)求出l1,l2的解析式.(4)问6分钟时,走私船与我公安快艇相距多少海里?25.(10分)【问题】用n边形的对角线把n边形分割成(n﹣2)个三角形,共有多少种不同的分割方案(n≥4)?【探究】为了解决上面的数学问题,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进转化,最后猜想得出结论.不妨假设n边形的分割方案有P n种.探究一:用四边形的对角线把四边形分割成2个三角形,共有多少种不同的分割方案?如图①,图②,显然,只有2种不同的分割方案.所以,P4=2.探究二:用五边形的对角线把五边形分割成3个三角形,共有多少种不同的分割方案?不妨把分割方案分成三类:第1类:如图③,用A,E与B连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案,所以,此类共有P4种不同的分割方案.第2类:如图④,用A,E与C连接,把五边形分割成3个三角形,有1种不同的分割方案,可视为种分割方案.第3类:如图⑤,用A,E与D连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案,所以,此类共有P4种不同的分割方案.所以,P5=P4++P4==5(种)探究三:用六边形的对角线把六边形分割成4个三角形,共有多少种不同的分割方案?不妨把分割方案分成四类:第1类:如图⑥,用A,F与B连接,先把六边形分割转化成1个三角形和1个五边形,再把五边形分割成3个三角形,由探究二知,有P5种不同的分割方案.所以,此类共有P5种不同的分割方案.第2类:如图⑦,用A,F与C连接,先把六边形分割转化成2个三角形和1个四边形.再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案.所以,此类共有P4种分割方案第3类:如图⑧,用A,F与D连接,先把六边形分割转化成2个三角形和1个四边形.再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案.所以,此类共有P4种分割方案.第4类:如图⑨,用A,F与E连接,先把六边形分割转化成1个三角形和1个五边形.再把五边形分割成3个三角形,由探究二知,有P5种不同的分割方案.所以,此类共有P5种分割方案.所以,P6=P5+P4+P4+P5=P5+=14(种)探究四:用七边形的对角线把七边形分割成5个三角形,则P7与P6的关系为:P7=P6,共有种不同的分割方案.……【结论】用n边形的对角线把n边形分割成(n﹣2)个三角形,共有多少种不同的分割方案(n≥4)?(直接写出P n与P n﹣1的关系式,不写解答过程).【应用】用八边形的对角线把八边形分割成6个三角形,共有多少种不同的分割方案?(应用上述结论,写出解答过程)2018-2019学年山东省青岛莱西市八年级(上)期中数学试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)在1.414,,π,3.2122122122122…,2+,3.14151617这些数中,无理数的个数为()A.2B.3C.4D.5【分析】根据无理数的定义逐个判断即可.【解答】解:无理数有,π,2+,共3个,故选:B.【点评】本题考查了算术平方根和无理数的定义,能熟记无理数的定义的内容是解此题的关键.2.(3分)木工师傅想利用木条制作一个直角三角形的工具,那么下列各组数据不符合直角三角形的三边长的是()A.3,4,5B.6,8,10C.5,12,13D.13,16,18【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、∵32+42=52,∴能够成直角三角形,故本选项错误;B、∵62+82=102,∴能够成直角三角形,故本选项错误;C、∵52+122=132,∴能够成直角三角形,故本选项错误;D、∵132+162≠182,∴能够成直角三角形,故本选项正确.故选:D.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.(3分)如果P(m+3,2m+4)在y轴上,那么点P的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0)D.(0,1)【分析】根据点在y轴上,可知P的横坐标为0,即可得m的值,再确定点P的坐标即可.【解答】解:∵P(m+3,2m+4)在y轴上,∴m+3=0,解得m=﹣3,2m+4=﹣2,∴点P的坐标是(0,﹣2).故选:B.【点评】解决本题的关键是记住y轴上点的特点:横坐标为0.4.(3分)已知直角三角形两边的长为3和4,则此三角形的周长为()A.12B.7+C.12或7+D.以上都不对【分析】先设Rt△ABC的第三边长为x,由于4是直角边还是斜边不能确定,故应分4是斜边或x为斜边两种情况讨论.【解答】解:设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,x=5,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,x=,此时这个三角形的周长=3+4+,故选:C.【点评】本题考查的是勾股定理的应用,解答此题时要注意分类讨论,不要漏解.5.(3分)下列各式中计算正确的是()A.=﹣7B.=±7C.=﹣7D.(﹣)2=﹣7【分析】根据平方根、立方根的定义判断即可.【解答】解:A.=7,此选项错误;B.=7,此选项错误;C.=﹣7,此选项正确;D.(﹣)2=7,此选项错误;故选:C.【点评】本题考查算术平方根、立方根的定义,解题的关键是熟练掌握基本概念,属于中考基础题.6.(3分)估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【分析】直接利用已知无理数得出的取值范围,进而得出答案.【解答】解:∵2<<3,∴3<+1<4,∴+1在3和4之间.故选:C.【点评】此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.7.(3分)已知一次函数y=x+a与y=﹣x+b的图象都经过点A(﹣2,0),且与y轴分别交于B,C两点,那么△ABC的面积是()A.2B.3C.4D.5【分析】可先根据点A的坐标用待定系数法求出a,b的值,即求出两个一次函数的解析式,进而求出它们与y轴的交点,即B,C的坐标.那么三角形ABC中,底边的长应该是B,C纵坐标差的绝对值,高就应该是A点横坐标的绝对值,因此可根据三角形的面积公式求出三角形的面积.【解答】解:把点A(﹣2,0)代入y=x+a,得:a=3,∴点B(0,3).把点A(﹣2,0)代入y=﹣x+b,得:b=﹣1,∴点C(0,﹣1).∴BC=|3﹣(﹣1)|=4,∴S△ABC=×2×4=4.故选:C.【点评】本题考查了用待定系数法求函数解析式以及一次函数与方程的关系,通过已知点的坐标来得出两函数的解析式是解题的关键.8.(3分)若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.【分析】先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y轴的交点的位置即可得解.【解答】解:∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定),a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,纵观各选项,只有A选项符合.故选:A.【点评】本题主要考查了一次函数图象与系数的关系,先确定出a、c的正负情况是解题的关键,也是本题的难点.二、填空题(本题满分24分,共有8道小题,每小题3分)9.(3分)的平方根是±3;﹣2的相反数是﹣+2:|﹣3|=3﹣.【分析】根据平方根的定义、相反数的定义和绝对值的性质即可解答.【解答】解:=9,9的平方根是±3;﹣2的相反数是﹣+2:|﹣3|=3﹣.故答案为:±3;﹣+2;3﹣.【点评】本题考查了实数的性质,主要利用了平方根的定义、相反数的定义和绝对值的性质.10.(3分)在如图所示的数轴上,点B与点C关于A对称,A、B两点对应的实数分别是和﹣1,则点C对应的实数为.【分析】设点C所对应的实数是x.根据中心对称的性质,即对称点到对称中心的距离相等,即可列方程求解即可.【解答】解:设点C所对应的实数是x.则有x﹣=﹣(﹣1),解得x=2+1.故答案为1+2.【点评】本题考查的是数轴上两点间距离的定义,根据题意列出关于x的方程是解答此题的关键.11.(3分)如图,有一圆柱,其高为12cm,底面半径为3cm,在圆柱下底面A点处有一只蚂蚁,它想得到上底面B处的食物,则蚂蚁经过的最短距离为15cm.(π取3)【分析】本题应先把圆柱展开即得其平面展开图,则A,B所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πr,蚂蚁经过的最短距离为连接A,B的线段长,由勾股定理求得AB的长.【解答】解:圆柱展开图为长方形,则A,B所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πrcm,蚂蚁经过的最短距离为连接A,B的线段长,由勾股定理得AB====15cm.故蚂蚁经过的最短距离为15cm.(π取3)【点评】解答本题的关键是计算出圆柱展开后所得长方形长和宽的值,然后用勾股定理计算即可.12.(3分)如图,等边△ABC,B点在坐标原点,C点的坐标为(4,0),点A关于x轴对称点A′的坐标为(2,﹣2).【分析】先求出A点的坐标,然后关于x轴对称x不变,y变为相反数.【解答】解:∵△ABC为等边三角形,∴过A点作BC的垂线交于BC中点D,则D点坐标为(2,0).运用勾股定理得AD=4×sin60°=2.∴A的坐标是(2,2).又因为关于x轴对称,所以可得答案为(2,﹣2).【点评】考查点的坐标的确定及对称点的坐标的确定方法.13.(3分)直线y=3x+b与y轴的交点的纵坐标为﹣2,则这条直线一定不过二象限.【分析】根据一次函数与系数的关系可判断直线y=3x+b经过第一、三、四象限.【解答】解:∵k=3,∴直线y=3x+b经过第一、三象限,∵直线y=3x+b与y轴的交点的纵坐标为﹣2,∴直线y=3x+b经过第四象限,∴直线y=3x+b不经过第二象限.故答案为二.【点评】本题考查了一次函数与系数的关系:对于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.14.(3分)如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为.【分析】设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD﹣CE=3﹣x.在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF根据勾股定理列出关于x 的方程即可解决问题.【解答】解:设CE=x.∵四边形ABCD是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,∴BF=BC=5,EF=CE=x,DE=CD﹣CE=3﹣x.在Rt△ABF中,由勾股定理得:AF2=52﹣32=16,∴AF=4,DF=5﹣4=1.在Rt△DEF中,由勾股定理得:EF2=DE2+DF2,即x2=(3﹣x)2+12,解得:x=,故答案为.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理、矩形的性质、方程思想等知识,关键是熟练掌握勾股定理,找准对应边.15.(3分)某水库的水位在6小时内持续上涨,初始的水位高度为8米,水位以每小时0.2米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤6)的函数关系式为y =8+0.2x.【分析】根据水库的水位上升的高度等于水位上升的速度乘时间解答.【解答】解:∵初始的水位高度为8米,水位以每小时0.2米的速度匀速上升,∴水库的水位高度y米与时间x小时(0≤x≤6)的函数关系式为y=8+0.2x,故答案为:y=8+0.2x.【点评】本题考查的是函数关系式,根据题中水位以每小时0.2米的速度匀速上升列出关系式是解题的关键.16.(3分)如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按照此做法进行下去,点A8的坐标为(128,0)..【分析】在Rt△OA1B1中,由OA1=1、A1B1=OA1=,利用勾股定理可得出OB1=2,进而可得出点A2的坐标为(2,0),同理,即可求出点A3、A4、A5、A6、A7、A8的坐标,此题得解.【解答】解:在Rt△OA1B1中,OA1=1,A1B1=OA1=,∴OB1==2,∴点A2的坐标为(2,0).同理,可得出:点A3的坐标为(4,0),点A4的坐标为(8,0),点A5的坐标为(16,0),点A6的坐标为(32,0),点A7的坐标为(64,0),点A8的坐标为(128,0).故答案为:(128,0).【点评】本题考查了一次函数图象上点的坐标特征、解直角三角形以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合解直角三角形,求出点A2、A3、A4、A5、A6的坐标是解题的关键.三、作图题(本题满分4分)17.(4分)若一个负数x满足x2=5,在数轴上画出表示x的点.(要画出作图痕迹)【分析】先解方程,可得负数x=﹣,因为5=4+1,则首先作出以1和2为直角边的直角三角形,则其斜边的长即是.再以原点为圆心,以为半径画弧,和数轴的负半轴交于一点即可.【解答】解:x2=5,x=∵x是负数∴x=﹣因为5=4+1,则首先作出以1和2为直角边的直角三角形,则其斜边的长即是.【点评】考查了勾股定理,实数与数轴.能够正确运用数轴上的点来表示一个无理数.四、解答题(本题满分68分,共有8道小题)18.(16分)计算:(1)+﹣(2)﹣×(3)(3﹣2)2(4)(﹣2)×﹣6【分析】(1)首先化简二次根式进而计算得出答案;(2)首先化简二次根式进而计算得出答案;(3)直接利用完全平方公式计算,进而得出答案;(4)首先利用二次根式的乘法运算法则计算,进而计算得出答案.【解答】解:(1)+﹣=2+4﹣=5;(2)﹣×=﹣=4﹣2=2;(3)(3﹣2)2=27+4﹣12=31﹣12;(4)(﹣2)×﹣6=(﹣2)﹣6×=3﹣6﹣3=﹣6.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.19.(6分)为了绿化环境,我县某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要200元,问总共需投入多少元?【分析】(1)连接BD,在直角三角形ABD中,利用勾股定理求出BD,再利用勾股定理的逆定理判断得到三角形BCD为直角三角形,四边形ABCD面积等于三角形ABD面积+三角形BCD面积,求出即可;(2)由(1)求出的面积,乘以200即可得到结果.【解答】解:(1)连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,则S四边形ABCD=S△BAD+S△DBC=•AD•AB+DB•BC=×4×3+×12×5=36;(2)所以需费用36×200=7200(元).【点评】此题考查了勾股定理的应用,熟练掌握勾股定理及逆定理是解本题的关键.20.(8分)小明一家利用元旦三天驾车到某景点旅游.小汽车出发前油箱有油36L,行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的关系如图所示.根据图象回答下列问题:(1)小汽车行驶3h后加油,中途加油24L;(2)求加油前油箱余油量Q与行驶时间t的函数关系式;(3)如果小汽车在行驶过程中耗油量速度不变,加油站距景点200km,车速为80km/h,要到达目的地,油箱中的油是否够用?请说明理由.【分析】(1)观察图中数据可知,行驶3小时后油箱剩油6L,加油加至30L;(2)先根据图中数据把每小时用油量求出来,即:(36﹣6)÷3=10L,再写出函数关系式;(3)先要求出从加油站到景点需行几小时,然后再求需用多少油,便知是否够用.【解答】解:(1)从图中可知汽车行驶3h后加油,中途加油24L;故答案为:(2)根据分析可知Q=﹣10t+36(0≤t≤3);(3)油箱中的油是够用的.∵200÷80=2.5(小时),需用油10×2.5=25L<30L,∴油箱中的油是够用的.【点评】本题考查了函数图象,观察函数图象的横坐标得出时间,观察函数图象的纵坐标得出剩余油量是解题关键,利用待定系数法求函数解析式.21.(6分)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计)【分析】根据题意画出示意图,设旗杆高度为x,可得AC=AD=x,AB=(x﹣2)m,BC =8m,在Rt△ABC中利用勾股定理可求出x.【解答】解:设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.【点评】本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.22.(6分)如图,在直角坐标系中,A(﹣1,5),B(﹣3,0),C(﹣4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点C1的坐标;(3)求△ABC的面积.【分析】(1)、(2)利用关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(3)用一个矩形的面积减去三个三角形的面积计算△ABC的面积.【解答】解:(1)如图,△A1B1C1为所作;(2)点C1的坐标为(4,3);(3)△ABC的面积=3×5﹣×3×1﹣×3×2﹣×5×2=.【点评】本题考查了作图﹣对称性变换:在画一个图形的轴对称图形时,先从确定一些特殊的对称点开始的,一般的方法是:由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形.23.(6分)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,求这个一次函数的解析式.【分析】首先求得B的坐标,然后利用待定系数法即可求得一次函数的解析式.【解答】解:在y=2x中,令x=1,解得y=2,则B的坐标是(1,2),设一次函数的解析式是y=kx+b,∵一次函数经过(1,2),(0,3)两点,∴,解得:.∴一次函数的解析式是y=﹣x+3;【点评】本题主要考查了用待定系数法求函数的解析式.先根据条件列出关于字母系数的方程,解方程求解即可得到函数解析式.24.(10分)如图,l1和l2分别是走私船和我公安快艇航行路程与时间的函数图象,请结合图象解决下列问题:(1)在刚出发时,我公安快艇距走私船多少海里?(2)计算走私船与公安艇的速度分别是多少?(3)求出l1,l2的解析式.(4)问6分钟时,走私船与我公安快艇相距多少海里?【分析】(1)由当t=0时,y1=5,y2=0,二者做差后即可得出结论;(2)利用速度=路程÷时间,可分别求出走私船与公安艇的速度;(3)观察函数图象,找出点的坐标,利用待定系数法即可求出l1,l2的解析式;(4)利用一次函数图象上点的坐标特征,求出x=6时,y1,y2的值,做差后即可得出结论.【解答】解:(1)当t=0时,y1=5,y2=0,∴5﹣0=5,∴在刚出发时,我公安快艇距走私船5海里.(2)(9﹣5)÷4=1(海里/分钟),6÷4=1.5(海里/分钟).∴走私船的速度是1海里/分钟,公安艇的速度为1.5海里/分钟.(3)设图象l1的解析式为y1=kt+b(k≠0),将(0,5),(4,9)代入y1=kt+b,得:,解得:,∴图象l1的解析式为y1=t+5;设图象l2的解析式为y2=mt(m≠0),将(4,6)代入y2=mt,得:4m=6,解得:m=1.5,∴图象l2的解析式为y2=1.5t.(4)当t=6时,y1=6+5=11,y2=1.5×6=9,∵11﹣9=2(海里),∴6分钟时,走私船与我公安快艇相距2海里.【点评】本题考查了待定系数法求一次函数解析式、函数图象以及一次函数图象上点的坐标特征,解题的关键是:(1)观察函数图象,找出当t=0时y的值;(2)利用速度=路程÷时间求出两船的速度;(3)根据点的坐标,利用待定系数法求出一次函数解析式;(4)利用一次函数图象上点的坐标特征求出当t=6时y1,y2的值.25.(10分)【问题】用n边形的对角线把n边形分割成(n﹣2)个三角形,共有多少种不同的分割方案(n≥4)?【探究】为了解决上面的数学问题,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进转化,最后猜想得出结论.不妨假设n边形的分割方案有P n种.探究一:用四边形的对角线把四边形分割成2个三角形,共有多少种不同的分割方案?如图①,图②,显然,只有2种不同的分割方案.所以,P4=2.探究二:用五边形的对角线把五边形分割成3个三角形,共有多少种不同的分割方案?不妨把分割方案分成三类:第1类:如图③,用A,E与B连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案,所以,此类共有P4种不同的分割方案.第2类:如图④,用A,E与C连接,把五边形分割成3个三角形,有1种不同的分割方案,可视为种分割方案.第3类:如图⑤,用A,E与D连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案,所以,此类共有P4种不同的分割方案.所以,P5=P4++P4==5(种)探究三:用六边形的对角线把六边形分割成4个三角形,共有多少种不同的分割方案?不妨把分割方案分成四类:第1类:如图⑥,用A,F与B连接,先把六边形分割转化成1个三角形和1个五边形,再把五边形分割成3个三角形,由探究二知,有P5种不同的分割方案.所以,此类共有P5种不同的分割方案.第2类:如图⑦,用A,F与C连接,先把六边形分割转化成2个三角形和1个四边形.再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案.所以,此类共有P4种分割方案第3类:如图⑧,用A,F与D连接,先把六边形分割转化成2个三角形和1个四边形.再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案.所以,此类共有P4种分割方案.第4类:如图⑨,用A,F与E连接,先把六边形分割转化成1个三角形和1个五边形.再把五边形分割成3个三角形,由探究二知,有P5种不同的分割方案.所以,此类共有P5种分割方案.所以,P6=P5+P4+P4+P5=P5+=14(种)探究四:用七边形的对角线把七边形分割成5个三角形,则P7与P6的关系为:P7=P6,共有42种不同的分割方案.……【结论】用n边形的对角线把n边形分割成(n﹣2)个三角形,共有多少种不同的分割方案。

2019年秋北师大版八年级数学上册第二单元测试卷2套试题

2019年秋北师大版八年级数学上册第二单元测试卷2套试题

第二章单元测试卷第二章单元测试卷[时间:120分钟 分值:150分]A 卷(共100分)一、选择题(共10个小题,每小题3分,共30分)1.下面四个数是无理数的为( )A .0B .-3.141 5…… C.227 D.92.[2018·包头]计算-4-|-3|的结果是( ) A .-1 B .-5 C .1 D .53.[2018·南充]下列实数中,最小的数是( )A .- 2B .0C .1D . 384.[2018·曲靖]下列二次根式中能与23合并的是() A. 8 B. 13 C. 18 D. 95.计算2×8+3-27的结果为( )A. -1B. 1 C .4-3 3 D. 76.按如图所示的程序计算,若开始输入的n 值为2,则最后输出的结果是( )A .14B .16C .8+5 2D .14+ 27.[2018春·自贡期末]实数a,b在数轴上对应点如图所示,则化简b2+(a-b)2-|a|的结果是()A.2a B.2b C.-2b D.-2a8.三个实数-6,-2,-7之间的大小关系是()A.-7>-6>-2 B.-7>-2>- 6C.-2>-6>-7 D.-6<-2<-79.若(m-1)2+n+2=0,则m+n的值是()A.-1 B.0 C.1 D.210.[2018·十堰]如图是按一定规律排成的三角形数阵,按图中的数阵排列规律,第9行从左至右第5个数是()………A.210 B.41C.5 2 D.51二、填空题(共4个小题,每小题4分,共16分)11.81的平方根是______,-125的立方根是_____.12.3-127的相反数为____,倒数为_______,绝对值为______.13.[2018·资阳]已知a,b满足(a-1)2+b+2=0,则a+b=________.14.如图是一个正方体纸盒的展开图,其相对两个面上的实数互为相反数,用“<”将A ,B ,C 所表示的实数依次连起来为__________.三、解答题(共6个小题,共54分)15.(8分)计算下列各题:(1)⎪⎪⎪⎪⎪⎪-23+2×8+3-1-22;(2)⎝ ⎛⎭⎪⎫-122×(-2)2+12×3-125-(-2)3×30.064.16.(12分)计算:(1)(1+3)(1-3)(1+2)(1-2);(2)(3+2)2(3-2)2; (3)(3+32-6)(3-32-6).17.(7分)已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n的值.18.(12分)求下列各式中x的值:(1)x2-7=0;(2)x3+216=0;(3)(x-3)2=64.19.(7分)自由下落的物体的高度h(m)与下落时间t(s)的关系式为h=4.9t2.某学生不慎让一个玻璃杯从19.6 m高的楼上自由下落,刚好另一学生站在与下落的玻璃杯同一直线的地面上,在玻璃杯下落的同时楼上的学生惊叫一声,这时楼下的学生能躲开吗(声音的速度为340 m/s)?20.(8分)已知x ,y 为实数,且满足y =x -12+12-x +12,求5x +||2y -1-y 2-2y +1的值.B 卷(共50分)四、填空题(共5个小题,每小题4分,共20分)21.定义运算“”的运算法则为x y =xy +4,则(26)8=____.22.设三角形一边长为a ,这边上的高为h ,面积为S .如果h =63cm ,另有一个边长为32cm 的正方形面积也等于S ,则a 的长为______cm.23.一个直角三角形的两边长分别为3和4,则它的面积为______.24.如图,点A 为正方体左侧面的中心,点B 是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A 沿其表面爬到点B 的最短路程是________.25.如图,每个小正方形的边长为2,连接小正方形的三个顶点,可得到△ABC ,则AC 边上的高是________.五、解答题(共3个小题,共30分)26.(8分)[2018春·澄海区期末]阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,而1<2<2,于是可用2-1来表示2的小数部分.请解答下列问题:(1)21的整数部分是____,小数部分是__________.(2)如果7的小数部分为a,15的整数部分为b,求a+b-7的值.(3)已知100+110=x+y,其中x是整数且0<y<1,求x+110+24-y的平方根.27.(10分)如图,在Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1 cm/s的速度向点A移动;同时,点Q也从点B开始沿BC边以2 cm/s的速度向点C移动.问:几秒之后△PBQ的面积为35 cm2此时点P,Q的距离是多少厘米?(结果用最简二次根式表示)28.(12分)细心观察、认真分析,然后解答问题:OA22=(1)2+1=2,S1=1 2;OA23=12+(2)2=3,S2=2 2;OA24=12+(3)2=4,S3=3 2;…(1)推算出OA10的长;(2)若一个三角形的面积是5,请通过计算说明它是第几个三角形.参考答案A卷一、1.B 【解析】无理数也称为无限不循环小数,不能写作两整数之比.若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环,故选B.2.B【解析】原式=-2-3=-5,故选B.3.A【解析】∵-2<0<1<38,∴最小的数是-2,故选A.4.B 5.B 6.C7.B【解析】如图,b>0,a-b<0,a<0,则b2+(a-b)2-|a|=b+b-a-(-a)=2b.8.C 9.A10.B 【解析】由图形可知,第n行最后一个数为=n(n+1)2,∴第8行最后一个数为8×92=36=6,则第9行从左至右第5个数是36+5=41,故选B.二、11.±3 -512.13-31313.-1【解析】∵(a-1)2+b+2=0,∴a=1,b=-2,∴a+b=-1.14.B>A>C【解析】由题意可得A+(-327)=0,B+(-10)=0,C+3=0.∴A =327=3,B =10,C =-3,∴B >A >C .三、15.解:(1)原式=23+4+13-4=1.(2)原式=14×2+12×(-5)+8×0.4=0.5-2.5+3.2=1.2.16.解:(1)原式=(1-3)×(1-2)=2.(2)原式=[(3+2)(3-2)]2=[(3)2-(2)2]2=(3-2)2=1.(3)原式=[(3-6)+32][(3-6)-32]=(3-6)2-(32)2=3-62+6-18=-9-6 2.17.解:由题意可得2m +2=16,3m +n +1=25.由2m +2=16,得m =7,代入3m +n +1=25,得3×7+n +1=25,∴n =3,∴m +2n =7+2×3=13.18.解:(1)x =±7.(2)x =-6.(3)x =11或-5.19.解:楼下的学生能躲开.理由:玻璃杯下落的时间为t =19.6÷4.9=2(s),而声音传到楼下的学生所在位置只要19.6÷340≈0.058(s)<2(s). 20.解:由题意有⎩⎪⎨⎪⎧x -12≥0,12-x ≥0.得x =12,则y =12.5x +||2y -1-y 2-2y +1=52+0-14=2.B 卷四、21.6 【解析】 根据新定义的运算法则x y =xy +4, 可得26=2×6+4=16=4, 所以(26)8=48=4×8+4=36=6.22. 23 【解析】 由另有一个边长为3 2 cm 的正方形面积也等于S ,可得12a ×63=(32)2,所以a =18÷33=63=23(cm). 23.6或372 24. 10答图【解析】如答图,AB =(1+2)2+12=10.25. 655【解析】 ∵小正方形的边长为2, ∴AC =4+16=25,∴S △ABC =4×4-12×2×2-12×2×4-12×2×4=6, S △ABC =12AC ·h =12×25h =6, 解得h =65 5.五、26. (1) 4 21-4 解:(1)∵4<21<5,∴21的整数部分是4,小数部分是21-4, (2)∵2<7<3, ∴a =7-2. ∵3<15<4, ∴b =3,∴a +b -7=7-2+3-7=1; (3)∵100<110<121, ∴10<110<11, ∴110<100+110<111.∵100+110=x +y ,其中x 是整数,且0<y <1, ∴x =110,y =100+110-110=110-10,∴x +110+24-y =110+110+24-110+10=144, x +110+24-y 的平方根是±12.27.解: 设x s 后△PBQ 的面积为35 cm 2, 则有PB =x ,BQ =2x . 依题意,得12x ·2x =35, x 1=35,x 2=-35(舍去), 所以35 s 后△PBQ 的面积为35 cm 2.PQ =PB 2+BQ 2=x 2+4x 2=5x 2=5×35=57.∴35s 后△PBQ 的面积为35 cm 2,此时P ,Q 的距离为57 cm. 28.解:(1)结合已知数据,可得OA 2n =n ,S n =n2.∵OA 2n =n , ∴OA 10=10.(2)若一个三角形的面积是5,根据S n =n2=5, ∴n =25, ∴n =20,∴它是第20个三角形.温馨提示:此套题为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

2018-2019学年北师大版数学八年级上册全册教案(含教学反思)

2018-2019学年北师大版数学八年级上册全册教案(含教学反思)

第一章勾股定理1. 探索勾股定理(第1课时)一、学生起点分析八年级学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补思想解决问题的意识和能力还远远不够.部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”.此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强.二、教学任务分析本节课是义务教育课程标准实验教科书北师大版八年级(上)第一章《勾股定理》第一节第1课时. 勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用.本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值.为此本节课的教学目标是:1.用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.2.让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.3.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.4.在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习.三、教学过程设计本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业.第一环节:创设情境,引入新课内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)意图:紧扣课题,自然引入,同时渗透爱国主义教育.效果:激发起学生的求知欲和爱国热情.第二环节:探索发现勾股定理1.探究活动一内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:问:你能发现各图中三个正方形的面积之间有何关系吗?学生通过观察,归纳发现:结论 1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望.2.探究活动二内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?(1)观察下面两幅图:(2)填表:A 的面积 (单位面积)B 的面积 (单位面积)C 的面积 (单位面积)左图 右图(3)你是怎样得到正方形C 的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)图1 图2 图3 学生的方法可能有: 方法一:如图1,将正方形C 分割为四个全等的直角三角形和一个小正方形,13132214=+⨯⨯⨯=C S .方法二:如图2,在正方形C 外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积,.方法三:如图3,正方形C 中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法,.(4)分析填表的数据,你发现了什么? 学生通过分析数据,归纳出:结论 2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C 的面积计算是一个难点,为此设计了一个交流环节.效果:学生通过充分讨论探究,在突破正方形C 的面积计算这一难点后得出结论2. 3.议一议内容:(1)你能用直角三角形的边长,b ,c 来表示上图中正方形的面积吗?(2)你能发现直角三角形三边长度之间存在什么关系吗?(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c 分别表示直角三角形的两直角边和斜边,那么222c b a =+.数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.(在西方文献中又称为毕达哥拉斯定理)意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理.效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力;2.通过作图培养学生的动手实践能力.第三环节:勾股定理的简单应用内容:例题 如图所示,一棵大树在一次强烈台风中于离地面10m 处折断倒下,树顶落在离树根24m 处. 大树在折断之前高多少?(教师板演解题过程) 练习:1.基础巩固练习:求下列图形中未知正方形的面积或未知边的长度(口答):弦股勾225100x172.生活中的应用:小明妈妈买了一部29 in (74 cm )的电视机. 小明量了电视机的屏幕后,发现屏幕只有58 cm 长和46 cm 宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容.第四环节:课堂小结内容: 教师提问:1.这一节课我们一起学习了哪些知识和思想方法? 2.对这些内容你有什么体会?与同伴进行交流. 在学生自由发言的基础上,师生共同总结:1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c分别表示直角三角形的两直角边和斜边,那么222c b a =+.2.方法:(1) 观察—探索—猜想—验证—归纳—应用; (2)“割、补、拼、接”法.3.思想:(1) 特殊—一般—特殊; (2) 数形结合思想.意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动.效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识.第五环节:布置作业内容:布置作业:1.教科书习题1.1.2.观察下图,探究图中三角形的三边长是否满足意图:课后作业设计包括了三个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识,进行课后探究而设计,通过此题可让学生进一步认识勾股定理的前提条件.效果:学生进一步加强对本课知识的理解和掌握.五、教学设计反思(一)设计理念依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习.教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点.(二)突出重点、突破难点的策略为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.第一章勾股定理1. 探索勾股定理(第2课时)一、学生起点分析学生的知识技能基础:学生在七年级已经学习了整式的加、减、乘、除运算和等式的基本性质,并能进行简单的恒等变形;上节课又已经通过测量和数格子的方法,对具体的直角三角形探索并发现了勾股定理,但没有对一般的直角三角形进行验证.学生活动经验基础:学生在以前数学学习中已经经历了很多独立探究和合作学习的过程,具有了一定的自主探究经验和合作学习的经验,具备了一定的探究能力和合作与交流的能力;学生在七年级《七巧板》及《图案设计》的学习中已经具备了一定的拼图活动经验.二、教学任务分析本节课是八(上)勾股定理第1节第2课时,是在上节课已探索得到勾股定理之后的内容,具体学习任务:通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,体会勾股定理的应用价值并逐步培养学生应用数学解决实际问题意识和能力,为后面的学习打下基础.为此本节课的教学目标是:1.掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.2.在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.3.在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.用面积法验证勾股定理,应用勾股定理解决简单的实际问题是本节课的重点.三、教学过程本节课设计了七个教学环节:(一)复习设疑,激趣引入;(二)小组活动,拼图验证;(三)延伸拓展,能力提升(四)例题讲解,初步应用;(五)追溯历史,激发情感;;(六)回顾反思,提炼升华;(七)布置作业,课堂延伸.第一环节:复习设疑,激趣引入内容:教师提出问题:(1)勾股定理的内容是什么?(请一名学生回答)(2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.意图:(1)复习勾股定理内容;(2)回顾上节课探索过程,强调仍需对一般的直角三角形进行验证,培养学生严谨的科学态度;(3)介绍世界上有数百种验证方法,激发学生兴趣.效果:通过这一环节,学生明确了:仅仅探索得到勾股定理还不够,还需进行验证.当学生听到有数百种验证方法时,马上就有了去寻求属于自己的方法的渴望.第二环节:小组活动,拼图验证.内容: 活动1: 教师导入,小组拼图.教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.(请每位同学用2分钟时间独立拼图,然后再4人小组讨论.)活动2:层层设问,完成验证一.学生通过自主探究,小组讨论得到两个图形:图2在此基础上教师提问:(1)如图1你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);(2)你能由此得到勾股定理吗?为什么?(在学生回答的基础上板书(a+b)2=4×21ab+c 2.并得到)从而利用图1验证了勾股定理. 活动3 : 自主探究,完成验证二.教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?(学生先独立探究,再小组交流,最后请一个小组同学上台讲解验证方法二) 意图:设计活动1的目的是为了让学生在活动中体会图形的构成,既为勾股定理的验证作铺垫,同时也培养学生的动手、创新能力.在活动2中,学生在教师的层层设问引导下完成对勾股定理的验证,完成本节课的一个重点内容.设计活动3,让学生利用另一个拼图独立验证勾股定理的目的是让学生再次体会数形结合的思想并体会成功的快乐.效果:学生通过先拼图从形上感知,再分析面积验证,比较容易地掌握了本节课的重图1点内容之一,并突破了本节课的难点.第三环节延伸拓展,能力提升1.议一议:观察下图,用数格子的方法判断图中三角形的三边长是否满足a2+b2=c22.一个直角三角形的斜边为20cm ,且两直角边长度比为3:4,求两直角边的长。

北师大版八年级上数学:第4章《一次函数》单元试卷初二数学试卷.doc

北师大版八年级上数学:第4章《一次函数》单元试卷初二数学试卷.doc

北师大版八年级上册第四章一次函数章节检测题(满分:120分时间:120分钟)2•李人爷要圉成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆圉成的另外三边总长恰好为24米、要围的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x 之间的函数关系式是()A • y = — 2x+24(0<x<12)B. y = -|x +12(0<x<24)C - y=2x-24(0<x<12)D. y=|x-12(0<x<24)3 • —次函数y = mx + |m—1|的图彖过点(0,2),且y随x的增大而增大»则m等于()A • —1 B. 3 C. 1 D. -1 或34•下列四组点中可以在同一个正比例函数图象上的一组点是()A • (2,—3),(-4,6)B.(-2,3),(4,6)C.(-2,—3),(4,-6)D.(2,3),(- 4,6)5 •对于函数『=—$ + 3,下列说法错误的是()选择题(每小题3分,共30分)的函数的个数有()DAA •图彖经过点(2,2) B. y随着x的增人而减小C•图彖与y轴的交点是(6,0)£>•图彖与坐标轴围成的三角形面积是97• Pi(x「yi) ' P?(X2 ' y?)是一次函数y = —2x+5图象上的两点、FL x)<x2‘则y】与y2的大小关系是()A・yi<y2 B・ yi=y2C. yi>y2D・ yi>y2>03 18•已知一次函数y=3x+m和y=—㊁x+n的图象都经过点A(—2,0),且与y轴分别交于B,C 两点,那么AABC的面积是()A • 2 B・3 C・ 4 D 69 •如图、把/?rAABC 放在直角坐标系内、其中ZCAB=90° ,BC = 5,点A > B 的坐标分别为 (1,0),(4,0),将AABC 沿X 轴向右平移,当点C 落在直线y=2x-6上时,线段BC 扫过的面积 为()A • 4B ・ 8C ・ 16 D. 8^210 •如图,己知直线1 : y=*^x ”过点A (0、1)作y 轴的垂线交直线1于点B ,过点B 作直线1的垂 线交y 轴于点A,;过点A,作y 轴的垂线交直线1于点B 「过点B 】作直线1的垂线交y 轴于点 A2;…;按此作法继续下去,则点A2OI3的坐标为()二、填空题(每小题3分,共24分)11 •将直线y=2x 向上平移1个单位长度后得到的直线是—. 12 •函数y=芈#中,白变量x 的取值范围是—.13 • —次函数y = (m+2)x+1,若y 随x 的增大而增大,则m 的取值范围是.A • (0,22013B. (0,2201414•直线y=3x—m—4经过点A(m,0) »则关于x的方程3x —m—4=0的解是_15已知某一次函数的图象经过点A((),2),B(1,3),C(a > 1)三点,则a的值是° 2 3 “犬16 •某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务.播种亩数与天数之间的函数关系如图,那么乙播种机参与播种的天数是—17 •经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式为—.18 •直线1与y=—2x+l平行,与直线y=—x + 2交点的纵坐标为1,则直线1的解析式为三、解答题(共66分)19 • (8分)己知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点. ⑴求k,b的值;(2)若一次函数y = kx + b的图象与x轴的交点为AQ,0),求a的值.20 • (8分)联通公司手机话费收费冇A套餐(月租费15元,通话费每分钟0」元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y】(元),B套餐为yY元),月通话时间为x分钟.(1)分别表示出yi与x,y2与x的函数关系式;(2)月通话时间多长时,A,〃两种套餐收费一样?(3)什么情况下A套餐更省钱?21 • (8分)设函数y=x + n的图象与y轴交于点A »函数y= — 3x —m的图象与y轴交于点B »两个函数的图象交于点C(-3,1),D为AB中点.⑴求m » n的值;(2)求直线DC的一次函数表达式.22 • (8分)某生物小组观察一植物生长,得到植物的高度(单位:厘米)与观察时间(单位:天)的关系,并画出如下的图象(AC是线段,直线CD平行于x轴•)(1)该植物从观察时起,多少天以后停止长高?(2)求直线AC的表达式,并求该植物最高长多少厘米?23 - (10分)1号探测气球从海拔5 m处出发»以1 m/min的速度上升.与此同时,2号探测气球从海拔15 m处出发,以().5 m/min的速度上升,两个气球都匀速上升了50加加设气球上升时间为x niinifi W x W 50)(1)根据题意,填写下表:上升时间加加1030• ••X1号探测气球所在位置的海拨/加15• ••2号探测气球所在位置的海拨如30• •(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(3)当3OWxW5O时,两个气球所在位置的海拨最多相差多少米?24 • (12分)如图,直线y=kx+6与x轴、y轴分别相交于点E,F,点E的坐标为(一8,0),点A的坐标为(一6,0),点P(x,y)是第二彖限内的直线上的一个动点.⑴求k的值;(2)在点P的运动过程屮,写出AOPA的面积S与x的函数表达式,并写出自变量x的取值范围;(3)探究:当P运动到什么位置(求P的坐标)时,AOPA的面积为卑?25 - (12分)阅读下面的材料:在平面几何屮,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数y=k|x+b|(k¥O)的图彖为直线h,—次函数y=k2x+b2(k2H0)的图象为直线12,若kj = k2,且gHb?,我们就称直线h与直线b互相平行.解答下面的问题:⑴求过点P(1,4)且与已知直线y=—2x—1平行的直线1的函数表达式,并画出直线1的图象;(2)设直线1分别与y轴、x轴交于点A,B,如果直线m: y=kx+t(t>0)与直线1平行且交x 轴于点C,求出AABC的面积S关于t的函数表达式.y -642-2 O_2、答案:一、选择题(每小题3分,共30分)1 …5 BBBAC 6—10 CCCCC填空题(每小题3分,共24分)11 •将直线y=2x 向上平移1个单位长度后得到的直线是_y=2x + Z13• —次函数y = (m+2)x+l ,若y 随x 的增大而增大,则m 的取值范围是—m> -2_•14 •直线y=3x —m —4经过点A (m ,0) »则关于x 的方程3x —m —4=0的解是—*=2—. 15 -已知某一次函数的图象经过点A ((),2)、B (1 、3),C (a ,1)三点,则a 的值是_-/一16 •某农场租用播种机播种小麦,在甲播种机播种2天后一又调来乙播种机参与播种,直至完 成800亩的播种任务.播种亩数与天数之间的函数关系如图,那么乙播种机参与播种的大数是17 •经过点(2,0)H 与坐标轴围成的三角形面积为2的直线解析式为_y=x_2我 尸_x + 2一 18 •直线1与y = —2x+l 平行,与直线y=—x+2交点的纵坐标为1,则直线1的解析式为 7= -2兀+ 3_・三、解答题(共66分)19 • (8分)已知:一次函数y=kx+b 的图象经过M (0,2) N (1,3)两点. (1) 求k ,b 的值;(2) 若一次函数y = kx + b 的图象与x 轴的交点为A (a ,0),求a 的值.[x=l解:(Q 由条伴得b=2、把' 、代入y = kx + 2 得*=«/[y=3(2)由(7)得 y=x + 2 ‘ i y = 0 ^4 » x= 一 2,即 a= - 220 • (8分)联通公司手机话费收费有力套餐(月租费15元,通话费每分钟0」元)和B 套餐(月12 •函数y=讥+3X —4 中,自变量x 的取值范圉是_全1空4_・租 费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为力(元),B 套餐为y2(元),月通话时间为 x 分钟.(1) 分别表示出yi 与x » y 2与x 的函数关系式; (2) 月通话时间多长时,A ,3两种套餐收费--样? (3) 什么情况下A 套餐更省钱? 解:(l )yi=0.1x +15,y 2=0.15x(2) 由 yj=y2 得 0.1x +15=0.15x 解得 x=300 (3) 宙通话时同多于300今钟讨'A 套餐省钱21 • (8分)设函数y=x+n 的图象与y 轴交于点A 、函数y = —3x —m 的图象与y 轴交于点B 、 两个函数的图象交于点C(-3,1),D 为AB 中点.⑴求m » n 的值;(2)求直线DC 的一次苗数表达式. 解:(l)m = 8 r = 4(2)由(7)得A(0,4),B(0 / 一8)・S 恙D^AB 的屮点,所以D(0 / 一2厂筱直钱CD 的恭达式22-(8分)某生物小组观察一植物生长,得到植物的高度(单位:厘米)与观察时间(单位:天)的 关系,并画出如下的图象(AC 是线段,直线CD 平行于x 轴•)⑴该植物从观察时起,多少天以后停止长高?(2)求直线AC 的表达式、并求该植物最高长多少厘米?解/ (1)50夭后(2)破直钱AC 的素迟弍% y=kx + 6,舟(30T2)代入,12 = 30k + 6>解得/c=\ 奴达式签y =jx + 6,舉宙g “廈来23 • (10分)1号探测气球从海拔5加处出发,以1 mJmm 的速度上升.与此同时,2号探测气 球从海拔15 m 处出发,以0.5 m/rnin 的速度上升,两个气球都匀速上升了 50 min.设气球上升时间 为 x/«〃?(0WxW50)(1)根据题意,填写下表:上升时间加加10 30 • • • X1号探测气球所在位置的海拨加 15• • • 2号探测气球所在位置的海拨加30 • • •(2) 在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高 度?如果不能,请说明理由;拓 y = kx +b ;即 y= -x-2(3) 当30WxW50时,两个气球所在位置的海拨最多相差多少米?解:(1)35 x + 5 20 0.5x +15(2)饶.由x4-5=0.5x + 75得x=20»所”〕x +5=25,即%球上升20 min讨倍于诲按25 m处(3)宙30WxW50时、/号扎球龄終在2号汽球上方,殺向吃球的海按差為丿,则y=(x + 5)-(0.5x + 15) = 0.5x - 10 y的幡史而惓农,所“由x=50讨的值眾攵,h 15来24 • (12分)如图,直线y = kx+6与x轴、y轴分别相交于点E,F,点E的坐标为(一8,0),点A的坐标为(一6,0),点P(x,y)是第二象限内的直线上的一个动点.⑴求k的值;(2)在点P的运动过程中,写出AOPA的面积S与x的函数表达式,并写出自变量x的取值范围;(3)探究:当P运动到什么位置(求P的坐标)时,AOPA的面积为寻?解:(/)k=^3 1 3 9(2)由(Q得丿=庐 + 6 所“ S=2 X6Xqr + 6)所“ S=^x+18(-8<x<0)9 27 13 3 13 9 13 9 13(3)由S=^x +18=^得x= _丁,j=^X(-—) + 6=^,所M P(—"F,卫即卩运渤劃点(一丁,9 270讨,△OP4的而张禺w25 - (12分)阅读下面的材料:在平面儿何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数y=k|x+b|(k|H0)的图象为直线h,—次函数y=k2x+b2(k2H0)的图象为直线12,若k.=k2,Hb|Hb2,我们就称直线h与直线12互相平行.解答下面的问题:⑴求过点P(1,4)且与已知直线y=-2x-l平行的直线1的函数表达式,并画出直线1的图象;(2)设直线1分别与y轴、x轴交于点A,B,如果直线m: y=kx+t(t>0)与直线1平行且交x 轴于点C、求出AABC的面积S关于t的函数表达式.解:(7)j= -2x + 6 / 囹路(2) 4 0<t<6时,S = 9—号f,‘ i &6 时» S=寺-9 4 6\6 4 2。

八年级上《1.3勾股定理的应用》同步练习(含答案解析)

八年级上《1.3勾股定理的应用》同步练习(含答案解析)

2018-2019学年度北师大版数学八年级上册同步练习1.3 勾股定理的应用(word解析版)学校:___________姓名:___________班级:___________一.选择题(共10小题)1.如图,CD是一平面镜,光线从A点射出经CD上的E点反射后照射到B点,设入射角为α(入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C、D,且AC=3,BD=6,CD=12,则CE的值为()A.3 B.4 C.5 D.62.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了()A.0.9米B.1.3米C.1.5米D.2米3.小明从家走到邮局用了8分钟,然后右转弯用同样的速度走了6分钟到达书店(如图所示).已知书店距离邮局660米,那么小明家距离书店()A.880米B.1100米C.1540米D.1760米4.古埃及人曾经用如图所示的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角,这样做的道理是()A.直角三角形两个锐角互补B.三角形内角和等于180°C.如果三角形两条边长的平方和等于第三边长的平方D.如果三角形两条边长的平方和等于第三边长的平方,那么这个三角形是直角三角形5.如图,厂房屋顶人字形钢架的跨度BC=12米,AB=AC=6.5米,则中柱AD(D为底边BC的中点)的长是()A.6米B.5米 C.3米D.2.5米6.如图,盒内长、宽、高分别是6cm、3cm、2cm,盒内可放木棒最长的长度是()A.6cm B.7cm C.8cm D.9cm7.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm,则这只铅笔的长度可能是()A.9cm B.12cm C.15cm D.18cm8.如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点,则在圆锥的侧面上从B点到P点的最短路线的长为()A.B.2C.3D.49.如图,长方体的底面边长分别为2cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B,那么所用细线最短需要()A.11cm B.2cm C.(8+2)cm D.(7+3)cm10.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米二.填空题(共6小题)11.如图,一艘海轮位于灯塔P的北偏东方向60°,距离灯塔为4海里的点A处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长海里.12.小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1m,当他把绳子下端拉开5m后,发现下端刚好接触地面,则旗杆高度为米.13.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到D,则橡皮筋被拉长了cm.14.一架长25m的云梯,斜立在一竖直的墙上,这时梯足距墙底端7m,如果梯子的顶端沿墙下滑了4m,那么梯足将滑动.15.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).16.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是.三.解答题(共4小题)17.如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向上,轮船从B 处继续向正东方向航行100海里到达C处时,测得小岛A在船的北偏东30°的方向上,AD⊥BC于点D,求AD的长.18.(1)如图1是一家唇膏卖家的礼品装,卖家采用了正三梭柱形盒子,里面刚好横放一支圆柱形唇膏,右图是其横载面,△ABC为正三角形.求这个包装盒空间的最大利用率(圆柱体积和纸盒容积的比);(2)一个长宽高分别为l,b.h的长方体纸箱装满了一层高为h的圆柱形易拉罐如图2.求纸箱空间的利用率(易拉罐总体积和纸箱容积的比);(3)比较上述两种包装方式的空间利用率哪个大?19.如图,甲乙两船同时从A港出发,甲船沿北偏东35°的方向,以每小时12海里的速度向B岛驶去.乙船沿南偏东55°的方向向C岛驶去,2小时后,两船同时到达了目的地.若C、B两岛的距离为30海里,问乙船的航速是多少?20.如图,一架长2.5m的梯子AB斜靠在墙AC上,∠C=90°,此时,梯子的底端B离墙底C的距离BC为0.7m.(1)求此时梯子的顶端A距地面的高度AC;(2)如果梯子的顶端A下滑了0.9m,那么梯子的顶端B在水平方向上向右滑动了多远?2018-2019学年度北师大版数学八年级上册同步练习:1.3 勾股定理的应用(word解析版)参考答案与试题解析一.选择题(共10小题)1.【分析】证明△AEC∽△BED,可得=,由此构建方程即可解决问题;【解答】解:由镜面反射对称可知:∠A=∠B=∠α,∠AEC=∠BED.∴△AEC∽△BED.∴=,又∵若AC=3,BD=6,CD=12,∴=,求得EC=4.故选:B.2.【分析】要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC 和CE的长即可.【解答】解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=4,∴AC=2,∵BD=0.9,∴CD=2.4.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.42=0.49,∴EC=0.7,∴AE=AC﹣EC=2﹣0.7=1.3.故选:B.3.【分析】利用勾股定理求出小明家到书店所用的时间,求出小明的速度,再求小明家距离书店的距离.【解答】解:∵小明家到书店所用的时间为=10分钟,又∵小明的速度为=110米/分钟,故小明家距离书店的距离为110×10=1100米.故选:B.4.【分析】根据勾股定理的逆定理即可判断.【解答】解:设相邻两个结点的距离为m,则此三角形三边的长分别为3m、4m、5m,∵(3m)2+(4m)2=(5m)2,∴以3m、4m、5m为边长的三角形是直角三角形.(如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形)故选:D.5.【分析】首先证明AD⊥BC,再利用勾股定理计算即可;【解答】解:∵AB=AC,BD=DC,∴AD⊥BC,在Rt△ADB中,AD===2.5,故选:D.6.【分析】两次运用勾股定理:两直角边的平方和等于斜边的平方即可解决.【解答】解:本题需先求出长和宽组成的长方形的对角线长为=3cm.这根最长的棍子和矩形的高,以及长和宽组成的长方形的对角线组成了直角三角形.盒内可放木棒最长的长度是=7cm.故选:B.7.【分析】首先根据题意画出图形,利用勾股定理计算出AC的长【解答】解:根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC===15(cm),则这只铅笔的长度大于15cm.故选:D.8.【分析】求出圆锥底面圆的周长,则以AB为一边,将圆锥展开,就得到一个以A为圆心,以AB为半径的扇形,根据弧长公式求出展开后扇形的圆心角,求出展开后∠BAC=90°,连接BP,根据勾股定理求出BP即可.【解答】解:圆锥底面是以BC为直径的圆,圆的周长是BCπ=6π,以AB为一边,将圆锥展开,就得到一个以A为圆心,以AB为半径的扇形,弧长是l=6π,设展开后的圆心角是n°,则=6π,解得:n=180,即展开后∠BAC=×180°=90°,AP=AC=3,AB=6,则在圆锥的侧面上从B点到P点的最短路线的长就是展开后线段BP的长,由勾股定理得:BP=,故选:C.9.【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:把长方体的侧表面展开得到一个长方形,高6cm,宽=2+3+2+3=10cm,AB为对角线.AB==2cm.故选:B.10.【分析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C.二.填空题(共6小题)11.【分析】首先由方向角的定义及已知条件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP •cos∠A=2海里.【解答】解:如图,由题意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP•cos∠A=4×cos60°=4×=2海里.故答案为2.12.【分析】由题可知,旗杆,绳子与地面构成直角三角形,根据题中数据,用勾股定理即可解答.【解答】解:设旗杆高xm,则绳子长为(x+1)m,∵旗杆垂直于地面,∴旗杆,绳子与地面构成直角三角形,由题意列式为x2+52=(x+1)2,解得x=12m.13.【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.14.【分析】利用勾股定理进行解答.先求出下滑后梯子低端距离低端的距离,再计算梯子低端滑动的距离.【解答】解:梯子顶端距离墙角地距离为=24m,顶端下滑后梯子低端距离墙角的距离为=15m,15m﹣7m=8m.故答案为:8m.15.【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为20.16.【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答,注意此题展开图后蚂蚁的爬行路线有两种,分别求出,选取最短的路程.【解答】解:如图①:AM2=AB2+BM2=16+(5+2)2=65;如图②:AM2=AC2+CM2=92+4=85;如图③:AM2=52+(4+2)2=61.∴蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.故答案为:61.三.解答题(共4小题)17.【分析】如图,直角△ACD和直角△ABD有公共边AD,在两个直角三角形中,利用三角函数即可用AD表示出CD与BD,根据CB=BD﹣CD即可列方程,从而求得AD的长.【解答】解:如图所示.则∠ABD=30°,∠ACD=60°.∴∠CAB=∠ABD,∴BC=AC=100海里.在Rt△ACD中,设CD=x海里,则AC=2x海里,AD===x,在Rt△ABD中,AB=2AD=2x,BD===3x,又∵BD=BC+CD,∴3x=100+x,解得x=50,∴AD=x=50海里.18.【分析】(1)如图1,设⊙O半径为r,纸盒长度为h',则CD=r,BC=2r.根据圆柱的体积和棱柱的体积公式分别求得圆柱型唇膏和纸盒的体积,然后求其比值;(2)求得易拉罐总体积和纸箱容积,然后求得比值;(3)利用(1)(2)的数据进行解答.【解答】解:(1)由题意,⊙O是△ABC内接圆,D为切点,如图1,连结OD,OC.设⊙O半径为r,纸盒长度为h',则CD=r,BC=2r则圆柱型唇膏和纸盒的体积之比为:()(2)易拉罐总体积和纸箱容积的比:=;(3)∵=∴第二种包装的空间利用率大.19.【分析】首先求得线段AB的长,然后利用勾股定理求得线段AC的长,然后除以时间即可得到乙船的速度.【解答】解:根据题意得:AB=12×2=24,BC=30,∠BAC=90°.…(1分)∴AC2+AB2=BC2.∴AC2=BC2﹣AB2=302﹣242=324∴AC=18.…(4分)∴乙船的航速是:18÷2=9海里/时.…(6分)20.【分析】(1)直接利用勾股定理求出AC的长,进而得出答案;(2)直接利用勾股定理得出B′C,进而得出答案.【解答】解:(1)∵∠C=90°,AB=2.5,BC=0.7,∴AC===2.4(米),答:此时梯顶A距地面的高度AC是2.4米;(2)∵梯子的顶端A下滑了0.9米至点A′,∴A′C=AC﹣A′A=2.4﹣0.9=1.5(m),在Rt△A′CB′中,由勾股定理得:A′C2+B′C2=A′B′2,即1.52+B′C2=2.52,∴B′C=2(m),∴BB′=CB′﹣BC=2﹣0.7=1.3(m),答:梯子的底端B在水平方向滑动了1.3m.。

7.1为什么要证明(教案)2018-2019学年八年级上学期数学教材(北师大版)

7.1为什么要证明(教案)2018-2019学年八年级上学期数学教材(北师大版)
3.重点难点解析:在讲授过程中,我会特别强调证明的方法和逻辑推理这两个重点。对于难点部分,如反证法的理解,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与证明相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如通过折叠和剪裁来证明三角形的内角和为180度。
五、教学反思
在这次“为什么要证明”的教学过程中,我发现学生们对证明的概念和意义有了初步的认识,但仍然存在一些问题。让我来谈谈我对这节课的一些思考和感悟。
首先,关于导入新课的部分,通过提问方式引导学生思考日常生活中的证明问题,确实能够激发学生的兴趣。但在实际操作中,我感觉问题设置的难度需要进一步调整,以更好地贴近学生的生活实际,让他们能够更积极地参与到课堂讨论中来。
(2)几何图形的分析和想象能力。学生在面对复杂的几何图形时,难以准确把握其性质和关系。
(3)将实际问题转化为数学问题,并运用所学知识进行解决。
举例:
-在讲解三角形的内角和定理时,学生可能难以理解为何要证明这一性质,此时教师应强调证明的意义,解释清楚证明过程。
-对于几何图形的分析,如四边形的性质,学生可能难以想象和推导。教师应通过具体例子,指导学生如何观察和分析图形。
至于学生小组讨论环节,我发现学生们在讨论证明在实际生活中的应用时,想法很多,但有时候难以抓住问题的关键。在今后的教学中,我将更加注重引导学生思考和提炼问题,帮助他们形成清晰的逻辑思维。
在总结回顾环节,虽然学生们对证明的概念和重要性有了更深刻的理解,但我感觉他们对难点内容的掌握仍有待提高。因此,我打算在课后加强个别辅导,针对学生的薄弱环节进行有针对性的指导。
-在解决实际问题时,如计算建筑物的高度,教师应引导学生将问题转化为数学问题,运用相似三角形等知识进行求解。

北师大版初中数学八年级上册期中试题(广东省深圳市

北师大版初中数学八年级上册期中试题(广东省深圳市

2018-2019学年广东省深圳市宝安区、罗湖区、福田区、龙华区四区联考八年级(上)期中数学试卷一、选择题:(每题只有一个正确答案,每题3分,共36分)1.(3分)16的算术平方根是()A.4B.﹣4C.±4D.82.(3分)在平面直角坐标系中,点B的坐标是(4,﹣1),点A与点B关于x轴对称,则点A的坐标是()A.(4,1)B.(﹣1,4)C.(﹣4,﹣1)D.(﹣1,﹣4)3.(3分)下列运算正确的是()A.B.C.D.=2 4.(3分)如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的边长为()A.64B.16C.8D.45.(3分)已知正比例函数y=kx的图象经过点(2,4),k的值是()A.﹣2B.﹣C.2D.16.(3分)以方程组的解为坐标的点(x,y)在平面直角坐标系中的位置是()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)下列判断正确的个数是()①无理数是无限小数;②4的平方根是±2;③立方根等于它本身的数有3个;④与数轴上的点一一对应的数是实数.A.1个B.2个C.3个D.4个8.(3分)△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2+b2=c2B.a=5,b=12,c=13C.∠A=∠B+∠C D.∠A:∠B:∠C=3:4:59.(3分)已知点P(m,n)在第四象限,则直线y=nx+m图象大致是下列的()A.B.C.D.10.(3分)如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A.3B.2C.4D.11.(3分)如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度二、填空题(每题3分,共12分)12.(3分)﹣27的立方根是.13.(3分)如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB 长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是.14.(3分)《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程为.15.(3分)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF 分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为.三、解答题(共52分)16.(10分)计算(1)﹣(2)﹣+4217.(6分)解方程组:.18.(6分)如图,直角坐标系中,每个小正方形边长为单位1,△ABC的三个顶点分别在正方形格点上.(1)请在图中作出△ABC关于原点中心对称的△A′B′C′;(2)直接写出△ABC的面积.19.(7分)小明一家利用元旦三天驾车到某景点旅游.小汽车出发前油箱有油36L,行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的关系如图所示.根据图象回答下列问题:(1)小汽车行驶h后加油,中途加油L;(2)求加油前油箱余油量Q与行驶时间t的函数关系式;(3)如果小汽车在行驶过程中耗油量速度不变,加油站距景点200km,车速为80km/h,要到达目的地,油箱中的油是否够用?请说明理由.20.(7分)如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB 边上一点.(1)求证:△ACE≌△BCD;(2)若CB=3,AD=2,求DE的长.21.(7分)如图1,Rt△ABCAC⊥CB,AC=15,AB=25,点D为斜边上动点.(1)如图2,过点D作DE⊥AB交CB于点E,连接AE,当AE平分∠CAB时,求CE;(2)如图3,在点D的运动过程中,连接CD,若△ACD为等腰三角形,求AD.22.(9分)如图,直线y=﹣2x+4交x轴和y轴于点A和点B,点C(0,﹣2)在y轴上,连接AC.(1)求点A和点B的坐标;(2)若点P是直线AB上一点,若△APC的面积为4,求点P;(3)过点B的直线BE交x轴于点E(E点在点A右侧),当∠ABE=45°时,求直线BE.2018-2019学年广东省深圳市宝安区、罗湖区、福田区、龙华区四区联考八年级(上)期中数学试卷参考答案与试题解析一、选择题:(每题只有一个正确答案,每题3分,共36分)1.(3分)16的算术平方根是()A.4B.﹣4C.±4D.8【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,直接利用此定义即可解决问题.【解答】解:∵4的平方是16,∴16的算术平方根是4.故选:A.【点评】此题主要考查了算术平方根的定义,此题要注意平方根、算术平方根的联系和区别.2.(3分)在平面直角坐标系中,点B的坐标是(4,﹣1),点A与点B关于x轴对称,则点A的坐标是()A.(4,1)B.(﹣1,4)C.(﹣4,﹣1)D.(﹣1,﹣4)【分析】直接利用关于x轴对称点的性质,横坐标不变纵坐标改变符号进而得出答案.【解答】解:∵点B的坐标是(4,﹣1),点A与点B关于x轴对称,∴点A的坐标是:(4,1).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.3.(3分)下列运算正确的是()A.B.C.D.=2【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2﹣=,所以B选项错误;C、原式==,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.(3分)如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的边长为()A.64B.16C.8D.4【分析】根据勾股定理求出正方形A的面积,根据算术平方根的定义计算即可.【解答】解:由勾股定理得,正方形A的面积=289﹣225=64,∴字母A所代表的正方形的边长为=8,故选:C.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.5.(3分)已知正比例函数y=kx的图象经过点(2,4),k的值是()A.﹣2B.﹣C.2D.1【分析】把点(2,4),代入正比例函数y=kx,求出k的数值即可.【解答】解:把点(2,4),代入正比例函数y=kx得4=2k,解得k=2.故选:C.【点评】此题考查利用待定系数法求函数解析式,注意图象上的每一点都适合函数解析式.6.(3分)以方程组的解为坐标的点(x,y)在平面直角坐标系中的位置是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】此题可解出的x、y的值,然后根据x、y的值可以判断出该点在何象限内.【解答】解:根据题意,可知﹣x+2=x﹣1,∴x=,∴y=.∵x>0,y>0,∴该点坐标在第一象限.故选:A.【点评】此题考查二元一次方程组的解法及象限的符号特征:利用代入消元或加减消元求得方程组的解为x=,y=,第一象限横纵坐标都为正;第二象限横坐标为负;纵坐标为正;第三象限横纵坐标都为负;第四象限横坐标为正,纵坐标为负.7.(3分)下列判断正确的个数是()①无理数是无限小数;②4的平方根是±2;③立方根等于它本身的数有3个;④与数轴上的点一一对应的数是实数.A.1个B.2个C.3个D.4个【分析】分别根据无理数的定义以及平方根和立方根的定义和数轴的意义分别分析得出即可.【解答】解:①无理数是无限小数;正确;②4的平方根是±2;正确;③立方根等于它本身的数有3个;正确;④与数轴上的点一一对应的数是实数,正确.故选:D.【点评】本题考查了平方根、立方根、数轴的定义、无理数的定义等知识,熟练根据定义分析得出是解题关键.8.(3分)△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2+b2=c2B.a=5,b=12,c=13C.∠A=∠B+∠C D.∠A:∠B:∠C=3:4:5【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【解答】解:A、a2+b2=c2,是直角三角形,错误;B、∵52+122=132,∴此三角形是直角三角形,故本选项正确;C、∵∠A+∠B+∠C=180°,∠A=∠B+∠C∴∠A=90°,∴此三角形是直角三角形,故本选项正确;D、设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°∴∠C=5×15°=75°,∴此三角形不是直角三角形,故本选项正确;故选:D.【点评】本题考查的是勾股定理及三角形内角和定理,熟知以上知识是解答此题的关键.9.(3分)已知点P(m,n)在第四象限,则直线y=nx+m图象大致是下列的()A.B.C.D.【分析】根据第四象限的特点得出m>0,n<0,再判断图象即可.【解答】解:因为点P(m,n)在第四象限,所以m>0,n<0,所以图象经过一,二,四象限,故选:D.【点评】此题考查一次函数的图象,关键是根据第四象限的特点得出m>0,n<0.10.(3分)如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A.3B.2C.4D.【分析】利用面积法求三角形的高即可.【解答】解:∵BC=5,AC==5,∴S△ABC=×5×3=×AC×BD,∴BD=3,故选:A.【点评】本题考查勾股定理,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.(3分)如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度【分析】前4s内,乙的速度﹣时间图象是一条平行于x轴的直线,即速度不变,速度×时间=路程.甲是一条过原点的直线,则速度均匀增加;求出两图象的交点坐标,3秒时两速度大小相等,3s前甲的图象在乙的下方,所以3秒前路程不相等;图象在上方的,说明速度大.【解答】解:A、根据图象可得,乙前4秒的速度不变,为12米/秒,则行驶的路程为12×4=48米,故A正确;B、根据图象得:在0到8秒内甲的速度是一条过原点的直线,即甲的速度从0均匀增加到32米/秒,则每秒增加=4米/秒,故B正确;C、由于甲的图象是过原点的直线,斜率为4,所以可得v=4t(v、t分别表示速度、时间),将v=12m/s代入v=4t得t=3s,则t=3s前,甲的速度小于乙的速度,所以两车到第3秒时行驶的路程不相等,故C错误;D、在4至8秒内甲的速度图象一直在乙的上方,所以甲的速度都大于乙的速度,故D正确;由于该题选择错误的,故选:C.【点评】此题考查了函数的图形,通过此类题目的练习,可以培养学生分析问题和运用所学知识解决实际问题的能力,能使学生体会到函数知识的实用性.二、填空题(每题3分,共12分)12.(3分)﹣27的立方根是﹣3.【分析】根据立方根的定义求解即可.【解答】解:∵(﹣3)3=﹣27,∴=﹣3故答案为:﹣3.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.13.(3分)如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB 长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是.【分析】直接利用勾股定理得出OC的长,进而得出答案.【解答】解:如图所示:连接OC,由题意可得:OB=2,BC=1,则OC==,故点M对应的数是:.故答案为:.【点评】此题主要考查了勾股定理,根据题意得出CO的长是解题关键.14.(3分)《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程为x2+32=(10﹣x)2.【分析】设AC=x,可知AB=10﹣x,再根据勾股定理即可得出结论.【解答】解:设AC=x,∵AC+AB=10,∴AB=10﹣x.∵在Rt△ABC中,∠ACB=90°,∴AC2+BC2=AB2,即x2+32=(10﹣x)2.故答案为:x2+32=(10﹣x)2.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.15.(3分)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF 分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为10.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=16,解得AD=8,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故答案为:10.【点评】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.三、解答题(共52分)16.(10分)计算(1)﹣(2)﹣+42【分析】(1)利用二次根式的乘除法则运算;(2)先把各二次根式化简为最简二次根式,然后合并即可.【解答】解:(1)原式=+﹣=3+2﹣4=1;(2)原式=﹣6+7=.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.(6分)解方程组:.【分析】首先用②×2得4x﹣2y=2③,然后①+③可消掉未知数y,解可得x的值,再把x的值代入②可得y的值,进而可得方程组的解..【解答】解:②×2得:4x﹣2y=2③,①+③得:7x=21,x=3,把x=3代入②得:6﹣y=1,y=5,方程组的.【点评】此题主要考查了解二元一次方程组,关键是掌握加减消元的方法.18.(6分)如图,直角坐标系中,每个小正方形边长为单位1,△ABC的三个顶点分别在正方形格点上.(1)请在图中作出△ABC关于原点中心对称的△A′B′C′;(2)直接写出△ABC的面积.【分析】(1)分别作出三顶点关于原点的对称点,再首尾顺次连接即可得;(2)利用割补法求解可得.【解答】解:(1)如图所示,△A′B′C′即为所求.(2)△ABC的面积为3×3﹣×2×3﹣×1×2﹣×1×3=.【点评】本题主要考查作图﹣旋转变换,解题的关键是掌握旋转变换的定义和性质,并据此得出变换后的对应点及割补法求三角形的面积.19.(7分)小明一家利用元旦三天驾车到某景点旅游.小汽车出发前油箱有油36L,行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的关系如图所示.根据图象回答下列问题:(1)小汽车行驶3h后加油,中途加油24L;(2)求加油前油箱余油量Q与行驶时间t的函数关系式;(3)如果小汽车在行驶过程中耗油量速度不变,加油站距景点200km,车速为80km/h,要到达目的地,油箱中的油是否够用?请说明理由.【分析】(1)观察图中数据可知,行驶3小时后油箱剩油6L,加油加至30L;(2)先根据图中数据把每小时用油量求出来,即:(36﹣6)÷3=10L,再写出函数关系式;(3)先要求出从加油站到景点需行几小时,然后再求需用多少油,便知是否够用.【解答】解:(1)从图中可知汽车行驶3h后加油,中途加油24L;故答案为:(2)根据分析可知Q=﹣10t+36(0≤t≤3);(3)油箱中的油是够用的.∵200÷80=2.5(小时),需用油10×2.5=25L<30L,∴油箱中的油是够用的.【点评】本题考查了函数图象,观察函数图象的横坐标得出时间,观察函数图象的纵坐标得出剩余油量是解题关键,利用待定系数法求函数解析式.20.(7分)如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB 边上一点.(1)求证:△ACE≌△BCD;(2)若CB=3,AD=2,求DE的长.【分析】(1)根据SAS证明△ACE≌△BCD即可;(2)首先证明∠EAD=90°,想办法求出AE的长,利用勾股定理即可解决问题;【解答】(1)证明:∵△ACB和△ECD都是等腰直角三角形,∴AC=BC,EC=DC,∵∠ACB=∠ECD=90°,∴∠ACE+∠ACD=90°,∠DCB+∠ACD=90°,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS).(2)解:∵△ACE≌△BCD,∴∠EAC=∠CBD,AE=BD,∵△ACB是等腰直角三角形,∴∠CAB=∠CBD=45°,∴∠EAC+∠CAB=90°,∵CB=3,∴AB=6∵AD=2,∴BD=4,在Rt△AED中,∵AE=BD=4,AD=2∴DE==2.【点评】本题考查全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,解题的关键是正确寻找确定进行全等的条件,属于中考常考题型.21.(7分)如图1,Rt△ABCAC⊥CB,AC=15,AB=25,点D为斜边上动点.(1)如图2,过点D作DE⊥AB交CB于点E,连接AE,当AE平分∠CAB时,求CE;(2)如图3,在点D的运动过程中,连接CD,若△ACD为等腰三角形,求AD.【分析】(1)由△ACE≌△AED(AAS),推出CE=DE,AC=AD=15,设CE=x,则BE =20﹣x,BD=25﹣15=10,在Rt△BED中根据勾股定理即可解决问题;(2)分两种情形分别求解即可解决问题;【解答】解:(1)∵AC⊥CB,AC=15,AB=25∴BC=20,∵AE平分∠CAB,∴∠EAC=∠EAD,∵AC⊥CB,DE⊥AB,∴∠EDA=∠ECA=90°,∵AE=AE,∴△ACE≌△AED(AAS),∴CE=DE,AC=AD=15,设CE=x,则BE=20﹣x,BD=25﹣15=10在Rt△BED中∴x2+102=(20﹣x)2,∴x=7.5,∴CE=7.5.(2)①当AD=AC时,△ACD为等腰三角形∵AC=15,∴AD=AC=15.②当CD=AD时,△ACD为等腰三角形∵CD=AD,∴∠DCA=∠CAD,∵∠CAB+∠B=90°,∠DCA+∠BCD=90°,∴∠B=∠BCD,∴BD=CD,∴CD=BD=DA=12.5,③当CD=AC时,△ACD为等腰三角形,如图1中,作CH⊥BA于点H,则•AB•CH=•AC•BC,∵AC=15,BC=20,AB=25,∴CH=12,在Rt△ACH中,AH==9,∵CD=AC,CH⊥BA,∴DH=HA=9,∴AD=18.【点评】本题考查解直角三角形的应用,等腰三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.22.(9分)如图,直线y=﹣2x+4交x轴和y轴于点A和点B,点C(0,﹣2)在y轴上,连接AC.(1)求点A和点B的坐标;(2)若点P是直线AB上一点,若△APC的面积为4,求点P;(3)过点B的直线BE交x轴于点E(E点在点A右侧),当∠ABE=45°时,求直线BE.【分析】(1)根据直线与坐标轴的交点解答即可;(2)分两种情况得出P点的坐标即可;(3)根据全等三角形的判定和性质以及等腰直角三角形的性质解答即可.【解答】解:(1)∵y=﹣2x+4交X轴和y轴于点A和点B∴当x=0时,y=4;当y=0时,x=2∴A(2,0),B(0,4)(2)设点P(a,﹣2a+4)①如图,当点P在x轴上方时,则S△APC=S△ABC﹣S△BPC∴4=∴a=,把a=代入y=﹣2x+4=﹣2×+4=∴P(,)②如图,当点P在x轴下方时则S△APC=S△BP'C﹣S△ABC∴4=∴a=,把a=代入y=﹣2x+4=﹣2×+4=﹣,∴P'(,﹣)(3)当∠ABE=45°,设直线BE:y=kx+b如图,过点A作AD⊥AB交BE于点D,过点D作DH⊥x轴∵∠ABE=45°,∴△BAD为等腰直角三角形,∴AB=AD,∠BAD=90°,∴∠BAO+∠DAH=90°,∠DAH+∠ADH=90°,∴∠BAO=∠ADH,在△AOB与△DHA中,∴△AOB≌△DHA(AAS),∵OA=2,OB=4∴OH=4,DH=2∴D(6,2)∵B(0,4)∴.【点评】本题考查了一次函数综合题,利用三角形的面积公式得出点的坐标,利用全等三角形的判定和性质解答是解题关键.。

2018-2019学年辽宁省沈阳市大东区八年级(上)期末数学试卷(北师大版 含答案)

2018-2019学年辽宁省沈阳市大东区八年级(上)期末数学试卷(北师大版 含答案)

2018-2019学年辽宁省沈阳市大东区八年级(上)期末数学试卷一、选择题(每小题2分,共20分)1.(2分)下列各数中是无理数的是()A.B.C.D.3.142.(2分)在平面直角坐标系中,点A(﹣2,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(2分)在,,,中,是最简二次根式的是()A.B.C.D.4.(2分)如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()A.70°B.55°C.50°D.40°5.(2分)某班为筹备元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是()A.中位数B.平均数C.方差D.众数6.(2分)若x|2m﹣3|+(m﹣2)y=8是关于x、y的二元一次方程,则m的值是()A.1B.任何数C.2D.1或27.(2分)如图,AB∥CD,∠1=50°,∠2的度数是()A.50°B.100°C.130°D.140°8.(2分)如图,阴影部分是一个长方形,它的面积是()A.3cm2B.4cm2C.5cm2D.6cm29.(2分)如图,数轴上点P表示的数可能是()A.B.C.D.10.(2分)一次函数y=﹣x+8的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(每小题3分,共18分)11.(3分)化简:=.12.(3分)点P(a,8)到两坐标轴的距离相等,则a=.13.(3分)当m=时,函数y=(2m﹣1)x3m﹣2是正比例函数.14.(3分)一组数2,3,5,5,6,7的中位数是.15.(3分)若2a﹣b=5,a﹣2b=4,则a﹣b的值为.16.(3分)已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=8,AC=10,则△ADE的周长为.三、解答题(第17小题6分,第18小题8分,第19小题6分,共20分)17.(6分)解方程组:18.(8分)化简计算:(1);(2)+(﹣1﹣)2.19.(6分)已知:如图,∠DCE=∠E,∠B=∠D.求证:AD∥BC.四、(每小题8分,共16分)20.(8分)甲乙两名运动员进行射击选拔赛,每人射击10次,其中射击中靶情况如表:第一次第二次第三次第四次第五次第六次第七次第八次第九次第十次甲71081099108109乙107109910810710(1)选手甲的成绩的中位数是分;选手乙的成绩的众数是分;(2)计算选手甲的平均成绩和方差;(3)已知选手乙的成绩的方差是15,则成绩较稳定的是哪位选手?请直接写出结果.21.(8分)如图,在平面直角坐标系中,已知长方形ABCD的两个顶点A(2,﹣1),C(6,2),点M为y轴上一点,△MAB的面积为6.请解答下列问题:(1)顶点B的坐标;(2)连接BD,求BD的长;(3)请直接写出点M的坐标.五、(本题10分)22.(10分)如图,长方形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的E点处,折痕的一端G点在边BC上,折痕的另一端F在AD边上且BG=10时.(1)证明:EF=EG;(2)求AF的长.六、(本题12分)23.(12分)某学校准备购进一批足球,从商场了解到:一个A型足球和三个B型足球共需275元;三个A型足球和两个B型足球共需300元.(1)列二元一次方程组解决问题:求一个A型足球和一个B型足球的售价各是多少元;(2)若该学校准备同时购进这两种型号的足球共80个,并且A型足球的数量小于等于60个,请设计出最省钱的购买方案,并说明理由.七、(本题12分)24.(12分)如图,在△ABC中,点D在AB上,CD=CB,点E为BD的中点,且EA=EC,点F为AC的中点,连接EF交CD于点M,连接AM.(1)求证:EF=AC;(2)求线段AM、DM、BC之间的数量关系.八、(本题12分)25.(12分)如图,在平面直角坐标系中,点E的坐标为(4,0),点F的坐标为(0,2),直线l1经过点E和点F,直线l1与直线l2:y=2x相交于点A.(1)求直线l1的表达式;(2)求点A的坐标;(3)求△AOE的面积;(4)当点P是直线l1上的一个动点时,过点P作y轴的平行线PB交直线l2于点B,当线段PB=3时,请直接写出P点的坐标.2018-2019学年辽宁省沈阳市大东区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题2分,共20分)1.(2分)下列各数中是无理数的是()A.B.C.D.3.14【分析】有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.【解答】解:=2,=2,2是有理数,3.14是有理数,是无理数,故选:A.【点评】此题主要考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.2.(2分)在平面直角坐标系中,点A(﹣2,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【解答】解:由﹣2<0,4>0得点A(﹣2,4)位于第二象限,故选:B.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(2分)在,,,中,是最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的概念分析得出答案.【解答】解:=2,不是最简二次根式;是最简二次根式;==,不是最简二次根式;=﹣3,不是最简二次根式;故选:B.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.4.(2分)如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()A.70°B.55°C.50°D.40°【分析】根据等腰三角形两底角相等列式进行计算即可得解.【解答】解:∵AB=AC,∠B=70°,∴∠A=180°﹣2∠B=180°﹣2×70°=40°.故选:D.【点评】本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等的性质.5.(2分)某班为筹备元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是()A.中位数B.平均数C.方差D.众数【分析】一组数据中出现次数最多的一个数是这组数据的众数,班长最关心吃哪种水果的人最多,即这组数据的众数.【解答】解:吃哪种水果的人最多,就决定最终买哪种水果,而一组数据中出现次数最多的一个数是这组数据的众数.故选:D.【点评】此题主要考查统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.6.(2分)若x|2m﹣3|+(m﹣2)y=8是关于x、y的二元一次方程,则m的值是()A.1B.任何数C.2D.1或2【分析】根据二元一次方程的定义即可求解.【解答】解:根据题意可知:|2m﹣3|=1,解得:m=2或m=1,m﹣2≠0,m≠2,∴m=1.故选:A.【点评】本题考查了二元一次方程的定义、绝对值,解决本题的关键是掌握二元一次方程分定义.7.(2分)如图,AB∥CD,∠1=50°,∠2的度数是()A.50°B.100°C.130°D.140°【分析】先根据平行线的性质得∠3=∠1=50°,然后根据邻补角的定义,即可求得∠2的度数.【解答】解:∵AB∥CD,∴∠3=∠1=50°,∴∠2=180°﹣∠3=130°.故选:C.【点评】本题考查了平行线性质,解题时注意:两直线平行,同位角相等.8.(2分)如图,阴影部分是一个长方形,它的面积是()A.3cm2B.4cm2C.5cm2D.6cm2【分析】由勾股定理求出直角三角形的斜边长,再由长方形的面积公式即可得出结果.【解答】解:由勾股定理得:=5(cm),∴阴影部分的面积=5×1=5(cm2);故选:C.【点评】本题考查了勾股定理、长方形的性质;熟练掌握勾股定理是解决问题的关键.9.(2分)如图,数轴上点P表示的数可能是()A.B.C.D.【分析】首先判定出2<<3,由此即可解决问题.【解答】解:因为2<<3,所以数轴上点P表示的数可能是.故选:B.【点评】本题考查实数与数轴,二次根式等知识,理解数与数轴上的点是一一对应关系是解题的关键,学会估计二次根式的近似值,属于中考常考题型.10.(2分)一次函数y=﹣x+8的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的性质得出结论.【解答】解:因为解析式y=﹣x+8中,﹣1<0,8>0,图象过一、二、四象限,故图象不经过第三象限,故选:C.【点评】本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).二、填空题(每小题3分,共18分)11.(3分)化简:=.【分析】先比较1与的大小,再根据绝对值的定义即可求解.【解答】解:=﹣1.【点评】此题主要考查了求实数的绝对值,其中非负数的绝对值等于他本身,负数的绝对值等于它的相反数.12.(3分)点P(a,8)到两坐标轴的距离相等,则a=±8.【分析】根据点到两坐标轴的距离相等,可得该点在象限角的角平分线上,据此可得答案.【解答】解:由题意,得|a|=8,解得a=±8,故答案为:±8.【点评】本题考查了点的坐标,利用点到两坐标轴的距离相等得出方程是解题关键.13.(3分)当m=1时,函数y=(2m﹣1)x3m﹣2是正比例函数.【分析】直接利用正比例函数的定义得出3m﹣2=1,进而得出答案.【解答】解:∵函数y=(2m﹣1)x3m﹣2是正比例函数,∴3m﹣2=1,解得:m=1,∵2m﹣1≠0,∴m≠.故答案为:1.【点评】此题主要考查了正比例函数的定义,正确把握定义是解题关键.14.(3分)一组数2,3,5,5,6,7的中位数是5.【分析】根据中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:2,3,5,5,6,7,则中位数为:=5.故答案是:5.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.15.(3分)若2a﹣b=5,a﹣2b=4,则a﹣b的值为3.【分析】已知两等式左右两边相加,变形即可得到a﹣b的值.【解答】解:将2a﹣b=5,a﹣2b=4,相加得:2a﹣b+a﹣2b=9,即3a﹣3b=9,解得:a﹣b=3.故答案为:3.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.16.(3分)已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=8,AC=10,则△ADE的周长为18.【分析】两直线平行,内错角相等,以及根据角平分线性质,可得△OBD、△EOC均为等腰三角形,由此把△AEF的周长转化为AC+AB.【解答】解:∵DE∥BC∴∠DOB=∠OBC,又∵BO是∠ABC的角平分线,∴∠DBO=∠OBC,∴∠DBO=∠DOB,∴BD=OD,同理:OE=EC,∴△ADE的周长=AD+OD+OE+AE=AD+BD+AE+EC=AB+AC=18.故答案是:18.【点评】本题考查了平行线的性质和等腰三角形的判定及性质,正确证明△OBD、△EOC 均为等腰三角形是关键.三、解答题(第17小题6分,第18小题8分,第19小题6分,共20分)17.(6分)解方程组:【分析】应用加减消元法,求出方程组的解是多少即可.【解答】解:①+②,得4x=8,解得x=2.把x=2代入①中,得2﹣y=3.解得y=﹣1.∴原方程组的解是.【点评】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.18.(8分)化简计算:(1);(2)+(﹣1﹣)2.【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用二次根式性质,以及完全平方公式计算即可求出值.【解答】解:(1)原式=2﹣5+9=6;(2)原式=2+1+3+2=2+6.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.19.(6分)已知:如图,∠DCE=∠E,∠B=∠D.求证:AD∥BC.【分析】依据∠DCE=∠E,得出DC∥BE,可得∠D=∠DAE,再根据∠B=∠D,可得∠B=∠DAE,进而判定AD∥BC.【解答】证明:∵∠DCE=∠E,∴DC∥BE,∴∠D=∠DAE,又∵∠B=∠D,∴∠B=∠DAE,∴AD∥BC.【点评】本题主要考查了平行线的判定与性质的运用,两条直线被第三条所截,如果同位角相等,那么这两条直线平行.四、(每小题8分,共16分)20.(8分)甲乙两名运动员进行射击选拔赛,每人射击10次,其中射击中靶情况如表:第一次第二次第三次第四次第五次第六次第七次第八次第九次第十次甲71081099108109乙107109910810710(1)选手甲的成绩的中位数是9分;选手乙的成绩的众数是10分;(2)计算选手甲的平均成绩和方差;(3)已知选手乙的成绩的方差是15,则成绩较稳定的是哪位选手?请直接写出结果.【分析】(1)根据中位数,众数的定义判断即可.(2)根据平均数的定义,方差公式计算即可.(3)根据方差越小成绩越稳定判断即可.【解答】解:(1)甲的中位数==9分,乙的众数为10分.故答案为9,10.(2)甲的平均成绩=(7+10+8+10+9+9+10+8+10+9)=9,甲的方差=[(7﹣9)2+(10﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2+(9﹣9)2+(10﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2]=1.(3)∵1<15,∴甲的成绩比较稳定.【点评】本题考查方差,平均数,众数,中位数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(8分)如图,在平面直角坐标系中,已知长方形ABCD的两个顶点A(2,﹣1),C(6,2),点M为y轴上一点,△MAB的面积为6.请解答下列问题:(1)顶点B的坐标(6,﹣1);(2)连接BD,求BD的长;(3)请直接写出点M的坐标.【分析】(1)根据点B的位置写出坐标即可;(2)利用勾股定理解答;(3)设△MAB的高为h,构建方程求出h即可解决问题;【解答】解:(1)(6,﹣1).故答案为解:(6,﹣1);(2)∵A(2,﹣1),C(6,2),B(6,﹣1),∴AB=4,BC=3,CD=4,DB===5;(3)设△MAB的高为h,根据题意得:AB•h=6,∵A(2,﹣1),B(6,﹣1).∴AB=4∴×h=6,∴h=3∴M(0,2)或M(0,﹣4).【点评】本题考查矩形的性质、坐标与图形的变化﹣平移等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.五、(本题10分)22.(10分)如图,长方形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的E点处,折痕的一端G点在边BC上,折痕的另一端F在AD边上且BG=10时.(1)证明:EF=EG;(2)求AF的长.【分析】(1)根据翻折的性质可得∠BGF=∠EGF,再根据两直线平行,内错角相等可得∠BGF=∠EFG,从而得到∠EGF=∠EFG,再根据等角对等边证明即可;(2)根据翻折的性质可得EG=BG,HE=AB,FH=AF,然后在Rt△EFH中,利用勾股定理列式计算即可得解.【解答】证明:(1)∵纸片折叠后顶点B落在边AD上的E点处,∴∠BGF=∠EGF,∵长方形纸片ABCD的边AD∥BC,∴∠BGF=∠EFG,∴∠EGF=∠EFG,∴EF=EG;(2)∵纸片折叠后顶点B落在边AD上的E点处,∴EG=BG=10,HE=AB=8,FH=AF,∴EF=EG=10,∴FH===6,∴AF=FH=6.【点评】本题考查了翻折变换的性质,矩形的性质,勾股定理的应用,熟记翻折前后两个图形能够重合得到相等的线段和角是解题的关键.六、(本题12分)23.(12分)某学校准备购进一批足球,从商场了解到:一个A型足球和三个B型足球共需275元;三个A型足球和两个B型足球共需300元.(1)列二元一次方程组解决问题:求一个A型足球和一个B型足球的售价各是多少元;(2)若该学校准备同时购进这两种型号的足球共80个,并且A型足球的数量小于等于60个,请设计出最省钱的购买方案,并说明理由.【分析】(1)设一个A型足球x元,一个B型足球y元,根据“一个A型足球和三个B型足球共需275元;三个A型足球和两个B型足球共需300元”列方程组求解即可;(2)设A型足球a个,总费用w元,可得w=6000﹣25a,由一次函数的性质可求解.【解答】解:(1)设一个A型足球x元,一个B型足球y元,根据题意可得:解得:答:一个A型足球50元,一个B型足球75元.(2)设A型足球a个,总费用w元,根据题意可得:w=50a+75(80﹣a)=6000﹣25a,且a≤60,∵﹣25<0,∴w随着a的增大而减小,∴当a=60时,w的最小值为4500元.【点评】此题主要考查了二元一次方程组的应用以及一次函数的应用等知识,根据题意得出正确的等量关系是解题关键,难度不大.七、(本题12分)24.(12分)如图,在△ABC中,点D在AB上,CD=CB,点E为BD的中点,且EA=EC,点F为AC的中点,连接EF交CD于点M,连接AM.(1)求证:EF=AC;(2)求线段AM、DM、BC之间的数量关系.【分析】(1)根据等腰三角形三线合一的性质可得CE⊥BD,再根据直角三角形斜边上的中线等于斜边的一半可得EF=AC;(2)由等腰三角形的性质可得AF=FC,EF⊥AC,由“SAS”可得△AFM≌△CFM,可得AM=CM,可得结论.【解答】(1)证明:∵CD=CB,点E为BD的中点,∴CE⊥BD,∵点F为AC的中点,∴EF=AC;(2)∵AE=EC,点F是AC中点,∴AF=FC,EF⊥AC,∴∠AFM=∠CFM,且AF=FC,MF=MF,∴△AFM≌△CFM(SAS)∴AM=CM,∵BC=CD=DM+CM=DM+AM.【点评】本题考查了全等三角形的判定和性质,直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形的性质,证明△AFM≌△CFM是本题的关键.八、(本题12分)25.(12分)如图,在平面直角坐标系中,点E的坐标为(4,0),点F的坐标为(0,2),直线l1经过点E和点F,直线l1与直线l2:y=2x相交于点A.(1)求直线l1的表达式;(2)求点A的坐标;(3)求△AOE的面积;(4)当点P是直线l1上的一个动点时,过点P作y轴的平行线PB交直线l2于点B,当线段PB=3时,请直接写出P点的坐标.【分析】(1)根据待定系数法求得即可;(2)解析式联立,解方程组即可求得;(3)根据三角形面积公式求得即可;(4)设P(a,﹣+2),则B(a,2a),根据题意得|﹣+2﹣2a|=3,解方程即可求得P点的坐标.【解答】解:(1)设直线l1的解析式为y=kx+b,把E(4,0),F(0,2)代入得,解得k=﹣,b=2,∴直线l1的表达式为y=﹣x+2;(2)解得∴点A的坐标为(,);(3)∵点E的坐标为(4,0),∴OE=4,∴△AOE的面积==;(4)设P(a,﹣+2),则B(a,2a),根据题意得|﹣+2﹣2a|=3,解得a=﹣或a=2,∴P点的坐标为(﹣,)或(2,1).【点评】本题考查了两条直线相交或平行问题,待定系数法求一次函数的解析式,三角形面积等,交点坐标适合两直线解析式是解题的关键.。

2018-2019学年北京市首都师大附中八年级(上)月考数学试卷(10月份)解析版

2018-2019学年北京市首都师大附中八年级(上)月考数学试卷(10月份)解析版

2018-2019学年北京市首都师大附中八年级(上)月考数学试卷(10月份)一、单选题1.(3分)下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(2a2)3=6a6D.a6÷a2=a32.(3分)如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为()A.100°B.90°C.50°D.30°3.(3分)七巧板是一种传统智力游戏,是中国古代劳动人民的发明,用七块板可拼出许多有趣的图形.在下面这些用七巧板拼成的图形中,可以看作轴对称图形的(不考虑拼接线)有()A.5个B.4个C.3个D.2个4.(3分)已知(a x•a y)5=a20(a>0,且a≠1),那么x、y应满足()A.x+y=15B.xy=4C.x+y=4D.y=5.(3分)下列说法中正确的是()A.点A和点B位于直线l的两侧,如果A、B到l的距离相等,那么它们关于直线l对称B.两个全等的图形一定关于某条直线对称C.如果三角形中有一边的长度是另一边长度的一半,则这条边所对的角是30°D.等腰三角形一定是轴对称图形,对称轴有1条或者3条6.(3分)若(a﹣2)2+|b﹣3|=0,则以a、b为边长的等腰三角形的周长为()A.6B.7C.8D.7或87.(3分)若x+n与x+2的乘积中不含x的一次项,则n的值为()A.﹣2B.2C.0D.18.(3分)如图,BM是△ABC的角平分线,D是BC边上的一点,连接AD,使AD=DC,且∠BAD =120°,则∠AMB=()A.30°B.25°C.22.5°D.20°9.(3分)如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一个点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点可能是()A.点A B.点B C.点C D.点D10.(3分)如图,已知:∠MON=30°,点A1、A2、A3、…在射线ON上,点B1、B2、B3、…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4、…均为等边三角形,若OA1=1,则△A9B9A10的边长为()A.32B.64C.128D.256二、填空题11.(3分)32016×2015=.12.(3分)汶川大地震过后,某中学的同学用下面的方法检测教室的房梁是否水平:在等腰直角三角尺斜边中点拴一条线绳,线绳的另一端挂一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角顶点,同学们确信房梁是水平的,理由是.13.(3分)如图,在△ABC,∠C=90°,∠ABC=40°,按以下步骤作图:①以点A为圆心,小于AC的长为半径.画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为.14.(3分)如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB=.15.(3分)如图,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分线交于O点,过点O作BC的平行线交AB于M点,交AC于N点,则△AMN的周长为.16.(3分)已知92m×27m﹣1=311,则m=.三、解答题17.平面直角坐标系中有一点A(1,1)对点A进行如下操作:第一步,作点A关于x轴的对称点A1,延长线段AA1到点A2,使得2A1A2=AA1;第二步,作点A2关于y轴的对称点A3,延长线段A2A3到点A4,使得2A3A4=A2A3;第三步,作点A4关于x轴的对称点A5,延长线段A4A5到点A6,使得2A5A6=A4A5;……则点A2的坐标为,点A2015的坐标为;若点A n的坐标恰好为(4m,4n)(m、n均为正整数),请写出m和n的关系式.18.如图,将长方形纸片ABCD对折后再展开,得到折痕EF,M是BC上一点,沿着AM再次折叠纸片,使得点B恰好落在折痕EF上的点B′处,连接AB′、BB′.判断△AB′B的形状为;若P为线段EF上一动点,当PB+PM最小时,请描述点P的位置为.19.计算:3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x220.计算(1)(﹣2a2)(3ab2﹣5ab3)(2)(5x+2y)•(3x﹣2y)21.已知(x+my)(x+ny)=x2+2xy﹣6y2,求﹣(m+n)•mn的值.22.如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.23.已知如图,△ABC在平面直角坐标系XOY中,其中A(1,2),B(3,1),C(4,3),试解答下列各题:(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标;A′();B′();C′().(2)在x轴上画出点P,使PA+PC最小.24.如图,在△ABC中,AB>AC,AD平分∠BAC(1)尺规作图:在AD上标出一点P,使得点P到点B和点C的距离相等(不写作法,但必须保留作图痕迹);(2)过点P作PE⊥AB于点E,PF⊥AC于点F,求证:BE=CF;(3)若AB=a,AC=b,则BE=,AE=.25.如图,CN是等边△ABC的外角∠ACM内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.(1)依题意补全图形;(2)若∠ACN=α,求∠BDC的大小(用含α的式子表示);(3)用等式表示线段PB,PC与PE之间的数量关系,并证明.26.在等边△ABC外作射线AD,使得AD和AC在直线AB的两侧,∠BAD=α(0°<α<180°),点B关于直线AD的对称点为P,连接PB,PC.(1)依题意补全图1;(2)在图1中,求∠BPC的度数;(3)直接写出使得△PBC是等腰三角形的α的值.27.阅读材料小明遇到这样一个问题:求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.小明想通过计算(x+2)(2x+3)(3x+4)所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找(x+2)(2x+3)所得多项式中的一次项系数.通过观察发现:也就是说,只需用x+2中的一次项系数1乘以2x+3中的常数项3,再用x+2中的常数项2乘以2x+3中的一次项系数2,两个积相加1×3+2×2=7,即可得到一次项系数.延续上面的方法,求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.可以先用x+2的一次项系数1,2x+3的常数项3,3x+4的常数项4,相乘得到12;再用2x+3的一次项系数2,x+2的常数项2,3x+4的常数项4,相乘得到16;然后用3x+4的一次项系数3,x+2的常数项2,2x+3的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算(2x+1)(3x+2)所得多项式的一次项系数为.(2)计算(x+1)(3x+2)(4x﹣3)所得多项式的一次项系数为.(3)若计算(x2+x+1)(x2﹣3x+a)(2x﹣1)所得多项式的一次项系数为0,则a=.(4)若x2﹣3x+1是x4+ax2+bx+2的一个因式,则2a+b的值为.参考答案与试题解析一、单选题1.解:A、a3+a2,无法计算,故此选项错误;B、a3•a2=a5,正确;C、(2a2)3=8a6,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.2.解:∵△ABC与△A′B′C′关于直线l对称,∴∠C=∠C′=30°.∴∠B=180°﹣∠A﹣∠C=180°﹣50°﹣30°=100°.故选:A.3.解:第一个图形不是轴对称图形,第二个图形是轴对称图形,第三个图形是轴对称图形,第四个图形不是轴对称图形,第五个图形不是轴对称图形,第六个图形是轴对称图形,综上所述,是轴对称图形的有3个.故选:C.4.解:∵(a x•a y)5=a20(a>0,且a≠1),∴(a x+y)5=a20,∴x+y=4;故选:C.5.解:A、如图,点A和点B位于直线l的两侧,如果A、B到l的距离相等,但A、B不关于直线l对称;故A不正确;B、两个图形全等,这两个图形不一定关于某条直线对称;故B不正确;C、如图所示,D为AB的中点,以A为圆心,以AD为半径画圆,A到圆上各点的距离都是AB的一半,即AC=AB,所以如果三角形中有一边的长度是另一边长度的一半,可以有无数种情况,即这条边所对的角不确定;故C不正确;D、等腰三角形一定是轴对称图形,对称轴有1条或者3条;故D正确;故选:D.6.解:∵(a﹣2)2+|b﹣3|=0,∴a﹣2=0,b﹣3=0,解得a=2,b=3,①当腰是2,底边是3时,三边长是2,2,3,此时符合三角形的三边关系定理,即等腰三角形的周长是2+2+3=7;②当腰是3,底边是2时,三边长是3,3,2,此时符合三角形的三边关系定理,即等腰三角形的周长是3+3+2=8.故选:D.7.解:∵(x+n)(x+2)=x2+2x+nx+2n=x2+(2+n)x+2n,又∵x+n与x+2的乘积中不含x的一次项,∴2+n=0,∴n=﹣2;故选:A.8.解:∵BM平分∠ABC,∴∠ABM=∠CBM,∵AD=DC,∴∠DAC=∠C,在△ABC中,∠ABC+∠BAC+∠C=180°,即2∠CBM+∠BAD+2∠C=180°,且∠BAD=120°∴∠CBM+∠C=30°,∴∠AMB=∠CBM+∠C=30°,故选:A.9.解:如图所示:原点可能是D点.故选:D.10.解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,…∴△A n B n A n+1的边长为2n﹣1,∴△A9B9A10的边长为29﹣1=28=256.故选:D.二、填空题11.解:32016×2015=3×(3×)2015=3.故答案为:3.12.解:∵△ABC是个等腰三角形,∴AC=BC,∵点O是AB的中点,∴AO=BO,∴OC⊥AB.故答案为:等腰三角形的底边上的中线、底边上的高重合.13.解:解法一:连接EF.∵点E、F是以点A为圆心,小于AC的长为半径画弧,分别与AB、AC的交点,∴AF=AE;∴△AEF是等腰三角形;又∵分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;∴AG是线段EF的垂直平分线,∴AG平分∠CAB,∵∠ABC=40°∴∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);解法二:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);故答案是:65°.14.解:如图所示:∵MN垂直平分BC,∴CD=BD,∴∠DBC=∠DCB∵CD=AC,∠A=50°,∴∠CDA=∠A=50°,∵∠CDA=∠DBC+∠DCB,∴∠DCB=∠DBC=25°,∠DCA=180°﹣∠CDA﹣∠A=80°,∴∠ACB=∠CDB+∠ACD=25°+80°=105°.故答案为:105°.15.解:∵BO为∠ABC的平分线,CO为∠ACB的平分线,∴∠ABO=∠CBO,∠ACO=∠BCO,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠BCO,∴∠ABO=∠MOB,∠NOC=∠ACO,∴MB=MO,NC=NO,∴MN=MO+NO=MB+NC,∵AB=4,AC=6,∴△AMN周长为AM+MN+AN=AM+MB+AN+NC=AB+AC=10,故答案为:1016.解:∵92m×27m﹣1=311,∴34m×33m﹣3=311,∴4m+3m﹣3=11,∴m=2.故答案为:2.三、解答题17.解:由题意得,A1(1,﹣1),A2(1,﹣2),A3(﹣1,﹣2),A4(﹣2,﹣2),A5(﹣2,2),A6(﹣2,4),A7(2,4),A8(4,4),∵2015÷8=251余7,∴点A2015为第252循环组的第一象限的倒数第二个点,∴A2015(2503,2504),点A n的坐标恰好为(4m,4n)(m、n均为正整数),请写出m和n的关系式m=n.故答案为:(1,﹣2);(2503,2504),m=n.18.解:由第一次折叠,可得EF垂直平分AB,∴AB'=BB',由第二次折叠,可得AB=AB',∴AB=AB'=BB',∴△ABB'是等边三角形;∵点B与点A关于EF对称,∴AP=BP,∴PB+PM=AP+PM,∴当A,P,M在同一直线上时,PB+PM最小值为AM的长,∴点P的位置为AM与EF的交点,故答案为:等边三角形,AM与EF的交点.19.解:3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x2,=3x6•x3﹣x9+x2•x9÷x2,=3x9﹣x9+x9,=3x9.20.解:(1)(﹣2a2)(3ab2﹣5ab3)=﹣6a3b2+10a3b3;(2)(5x+2y)•(3x﹣2y)=15x2﹣10xy+6xy﹣4y2)=15x2﹣4xy﹣4y2.21.解:∵(x+my)(x+ny)=x2+nxy+mxy+mny2=x2+(m+n)xy+mny2,而(x+my)(x+ny)=x2+2xy﹣6y2,∴m+n=2,mn=﹣6,∴﹣(m+n)•mn=﹣2×(﹣6)=12.22.证明:∵AB=AC,∴∠B=∠C,又∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵点D为BC中点,∴DB=DC,∴在△DBE和△DCF中,∴△DBE≌DCF(AAS),∴DE=DF.23.解:(1)如图所示:A′(﹣1,2);B′(﹣3,1);C′(﹣4,3)故答案为:﹣1,2;﹣3,1;﹣4,3;(2)如图所示:点P即为所求.24.解:(1)①作线段BC的垂直平分线交AD于P.点P就是所求的点.(2)连接PB、PC.∵∠PAB=∠PAF,PE⊥AB,PF⊥AC,∴PE=PF,在Rt△PEB和Rt△PFC中,,∴△PEB≌△PFC,∴BE=CF.(3)设BE=CF=x,在Rt∴△PAE和Rt△PAF中,,∴△PAE≌△PAF,∴AE=AF,∴AB﹣BE=AC+CF,∴a﹣x=b+x,∴x=,∴BE=,AE=AB﹣BE=a﹣=,故答案为,.25.(1)如右图所示,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)(2)解:∵点A与点D关于CN对称,∴CN是AD的垂直平分线,∴CA=CD.∵∠ACN=α,∴∠ACD=2∠ACN=2α.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)∵等边△ABC,∴CA=CB=CD,∠ACB=60°.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)∴∠BCD=∠ACB+∠ACD=60°+2α.∴∠BDC=∠DBC=(180°﹣∠BCD)=60°﹣α.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(3)结论:PB=PC+2PE.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)本题证法不唯一,如:证明:在PB上截取PF使PF=PC,如右图,连接CF.∵CA=CD,∠ACD=2α∴∠CDA=∠CAD=90°﹣α.∵∠BDC=60°﹣α,∴∠PDE=∠CDA﹣∠BDC=30°.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)∴PD=2PE.∵∠CPF=∠DPE=90°﹣∠PDE=60°.∴△CPF是等边三角形.∴∠CPF=∠CFP=60°.∴∠BFC=∠DPC=120°.∴在△BFC和△DPC中,∴△BFC≌△DPC.∴BF=PD=2PE.∴PB=PF+BF=PC+2PE.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)26.解:(1)图形如图所示:(2)点B关于直线AD的对称点为P,∴AP=AB,∴∠PAD=∠BAD,∵△ABC是等边三角形,∴∠BAC=60°,AB=AC,∴AP=AB=AC,∴P,B,C在以A为圆心AP为半径的圆上,∴∠BPC=∠BAC=30°;(3)①如图2﹣1中,当BP=BC时,α=∠BAD=30°.②如图2﹣2中,当PB=PC时,α=∠BAD=75°.③如图2﹣3中,当CP=BC时,α=∠BAD=120°④如图2﹣4中,当BP=PC时,α=∠BAD=165°综上所述α的值为:30°,75°,120°,165°.27.解:(1)(2x+1)(3x+2)所得多项式的一次项系数为2×2+1×3=7,故答案为:7;(2)(x+1)(3x+2)(4x﹣3)所得多项式的一次项系数为1×2×(﹣3)+1×3×(﹣3)+1×2×4=﹣7,故答案为:﹣7;(3)(x2+x+1)(x2﹣3x+a)(2x﹣1)所得多项式的一次项系数为1×a×(﹣1)+1×(﹣3)×(﹣1)+1×a×2=a+3,由题意知a+3=0,解得:a=﹣3,故答案为:﹣3;(4)由x4+ax2+bx+2中4次项系数为1、常数项为2可设另一个因式为x2+mx+2,则(x2﹣3x+1)(x2+mx+2)=x4+ax2+bx+2,∴,解得:,∴2a+b=﹣12﹣3=﹣15,故答案为:﹣15.。

北师大八年级数学试卷【含答案】

北师大八年级数学试卷【含答案】

北师大八年级数学试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。

A. a/2B. a√2C. 2aD. a²2. 下列函数中,奇函数是()。

A. y = x²B. y = |x|C. y = x³D. y = sin(x)3. 在直角坐标系中,点(2, -3)关于原点的对称点是()。

A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)4. 若一个等差数列的首项为3,公差为2,则第10项是()。

A. 19B. 21C. 23D. 255. 下列图形中,面积和周长都不变的图形是()。

A. 正方形B. 矩形C. 圆形D. 三角形二、判断题(每题1分,共5分)1. 两个负数相乘的结果是正数。

()2. 一元二次方程的解一定是实数。

()3. 任何数乘以0都等于0。

()4. 平行四边形的对角线互相平分。

()5. 二次函数的图像一定是抛物线。

()三、填空题(每题1分,共5分)1. 若一个等边三角形的边长为6cm,则它的面积为______cm²。

2. 一元二次方程ax² + bx + c = 0(a ≠ 0)的判别式是______。

3. 若sinθ = 1/2,则θ的一个可能值是______。

4. 若一组数据的平均数为10,则这组数据的总和是______。

5. 两个相互垂直的向量点积为______。

四、简答题(每题2分,共10分)1. 简述等差数列的定义。

2. 什么是平行线?如何判断两条线是否平行?3. 什么是二次函数?它的图像有什么特点?4. 简述勾股定理。

5. 什么是概率?如何计算一个事件的概率?五、应用题(每题2分,共10分)1. 一个长方形的长是宽的两倍,若长方形的周长为20cm,求长方形的长和宽。

2. 已知等差数列的前三项分别是2, 5, 8,求这个数列的第10项。

北师大版2019-2020学年八年级(上)月考数学试卷含附加题解析版

北师大版2019-2020学年八年级(上)月考数学试卷含附加题解析版

2019-2020学年八年级(上)月考数学试卷一、选择题(每小题3分,共30分)1.下列各组数中,相等的是()A.|﹣5|与﹣5 B.﹣2与C.﹣3与﹣D.﹣4与2.以下列各组数据为边长能组成直角三角形的是()A.2、3、5 B.4、5、6 C.6、8、10 D.1、1、13.的整数部分是()A.5 B.6 C.7 D.84.立方根等于它本身的数是()A.0和1 B.0和±1 C.1 D.05.下列说法正确的有()①无限小数都是无理数;②无理数都是带根号的数③=a④实数与数轴上的点是一一对应的A.3个B.2个C.1个D.0个6.函数y=有意义,则x的取值范围是()A.x≥0 B.x≠4 C.x>4 D.x≥0且x≠4 7.一个带盖的长方形盒子的长,宽,高分别是8cm,8cm,12cm,已知蚂蚁想从盒底的A点爬到盒顶的B点,则蚂蚁要爬行的最短行程是()A.28cm B.4C.4D.20cm8.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A.5个B.4个C.3个D.2个9.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴于点M,则点M表示的数为()A.2 B.C.D.10.△ABC中的三边分别是m2﹣1,2m,m2+1(m>1),那么()A.△ABC是直角三角形,且斜边长为m2+1B.△ABC是直均三角形,且斜边长为2mC.△ABC是直角三角形,且斜边长为m2﹣1D.△ABC不是直角三角形二、填空题(每小题3分,共12分)11.4的平方根是;8的立方根是.12.若+y2﹣4y+4=0,且x,y的值分别为.13.已知Rt△ABC一直角边为8,斜边为10,则S△ABC=14.如图所示,一架梯子AB长2.5米,顶端A靠墙AC上,这时梯子下端B与墙角C距离为0.7米,梯子滑动后停在DE的位置上,测得AE长为0.9米,则梯子底端点B移动的距离为了米.三.计算题每小题16分,共16分)15.计算:(1)(2)﹣52解方程:(3)2(x+1)2=8(4)3(2x﹣1)2=﹣81四.解答题(共42分)16.若x=,y=(1)求x+y的值;(2)求x2﹣xy+y2的值.17.等腰三角形△ABC中AB=AC,三角形的面积为12cm2,且底边上的高为4cm,求△ABC 的周长.18.如图,将一张矩形纸片ABCD折叠,使两个顶点A、C重合,折痕为FG,若AB=4,BC =8,求△ABF的面积.19.阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[﹣]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.20.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知AB=5,DE=1,BD=8,设CD=x(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的规律和结论,请构图求出代数式+的最小值.附加题一.填空题(每小题4分,共20分)21.的平方根是±,3的算平方根是,则a﹣b=22.已知最简二次根式与是同类二次根式,且a为正整数,则a=23.如图,已知AB=16,DA⊥AB于点A,CB⊥AB于点B,DA=10,CB=2,AB上有一点E 使DE+EC最短,那么最短距离为.24.观察下列各式:,,,,….请你将猜想到的规律用含自然数n(n≥1)的代数式表示出来是.25.如图,在△ABC中,AB=AC=2,点P在BC上;若BC边上有2015个不同的点P1,P2,…P2018…且相应的有m1=AP12+BP1•P1C1,m2=AP22+BP2•P2C2,…,m2018=AP20182+BP2018•P2018C2018,则m1+m2+…+m2018=.二、解答题(共30分)26.已知+()2=2000,y=++,求y﹣x的平方根.27.四边形ABCD和四边形CEFG均是正方形,连接BG,DE.(1)试判断BG与DE的关系;(2)当AB=3,CE=2时,求BE2+DG2的值.28.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:如图①,若点P在线段AB上,且AC=,PA=,则:①线段PB=,PC=;②猜想:PA2,PB2,PQ2三者之间的数量关系为.(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足=4,求的值(提示:请利用备用图进行探求).参考答案与试题解析一.选择题(共10小题)1.下列各组数中,相等的是()A.|﹣5|与﹣5 B.﹣2与C.﹣3与﹣D.﹣4与【分析】根据算术平方根,立方根和绝对值的定义,化简后判断.【解答】解:A,|﹣5|=5,不正确;B,=﹣2,正确;C,﹣3,不正确;D,=4≠﹣4,不正确.故选:B.2.以下列各组数据为边长能组成直角三角形的是()A.2、3、5 B.4、5、6 C.6、8、10 D.1、1、1 【分析】利用三角形的三边关系定理以及勾股定理的逆定理即可作出判断.【解答】解:A、∵2+3=5,∴不能构成三角形.故选项错误;B、42+52=16+25=41≠62,故不能构成直角三角形,故选项错误;C、62+82=102,故可以构成直角三角形,故选项正确;D、是等边三角形,一定不是直角三角形,故选项错误.故选:C.3.的整数部分是()A.5 B.6 C.7 D.8【分析】估算数的大小解答.【解答】解:∵6<<7,∴的整数部分是6,故选:B.4.立方根等于它本身的数是()A.0和1 B.0和±1 C.1 D.0【分析】利用立方根的定义即可求解.【解答】解:立方根等于它本身的数有:0和±1.故选:B.5.下列说法正确的有()①无限小数都是无理数;②无理数都是带根号的数③=a④实数与数轴上的点是一一对应的A.3个B.2个C.1个D.0个【分析】根据实数的性质作出判断.【解答】解:①无限不循环小数都是无理数,故错误;②无理数不都是带根号的数,例如π,故错误;③=|a|,故错误;④实数与数轴上的点是一一对应的,故正确.故选:C.6.函数y=有意义,则x的取值范围是()A.x≥0 B.x≠4 C.x>4 D.x≥0且x≠4 【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意,得x≥0且x﹣4≠0,解得x≥0且x≠4,故选:D.7.一个带盖的长方形盒子的长,宽,高分别是8cm,8cm,12cm,已知蚂蚁想从盒底的A点爬到盒顶的B点,则蚂蚁要爬行的最短行程是()A.28cm B.4C.4D.20cm【分析】把立体图形转化为平面图形,利用勾股定理解决问题即可.【解答】解:有两种情形:如图1所示:AB==20(cm),如图2所示:AB==4(cm).∵20<4故爬行的最短路程是20cm.故选:D.8.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A.5个B.4个C.3个D.2个【分析】首先过A作AE⊥BC,当D与E重合时,AD最短,首先利用等腰三角形的性质可得BE=EC,进而可得BE的长,利用勾股定理计算出AE长,然后可得AD的取值范围,进而可得答案.【解答】解:过A作AE⊥BC,∵AB=AC,∴EC=BE=BC=4,∴AE==3,∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD长为正整数,∴AD的可以有三条,长为4,3,4,∴点D的个数共有3个,故选:C.9.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴于点M,则点M表示的数为()A.2 B.C.D.【分析】首先根据勾股定理计算出AC的长,进而得到AM的长,再根据A点表示﹣1,可得M点表示的数.【解答】解:AC===,则AM=,∵A点表示﹣1,∴M点表示的数为:﹣1,故选:C.10.△ABC中的三边分别是m2﹣1,2m,m2+1(m>1),那么()A.△ABC是直角三角形,且斜边长为m2+1B.△ABC是直均三角形,且斜边长为2mC.△ABC是直角三角形,且斜边长为m2﹣1D.△ABC不是直角三角形【分析】根据勾股定理的逆定理判定即可.【解答】解:∵△ABC中的三边分别是m2﹣1,2m,m2+1(m>1),又∵(m2﹣1)2+(2m)2=(m2+1)2,∴△ABC是直角三角形,斜边为m2+1.故选:A.二.填空题(共4小题)11.4的平方根是±2 ;8的立方根是 2 .【分析】依据平方根立方根的定义回答即可.【解答】解:∵(±2)2=4,∴4的平方根是±2.∵23=8,∴8的立方根是2.故答案为:±2,2.12.若+y2﹣4y+4=0,且x,y的值分别为2,2 .【分析】已知等式左边利用完全平方公式变形后,利用非负数的性质求出x与y的值.【解答】解:∵+y2﹣4y+4=+(y﹣2)2=0,∴x﹣y=0,y﹣2=0,解得:x=y=2,故答案为:2,2.13.已知Rt△ABC一直角边为8,斜边为10,则S△ABC=24【分析】已知一直角边的长及周长,则可以设另一直角边为未知数,根据勾股定理可求得其值,再根据三角形的面积公式即可求得其面积.【解答】解:由题意知,Rt△ABC的另一直角边长为:=6,所以S△ABC=×8×6=24.故答案是:24.14.如图所示,一架梯子AB长2.5米,顶端A靠墙AC上,这时梯子下端B与墙角C距离为0.7米,梯子滑动后停在DE的位置上,测得AE长为0.9米,则梯子底端点B移动的距离为了 1.3 米.【分析】由题意知,AB=DE=2.5米,CB=0.7米,BD=2.4米,则在直角△ABC中,根据AB,BC可以求AC,在直角△CDE中,可以求CE,则BD=DC﹣BD即为题目要求的距离.【解答】解:在直角△ABC中,已知AB=2.5米,BC=0.7米,∴AC===2.4米,在直角△CDE中,已知CE=CE+EA=2.4米,DE=AB=2.5米,AE=0.9米,∴CE=AC﹣AE=1.5米,∴CD===2米,∴BD=2米﹣0.7米=1.3米故答案为:1.3.三.解答题15.计算:(1)(2)﹣52解方程:(3)2(x+1)2=8(4)3(2x﹣1)2=﹣81【分析】计算(1)先化简二次根式,再计算加减可得;(2)先计算乘法,再计算加法可得答案;解方程:(1)(2)利用直接开平方法求解可得.【解答】解:计算(1)原式=2﹣6+=﹣6;(2)原式=﹣52+2=﹣50;解方程:(1)(x+1)2=4,则x+1=2或x+1=﹣2,解得x=1或x=﹣1;(2)(2x﹣1)2=﹣27<0,则此方程无实数根.16.若x=,y=(1)求x+y的值;(2)求x2﹣xy+y2的值.【分析】先将x、y进行化简,然后分别代入(1)x+y与(2)x2﹣xy+y2计算.【解答】解:x==,y==(1)x+y==2;(2)x2﹣xy+y2=(x﹣y)2+xy=()2+()()=4+1=5.17.等腰三角形△ABC中AB=AC,三角形的面积为12cm2,且底边上的高为4cm,求△ABC 的周长.【分析】由三角形的面积公式求得BD=6,然后在直角△ABD中由勾股定理求得AB的长度,易得答案.【解答】解:如图,作BC边上的高线AD,则AD=4cm,∵△ABC的面积为12cm2,∴BC•AD=12,即×BC×4=12.则BC=6.∵AB=AC,∴BD=CD=BC=3.在直角△ABD中,由勾股定理得到:AB===5.则△ABC的周长=2AB+BC=10+6=16.即△ABC的周长是16.18.如图,将一张矩形纸片ABCD折叠,使两个顶点A、C重合,折痕为FG,若AB=4,BC =8,求△ABF的面积.【分析】根据折叠的性质和垂直平分线的性质求出AF=CF,根据勾股定理得出关于CF 的方程,求出CF,得出BF,再根据面积公式求出即可.【解答】解:∵将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG,∴FG是AC的垂直平分线,∴AF=CF,设AF=FC=x,在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,即42+(8﹣x)2=x2,解得:x=5,即CF=5,BF=8﹣5=3,∴△ABF的面积为×3×4=6.19.阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[﹣]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.【分析】分别把1、2代入式子化简求得答案即可.【解答】解:第1个数,当n=1时,[﹣]=(﹣)=×=1.第2个数,当n=2时,[﹣]=[()2﹣()2]=×(+)(﹣)=×1×=1.20.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知AB=5,DE=1,BD=8,设CD=x(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的规律和结论,请构图求出代数式+的最小值.【分析】(1)由于△ABC和△CDE都是直角三角形,故AC,CE可由勾股定理求得;(2)若点C不在AE的连线上,根据三角形中任意两边之和>第三边知,AC+CE>AE,故当A、C、E三点共线时,AC+CE的值最小;(3)由(1)(2)的结果可作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,则AE的长即为代数式+的最小值,然后构造矩形AFDB,Rt△AFE,利用矩形的直角三角形的性质可求得AE的值.【解答】解:(1)AC+CE=+;(2)当A、C、E三点共线时,AC+CE的值最小;(3)如右图所示,作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,设BC=x,则AE的长即为代数+的最小值.过点A作AF∥BD交ED的延长线于点F,得矩形ABDF,则AB=DF=2,AF=BD=12,EF=ED+DF=3+2=5,所以AE===13,即+的最小值为13.故代数式+的最小值为13.附加题一.填空题(共5小题)21.的平方根是±,3的算平方根是,则a﹣b=8【分析】根据平方根与算术平方根的意义求出a、b的值,然后代入计算.【解答】解:∵的平方根是±,3的算平方根是,∴=3,=,∴a=9,b=1,∴a﹣b=9﹣1=8,故答案为8.22.已知最简二次根式与是同类二次根式,且a为正整数,则a= 5【分析】根据题意,它们的被开方数相同,列出方程求解.【解答】解:∵=2,最简二次根式与是同类二次根式,∴7﹣a=2,解得a=5.故答案是:5.23.如图,已知AB=16,DA⊥AB于点A,CB⊥AB于点B,DA=10,CB=2,AB上有一点E 使DE+EC最短,那么最短距离为20 .【分析】作点C关于AB的对称点R,连接DR交AB于P,连接PC,此时ED+EC的值最小,利用勾股定理求出DR即可.【解答】解:作点C关于AB的对称点R,连接DR交AB于P,连接PC,此时ED+EC的值最小.作DT⊥BC交BC的延长线于T.则四边形ADTB是矩形,∴AD=BT=10,AB=DT=16,在Rt△DTR中,∵∠T=90°,DT=16,RT=12,∴DR===20,∴DE+EC的最小值为20,故答案为20.24.观察下列各式:,,,,….请你将猜想到的规律用含自然数n(n≥1)的代数式表示出来是=(2n+1).【分析】分别观察前面的几组数据,先观察根号下的整数可得依次是4,8、12,16…,分数依次是,,…,结果部分根号外面的数依次是3、5、7、9…从而可得出规律.【解答】解:观察各式可得出规律:=(2n+1).故答案为:=(2n+1).25.如图,在△ABC中,AB=AC=2,点P在BC上;若BC边上有2015个不同的点P1,P2,…P2018…且相应的有m1=AP12+BP1•P1C1,m2=AP22+BP2•P2C2,…,m2018=AP20182+BP2018•P2018C2018,则m1+m2+…+m2018=8072 .【分析】根据勾股定理,可得AB2=AD2+BD2,AP12=AD2+P1D2,根据平方差公式,可得AB2﹣AP12=BD2﹣P1D2=(BD+P1D)(BD﹣P1D)=P1C•BP1,根据等式的性质,可得m2=AB2=AP22+BP2•P2C=4,根据有理数的运算,可得答案.【解答】解:如图所示:过点A作AD⊥BC于D,∵AB=AC,∴BD=CD.在Rt△ABD中,AB2=AD2+BD2①在Rt△APD中,AP12=AD2+P1D2②①﹣②得:AB2﹣AP12=BD2﹣P1D2=(BD+P1D)(BD﹣P1D)=P1C•BP1,∴m1=AB2=AP12+BP1•P1C=4,同理:m2=AB2=AP22+BP2•P2C=4,m3=AB2=AP32+BP3•P3C…m1+m2+…+m2018=4×2018=8072,故答案为:8072.二.解答题(共4小题)26.已知+()2=2000,y=++,求y﹣x的平方根.【分析】先根据被开方数大于等于0列不等式求出x的取值范围,再根据二次根式的性质去掉根号,然后解方程求出x的值,根据被开方数大于等于0列不等式求出m的值,然后求出y的值,最后根据平方根的定义解答.【解答】解:由题意得,998﹣x≥0,解得x≤998,所以,1000﹣x+998﹣x=2000,解得x=﹣1,由题意得,m﹣1≥0且1﹣m≥0,解得m≥1且m≤1,所以,m=1,y==3,所以,y﹣x=3﹣(﹣1)=3+1=4,∵(±2)2=4,∴4的平方根是±2,即y﹣x的平方根是±2.27.四边形ABCD和四边形CEFG均是正方形,连接BG,DE.(1)试判断BG与DE的关系;(2)当AB=3,CE=2时,求BE2+DG2的值.【分析】(1)证明Rt△BCG≌Rt△DCE即可说明BG和DE的位置关系和数量关系;(2)根据正方形的性质以及线段和差可求BE=5,DG=1,则BE2+DG2的值可求.【解答】解:(1)延长BG交DE于H点,∵四边形ABCD是正方形,四边形CEFG是正方形,∴DC=BC,CG=CE,∠BCG=∠DCE=90°,∴Rt△BCG≌Rt△DCE(HL).∴BG=DE,∠GBC=∠EDC.∵∠BGC+∠GBC=90°,∠BGC=∠DGH,∴∠DGH+∠EDC=90°,∴∠DHG=90°.∴BG⊥DE.∴BG与DE的关系是BG=DE且BG⊥DE;(2)∵四边形ABCD是正方形,∴BC=AB=DC=3,∴BE=BC+CE=3+2=5.∵四边形CEFG是正方形,∴CG=CE=2,∴DG=DC﹣CG=3﹣2=1.∴BE2+DG2=25+1=26.28.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:如图①,若点P在线段AB上,且AC=,PA=,则:①线段PB=,PC=;②猜想:PA2,PB2,PQ2三者之间的数量关系为PA2+PB2=PQ2.(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足=4,求的值(提示:请利用备用图进行探求).【分析】(1)①在等腰直角三角形ACB中,由勾股定理先求得AB的长,然后根据PA的长,可求得PB的长,再利用SAS证明△APC≌△BQC,得出BQ=AP=,∠CBQ=∠A=45°,那么△PBQ为直角三角形,依据勾股定理求出PQ=.那么PC=;②由①知△PBQ为直角三角形,据此可得PB2+BQ2=PQ2,结合BQ=AP可得答案;(2)过点C作CD⊥AB,垂足为D,则AP=(AD+PD)=(DC+PD),PB=(DP﹣BD)=(PD ﹣DC),可证明AP2+BP2=2PC2,因为在Rt△PCQ中,PQ2=2CP2,所以可得出AP2+BP2=PQ2的结论;(3)分点P在线段AB和线段AB延长线上这两种情况,设PA=4x,PB=x,据此表示出AB、CD、BD的长,继而利用勾股定理求出PC的长度,根据等腰直角三角形的性质表示出PQ、AC 的长度,从而得出答案.【解答】解:(1)①如图①.连接BQ,∵△ABC是等腰直角三角形,AC=,∴AB===2,∵PA=,∴PB=,∵△ABC和△PCQ均为等腰直角三角形,∴AC=BC,∠ACP=∠BCQ,PC=CQ,∴△APC≌△BQC(SAS).∴BQ=AP=,∠CBQ=∠A=45°.∴△PBQ为直角三角形.∴PQ=.∴PC=PQ=.故答案为:,;②由①知△PBQ为直角三角形,∴PB2+BQ2=PQ2,又∵BQ=AP,∴PA2+PB2=PQ2,故答案为:PA2+PB2=PQ2.(2)(1)中所猜想的结论仍然成立,如图②:过点C作CD⊥AB,垂足为D.∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB.∵AP2=(AD+PD)2=(DC+PD)2=CD2+2DC•PD+PD2,PB2=(DP﹣BD)2=(PD﹣DC)2=DC2﹣2DC•PD+PD2,∴AP2+BP2=2CD2+2PD2,∵在Rt△PCD中,由勾股定理可知:PC2=DC2+PD2,∴AP2+BP2=2PC2.∵△CPQ为等腰直角三角形,∴2PC2=PQ2.∴AP2+BP2=PQ2;(3)如图③:过点C作CD⊥AB,垂足为D.①当点P在线段AB上时,∵=4,∴设PA=4x,PB=x,则AB=5x,AD=CD=AB=x,∴PD=PA﹣AD=4x﹣x=x,∴PC===x,∵△ABC和△PCQ均为等腰直角三角形,∴PQ=PC=x,AC=AB=x,∴==;②如图④,当点P位于AB延长线上时.设PA=4x,PB=x,则AB=3x,∴AD=BD=CD=AB=x,则PD=PB+BD=x,∴PC===x,∵△ABC和△PCQ均为等腰直角三角形,∴PQ=PC=x,AC=AB=x,∴==;综上,的值为或.。

四川省金堂县金龙中学北师大版2018_2019学年八年级数学上册期末测评

四川省金堂县金龙中学北师大版2018_2019学年八年级数学上册期末测评

四川省金堂县金龙中学北师大版2018_2019学年八年级数学上册期末测评(时间:120分钟,满分:120分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题意的)1.81的算术平方根是()A.-9B.±9C.9D.32.以下是某校九年级10名同学参加学校演讲比赛的统计表:则这组数据的中位数和平均数分别为()A.90,90B.90,89C.85,89D.85,903.李华根据演讲比赛中九位评委所给的分数制作了如下表格:如果要去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.平均数B.众数C.方差D.中位数4.有一道题目:已知一次函数y=2x+b,其中b<0,……,与这段描述相符的函数图象可能是()5.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是()A.8 cmB.5 cmC.5.5 cmD.1 cm6.已知点A(a,2 013)与点B(2 014,b)关于x轴对称,则a+b的值为()A.-1B.1C.2D.37.如图,过点Q(0,3.5)的一次函数与正比例函数y=2x的图象相交于点P,能表示这个一次函数图象的方程是()A.3x-2y+3.5=0B.3x-2y-3.5=0C.3x-2y+7=0D.3x+2y-7=08.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向平行行驶,那么这两个拐弯的角度可能是()A.先向左转130°,再向左转50°B.先向左转50°,再向右转50°C.先向左转50°,再向右转40°D.先向左转50°,再向左转40°9.如图①,在长方形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图②所示,则当x=9时,点R应运动到()A.P处B.Q处C.M处D.N处10.(2017浙江温州中考)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12SB.10SC.9SD.8S二、填空题(每小题3分,共18分)11.计算(3)(3)的结果为.12.若二次根式1在实数范围内有意义,则x的取值范围是.13.命题“等腰三角形底边上的高与中线互相重合”的条件是,结论是,它是命题.14.明明所在的班进行了一次数学测验,明明考了62分.不算明明的成绩,其余同学的平均分是98分,如果算上明明的成绩,全班平均分是97分,则全班共有个学生.15.如图,AB∥CD,∠A=48°,∠C= °,则∠E的度数是.(第15题图)(第16题图)16.一辆汽车在行驶过程中,路程y (单位:km)与时间x (单位:h)之间的函数关系如图所示,当0≤x ≤1时,y 关于x 的函数关系式为y=60x ,那么当1≤x ≤ 时,y 关于x 的函数关系式为 . 三、解答题(共72分) 17.(10分)(1)计算: 5 -834811;(2)解方程组: - 3,3 ①②18.(6分)小明同学在解方程组,-的过程中,错把b 看成了6,他其余的解题过程没有出错,解得此方程组的解为-1, 又已知直线y=kx+b 过点(3,1),求b 的正确值.19.(6分)在学校组织的社会实践活动中,甲、乙两人参加了射击比赛,每人射击七次,命中的环数如下表:根据以上信息,解决以下问题:(1)写出甲、乙两人命中环数的众数;(2)已知通过计算器求得甲=8,甲≈1.43,试比较甲、乙两人谁的成绩更稳定.20.(8分)如图,已知AB∥CD,∠NCM= 0°,∠NCB=30°,CM平分∠BCE,求∠B的大小.21.(10分)某商场按定价销售某种电器时,每台可获利48元;按定价的9折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等.该电器每台的进价、定价分别是多少?22.(10分)如图,△ABC在正方形网格中,若点A的坐标为(0,4),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A'B'C'(不用写作法).23.(10分)如图,在四边形ACBD中,∠C= 0°,AC=3,BC=4,AD=12,BD=13.连接AB,求证:AD⊥AB.24.(12分)小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完.小明对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:kg)与上市时间x(单位:天)的函数关系如图①所示,樱桃价格z(单位:元/kg)与上市时间x(单位:天)的函数关系如图②所示.(1)观察图象,直接写出日销售量的最大值;(2)求小明家樱桃的日销售量y与上市时间x的函数关系式;(3)试比较第10天与第12天的销售金额哪天多.答案:一、选择题1.C2.B因为共有10名同学,中位数是第5名和第6名的平均数,所以这组数据的中位数是(90+90)÷2=90;这组数据的平均数是(80+85×2+90×5+95×2)÷10=89.3.D4.A因为k=2>0,b<0,所以一次函数的图象经过第一、三、四象限.5.A如图,在Rt△ABC中,AB=5,BC=6,由勾股定理,得AC2=52+62=25+36=61<64.∵AC是矩形内最长的线段,∴将矩形折叠一次,折痕的长不可能大于AC,∴折痕不可能为8 cm.6.B∵点A(a,2 013)与点B(2 014,b)关于x轴对称,∴a=2 014,b=-2 013.∴a+b=1.7.D由图象可知P(1,2),已知Q(0,3.5),设一次函数关系式为y=kx+b(k≠0).则3 5,,解得-1 5,3 5,∴一次函数关系式为y=-1.5x+3.5,整理得3x+2y-7=0.8.B9.B当点R在NP上运动时,三角形面积增加,当点R在PQ上运动时,三角形的面积不变,当点R在QM上运动时,三角形面积变小,点R在Q处,三角形面积开始变小.10.C设AM=2a,BM=b.则正方形ABCD的面积=4a2+b2.由题意可知EF=(2a-b)-2(a-b)=2a-b-2a+2b=b,∵AM=2EF,∴2a=2b,∴a= b.∵正方形EFGH的面积为S,∴b2=S.∴正方形ABCD的面积=4a2+b2=9b2=9S,故选C.二、填空题11.-112.x≥-113.等腰三角形底边上的高与中线互相重合真14.36设全班有x个学生,根据题意得98(x-1)+62=97x,解得x=36.15. °∵AB∥CD,∠A=48°(已知),∴∠1=∠A=48°(两直线平行,内错角相等). ∵∠C= °(已知),∴∠E=∠1-∠C=48°- °= °(三角形的一个外角等于和它不相邻的两个内角的和).16.y=100x-40 将x=1代入正比例函数关系式y=60x ,确定第一个拐点坐标(1,60),然后设一次函数关系式为y=kx+b (k ≠0),其图象过(1,60)和(2,160),解关于k ,b 的二元一次方程组就可以获得答案. 三、解答题 17.解 (1) 5 -834811=5+ -3 313=5+(-1)-13=3413.(2)由①+②×2,得7x=7,解得x=1. 将x=1代入①,得y=-1. 则原方程组的解为1,-118.解 ∵小明同学错把b 看成了6,∴ -1,是方程y=kx+6的解. ∴2=-k+6.∴k=4.又已知直线y=kx+b 过点(3,1),∴1=4×3+b.∴b=-11.19.解 (1)甲的众数为8,乙的众数为10.(2)乙的平均成绩为 乙 1(5+6+7+8+10+10+10)=8,乙的方差为 乙 1[(5-8)2+(10-8)2+…+(10-8)2]=≈3.71.∵ 甲 ≈1.43, 甲 乙,∴甲的成绩更稳定. 20.解 ∵CM 平分∠BCE (已知),∴∠BCE=2∠BCM (角平分线的定义). ∵∠NCM= 0°,∠NCB=30°(已知),∴∠BCM= 0°(互余的定义).∴∠BCE=1 0°. ∵AB ∥CD (已知),∴∠BCE+∠B=180°(两直线平行,同旁内角互补). ∴∠B= 0°.21.分析 可列下表(设该电器每台的进价、定价分别是x 元、y 元):30元x)×9相等关系:(1)定价=进价+48;(2)(定价×90%-进价)×6=(定价-30-进价)×9.解设该电器每台的进价、定价分别是x元、y元,由题意得48,( 0 -(-30-解得1 , 10∴该电器每台的进价、定价分别是162元、210元.22.解 (1)建立平面直角坐标系,如图.(2)点B和点C的坐标分别为B(-3,0),C(1,2).(3)如图,△A'B'C'就是所作的三角形.23.证明在Rt△ABC中,根据勾股定理,得AB2=AC2+BC2=32+42=25.在△ABD中,AB2+AD2=25+122=169,BD2=132=169,∴AB2+AD2=BD2.∴△ABD为直角三角形,且∠BAD= 0°,∴AD⊥AB.24.解 (1)120 kg.(2)当0≤x≤1 时,设日销售量y与上市时间x的函数关系式为y=kx(k≠0).∵点(12,120)在y=kx的图象上,∴k=10.∴函数关系式为y=10x.当12<x≤ 0时,设日销售量y与上市时间x的函数关系式为y=kx+b(k≠0).∵点(12,120),(20,0)在y=kx+b的图象上,∴1 1 0,00,-15,300∴函数关系式为y=-15x+300.综上,y=10,0 1 ,-15300,1 0(3)∵第10天和第12天在第5天和第15天之间,∴当5≤x≤15时,设樱桃价格z与上市时间x的函数关系式为z=k'x+b'(k'≠0).∵点(5,32),(15,12)在z=k'x+b'的图象上,∴5 3 ,15 1 - , 4∴函数关系式为z=-2x+42.当x=10时,y=10×10=100,z=-2×10+42=22.销售金额为100×22=2 200(元).当x=12时,y=120,z=-2×12+42=18.销售金额为120×18=2 160(元).∵2 200>2 160,∴第10天的销售金额多.11。

北师大版初二上数学试卷

北师大版初二上数学试卷

一、选择题(每题3分,共30分)1. 下列数中,有理数是()A. √16B. √-9C. πD. 0.1010010001…2. 已知a、b是实数,且a+b=0,那么a与b的关系是()A. a=0,b≠0B. b=0,a≠0C. a和b互为相反数D. a和b相等3. 若x²=4,则x的值为()A. ±2B. ±1C. 2D. -24. 下列各数中,属于负数的是()A. -2B. 0C. 1D. -1/25. 已知一个数的绝对值是5,那么这个数是()A. ±5B. 5C. -5D. 06. 下列各式中,正确的是()A. (-3)²= -9B. (-3)³= -27C. (-3)⁴= 81D. (-3)⁵= 2437. 下列各式中,能化为同类二次根式的是()A. √3 + √2B. √6 - √3C. √8 + √2D. √12 - √38. 已知x=3,则代数式2x²-5x+2的值为()A. 7B. 8C. 9D. 109. 下列各式中,完全平方公式正确的是()A. (a+b)² = a² + 2ab + b²B. (a-b)² = a² - 2ab + b²C. (a+b)² = a² - 2ab + b²D. (a-b)² = a² + 2ab - b²10. 已知一元二次方程ax²+bx+c=0(a≠0)的判别式Δ=b²-4ac,那么当Δ=0时,方程的解的情况是()A. 两个不相等的实数根B. 两个相等的实数根C. 两个复数根D. 无解二、填空题(每题3分,共30分)11. 若|a|=5,那么a的值为__________。

12. 下列各数中,有理数是__________。

13. 已知x²=16,则x的值为__________。

2024年新八年级开学摸底考数学试卷(全国通用 ,北师大版)(解析版)

2024年新八年级开学摸底考数学试卷(全国通用 ,北师大版)(解析版)

新八年级开学摸底考试卷(北师大版)数学(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试范围:七年级下整册+八年级上册第一章4.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.)一、单选题1.36的平方根是()A.±6B.6C.-6D.不存在【答案】A【分析】本题考查了平方根,根据平方根的概念即可求解,熟练掌握“正数有两个平方根,且它们互为相反数”是解题的关键.【详解】36的平方根是±6.故选:A.2.以下列各组数作为三角形的边长,能构成直角三角形的是()A.4,5,6B.6,8,11C.1,1,2D.5,12,23【答案】C【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、52+42≠62,故不是直角三角形,故此选项不符合题意;B、62+82≠112,故不是直角三角形,故此选项不符合题意;C、12+12=22,故是直角三角形,故此选项符合题意;D、52+122≠232,故不是直角三角形,故此选项符合题意.故选:C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.下列事件属于随机事件的是()A.任意画一个三角形,其内角和是180°B.打开电视,电视正在播放新闻节目C.从只有红球的袋子中,摸出1个白球D.掷一次骰子,向上的一面的点数是7【答案】B【分析】本题主要考查必然事件,不可能事件,随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.根据必然事件、不可能事件、随机事件的概念,可得答案.【详解】解:A.任意画一个三角形,其内角和是180°是必然事件,故本选项不符合题意;B.打开电视,电视正在播放新闻节目是随机事件,故本选项符合题意;C.从只有红球的袋子中,摸出1个白球是不可能事件,故本选项不符合题意;D.掷一次骰子,向上的一面的点数是7是不可能事件,故本选项不符合题意;故选:B.4.如图,直线AB∥CD,AD⊥BD,∠ADC=38°,则∠ABD的度数为()A.38°B.42°C.52°D.62°【答案】C【分析】先根据两直线平行,内错角相等可得∠BAD=38°,再利用余角的定义即可求解.【详解】解:∵AB∥CD,∠ADC=38°,∴∠BAD=38°,∵AD⊥BD,∴∠ABD=52°,故选:C.【点睛】本题考查平行线的性质、余角的定义,掌握两直线平行,内错角相等是解题的关键.5.下列运算中正确的是()A.m3+m3=2m6B.-n2÷3ab3=3ab2=a2+b2 D.-3ab22=n5 C.a+b3-n【答案】D【分析】根据整式的运算法则即可求出答案.【详解】解:A、原式=2m3,故A错误.B、原式=-n5,故B错误.C、原式=a2+2ab+b2,故C错误;D、原式=9a2b4÷3ab3=3ab,故正确.故选:D.【点睛】本题主要考查整式的运算,熟练掌握运算法则是解题的关键.6.已知等腰三角形的周长为17cm,一边长为5cm,则它的腰长为()A.5cmB.6cmC.5.5cm或5cmD.5cm或6cm【答案】D【分析】分为两种情况:5cm是等腰三角形的底边或5cm是等腰三角形的腰.然后进一步根据三角形的三边关系进行分析能否构成三角形.【详解】解:当5cm是等腰三角形的底边时,则其腰长是(17-5)÷2=6(cm),能够组成三角形;当5cm是等腰三角形的腰时,则其底边是17-5×2=7(cm),能够组成三角形.故该等腰三角形的腰长为:6cm或5cm.故选:D.【点睛】本题考查了等腰三角形的两腰相等的性质,三角形的三边关系,熟练掌握等腰三角形的性质是解题的关键.7.某配餐公司需用甲、乙两种食材为在校午餐的同学配置营养餐,两种食材的蛋白质含量和碳水化合物含量如下表所示:甲食材乙食材每克所含蛋白质0.3单位0.7单位每克所含碳水化合物0.6单位0.4单位若每位中学生每餐需要21单位蛋白质和40单位碳水化合物,那么每餐甲、乙两种食材各多少克恰好满足一个中学生的需要?设每餐需要甲食材x克,乙食材y克,那么可列方程组为()A.0.3x+0.6y=210.7x+0.4y=40B.0.6x+0.3y=210.4x+0.7y=40C.0.3x+0.7y=210.6x+0.4y=40D.0.3x+0.7y=400.6x+0.4y=21【答案】C【分析】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,找出列方程组所需的等量关系.根据题意和表格中的数据,列出方程组即可.【详解】解:由题意可得,0.3x+0.7y=210.6x+0.4y=40,故选:C.8.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是A.BC=EC,∠B=∠EB.BC=EC,AC=DCC.BC=DC,∠A=∠DD.∠B=∠E,∠A=∠D【答案】C【分析】根据全等三角形的判定方法分别进行判定【详解】A、已知AB=DE,加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知AB=DE,加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意.故选C.【点睛】本题考查了三角形全等的判定方法,选择合适的判定方法是解决此题的关键.9.数学活动课上,老师准备了若干个如图1的三种纸片,A中纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为b、宽为a的长方形,并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.则下列等式中,能正确表示图2的面积关系的是()A.a-b2=a2-2ab+b2 B.a2=2ab+b2C.a+b=a2-b2 D.a+b2=a2+2ab+b2a-b【答案】D【分析】本题考查完全平方公式的几何背景,掌握完全平方公式的结构特征是解决问题的关键.由图二可得总面积减掉两个小矩形面积等于两个正方形面积之和,从而得到答案,【详解】由图2可得总面积减掉两个小矩形面积等于两个正方形面积之和,即(a+b)2-2ab=a2+b2.故选:D.10.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连按PQ.下列结论:①AD=BE;②AP =BQ;③PQ∥AE;④∠AOB=60°;⑤DE=DP.其中正确的有A.2个B.3个C.4个D.5个【答案】C【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE;②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ(ASA),所以AP=BQ;故②正确;③根据②△CQB≌△CP A(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知③正确;④利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知④正确;⑤根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知⑤错误.【详解】①∵等边△ABC和等边△DCE,∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,AC=BC∠ACD=∠BCE DC=CE,∴△ACD≌△BCE(SAS),∴AD=BE;故①正确;②∵△ACD≌△BCE(已证),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已证),∴∠BCQ=180°-60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP与△BCQ中,∠ACD=∠BCE AC=BC∠ACB=∠BCQ,∴△ACP≌△BCQ(ASA),∴AP=BQ;故②正确;③∵△ACP≌△BCQ,∴PC=QC,∴△PCQ是等边三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE;故③正确;④∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等边△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,故④正确;⑤∵AD=BE,AP=BQ,∴AD-AP=BE-BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE;故⑤错误;综上所述,正确的结论有:①②③④,故选C.【点睛】本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,平行线的判定与性质,相似三角形的判定与性质,综合性较强,题目难度较大.二、填空题(本大题共5小题,每小题3分,共15分.不需写出解答过程,请把答案直接填写在横线上)11.若a m=3,a n=2,则a2m+n=.【答案】18【分析】根据幂的乘方和同底数幂的乘法的逆运算法则求解即可.【详解】解:∵a m=3,a n=2,∴a2m+n=a2m⋅a n=a m2⋅a n=32×2=18,故答案为:18.【点睛】本题考查幂的乘方和同底数幂的乘法,利用幂的乘方和同底数幂的乘法逆运算法则是解答的关键.12.东方超市进了一批玩具,出售时要在进价(进货价格)的基础上加一定的利润,其销售数量x(个)与售价y(元)之间的关系如下表:销售数量x(个)1234⋯售价y(元)8+0.316+0.624+0.932+1.2⋯则y与x的关系式为.【答案】y=8.3x【分析】根据表格可以得到,售价是销售数量的8+0.3倍,写出解析式即可.【详解】解:由表格可知:当x=1时,y=1×8+0.3,当x=2时,y=2×8+0.3,当x=3时,y=3×8+0.3,当x=4时,y=4×8+0.3,⋯∴y与x的关系式为y=8+0.3x=8.3x;故答案为:y=8.3x.【点睛】本题考查利用表格求函数解析式.从表格中有效的获取信息,是解题的关键.13.如图,∠1=∠2,AB=AE,添加一个条件,使得△ABC≌△ΑED.【答案】∠B=∠E(答案不唯一)【分析】添加条件∠B=∠E,利用ASA证明△ABC≌△ΑED即可.【详解】解:添加条件AB=DE,理由如下:∵∠1=∠2∴∠BAC=∠EAD在△ABC和△AED中,∠B=∠EAB=AE∠BAC=∠EAD,∴△ABC≌△AED ASA,故答案为:∠B=∠E(答案不唯一).【点睛】本题主要考查了全等三角形的判定,熟知全等三角形的判定定理是解题的关键,全等三角形的判定定理有SSS,SAS,ASA,AAS,HL.14.若x+y=9,xy=20,则x-y=.【答案】±1.【详解】解:(x-y)2=(x+y)2-4xy=92-4×20=1,∴x-y=±1=±1.故答案为±1.15.在桌球运动中,正面击球时球碰到球桌边缘会发生反弹,如图建立平面直角坐标系,动点P从0,2出发,沿如图所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角.当点P第2022次碰到长方形的边时,点P2022的坐标为.【答案】0,2【分析】依照题意画出图形,再根据轴对称的性质写出前面7个点的坐标,再归纳出规律,利用规律解题即可.【详解】解:依照题意画出图形,如图所示.∵P 0,2 ,P 12,0 ,P 26,4 ,∴P 38,2 ,P 46,0 ,P 52,4 ,P 60,2 ,P 72,0 ,⋯,∴P n 的坐标以6为循环单位循环.∵2022÷6=337,∴点P 2022的坐标是0,2 ,故答案为:0,2 .【点睛】本题考查的轴对称的性质,坐标规律探究,熟练的利用轴对称的性质得到坐标的变化规律是解本题的关键.三、解答题(一):本大题共3小题,16题6分,17题7分,18题8分,共21分.16.计算:5÷-1 2000-33×-29.【答案】11【分析】先算乘方,再算乘除法,最后算减法.【详解】解:原式=5÷1-27×-29=5-(-6)=5+6=11.【点睛】本题考查有理数的混合运算,熟练的掌握运算法则并弄清楚运算顺序是解题关键.17.先化简,再求值:[(-2y)2-(2x-y)(3x+y)-5y2]÷-12x,其中,x、y满足|x-1|+(y+3)2=0.【答案】12x-2y,18.【分析】根据整式的加减运算以及乘除运算进行化简,然后将x与y的代入原式即可求出答案.【详解】解:原式=4y2-6x2+2xy-3xy-y2-5y2÷-1 2 x,=4y2-6x2-2xy+3xy+y2-5y2÷-1 2 x,=-6x2+xy÷-1 2 x,=12x-2y∵|x-1|+(y+3)2=0,∴x-1=0,y+3=0,∴x=1,y=-3,当x=1,y=-3时,原式=12×1-2×-3=18.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的加减运算以及乘除运算.18.如图,已知AB∥CD,射线AH交BC于点F,交CD于点D.从D点引一条射线DE,若∠1=∠2,求证:∠B+∠CDE=180°.证明:∠1=∠2(已知),且∠1=(),∴∠BFD=∠2(),∴BC∥DE(),∴∠C+=180°(),又∵AB∥CD(已知),∴∠B=(),∴∠B+∠CDE=180°.【答案】见详解【分析】本题主要考查了平行线的判定以及性质,对顶角相等,先由已知条件证明∠BFD=∠2,即可得出BC∥DE,再由平行线的性质可得出∠C+∠CDE=180°,再利用平行线的性质得出∠B=∠C,等量代换可得出结论.【详解】证明:∠1=∠2(已知),且∠1=∠BFD(对顶角相等),∴∠BFD=∠2(等量代换),∴BC∥DE(同位角相等,两直线平行),∴∠C+∠CDE=180°(两直线平行,同旁内角互补),又∵AB∥CD(已知),∴∠B=∠C(两直线平行,内错角相等),∴∠B+∠CDE=180°故答案为:∠BFD,对顶角相等,等量代换,同位角相等,两直线平行,∠CDE,两直线平行,同旁内角互补,∠C,两直线平行,内错角相等.四、解答题(二):本大题共3小题,每小题9分,共27分.19.某小区为了解业主对小区物业服务的满意度,从小区中随机抽取部分住户进行调查,调查结果分为:A.非常满意;B.满意;C.基本满意;D.不满意四个等级.请根据如图所示的两幅统计图中的信息回答下列问题:(1)抽样调查共抽取了多少户?(2)求本次调查中“基本满意”的有多少户?并补全条形统计图;(3)若该小区共有5000户,请估计对该小区服务表示不满意的有多少户?【答案】(1)50户(2)16户,图见解析(3)400户【分析】(1)用“非常满意”的户数除以其所占的百分比即可求的调查总户数;(2)用总户数减去其它等级的户数可求解;(3)用该区总人数乘以抽样调查中表示不满意的户数所占的百分比即可求解.【详解】(1)解:10÷20%=50(户),答:抽样调查共抽取了50户;(2)解:50-10-20-4=16(户),∴本次调查中“基本满意”的有16户,补全条形统计图如图所示:(3)解:5000×4=400(户),50答:估计对该小区服务表示不满意的有400户.【点睛】本题考查条形统计图和扇形统计图的关联、用样本估计总体,理解题意,能从统计图中准确获取所需信息是解答的关键.20.如图,在△ABC中,∠ACB=45°,AD⊥BC于点D,CE⊥AB于点E,CE交AD于点F.(1)求证:BD=FD;(2)若BD=2,当点E为AB边中点时,求AF的长.【答案】(1)见详解(2)AF=22【分析】本题考查了全等三角形的判定与性质、三角形的重心:(1)通过ASA证明△BDA≌△FDC,即可作答.(2)设AF=x,则AD=DC=2+x,因为点E为AB边中点,CE⊥AB,所以EC是AB的中垂线,即BC=AC=4+x,根据勾股定理,建立等式,即可作答.【详解】(1)证明:∵∠ACB=45°,AD⊥BC,∴∠ADB=∠ADC=90°,则∠DFC+∠DCF=90°,∠ACD=∠ACB=45°,即AD=DC,∵CE⊥AB,∴∠EAF+∠AFE=90°,∵∠AFE=∠DFC,∴∠EAF=∠DCF,即△BDA ≌△FDC ASA所以BD =FD ;(2)解:由(1)知△BDA ≌△FDC ASA ,则AD =DC设AF =x ,则AD =DC =2+x ,∵点E 为AB 边中点,CE ⊥AB ,∴EC 是AB 的中垂线,即BC =AC =4+x ,在Rt △ADC 中,AC 2=AD 2+DC 2故4+x 2=2+x 2+2+x 2解得x =22(x =-22<0,舍去)即AF =2221.蓝天白云下,青山绿水间,支一顶帐篷,邀亲朋好友,听蝉鸣,闻清风,话家常,好不惬意.某景区为响应《关于推动露营旅游休闲健康有序发展的指导意见》精神,需要购买A ,B 两种型号的帐篷.已知购买A 种帐篷2顶和B 种帐篷4顶,共需5200元;购买A 种帐篷3顶和B 种帐篷1顶,共需2800元.(1)求A 种帐篷和B 种帐篷的单价各是多少元?(2)若该景区需要购买A ,B 两种型号的帐篷共20顶(两种型号的帐篷均需购买),其中B 种帐篷数量不少于16顶,为使购买帐篷的总费用最低,应购买A 种帐篷和B 种帐篷各多少顶?购买帐篷的总费用最低为多少元?【答案】(1)每A 顶14种型号帐蓬600元,每顶B 种型号帐䈽1000元(2)购买A 种型号帐篷4顶,购买B 种型号帐篷16顶,总费用最低,最低总费用为18400元【分析】本题考查二元一次方程组和一次函数的应用,解题的关键是读懂题意,列出方程组和函数关系式.(1)设每顶A 种型号帐蓬m 元,每顶B 种型号帐蓬n 元,根据若购买A 种型号帐篷2顶和B 种型号帐篷4顶,列出方程,即可解得答案;(2)设购买A 种型号帐篷x 顶,总费用为w 元,B 种帐篷数量不少于16顶,可x ≤4,而w =600x +100020-x =-400x +20000,根据一次函数性质可得答案.【详解】(1)解:设每顶A 种型号帐蓬m 元,每顶B 种型号帐蓬n 元,根据题意得:2m +4n =52003m +n =2800,解得:m =600n =1000 ,故:每A 顶14种型号帐蓬600元,每顶B 种型号帐䈽1000元;(2)设购买A 种型号帐篷x 顶,总费用为w 元,则购买B 种型号帐篷20-x 顶,∵B 种帐蓬数量不少于16顶∴20-x ≥16,解得:x ≤4,根据题意得:w=600x+1000(20-x)=-400x+20000,∵-400<0,∴w随x的增大而减小,∴当x=4时,w取最小值,最小值为-400×4+20000=18400(元),∴20-x=20-4=16,答:购买A种型号帐篷4顶,购买B种型号帐篷16顶,总费用最低,最低总费用为18400元.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22.数学活动课上,老师准备了若干张如图1所示的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为b、宽为a的长方形.现在用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2所示的大正方形.观察图形并解答下列问题.(1)由图1到图2的过程可得到的因式分解等式为(用含a,b的代数式表示);(2)小敏用图1中的A、B、C三种纸片拼出一个面积为(3a+b)(a+2b)的大长方形,求需要A、B、C三种纸片各多少张;(3)如图3,C为线段AB上的动点,分别以AC,BC为边在AB的两侧作正方形ACDE和正方形BCFG.若AB=5,记正方形ACDE和正方形BCFG的面积分别为S1,S2,且S1+S2=17,利用(1)中的结论求图中三角形ACF的面积.【答案】(1)a2+2ab+b2=a+b2(2)所需A、B两种纸片各2张,C种纸片7张=2(3)S阴影【分析】本题考查多项式乘以多项式,完全平方公式的几何背景.(1)图②的正方形的边长为(a+b),是由1张A卡片,1张B卡片,2张C卡片拼成的,根据面积法可得答案;(2)计算(3a+b)(a+2b)的结果可得答案;(3)设AC=a,BC=b,可得出a+b=5,a2+b2=17,由(1)的结论可求出ab,进而求出三角形的面积.【详解】(1)根据题意得,a2+2ab+b2=a+b2,故答案为:a2+2ab+b2=a+b2;(2)∵3a+b=3a2+7ab+2b2,a+2b∴所需A、B两种纸片各2张,C种纸片7张;(3)设AC=a,BC=CF=b,则a+b=5,∵S1+S2=17,∴a2+b2=17,∵a+b2=a2+2ab+b2,∴a2+b2=a+b2-2ab,∴17=52-2ab,∴ab=4,∴S阴影=12ab=2.23.【情景感知】(1)如图①,在正方形ABCD中,∠MBN绕着点B旋转,与AD交于点E,与CD交于点F,连接BE、BF、EF,如果∠EBF=45°,请直接写出AE、CF、EF三条线段之间的数量关系为(2)如图②,在四边形ABCD中,AB=BC,∠BAD=∠BCD=90°,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F.上述问题(1)中的结论是否仍然成立?(填“成立”或“不成立”)【探究发现】(3)如图③,在四边形ABCD中,BA=BC,∠BAD+∠BCD=180°,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F.上述中的结论是否仍然成立?并说明理由;【拓展应用】(4)今年的5月1日,我国第三艘航母“福建舰”开启首次海试,我国东海舰队派出现代级驱逐舰“杭州舰”为其护航.如图所示,“福建舰”在指挥中心(O处)北偏西30°的A处.“杭州舰”在指挥中心南偏东80°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,“福建舰”向正东方向以30海里/小时的速度前进,同时“杭州舰”沿北偏东40°的方向以35海里/小时的速度前进,2小时后,指挥中心观测到“福建舰”、“杭州舰”两舰艇分别到达E、F处.且指挥中心雷达观测两舰艇之间的夹角∠EOF=65°.试求此时两舰艇之间的距离.【答案】(1)EF=AE+CF;(2)成立;(3)成立;理由见解析;(4)130海里【分析】(1)延长DC到点G,使CG=AE,连接BG,可证明△BCG≌△BAE,可得BG=BE,∠ABE=∠CBG,再根据∠EBF=45°,可得∠FBG=∠EBF,然后证明△BGF≌△BEF,可得FG=EF,即可;(2)延长DC到点G,使CG=AE,连接BG,可证明△BCG≌△BAE,可得BG=BE,∠ABE=∠CBG,再根据∠ABC=2∠MBN,可得∠FBG=∠EBF,然后证明△BGF≌△BEF,可得FG=EF,即可;(3)延长DC到点G,使CG=AE,连接BG,可证明△BCG≌△BAE,可得BG=BE,∠ABE=∠CBG,再根据∠ABC=2∠MBN,可得∠FBG=∠EBF,然后证明△BGF≌△BEF,可得FG=EF,即可;∠AOB,OA=OB,∠OAG+∠OBG= (4)连接EF,延长AE,BF相交于点G,根据题意可得∠EOF=12180°,可得符合(3)中的条件,再由(3)的结论,即可求解.【详解】(1)解:如图,延长DC到点G,使CG=AE,连接BG,在正方形ABCD中,AB=BC,∠ABC=∠BCD=∠A=∠BCG=90°,在△BCG和△BAE中,∵AB=BC,∠A=∠BCG=90°,CG=AE,∴△BCG≌△BAE SAS,∴BG=BE,∠ABE=∠CBG,∵∠EBF=45°,∴∠CBF+∠ABE=90°-∠EBF=45°,∴∠FBG=∠CBF+∠CBG=45°,∴∠FBG=∠EBF,在△BGF和△BEF中,∵BG=BE,∠FBG=∠EBF,BF=BF,∴△BGF≌△BEF SAS,∴FG=EF,∵GF=CG+CF=AE+CF,∴EF=AE+CF;故答案为:EF=AE+CF(2)解:如图,延长DC到点G,使CG=AE,连接BG,则∠BAD=∠BCD=90°,在△BCG和△BAE中,∵AB=BC,∠BAD=∠BCD=90°,CG=AE,∴△BCG≌△BAE SAS,∴BG=BE,∠ABE=∠CBG,∵∠ABC=2∠MBN,∴∠CBF+∠ABE=∠ABC-∠EBF=1∠ABC,2∴∠FBG=∠EBF,在△BGF和△BEF中,∵BG=BE,∠FBG=∠EBF,BF=BF,∴△BGF≌△BEF SAS,∴FG=EF,∵GF=CG+CF=AE+CF,∴EF=AE+CF;故答案为:成立(3)结论成立,理由如下:如图,延长DC到点G,使CG=AE,连接BG,∵∠BAD+∠BCD=180°,∠BCG+∠BCD=180°,∴∠BAD=∠BCG,在△BCG和△BAE中,∵AB=BC,∠BAD=∠BCG,CG=AE,∴△BCG≌△BAE SAS,∴BG=BE,∠ABE=∠CBG,∵∠ABC=2∠MBN,∴∠CBF+∠ABE=∠ABC-∠EBF=1∠ABC,2∴∠FBG=∠EBF,在△BGF和△BEF中,∵BG=BE,∠FBG=∠EBF,BF=BF,∴△BGF≌△BEF SAS,∴FG=EF,∵GF=CG+CF=AE+CF,∴EF=AE+CF;(4)连接EF,延长AE,BF相交于点G,∵∠AOB=30°+90°+90°-80°=130°,∠EOF=65°,∠AOB,∴∠EOF=12∵OA=OB,∠OAG+∠OBG=90°-30°=180°,+80°+40°∴符合(3)中的条件,由(3)得:EF=AE+BF,由题意得:AE=30×2=60海里/小时,BF=35×2=70海里/小时,∴EF=AE+BF=60+70=130(海里)答:此时两舰艇之间的距离为130海里.【点睛】本题考查了全等三角形的判定与性质.作辅助线构造全等三角形是解题的关键.。

北师大版八年级上册数学第一次月考测试题

北师大版八年级上册数学第一次月考测试题
【解答】解:由勾股定理,AC= = =12(m).
则地毯总长为12+5=17(m),
则地毯的总面积为17×2=34(平方米),
所以铺完这个楼道至少需要34×18=612元.
故答案为:612.
【点评】本题考查了勾股定理的应用,正确理解地毯的长度的计算是解题的关键.
10.如图,O为数轴原点,A,B两点分别对应﹣3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为 .
4.直角三角形的斜边为20cm,两直角边之比为3:4,那么这个直角三角形的周长为( )
A.27cmB.30cmC.40cmD.48cm
5.下列各组数能构成勾股数的是( )
A.2, , B.12,16,20C. , , D.32,42,52
6.将正整数的算术平方根按如图所示的规律排列下去.若用有序实数对(m,n)表示第m排,从左到右第n个数,如(4,3)表示实数 ,则(8,6)表示的实数是( )
【分析】根据非负数的性质求出x,y的值,根据相反数求出z的值,再代入代数式求值.
【解答】解:∵ +|y﹣2|=0,
∴x+1=0,y﹣2=0,
∴x=﹣1,y=2.
∵且 与 互为相反数,
∴1﹣2z+3z﹣5=0,
解得z=4.
∴yz﹣x=2×4﹣(﹣1)=9,
∴yz﹣x的平方根是±3.
【点评】本题考查了非负数的性质、相反数、立方根,解决本题的关键是熟记立方根的定义.
(2)比较大小 与 .
15.已知 +|y﹣2|=0,且 与 互为相反数,求yz﹣x的平方根.
16.已知a是16的算术平方根,b是9的平方根,c是﹣27的立方根,求a2+b2+c3+a﹣c+2的值.

北师大版八年级数学上《第1章 勾股定理》(广东省深圳市美中学校)

北师大版八年级数学上《第1章 勾股定理》(广东省深圳市美中学校)

初中数学试卷《第1章勾股定理》(广东省深圳市美中学校)一、选择题1.如图字母B所代表的正方形的面积是()A.12 B.13 C.144 D.1942.分别以下列五组数为一个三角形的边长:①6,8,10 ②13,5,12 ③1,2,3 ④9,40,41 ⑤3,4,5.其中能构成直角三角形的有()组.A.2 B.3 C.4 D.53.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形4.下列数据中是勾股数的有()组(1)3,5,7 (2)5,15,17 (3)1.5,2,2.5 (4)7,24,25 (5)10,24,26.A.1 B.2 C.3 D.45.已知直角三角形的两直角边之比是3:4,周长是36,则斜边是()A.5 B.10 C.15 D.206.若等腰三角形的腰长为10cm,底边长为16cm,那么底边上的高为()A.12 cm B.10 cm C.8 cm D.6 cm7.三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形8.直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.9.下列三角形一定不是直角三角形的是()A.三角形的三边长分别为5,12,13B.三角形的三个内角比为1:2:3C.三角形的三边长之比为1:2:3D.三角形的两内角互余10.放学以后,小明和小华从学校分开,分别向北和东走回家,若小明和小华行走的速度都是50米/分,小明用10分到家,小华用24分到家,小明和小华家的距离为()A.600米B.800米C.1000米D.1300米11.下面说法正确的是()A.在Rt△ABC中,a2+b2=c2B.在Rt△ABC中,a=3,b=4,那么c=5C.直角三角形两直角边都是5,那么斜边长为10D.直角三角形中,斜边最长12.在△ABC中,AB=12cm,AC=9cm,BC=15cm,下列关系成立的是()A.∠B+∠C>∠A B.∠B+∠C=∠A C.∠B+∠C<∠A D.以上都不对二、填空题13.一长为13m的木梯,架在高为12m的墙上,这时梯脚与墙的距离是m.14.如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2= .15.一根电线杆在一次台风中于地面3米处折断倒下,杆顶端落在离杆底端4米处,电线杆在折断之前高米.16.如果直角三角形的三条边分别为4、5、a,那么a2的值等于.三、解答题(共52分)17.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,该河流的宽度为多少?18.求下列图形中阴影部分的面积.(1)如图1,AB=8,AC=6;(2)如图2,AB=13,AD=14,CD=2.19.某校校庆,在校门AB的上方A处到教学楼C的楼顶E处拉彩带,已知AB高5m,EC高29m,校门口到大楼之间的距离BC为10m,求彩带AE的长是多少?20.一个零件的形状如图所示,工人师傅按规定做得AB=3,BC=4,AC=5,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?21.(10分)如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F 处,折痕为MN,求线段CN长.22.如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?《第1章勾股定理》(广东省深圳市美中学校)参考答案与试题解析一、选择题1.如图字母B所代表的正方形的面积是()A.12 B.13 C.144 D.194【考点】勾股定理.【专题】换元法.【分析】由图可知在直角三角形中,已知斜边和一直角边,求另一直角边的平方,用勾股定理即可解答.【解答】解:由题可知,在直角三角形中,斜边的平方=169,一直角边的平方=25,根据勾股定理知,另一直角边平方=169﹣25=144,即字母B所代表的正方形的面积是144.故选C.【点评】此题比较简单,关键是熟知勾股定理:在直角三角形中两条直角边的平方和等于斜边的平方.2.分别以下列五组数为一个三角形的边长:①6,8,10 ②13,5,12 ③1,2,3 ④9,40,41 ⑤3,4,5.其中能构成直角三角形的有()组.A.2 B.3 C.4 D.5【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:因为①62+82=102,②132=52+122,④92+402=412,符合勾股定理的逆定理,所以能构成直角三角形的有三组.故选B.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形【考点】勾股定理的逆定理;三角形内角和定理.【分析】直角三角形的判定方法有:①求得一个角为90°,②利用勾股定理的逆定理.【解答】解:A、根据三角形内角和定理,可求出角C为90度,故正确;B、解得应为∠B=90度,故错误;C、化简后有c2=a2+b2,根据勾股定理,则△ABC是直角三角形,故正确;D、设三角分别为5x,3x,2x,根据三角形内角和定理可求得三外角分别为:90度,36度,54度,则△ABC是直角三角形,故正确.故选B.【点评】本题考查了直角三角形的判定.4.下列数据中是勾股数的有()组(1)3,5,7 (2)5,15,17 (3)1.5,2,2.5 (4)7,24,25 (5)10,24,26.A.1 B.2 C.3 D.4【考点】勾股数.【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【解答】解:(1)3,5,7 不是勾股数,因为32+52≠72;(2)5,15,17 不是勾股数,因为52+152≠172;(3)1.5,2,2.5不是勾股数,因为1.5,2,2.5不是正整数;(4)7,24,25 是勾股数,因为72+242=252,且7、24、25是正整数;(5)10,24,26是勾股数,因为102+242=262,且10,24,26是正整数.故选B.【点评】本题考查了勾股数的概念:满足a2+b2=c2的三个正整数,称为勾股数.说明:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以它们不是够勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…5.已知直角三角形的两直角边之比是3:4,周长是36,则斜边是()A.5 B.10 C.15 D.20【考点】勾股定理.【分析】设直角三角形的两直角边分别为3k,4k,则斜边为5k,列出方程求出k,即可解决问题.【解答】解:设直角三角形的两直角边分别为3k,4k,则斜边为5k.由题意3k+4k+5k=36,解得k=3,所以斜边为5k=15.故选C.【点评】本题考查勾股定理、一元一次方程等知识,解题的关键是灵活于勾股定理解决问题,学会设未知数列方程解决问题,属于中考常考题型.6.若等腰三角形的腰长为10cm,底边长为16cm,那么底边上的高为()A.12 cm B.10 cm C.8 cm D.6 cm【考点】勾股定理;等腰三角形的性质.【分析】可以先作出BC边上的高AD,根据等腰三角爱哦形的性质可得BD的长,在Rt△ADB中,利用勾股定理就可以求出高AD.【解答】解:作AD⊥BC于D,∵AB=AC,∴BD=BC=8cm,∴AD==6cm,故选:D.【点评】本题主要考查了勾股定理及等腰三角形的性质,关键是掌握勾股定理和等腰三角形三线合一的性质.7.三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形【考点】勾股定理的逆定理.【分析】对等式进行整理,再判断其形状.【解答】解:化简(a+b)2=c2+2ab,得,a2+b2=c2所以三角形是直角三角形,故选:C.【点评】本题考查了直角三角形的判定:可用勾股定理的逆定理判定.8.直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.【考点】勾股定理.【分析】首先根据勾股定理,得:斜边==13.再根据直角三角形的面积公式,求出斜边上的高.【解答】解:由题意得,斜边为=13.所以斜边上的高=12×5÷13=.故选D.【点评】运用了勾股定理.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.9.下列三角形一定不是直角三角形的是()A.三角形的三边长分别为5,12,13B.三角形的三个内角比为1:2:3C.三角形的三边长之比为1:2:3D.三角形的两内角互余【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据勾股定理的逆定理以及直角三角形的定义一一判断即可.【解答】解:A、正确.∵52+122=132,∴三角形为直角三角形.B、正确.∵三角形的三个内角比为1:2:3,∴三个内角分别为30°,60°,90°,∴三角形是直角三角形.C、错误.∵12+22≠32,∴三角形不是直角三角形.D、正确.∵三角形的两内角互余,∴第三个角是90°,∴三角形是直角三角形.故选C.【点评】本题考查勾股定理的逆定理、三角形的内角和等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.10.放学以后,小明和小华从学校分开,分别向北和东走回家,若小明和小华行走的速度都是50米/分,小明用10分到家,小华用24分到家,小明和小华家的距离为()A.600米B.800米C.1000米D.1300米【考点】勾股定理的应用.【分析】根据题意画出图形,再根据勾股定理求解即可.【解答】解:如图所示,∵小明用10分到家,小华用24分到家,∴OA=10×50=500(米),OB=24×50=1200(米),∴AB==1300(米).答:小明和小华家的距离为1300米.故选:D.【点评】本题考查的是勾股定理的应用,熟知在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.11.下面说法正确的是()A.在Rt△ABC中,a2+b2=c2B.在Rt△ABC中,a=3,b=4,那么c=5C.直角三角形两直角边都是5,那么斜边长为10D.直角三角形中,斜边最长【考点】勾股定理.【分析】利用直角三角形勾股定理进行解题.【解答】解:A,B:直角三角形直角是哪个,未知,故不能得出a2+b2=c2,c=5C:斜边长为5;D:由勾股定理知显然正确.故选D.【点评】考查了直角三角形相关知识以及勾股定理的应用.12.在△ABC中,AB=12cm,AC=9cm,BC=15cm,下列关系成立的是()A.∠B+∠C>∠A B.∠B+∠C=∠A C.∠B+∠C<∠A D.以上都不对【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理进行分析,从而得到三角形的形状,则不难求得其各角的关系.【解答】解:因为122+92=152,所以三角形是直角三角形,则∠B+∠C=∠A.故选B.【点评】本题考查了直角三角形的判定及勾股定理逆定理的应用.二、填空题13.一长为13m的木梯,架在高为12m的墙上,这时梯脚与墙的距离是 5 m.【考点】勾股定理的应用.【分析】根据题意可知,梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.【解答】解:∵梯子、地面、墙刚好形成一直角三角形,∴梯脚与墙角的距离==5(m).故答案为:5.【点评】本题考查的是勾股定理在实际生活中的应用,正确应用勾股定理是解题关键.14.如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2= 7 .【考点】勾股定理.【分析】连续运用勾股定理即可解答.【解答】解:由勾股定理可知OB=,OC=,OD=∴OD2=7.【点评】本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.15.一根电线杆在一次台风中于地面3米处折断倒下,杆顶端落在离杆底端4米处,电线杆在折断之前高8 米.【考点】勾股定理的应用.【分析】先根据勾股定理求出大树折断部分的高度,再根据大树的高度等于折断部分的长与未断部分的和即可得出结论.【解答】解:由勾股定理得斜边为=5米,则原来的高度为3+5=8米.即电线杆在折断之前高8米.故答案为8.【点评】此题是勾股定理的应用,解本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术的算法求解.16.如果直角三角形的三条边分别为4、5、a,那么a2的值等于9或41 .【考点】勾股定理.【分析】此题有两种情况,一是当这个直角三角形的斜边的长为5时;二是当这个直角三角形两条直角边的长分别为4和5时,由勾股定理分别求出此时的a2值即可.【解答】解:当这个直角三角形的斜边的长为5时,a2=52﹣42=9;当这个直角三角形两条直角边的长分别为4和5时,a2=52+42=41.故a的值为9或41.故答案为:9或41.【点评】本题考查勾股定理的知识,解答此题的关键是直角三角形的斜边没有确定,所以要进行分类讨论,注意不要漏解,难度一般.三、解答题(共52分)17.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,该河流的宽度为多少?【考点】勾股定理的应用.【分析】从实际问题中找出直角三角形,利用勾股定理解答.【解答】解:根据图中数据,运用勾股定理求得AB===480m,答:该河流的宽度为480m.【点评】本题考查了勾股定理的应用,是实际问题但比较简单.18.求下列图形中阴影部分的面积.(1)如图1,AB=8,AC=6;(2)如图2,AB=13,AD=14,CD=2.【考点】勾股定理.【分析】(1)首先利用勾股定理计算出BC的长,进而得到圆的半径BO长,再利用半圆的面积减去直角三角形面积即可;(2)首先计算出AC的长,再利用勾股定理计算出BC的长,然后利用矩形的面积公式计算即可.【解答】解:(1)∵AB=8,AC=6,∴BC===10,∴BO=5,=AB×AC=×8×6=24,∵S△ABCS=π×52=,半圆=﹣24;∴S阴影(2)∵AD=14,CD=2,∴AC=12,∵AB=13,∴CB===5,【点评】此题主要考查了勾股定理,关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.19.某校校庆,在校门AB的上方A处到教学楼C的楼顶E处拉彩带,已知AB高5m,EC高29m,校门口到大楼之间的距离BC为10m,求彩带AE的长是多少?【考点】勾股定理的应用.【专题】探究型.【分析】过点A作AF⊥CE于点F,由AB=5m,EC=29m可求出EF的长,再由BC=10m可知AE=BC=10m,在Rt△AEF中利用勾股定理即可求出AE的长.【解答】解:过点A作AF⊥CE于点F,∵AB⊥BC,EC⊥BC,∴四边形ABCF是矩形,∵AB=5m,EC=29m,∴EF29﹣5=24m,∵BC=10m,∴AE=BC=10m,在Rt△AEF中,∵AF=10m,EF=24m,∴AE===26m.答:彩带AE的长是23米.【点评】本题考查的是勾股定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.(10分)(2016春•石家庄期末)一个零件的形状如图所示,工人师傅按规定做得AB=3,BC=4,AC=5,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?【考点】勾股定理的逆定理.【分析】由勾股定理逆定理可得△ACD 与△ABC 均为直角三角形,进而可求解其面积.【解答】解:∵42+32=52,52+122=132,即AB 2+BC 2=AC 2,故∠B=90°,同理,∠ACD=90°∴S 四边形ABCD =S △ABC +S △ACD =×3×4+×5×12=6+30=36.【点评】熟练掌握勾股定理逆定理的运用,会求解三角形的面积问题.21.如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,求线段CN 长.【考点】翻折变换(折叠问题).【分析】根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.【解答】解:设CN=xcm,则DN=(8﹣x)cm,由折叠的性质知EN=DN=(8﹣x)cm,而EC=BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,解得:x=3.即线段CN长为3.【点评】此题主要考查了翻折变换的性质,折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.22.如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?【考点】轴对称-最短路线问题.【专题】计算题;作图题.【分析】此题的关键是确定点M的位置,需要首先作点A的对称点A′,连接点B和点A′,交l于点M,M即所求作的点.根据轴对称的性质,知:MA+MB=A′B.根据勾股定理即可求解.【解答】解:作A关于CD的对称点A′,连接A′B与CD,交点CD于M,点M即为所求作的点,则可得:DK=A′C=AC=10千米,∴BK=BD+DK=40千米,∴AM+BM=A′B==50千米,总费用为50×3=150万元.【点评】此类题的重点在于能够确定点M的位置,再运用勾股定理即可求解.。

【精选】八年级数学上学期第一次月考试题北师大版

【精选】八年级数学上学期第一次月考试题北师大版

北京2017-2018学年上学期第一次月考八年级数学试卷一、选择题(每题3分,共36分)1.以下列各组数据为边长作三角形,其中能组成直角三角形的是( ). A .3,5,3 B .4,6,8 C .7,24,25 D .6,12,13 2.下列说法错误的是( )A 、5是25的算术平方根B 、1是1的一个平方根C 、(-4)2的平方根是-4D 、0的平方根与算术平方根都是03.化简的结果是( )A 、3B 、±3C、9D 、±94.已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) A.25 B.14 C.7 D.7或25 5.下列运算正确的是( ) A 、B 、C 、D 、6.若,则等于( )A.B.C. D.7.如图所示,一圆柱高8cm ,底面半径为2cm ,一只蚂蚁从点A 爬到点 B 处吃食,点B 与点A 相对,要爬行的最短路程(π取3)是( ) A .20cm B .10cm C .14cm D .无法确定 8.估算-3的值在( )A .4与5之间B .5与6之间C .6与7之间D .7与8之间9.爸爸为颖颖买了一个密码箱,并告诉其密码(密码为自然数)是1、2、4、6、8、9六个数中的三个数的算术平方根,则这个密码箱的密码可能是( )A .123B .189C .169D .248 10.实数,在数轴上对应点的位置如图2-2所示,则化简代数式的结果是( )A.B.C. D.11.如图,正方形ABCD 的面积为100 cm 2,△ABP 为直角三角形,∠P=90°,且PB=6 cm ,则AP 的长为( )A.10 cmB.6 cmC.8 cmD.无法确定 12. 图2中的小方格都是边长为1的正方形,试判断△ABC 的形状为( ) A .钝角三角形 B. 锐角三角形 C. 直角三角形 D.以上都有可能二、填空题(每题2分,共20分)13.2-5的绝对值是________,的算术平方根是________.14.明明家的卫生间地面恰好由120块相同的正方形地砖铺成,若该地面的面积是10.8 m 2,则每块正方形地砖的边长是__________ m . 15.若4<<5,则满足条件的整数a 有__________个.16.已知x ,y 都是实数,且y =x -3+3-x +4,则y x=________.17.在△ABC 中,∠C =90°, 若BC ∶AC =3∶4,AB =10,则BC =_____,AC =_____. 18.如图4,等腰三角形ABC 的底边长为16,底边上的高AD 长为6,则腰AB 的长度为_____.19.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S 1=4,S 2=9,S 3=8,S 4=10,则S=________.20.甲、乙两位探险者在沙漠中进行探险,某日早晨甲先出发,他以的速度向东行走,后乙从同一地点出发,他以的速度向北行走,上午时甲、乙两人相距_____.21.已知一个正数的平方根是和,则这个数是_______.22.将1、、、按图2所示的方式排列,若规定(m ,n )表示第m 排从左到右第n个数,则(4,2)与(21,2)表示的两数的积是______.三、解答题(共64分)23.(共6分,每题3分)求下列各式中x的值:(1)25x2-64=0;(2)343(x+3)3+27=0.24.(共18分,每题3分)计算下列各题(1)(2)(3)(4)(5)(6)25.(6分)已知:如图,四边形中,,,,且.试求:(1)的度数.(2)四边形的面积.(结果保留根号)26.(6分)小红和小军周日到郊外放风筝,风筝飞得又高又远,小红让小军跑到风筝的正下方,并测出两人之间的距离为米,小红发现已将米的风筝线放完了,小红想了想就说出风筝飞了多高,小红知道自己身高为米,(手与头顶齐平)请画出示意图,并计算风筝离地面多高.27.(6分)已知的平方根是,的算术平方根是,求的算术平方根. 28.(6分)有一块直角三角形纸片,两直角边分别为:AC=6c m,BC=8c m,现将直角边AC沿直线AD 折叠,使它落在斜边AB上,且与AE重合,求CD的长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年八年级(上)开学数学试卷
一、选择题(每题3分,共21分)
1.数0.0000025用科学记数法表示为()
A.2.5×106B.0.25×10﹣5C.2.5×10﹣6D.25×10﹣7
2.如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到得卡片上算式正确的概率是()
A.B.C.D.1
3.下面的实数中是无理数的个数是()
﹣0.4,π,﹣|﹣4|,0,﹣,﹣,,,4.262262226…(两个6之间依次增加一个“2”)A.1个B.2个C.3个D.4个
4.如图,AB∥CD∥EF,则下列各式中正确的是()
A.∠1=180°﹣∠3 B.∠1=∠3﹣∠2
C.∠2+∠3=180°﹣∠1 D.∠2+∠3=180°+∠1
5.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()
A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF
6.如图,Rt△ABC的两直角边长分别为6、8,分别以它的三边为直径向上作三个半圆,则图中阴影部分的面积为()
A.24 B.8πC.24πD.25π
7.如图,△ABC面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2010,最少经过()次操作.
A.6 B.5 C.4 D.3
二、填空题(每题3分,共18分)
8.的相反数是,﹣的倒数是,的算术平方根是.
9.如图,把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上.若∠EFG=55°,则∠1=,∠2=.
10.如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为.
11.如图所示,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,就做成了一个测量工具,则A'B'的长等于内槽宽AB,那么判定△OAB≌OA'B'的理由是.
12.如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式.
13.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.
三、解答题(共6小题)
14.(8分)画图或作图:
(1)如图1是4×4正方形网格,其中已有3个小方格被涂成了黑色.请从其余13个白色小方格中选出一个涂成黑色,使整个涂成黑色的图形成为轴对称图形(只要画出一种图形),并回答符合条件的小方格共有个.
(2)如图2,点A、B是直线l同侧的两个点,在直线l上可以找到一个点P,使得PA+PB最小.小玉画完符合题意的图形后,不小心将墨水弄脏了图形(如图3),直线l看不清了.请你帮助小玉补全图形,作出直线l.(尺规作图,保留痕迹,不要求写作法)
15.(10分)计算:
(1)(﹣2)2﹣()﹣1+20170
(2)
16.(12分)阅读下面材料,解答问题:将4个数a、b、c、d排列成2行2列,两边各加一条竖线,记为叫做二阶行列式.意义是=ad﹣bc.例如:=5×8﹣6×7=﹣2.
(1)请你计算的值;
(2)若=9,求x的值.
17.(9分)阅读理解,补全证明过程及推理依据.
已知:如图,点E在直线DF上,点B在直线AC上,∠1=∠2,∠3=∠4.
求证∠A=∠F
证明:∵∠1=∠2(已知)
∠2=∠DGF()
∴∠1=∠DGF(等量代换)
∴∥()
∴∠3+∠=180°()
又∵∠3=∠4(已知)
∴∠4+∠C=180°(等量代换)
∴∥()
∴∠A=∠F()
18.(10分)某周末的一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某旅游景点游玩.该校汽车离家的距离s(千米)与时间t(时)的关系可以用图中的折线表示.根据图象提供的有关信息,解答下列问题:
(1)小明全家在旅游景点游玩了小时.
(2)返程途中小汽车的速度是每小时千米,小明全家到家时的时间是时.
(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为40升,汽车每行驶1千米耗油升.汽车行驶时油箱中的余油量不能少于5升,小明家最迟应在时加油.(加油所用时间忽略不计)
19.(12分)如图,A、D、B三点在同一直线上,△ADC、△BDO为等腰直角三角形,连接AO、BC.
(1)AO、BC的大小位置关系如何?说出你的看法,并证明你的结论.
(2)当△ODB绕顶点D旋转任一角度得到如图②,(1)中的结论是否仍然成立?请说明理由.
参考答案
一、选择题(每题3分,共21分)1.C.2.B.3.C.4.D.
5.B 6.A 7.C
二、填空题(每题3分,共18分)
8.,﹣,.
9.∠1=70°,∠2=110°.
10.(﹣1,1),(﹣2,﹣2),(0,2),(﹣2,﹣3).11.SAS.
12.a2﹣b2=(a+b)(a﹣b).
13.25.
14.解:(1)如图:

共3个,
故答案为:3;
(2)如图所示:

15.解:(1)原式=4﹣2+1=3
(2)原式=﹣×2××2=﹣.
16.解:(1)=5×﹣=;
(2)∵=9,
∴(x+1)(2x+1)﹣3x=9,
∴3x2﹣8=0,
解得:x1=,x2=.
17.解:∵∠1=∠2(已知)
∠2=∠DGF(对顶角相等)
∴∠1=∠DGF(等量代换)
∴BD∥CE(同位角相等,两直线平行)
∴∠3+∠C=180°(两直线平行,同旁内角互补)
又∵∠3=∠4(已知)
∴∠4+∠C=180°
∴AC∥DF(同旁内角互补,两直线平行)
∴∠A=∠F(两直线平行,内错角相等);
故答案为:对顶角相等;BD;CE;同位角相等,两直线平行;C;两直线平行,同旁内角互补;AC,DF;同旁内角互补,两直线平行;两直线平行,内错角相等.
18.解(1)14﹣10=4(小时).
则小明全家在旅游景点游玩了4小时;
答案为:4;
(2)(180﹣120)÷(51﹣14)=60(千米/小时);
设返程途中s与t的函数解析式是:s=kt+b,
则,
解得:,
则函数解析式是:s=﹣60t+1020;
令s=0,即﹣60t+1020=0,
解得:t=17,则17点到家;
答案为:60,17;
(3)(15﹣5)÷=90(千米),速度=180÷(10﹣8)=90(千米/小时),
90÷90=1(小时),8+1=9;
∵汽车行驶时油箱中的余油量不能少于5升,
∴小明家最迟应在9时加油.
答案为:9.
19.
证明:∵△ADC、△BDO为等腰直角三角形,∴∠ADO=∠CDB=90°,AD=DC,DO=BD,∵在△ADO和△CDB中,

∴△ADO≌△CDB(SAS),
∴AO=BC,∠OAD=∠DCB,
∵∠COE=∠AOD,∠AOD+∠OAD=90°,
∴∠DCB+∠COE=90°,
∴∠CEO=90°,
∴AO⊥BC;
(2)解:AO=BC仍成立,
理由是:∵△ADC、△BDO为等腰直角三角形,∴AD=DC,DO=BD,∠ADC=∠BDO=90°,∴∠ADC+∠CDO=∠BDO+∠CDO,
∴∠ADO=∠CDB,
∵在△ADO和△CDB中,

∴△ADO≌△CDB(SAS),
∴AO=BC.。

相关文档
最新文档